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Validation of Milner’s visco-elastic theory of sintering for the 
generation of porous polymers with finely tuned morphology  

Gaëtan Lutzweiler,*a,b Jean Farago,* b Emeline Oliveira,b Léandro Jacomine,b Ozan Erverdi, b Engin. 
Nihal Vrana, c Aouatef Testouri, b Pierre Schaaf, a,b Wiebke Drenckhan b  

Sacrificial sphere templating has become a method of choice to generate macro-porous materials with well-defined, 

interconnected pores. For this purpose, the interstices of a sphere packing are filled with a solidifying matrix, from which 

the spheres are subsequently removed to obtain interconnected voids.In order to control the size of the interconnections, 

viscous sintering of the initial sphere template has proven a reliable approach. To predict how the interconnections evolve 

with different sintering parameters, such as time or temperature, Frenkel’s model has been used with reasonable success 

over the last 70 years. However, numerous investigations have shown that the often complex flow behaviour of the spheres 

needs to be taken into account. To this end, S. Milner [arXiv:1907.05862] developed recently a theoretical model which 

improves on some key assumptions made in Frenkel’s model, leading to a slightly different scaling. He also extended this 

new model to take into account the visco-elastic response of the spheres. Using an in-depth investigation of templates of 

paraffin spheres, we provide here the first systematic comparison with Milner’s theory. Firstly, we show that his new scaling 

describes slightly better the experimental data than Frenkel’s scaling. We then show that the visco-elastic version of his 

model provides a significantly improved description of the data over a wide parameter range.  We finally use the obtained 

sphere templates to produce macro-porous polyurethanes with finely controlled pore and interconnection sizes. The general 

applicability of Milner’s theory makes it transferable to a wide range of formulations, provided the flow properties of the 

sphere material can be quantified. It therefore provides a powerful tool to guide the creation of sphere packings and porous 

materials with finely controlled morphologies.

1) Introduction 

Macro-porous materials with pore sizes larger than 10 µm are 

employed in many fields1–4, ranging from catalysis, absorption, 

acoustics, heat transfer to tissue engineering applications. This 

widespread use is motivated  by the many different types of 

macro-porous materials which can be manufactured in terms of 

their porous structure (open- vs closed-cell, low- vs high density, 

etc.)5,6 and their base materials (metals, ceramics, synthetic or 

natural polymers, etc.)7–9.  

Key parameters of the porous structure are the dimensions of 

the pores and of their interconnections. Their impact on the 

material properties has been put in evidence in different fields. 

For example, in acoustics, Trinh et al.10 and Jahani et al.11 

showed how the number and size of the interconnections 

relates to the sound absorption coefficient. In catalysis, a high 

degree of interconnectivity helps to reduce the pressure drop in 

reactors12. Langlois et al.13 demonstrated how the number and 

the size of the interconnections are related to the flow 

resistivity. Last but not least, in tissue engineering it has been 

shown that pore and interconnection sizes impact significantly 

the behaviour of cells14,15, fibrotic encapsulation and 

vascularisation within the body16–18.  

Of particular interest to this article are macro-porous polymeric 

materials. The explicit control of their pore and interconnection 

sizes remains an important challenge. Liquid foams or emulsions 

may be used as templates for this purpose19–22. The pore 

dimensions can then be controlled via the choice of the 

foaming/emulsification methods23 and/or via the formulation24. 

In particular, microfluidic techniques allow  to generate porous 

materials with highly monodisperse and even periodic pores 
25,26. However, since the pore opening mechanisms are badly 

understood27,28, it remains a major challenge to control the 

stability of the initially liquid template and to tune explicitly the 

presence and size of the interconnections. Moreover, the 

necessity to stabilise the initially liquid template of two 

immiscible fluids puts important constraints on possible 

formulations. 

One way to overcome these challenges is the so-called sphere 

templating approach29–31 (Figure 1), which is is based on the use 

of solid spherical particles which are tightly packed in a mould. 

The interstices between the spheres are infiltrated by an initially 

liquid matrix (monomers, polymer solutions or melts, etc.), 

which is then solidified through polymerisation and/or cross-
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linking. Once the matrix is solidified, the spheres are selectively 

dissolved in order to leave an interconnected network of pores. 

In this process, the final pore diameter is given by the diameter 

of the sacrificial spheres, while the interconnections are 

obtained by sintering of the initial sphere template. The latter is 

obtained by heating the sphere template to temperatures 

which allow for a material transport from the spheres to the 

interconnections32, without melting the entire structure. This 

material transport is driven by the surface energy of the 

spheres, which is reduced by a progressive filling of the 

interconnections creating a growing “neck” between the 

spheres. The material transport can arise via different 

phenomena32. Of interest here are those which result from 

viscous flow.  

Such sphere templating approaches have been successfully 

employed in the past for the generation of macro-porous 

polymeric materials. For example, Somo et al. 33 and Chen et 

al.34 used Poly (methyl methacrylate) PMMA spheres to 

produce scaffolds with micrometric pore size (20 - 110 μm) for 

tissue engineering purposes. The spheres were sintered for 

variable times (0 – 30 h) and temperatures (110 - 175°C) to tune 

the interconnection sizes. Paraffin is also regularly used as a 

porogen, since spherical paraffin beads can be easily produced 

via quenching of an emulsion35,36. For example, Grenier et al.37 

produced a polyurethane scaffold using paraffin as sacrificial 

template, but without sintering. Ma et al.30 sintered paraffin 

spheres at 37°C for 20 min to generate a porous scaffold. Takagi 

et al. 38 sintered polyethylene spheres to form the template of a 

porous bio-ceramic.  

Alternative approaches to sintering for the control of the 

interconnections may be used. For example, Zhao et al.39 used 

Poly(styrene-co-divinylbenzene) spheres as porogens, creating 

the neck (i.e. interconnections) by addition of an adhesive 

which accumulated in the contact zone of the spheres. In 

another case, Descamps et al. 40 created the neck between 

PMMA spheres using acetone which slightly dissolved the 

spheres creating a neck at their contact. 

Even if sphere templating via sintering is regularly used to 

obtain macro-porous polymers, the detailed mechanism of the 

formation of the interconnections has not been studied in a 

sufficiently systematic manner to profit from the predictive 

power of an accompanying model.  As discussed in more detail 

in Section 2, for systems where the relaxation dynamics can be 

described by a viscous flow, the first theoretical description of 

the phenomenon dates back to a theory proposed by Frenkel41. 

His model has been used quite successfully to account for a 

wide range of experimental results36,42,43. Some modifications 

of the existing theories were made by Bellehumeur et al.44 and 

Mazur et al.45  to take into account the viscoelastic properties 

of polymeric spheres which were compared with experiments. 

Recently, Frenkel’s model has been challenged by Milner46,47, 

who established an analogy between elastic Hertzian contacts 

and the early stages of viscous sintering. Milner showed that the 

characteristic size of the flow in the neck region is incorrectly 

estimated in Frenkel’s model and that the resulting correction 

leads to a slightly different scaling for the neck evolution 

(Section 2). This improved model was shown to describe 

successfully the flattening of  polystyrene latex microsphere on 

glass surfaces47. Moreover, Milner extended his analysis to 

include predictions for the sintering of visco-elastic spheres, for 

which the flow cannot be considered as purely viscous. 

Goal of this article is to compare for the first time the scalings 

proposed by Frenkel and Milner by providing a detailed 

quantitative investigations of viscous sintering to generate 

porous polymeric structures with explicitly controlled pore and 

interconnection diameters. As template system we use spheres 

of paraffin with radii R in the range of 33 - 125 µm radius  (top 

row of Figure 1) which we generate via an emulsification 

process (Section 3). We show that for the entire range of the 

used control parameters, the associated mechanisms are 

captured slightly better by Milner’s “viscous model” (Section 2) 

than by Frenkel’s. Nevertheless, the experimental data remains 

unsatisfyingly scattered with respect to the theoretical 

prediction. We finally show that this scatter can be drastically 

reduced to a very satisfying comparison using Milner’s “visco-

elastic model” which takes correctly into account the Non-

Newtonian response of the paraffin.  

By replicating the sintered sphere templates, we obtain macro-

porous polyurethanes (bottom row of Figure 1) with finely 

controlled pore and interconnection sizes. Since Milner’s model 

can be readily transferred to a wide range of polymers as long 

as their temperature-dependent surface and visco-elastic 

properties are known, it will provide the reader with a powerful 

tool for the predictive design of macro-porous polymers. 

 

Figure 1: Examples of SEM images of paraffin beads (central row) showing the increase 

of interconnection radius r  with increasing sintering time t or temperature T. The 

bottom row shows the macro-porous polyurethanes obtained from moulding the sphere 

template. The top row sketches the deformation of two contacting spheres together 

with the variables used in this article.   

2) Theory 

 

2.1) Frenkel’s and Milner’s Newtonian scalings 

The sintering process of spheres in contact is driven by the 

surface energy of the sphere packing which is proportional to its 

surface area. An important reduction of this surface area is 
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achieved by progressively filling the contact zones between the 

spheres. This filling process can arise in many different ways32, 

ranging from solid-state diffusion of the sphere surface to 

viscous flow of the contact zone.  The sintering process of 

spheres of paraffin (mixture of alkanes,  iso-alkanes or cyclo-

alkanes48) at work in our experiments is well described by a 

viscous flow in the vicinity of the contact area of the spheres 

induced by surface forces. A comprehensive theoretical 

treatment of the complete dynamics is highly complex due to 

the non-trivial intermediate states of the system. A thorough 

and illuminating treatment of the early stages of sintering has 

been given recently by Milner46,47. Here we shall only provide a 

short summary of the main arguments. 

An initial dimensional analysis of the problem shows that for a 

Newtonian fluid of viscosity 𝜂, the evolution of the radius 𝑟(𝑡) 

of the circular, symmetric contact between two spheres of 

radius R (see top of Figure 1) must fulfil the general scaling 

 

 𝑟(𝑡) = 𝑓 (
𝛾𝑡

𝑅𝜂
)𝑅. (1) 

Here, t  is the time and 𝛾 the surface tension of the spheres. The 

mass density does not enter since the sintering processes are 

sufficiently slow to neglect inertial effects. Additionally, the 

considered sample heights are sufficiently small so that the 

pressure force induced by gravitation can be neglected with 

respect to surface forces.   

Note that 

 𝜏 =
𝑅𝜂

𝛾
 (2) 

provides a characteristic sintering time 𝜏 which highlights the 

important influence of the sphere radius: the smaller the 

spheres, the faster the sintering process.  

In the regime of small deformations (𝑟(𝑡 ) 𝑅⁄ <<1), Equ. (1) is 

expected to be well approximated by a power law46  

 

 𝑟(𝑡) = (𝐶𝛼
𝛾

𝜂
)
𝛼
𝑡𝛼𝑅1−𝛼, (3) 

where C is a numerical constant. First quantitative expressions 

for Equ. (3) were provided by Frenkel in 194541. Using a scaling 

argument, he predicted that 𝛼 = 1 2⁄  with 𝐶𝛼= 4. The resulting 

expression has been used quite successfully in the past to 

describe experimental observations36,42,43. However, as Milner 

pointed out, his scaling does not capture properly the 

underlying mechanism. In the following we shall recall the main 

arguments. 

Sintering dynamics is controlled by the balance between the 

rate of change of the surface energy49,  

 �̇�surf = −γ𝜕𝑡(2𝜋𝑟2) = −4𝜋𝛾𝑟�̇�, (4) 

and the dissipation rate 

 �̇�dis = −(𝜂 2⁄ )∫[𝜕k𝑣𝑖 + 𝜕i𝑣𝑘]
2𝑑𝑥𝑑𝑦𝑑𝑧, (5) 

Where 𝑣  is the velocity field of the sphere with the indices 𝑖, 𝑘 

indicating the Cartesian coordinates x,y,z, implying implicit 

summation over 𝑖 and 𝑘 and 𝑑𝑥𝑑𝑦𝑑𝑧 is the elemental volume.  

In the early stage of sintering, one can approximate the 

geometry by overlapping spheres, as sketched in the top row of 

Figure 1. Milner noticed that the typical strain rate 𝜀 ≈

𝜕𝑟𝑣 scales as ℎ̇ 𝑟⁄ , where [2𝑅 − ℎ(𝑡)] is the distance between 

the centres of the spheres at time t. This gives simply ℎ ≈ 𝑟2 𝑅⁄  

. The key difference between Milner’s and Frenkel’s approach 

is to realise that the flow extends along the symmetry axis only 

up to a characteristic length 𝒓 (and not 𝑹), as shown in Figure 

2. This is justified by the fact that at early times, the only 

relevant length scale of the flow, described by 𝛻2(�⃗⃗� × �⃗� ) = 0⃗⃗ ) 

, is given by the boundary extension, namely by 𝑟. The typical 

volume in which the flow develops is therefore proportional to 

𝑟3, as in the Hertz contact problem50, and not proportional to 

𝑅3, as assumed by Frenkel. One can therefore approximate Equ. 

(5) by the scaling �̇�dis~ − 𝜂𝑟3[ℎ̇/𝑟]2~ − 𝜂𝑟3[�̇�/𝑅]2 

 After equating with Equ. (4) one obtains for the rate of change 

of 𝑟 

 �̇�~
𝛾

𝜂
(
𝑅

𝑟
)
2

. (6) 

After integration this gives the scaling 

 (
𝑟

𝑅
)
3
∝ 

𝑡

𝜏
. (7) 

This leads to the dimensional form provided in Equ. (3) with 𝛼 =

1 3⁄ . Thanks to a refined argument which exploits quantitatively 

the geometry of the Hertz contact, Milner also obtains the 

prefactor46  𝐶  = 3/32. Using Milner’s approach, Equ. (3) 

therefore becomes 

 𝑟(𝑡) = (
3𝜋𝑡

32𝜏
)
1

3⁄
𝑅 = (

3𝜋

32

𝛾

𝜂
𝑡)

1
3⁄
𝑅

2
3⁄ . (8) 

 

Figure 2: Schematic presentation of the crushing flow and the smoothing flow. Both take 

place simultaneously, with the crushing flow dominating at early times due to its larger 

growth rate �̇�(t). 
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2.2) « Crushing » vs « smoothing » flow 

 

It is important to keep in mind that the growth regime described 

in Section 2.1, which we may call the “crushing flow”, is 

expected to dominate only for small deformations.  During this 

“crushing flow” the velocity field is purely normal to the contact 

surface between the sphere and the solid, as sketched in Figure 

2 (left). For larger deformations, however, a secondary 

“smoothing flow” takes over, which is sketched in Figure 2 

(right). The smoothing flow is driven by the fact that the contact 

zone between the two spheres is cusp-like, with very small radii 

of curvature leading to an unbalanced Laplace pressure drop. As 

a result, the surface tension also drives a radial flow in the neck 

region, which becomes increasingly important. Since both 

processes are described by different scalings, it is important to 

know at what point of the sintering process the change of 

regime arises. 
For the derivation46, let us consider the geometry sketched in 

Figure 3. Two spheres of radius 𝑅 are in  contact with a cusp of 

radius 𝑟𝑐 centred around 𝑟. Let us assume early stages of 

sintering so that 𝑟𝑐 << 𝑟. Then, the external boundary of the 

contact area between two sintering spheres is a circle whose 

radius can be approximated as 𝑟(𝑡)  +  𝑟𝑐(𝑡)  𝑟(𝑡). In the 

smoothing flow regime, the fluid is flowing radially, with a 

component tangential to the contact line. In the cross section, 

this flow is approximately a two-dimentional sink flow (red 

dashed arrows in Figure 3), with material being conveyed to fill 

the gap between the spheres. This approximation is justified in 

the early times when the angle between the two spheres at the 

boundary is small. The two-dimensional incompressible flow 

has a well-known velocity field, 𝑣(𝑟′) = −
𝑣0(𝑡)𝛿(𝑡)

2

𝒓′

(𝒓′)2
 where 

𝑣0(𝑡) is the velocity of the smoothed cusp and 𝑟  is taken from 

the sink centre. Notice in his formula, that the radius 𝑟𝑐 of the 

smoothed cusp has been approximated by 𝛿(𝑡)/2 where 𝛿(𝑡) 

is defined in  Figure 3.  This parameter is geometrically related 

to 𝑟(𝑡) and provided that 𝑟(𝑡)/𝑅 <<  1, one has δ(t) ~ r (t)²/R. 

Figure 3: Sketch of the geometry and variables used in the derivation of the smoothing 

flow 

 

 

 

 

 

This velocity field is responsible for a flow rate, �̇� =

2𝜋𝑟(𝑡) ∫ 𝑣(𝑟)𝑑𝑙 = 2𝜋2𝑟(𝑡)𝛿(𝑡)𝑣(𝑡)
𝑐𝑢𝑠𝑝

, where 𝑑𝑙 is the line 

element along the cusp in the cross-section. Notice that (i) the 

integral has been performed on a complete circle assuming that 

the cusp is sufficiently small so that all flow directions 

contribute to the sink flow; and (ii) the term 2𝜋𝑟(𝑡) accounts 

for the summation along the boundary circle which shows that 

possible effects due to the curvature of the boundary circle are 

neglected. This is justified because the characteristic length of 

the flow is 𝛿(𝑡)~ 𝑟(𝑡)²/ 𝑅 which is << 𝑟(𝑡) in the early time of 

sintering. 

Another expression for �̇� is obtained by realising that �̇� is the 

time derivative of the volume already filled by the flow. This 

leads to the expression 𝑉(𝑡) = ∫ 2𝜋𝑟 (
𝑟2

𝑅
) 𝑑𝑟 = 𝜋𝑟(𝑡)4/

𝑟(𝑡)

0

(2𝑅), and hence to    �̇� = 2𝜋�̇�(𝑡)𝑟3(𝑡)/𝑅̇ .   Equating the two 

expressions for �̇� yields the kinematic relation  

 �̇�(𝑡) = 𝜋𝑣0(𝑡). (9) 

I.e. the rate of change of r is directly proportional to 𝑣0.  

A second dynamical relation is obtained by equating, as in 

Section 2.1, the rate of change in surface energy �̇�surf (Equ. (4)) 

with the adapted dissipation rate �̇�𝑑𝑖𝑠 (Equ. (5)). For the radial 

flow near the circular contour line one obtains 

�̇�dis = −𝜂𝜋𝑟(𝑡) ∫ 𝑑𝑟′𝑟′∞
𝛿

2

∫ 𝑑𝜃
2𝜋

0
∑ [𝜕k𝑣𝑖 +𝑖,𝑘𝜖{𝑥,𝑦}

𝜕i𝑣𝑘]
2 = −8𝜂�̇�2(𝑡)𝑟(𝑡). 

(10) 

 

Equating Equ. (10) with Equ. (4) using Equ. (9) one therefore 

obtains an expression for the growth rate of 𝑟 in the smoothing 

regime 

 �̇�(𝑡) =
𝜋

2

𝛾

𝜂
.                             (11) 

 

Thus, unlike in the crushing regime (Equ. (6)), 𝑟 ̇(𝑡) becomes 

independent of time in the smoothing regime and depends only 

on the ratio 𝛾/𝜂. 

Consequently, after integration, the interconnection radius r is 

predicted to depend linearly on time, i.e. 

 
 𝑟 =  

𝜋

2

𝛾

𝜂
𝑡.                             (12) 

To obtain a quantitative estimation of the crossover time 𝑡𝑐𝑟   

from the crushing flow (𝑟(𝑡)~𝑡
1

3⁄ ) to the smoothing flow 

(𝑟(𝑡)~𝑡), Milner proposes the criterion of equality of rate of 

growth 𝑟 ̇(𝑡)  between the two regimes. Equating the time-

derivative of Equ. (8) for the crushing flow with Equ. (11) for the 

smoothing flow, one obtains 

 𝑡𝑐𝑟 =
1

6𝜋

𝜂

𝛾
𝑅. (13) 
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Using 𝑡𝑐𝑟    in Equ. (8), one can predict that at the transition 

between the two regimes, the crushing flow will have grown the 

contact surface to a radius 

 
𝑟𝑐𝑟

𝑅
=

1

4
= 0.25. (14) 

 

It is interesting to note that at the crossover time 𝑡𝑐𝑟 , the 

normalised radius 𝑟(𝑡)/𝑅 predicted by the smoothing flow 

using Equ. (12) flow is only ~ 0,08. This means that the effective 

validity of the approximation where only the crushing flow is 

taken into account, goes probably farther than the value given 

in Equ. (14).  

 

2.3) Milner’s visco-elastic model for paraffin spheres 

In his paper46, Milner extended the viscous scaling of Equ. (8) to 

the sintering of viscoelastic liquids, leading to the prediction 

. 

 𝑟(𝑡) = (
3𝜋𝛾𝑅2𝐽(𝑡)

32
)
1 3⁄

. (15) 

 

Here 𝐽(𝑡) is the creep compliance of the visco-elastic matrix 

which constitutes the spheres51. Note that the asymptotic 

regime of 𝐽(𝑡) for very long times is 𝐽(𝑡) ~ 𝑡/𝜂. Therefore, Equ. 

(15) is in full accordance with its viscous analogue  given in Equ. 

(8) in the crushing time regime. Interestingly, the dependency 

of 𝑟(𝑡) on 𝐽(𝑡)1/3 was already found by Mazur et al.52 in the 90s. 

In order to compare the visco-elastic model with experimental 

data, it is important to be able to express the creep compliance 

𝐽(𝑡). 𝐽(𝑡) can be obtained via some mathematical manipulation 

from rheology data which provides 𝜂(𝜔), where ω is the 

angular frequency of the solicitation. () is related to the 

stress relaxation modulus 𝐺(𝑡) via51  

 𝜂(𝜔) = ∫ 𝐺(𝑡)cos (𝜔𝑡)𝑑𝑡
∞

0
. (16) 

 

Defining the Laplace transform of 𝐺(𝑡) as 

 

 �̂�(𝑠) = ∫ 𝐺(𝑡)𝑒−𝑡𝑠∞

0
, (17) 

 

one notices that  𝜂(𝜔) = ℜ[�̂�](𝑠 = −𝑖𝜔). 

As shown in Section 3.7 (Figure 8), in the experimentally 

accessible frequency range (10-2 Hz < ω < 10 Hz), 𝜂(𝜔) of our 

paraffin is convincingly described by a simple powerlaw 𝜂(𝜔) ≈

𝜉𝜔−𝜈 with 𝜈 and 𝜉 being temperature-dependent 

phenomenological coefficients. It is worth stressing that 𝜈 ∈

]0,1[. Since 𝜂(𝜔) does not show a tendency to level off in the 

low frequency range of the measurements (10-2 Hz), we assume 

here that we can extrapolate the simple power law all the way 

into the frequency range relevant for our experiments, which 

ranges from minutes to a day, i.e.  10-5 Hz < ω < 10-2 Hz. 

In this case, an analytical expression of 𝐺(𝑡) can be obtained 

because the inverse cosine-Fourier transform of  𝜉𝜔−𝜈 is exactly 

known to be53 

 𝐺(𝑡) =
2𝜉Γ(1 − 𝜈)cos (

𝜋𝜈
2

)

𝜋
𝑡𝜈−1. (18) 

𝐽(𝑡) then follows from the fact that 𝐽(𝑡) and 𝐺(𝑡) are exactly 

related via 

 �̂�(𝑠)𝐽(𝑠) = 1/𝑠². (19) 

One therefore finds  𝐽(𝑠) = sin (
𝜋𝜈

2
) /(𝜉𝑠2−𝜈), whose inverse 

Laplace transform is known53 

 

 
𝐽(𝑡) =

sin (
𝜋𝜈

2
)

𝜉(1−𝜈)Γ(1−𝜈)
𝑡−𝜈+1. 

(20) 
 
 

Hence using the fit parameters ν and ξ  from the rheology 

experiments, we avail of a direct expression for the creep 

compliance 𝐽(𝑡).  

The visco-elastic model of Equ. (15) for our experiments 

therefore becomes 

 𝑟(𝑡) = [
3𝜋𝑅2𝛾 sin (

𝜋𝜈
2

)

32𝜉(1 − 𝜈)Γ(1 − 𝜈)
]

1/3

𝑡(1−𝜈)/3. (21) 

 

3) Materials and Methods 

 

3.1) Generation of paraffin spheres 

We generate the paraffin spheres by a  dispersion method 

inspired by Ma et al.30.  We use melting paraffin with a 

molecular weight of 341.451 g/mol from Fischer Scientific (CAS  

8002-74-2). Its melting point is given at 58-62°C, which is 

confirmed by our DSC measurements shown in Section 3.6.  To 

generate the spheres, we add 10 g of paraffin to a 400 mL 

solution of 70 °C osmosed water with 3 g of Polyvinyl alcohol 

(PVA) (Sigma, CAS 9002-89-5, MW 31 000- 50 000 89% 

hydrolysate). The mixture is kept in an 800 mL beaker and is 

vigorously stirred with a magnet (35 mm length) for 10 min at 

different rotation velocities (400, 700, 950 and 1200 rpm). 

Higher rotation speeds of 3200 and 4200 rpm are obtained 

using an ultra-Turrax (IKA ®T25). Since the paraffin is liquid at 

the chosen temperature, the vigorous stirring creates a 

paraffin-in-oil emulsion whose drops are stabilised against 

coalescence by the PVA. With increasing rotation speed, the 

paraffin is broken into increasingly smaller drops, leading to 

smaller spheres after solidification.  

We quench the emulsion by the addition of 400 mL of 4 °C 

osmosed water, leading to nearly instantaneous solidification of 

the liquid drops into spherical beads, as shown in the central 

row of Figure 1 and Figure 4a. We noticed that with decreasing 

bead size, the surface of the spheres roughens. This may be due 

to the increasing surface-to-volume ratio and potentially 

associated shrinkage phenomena since for smaller spheres, the 

surface-to-volume ratio increases dramatically. If the surface 

shrinks differently at the core of the particle during 

cooling/solidification, this is greatly amplified and can lead to 

buckling stresses. 

Using numerical microscopy combined with image analysis 

(Section 3.2) we determine the size distributions of the 

obtained paraffin spheres. Figure 4d shows examples of size 

distributions obtained for two different rotation speeds (400, 

950 rpm), putting clearly in evidence the systematic decrease of 

the sphere radius 𝑅 with rotation speed. Since the distributions 

are quite polydisperse, we reduce the polydispersity using 
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stainless sieves with different mesh sizes (32, 50, 80, 125, 200, 

300 μm) to select the desired size ranges. The sieving is applied 

directly to the liquid sphere dispersion by sieving progressively 

from the largest to the smallest mesh size. Figure 4e and f show 

examples the narrow distributions obtained after the sieving 

procedure together with the resulting average sphere radii 〈𝑅〉.  

We mostly used paraffin beads obtained at 400 and 950 rpm. 

For the interested reader we provide the distributions of 

paraffin spheres for higher stirring rates in the Supplementary 

Materials.  

After sieving, the paraffin spheres are let to dry under a fume 

hood for 24 hours. 

 

3.2) Determination of the sphere size distribution 

We use the numerical microscope Keyence VHX-5000 to obtain 

the sphere size distributions. For the imaging, we disperse 

about 1 mg of dried paraffin spheres on a microscope slide and 

place it on the transparent tray of the microscope. Images are 

recorded with the transmitted lighting mode. For the image 

analysis, we use the software supplied with the microscope. 

First we apply the “brightness” mode to select the desired 

image area and choose the most appropriate threshold level 

which allows to identify (Figure 4a) and isolate spheres which 

are stuck together (Figure 4b). We further apply the “separation 

tool” to separate spheres contained in clusters, as shown in 

Figure 4c. After detecting at least 800 spheres, the size 

distributions are expressed as the probability density function 

defined by 

 PDF =
𝑛(𝑅<𝑅𝑏<𝑅+𝛥𝑅)

𝑁𝛥𝑅
. (22) 

Here, 𝑅𝑏 is the measured sphere radius and 𝑛(𝑅 < 𝑅𝑏 < 𝑅 +

 ∆𝑅) is the number of spheres having a radius between 𝑅 and 

𝑅 + ∆𝑅, where ∆𝑅 is the bin width of the frequency count 

histogram. N stands for the total number of particles. We use 

OriginPro 8 software for the data treatment. The obtained PDFs 

are then fitted to Gaussian distributions, as shown in Figure 4d-

f. 

 

3.3) Sintering procedure 

 

We add 3 g of paraffin spheres with given average radius 〈𝑅〉 

(Section 3.1) to a petri dish (34 mm in diameter, VWR) and pack 

them manually by tapping. Small holes are drilled into the 

bottom and on the sides of the Petri dish beforehand to help air 

removal upon polymer filling. We initially close the holes from 

the outside with parafilm to prevent the loss of paraffin 

spheres. The Petri dishes containing the paraffin spheres are 

then put in an oven (Memmert) at temperatures ranging from 

35°C to 42°C for sintering times up to 18 hours. We pre-heated 

the oven for 24 hours to ensure stable temperatures. Once the 

required sintering time is reached, the mold is cooled down at 

room temperature and we removed the parafilm. 

Using a microprocessor thermometer (HANNA instruments, HI 

8757), we characterised the evolution of the temperature in the 

oven and at the center of the sphere template. As shown in the 

example of Figure 7, the fluctuations of the oven temperature 

are of the order of 0.5 °C and it takes about 60 min for the 

sphere packing to reach the temperature of the oven. In order 

to avoid misinterpretation of the data due to this initial 

equilibration time, we characterised the template morphology 

for samples which spent at least 2 hours in the oven. 

 

Figure 4:  a) Photograph of paraffin spheres taken under a microscope. b) Image thresholded with selected spheres in red. c) Same image after using the separation tool 

provided with the Keyence Software. The inset shows a zoom on the selected group of spheres. d) Probability density function (PDF) of the radii of the paraffin spheres and 

the corresponding Gaussian fits for two different rotation speeds. e-f) PDF of selected sphere ranges after sieving for different rotation speeds and sieve dimensions.   
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Figure 5:  Calibration curve of the oven for a set temperature at 38 °C (black points) and 

in the centre of the sample (red points). 

3.4) Generation of macro-porous polyurethane 

All polyurethane precursors are kindly supplied by FoamPartner 

(Gontenschwil, Swiss). We use the polyether-based triol 

Voranol 6150 and the diisocyanate M220 (both from DOW 

chemical) at a weight ratio of 13.4 to 1 to ensure an isocyanate 

index of 100. The polyurethane is obtained by simply mixing 

both components (Ultra Turrax, IKA ®T25 at 20K rpm, for 2 

minutes).   No catalyst is added to let enough time for the liquid 

mixture to infiltrate the sphere packing before solidification and 

to maintain a low reaction temperature to avoid additional 

sphere deformation. The mixture is poured directly onto the 

sintered sphere packing where it spontaneously fills the 

interstitial spaces between the beads. This filling process takes 

about 1 h. The sample is then left at room temperature for 72 h 

to ensure full solidification of the polyurethane.  

Finally, we use Soxhlet extraction by n-hexane for 6 h, at 100°C 

in order to remove the paraffin spheres. The resulting porous 

polyurethanes are let to dry overnight under a fume hood at 

room temperature.  

 

3.5) Scanning electron microscopy (SEM) 

 

We image the sphere templates and the porous polyurethanes 

with an SEM Hitachi SU8010 (FEG-SEM) under 1 KeV voltage 

acceleration to investigate the pore and interconnection 

morphologies. The samples are imaged directly without 

metallisation. Before observation of the paraffin sphere 

templates, they are quenched in liquid nitrogen at -196 °C and 

then directly broken. This helps to conserve the template 

structure and, in particular, the geometry of the necks. The PU 

sponges are cut at room temperature using a cutter knife and 

imaged directly (Figure 6a).   

The obtained images are treated with ImageJ software. In the 

case of the sphere templates, the pore radius  𝑅 and 

interconnection radius 𝑟  were measured by hand, taking into 

account at least 130 pores and interconnections for each data 

point to ensure good statistic.  

In the case of the PU sponges, the interconnection sizes are 

calculated semi-automatically by employing the « particle 

analysis » tool (Figure 6c) after proper thresholding (Figure 6b) 

of the initial image (Figure 6a). In order to exclude zones which 

are not interconnections, only objects with a circularity higher 

than 0.5 are selected. We also only considered “particles” 

whose area ranges between 60 and 6000 μm².  Since the circular 

interconnections are imaged at different angles, they 

commonly appear as ellipses. We use the measurement of half 

of the major axis of the ellipse (Frenet diametre), which 

corresponds to the real radius 𝑟 of the interconnections. For 

each data point we measure at least 200 interconnections to 

ensure good statistics. 

 

The average values of the sphere radii 𝑅 and the 

interconnection radii 𝑟 are obtained from the arithmetic mean 

of the distributions, while we use the standard deviation as the 

error of one sample.  

The error bars given in the unscaled graphs of Section 4.2 are 

obtained by repeating each experiment three times. The error 

bar corresponds to the standard deviation calculated for the 

overall set of values. 

The error bars in scaled graphs (such as Figure 11) are obtained 

by linear error propagation. If we plot the function 𝐹 = 𝑟/𝑅1−  

its relative error is given by 

 
∆𝐹

𝐹
= [

∆𝑟

𝑟
+ (1 − 𝛼)

∆𝑅

𝑅
], (23) 

where ∆𝑟 and ∆𝑅 are the errors of 𝑟  and 𝑅, respectively.  
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3.6) DSC analysis 

We place 8.2 mg of the paraffin in a stainless steel capsule and 

put the capsule inside the instrument (PerkinElmer DSC 8500). 

Experiments were done under nitrogen atmosphere which 

allow to ensure a chemically inert environment. Figure 7 shows 

the curves obtained by heating/cooling between 25 °C and  80°C 

with a ramp of 10 °C/min. A first cycle has also been performed 

to erase the thermal history of the paraffin (not shown here). 

The endothermic peak at 55-67°C corresponds to the melting 

point which is in accordance with the range given by the 

supplier.  

Figure 7: DSC curve of the paraffin wax used for the sphere templating. 

However, one can also see a slight shoulder in the curve around 

40°C which indicates that some paraffin chains may have 

started to melt already before the melting point.  All our 

experiments were typically conducted between 35 and 42°C, 

thus, even if our working temperatures were below the melting 

transition, due to the polydisperse nature of paraffin, we 

expected that some hydrocarbon chains may have melted at 

these temperatures. 

 

 

3.7) Rheology of paraffin 

Experiments were conducted with a rheometer MCR 702 

MultiDrive® from Anton Paar at various temperatures (30, 32, 

34, 36, 38, 40, 42 °C). The cone plate configuration with an angle 

of 5° was used. Before the tests, platelets of paraffin wax were 

deposited onto the peltier plate and heated up to 60 °C to 

transform the paraffin into its liquid state. The rheometre cone 

was then approached until having full contact with the wax and 

down to the desired gap size. The paraffin was then cooled 

down at 20 °C/min until 25 °C to form the solid sample between 

the plateaux. Afterwards, the solidified sample is heated at 5 

°C/min to the desired temperature to simulate the conditions in 

the oven. The rheological measurements are started once the 

sample has reached thermal equilibrium. The dynamic viscosity 

of the paraffin was obtained with a frequency sweep from 0.01 

up to 10 Hz (50 points log spaced) at a constant strain of 0,1 %. 

he resulting  (𝜔) curves are shown in Figure 8. They are well 

fitted by a simple power law 

 𝜂(𝜔) = 𝜉(𝑇)𝜔𝜈(𝑇), (24) 

Figure 6: a) SEM image of a porous polyurethane sample. b) Thresholded image of (a) to bring out the interconnections. c) Objects with circularity above 0.5 are selected as 

interconnections. d) Probability Density Function (PDF) of the interconnection radii r corresponding to the image (a) and the corresponding Gaussian fit (red curve).  
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Figure 8: Frequency-dependent shear viscosity of paraffin for different temperatures 

obtained by oscillatory shear rheology. Dashed lines indicate the fit obtained using the 

power law of Equ.(24). The associated fit parameters are given in Table 1. 

using 𝜉(𝑇) and 𝜈(𝑇) as temperature-dependent fit parameters 

with 𝜈 ∈ ]0,1[ . The obtained values are listed in Table 1. 

Table 1: Fit parameters obtained after fitting Equ. (24) to the viscosity data 

obtained from rheology. 

Temperature T (°C)  (Pas)  

30 449 148 -0.66 

34 272 835 -0.61 

36 206 597 -0.59 

38 158 684 -0.57 

40 117 897 -0.56 

42 93 655 -0.59 

 

4) Results and discussion 

4.1) General description 

Figure 9 shows a series of SEM images obtained for different 

sphere sizes and sintering temperatures after 18 hours of 

sintering time. Images after shorter sintering times show the 

same overall pattern but with less pronounced evolutions of the 

interconnections. Following the indications of Figure 1, we 

denote in the following 𝑅 the average radius of the spheres 

and  𝑟  the average radius of their interconnections.  

From Figure 9 we can see very clearly the influence of the 

sphere radius 𝑅 and the sintering temperature T on the kinetics 

of formation of the interconnections. Globally, one observes 

that the radius 𝑟 of the interconnections increases with 

temperature. For example, at the lowest temperature and for 

the largest sphere sizes, the interconnections are almost 

singularities as it is the case for two hard spheres in contact. 

With increasing temperature or decreasing sphere size, the 

deformation is accelerated and the spheres start to flatten 

earlier, forming a neck which can be observed from the side or 

through the footprint left after breaking the contact (i.e. the flat 

circles visible on the spheres).  This flattening is a consequence 

of the “crushing flow” (Figure 2a Section 2) as described by 

Milner. It is clearly seen at 40°C for the largest spheres (𝑅 = 

125 µm). For smaller spheres at higher temperatures, one 

observes that the radius of curvature in the cusp of the 

interconnection increases, i.e. the interconnection does not 

only grow in area but its boundary also becomes increasingly 

rounded. This is a signature of the onset of the so-called 

“smoothing flow” shown Figure 2b and discussed Sections 2.2.  

For the smallest spheres (𝑅 = 33 µm), the spheres coalesce 

completely at the highest temperature. This is why the item is 

represented by a cross in Figure 9.  

Figure 10 shows the macro-porous polyurethanes obtained 

from the sphere templates shown in Figure 9. One notices that 

these are accurate negative copies of the initial template, 

containing spherical pores with circular interconnections. 

Accordingly, the radii of the interconnections increase in the 

same manner with increasing temperature and decreasing 

sphere radius. For the structures with the smallest pore radii, 

the interstices between the spheres are too small to allow for 

the polymer to spread homogeneously through the template. 

This is why these structures are represented by a cross in Figure 

10. One notices that when the radius of the interconnections 

becomes of the order of the sphere radius, the structure loses 

its spherical morphology and evolves into a very open 

“bicontinous like” shape, which may be interesting for 

applications looking to optimise permeability while maintaining 

a characteristic pore size and a certain mechanical stability of 

the material. This transition happens between 35 and 38°C for 

the smallest pore radius (𝑅  = 33 µm) and between 40 and 42°C 

for the structure with the intermediate pore radius (𝑅  = 62 

µm). For the largest pore diameters, the transition happens 

above 42°C.  
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Figure 9: SEM images of paraffin sphere templates having an average radius of 〈𝑹〉 = 33 µm (left column), 〈𝑹〉= 62 µm (column in the middle) and 〈𝑹〉  = 125 µm (right 

column) for several sintering temperatures. All templates were sintered for 18 hours. The scale bars are 50 µm.  
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4.2) Quantitative analysis and interpretation  

Figure 11a shows an example of the evolution of the mean 

radius 𝑟 of the interconnections with time for three sphere 

radii (𝑅 = 33, 62 and 125 m) at 38°C. The error bars are 

obtained by the procedure described in Section 3.5.  Despite 

some scatter, all curves follow a clear trend: a rapid increase of 

𝑟 over a few hours is followed by a much slower evolution. 

Moreover, the evolution of 𝑟  depends clearly on the radius 𝑅 

 of the spheres.  

Figure 11b shows for the same sphere radii, how the mean 

radius 𝑟 of the interconnections after 18 h sintering time 

depends on the sintering temperature T in a temperature range 

of 35-42°C. As expected, 𝑟 increases significantly with the 

sintering temperature and the sphere radius 𝑅. 

Figure 11c,d show the same data rescaled by the historic scaling 

of Frenkel, given in Equ. (3) with  = ½ . Figure 11e,f exploit the 

new viscous scaling provided by Milner’s Newtonian model, 

given by Equ. (3) with  = 1/3. A first observation is that both 

scalings collapse the data fairly well onto a mastercurve within 

the experimental scatter, implying that for the chosen data both 

scalings capture reasonably well the main underlying 

mechanisms. It also confirms that the ratio ( /) evolves with 

temperature in the same manner for all sphere sizes, implying 

the absence of finite size effects. The interpretation of the 

overall shape of the master curves depends on how exactly 

( /) depends on temperature, which is discussed in more 

detail later. 

 For illustrative purposes, Figure 11 contains only a subset of the 

full data set. The full data set is shown in Figure  12a for different 

sphere sizes (R  = 33, 62, 125 m), sintering temperatures (T = 

35, 38, 40, 42°C) and sintering times (2, 4, 7, 11, 18 hours). To 

scale all data within the same plot and to allow comparison 

between the models, we rewrite Equ. (3) to obtain the scaling  

 [
〈𝑟(𝑡)〉

𝑡𝛼〈𝑅〉1−𝛼]

1
𝛼⁄

= 𝐶𝛼

𝛾

𝜂
= 𝑓𝛼(𝑇), (25) 

where 𝑓𝛼(𝑇) is a function of the temperature T only. The 

resulting mastercurve for Frenkel’s scaling is shown in Figure 

12b (R2 = 0.48), while Milner’s scaling is shown in Figure 12c (R2 

= 0.61). A first observation is that while the data remain fairly 

Figure 10: Macro-porous polyurethanes generated from the sphere templates shown in Figure 9. Scale bars: 100 µm.  
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scattered after application of Frenkel’s scaling, Milner’s scaling 

collapses the data somewhat more convincingly, especially for 

the lower temperatures. To quantify the quality of the scaling, 

we fit the scaled data to a second order polynomial  

 [
〈𝑟(𝑡)〉

𝑡𝛼〈𝑅〉1−𝛼]

1
𝛼⁄

= 

𝑎(𝑇 − 35°𝐶)2 + 𝑏(𝑇 − 35°𝐶) + 𝑐 ≡ 𝐵𝛼(𝑇), 

(26) 

 
with a,b and c being the fitting parameters. This captures in 

particular the temperature variation of the viscosity  of the 

paraffin, which is quite important since the experiments are 

done in the first endothermic shoulder in the DSC curve (Figure 

7) close to the melting transition.  The temperature variation of 

  can be assumed negligible in comparison to that of  in our 

temperature range.  The resulting fits are shown by the red lines 

in Figure 12b and c, while the resulting fit parameters and 

coefficient of determination R2 are given in Table 2. Values of 
𝛾

𝜂
 

for Frenkel’s and Milner’s viscous model can therefore be 

approximated by using Equ. (26) and the associated fit 

parameters. 

 
Table 2: Summary of exponents and fit parameters obtained for the different scaling by 

fitting Equ (26). 

Name  
a 

[µm.h-1.K-2] 

b 

[µm.h-1.K-1] 

c 

[µm.h-1] 
R2 

Frenkel’s 

scaling 

1/2 0.05 0.01 0.76 0.48 

Milner’s 

viscous 

scaling 

1/3 0.03 -0.03 0.18 0.61 

 

 

 

 

 

 

 

Figure 11 : Evolution of the average interconnection radius r  as (a) a function of the sintering time t  at 38°C and (b) as a function of sintering temperature T after 18 h for 

three different sphere radii.  (a,b) Unscaled results. (c,d) Results of a,b rescaled using Frenkel’s scaling (Equ. (3)  with  = ½). (e,f) Results of a,b rescaled using Milner’s 

Newtonian scaling (Equ. (3) with  = 1/3). Error bars are calculated according to Section 3.5.   
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It is particularly evident by plotting the experimental results of 

𝑟/𝑅 versus the theoretically predicted in Figure 13 Milner’s 

viscous scaling collapses slightly better the data than Frenkel’s 

scaling. Nevertheless, the spread in the collapsed data remains 

unsatisfyingly large, indicating the lack an important ingredient 

in either model. The origin of this scatter becomes readily 

evident by considering the rheology data of the paraffin shown 

in Figure 8. While the scalings used until now can take into 

account the dependence of the viscosity  of the paraffin on 

temperature, they cannot account for its dependence on the 

characteristic time scale of solicitation i.e. the strongly visco-

elastic behaviour displayed by the paraffin in Figure 8 is not 

reflected in any of the models used up to this point. 
We therefore use the visco-elastic model provided by Milner 

(Equ. (15) in Section 2.3) with the appropriate modification that 

takes into account the rheological response of our paraffin, 

given by Equ. (21). The only unknown (temperature-dependent) 

parameter is the surface tension 𝛾 of the paraffin, while 𝜈 and 

𝜉 are known from fitting data of the rheological measurements 

(Figure 8). We therefore performed a fit to all data assuming for 

(𝑇) a second order polynomial expansion around the lowest 

temperature 35°C:  𝛾(𝑇) = (𝛾0 + (𝑇𝑗 − 35)𝛾1 + (𝑇𝑗 − 35)
2
𝛾2) 

For this purpose, we performed a fit with the function 

“fminsearch” of Matlab© which looks for a minimum for 

 

 

 

𝐹(𝑎0, 𝑎1, 𝑎2) = 

∑ [〈𝑟𝑗〉 − 𝐶𝑗

1

3𝑡𝑗

(1−𝜈𝑗)

3 〈𝑅𝑗〉
2

3 (𝛾0 + (𝑇𝑗 − 35)𝛾1 + (𝑇𝑗 −𝑗

35)
2
𝛾2)

1

3
]

2

, 

(27) 

 

 where 

 𝐶𝑗 ≡
3𝜋 sin (

𝜋𝜈𝑗
2

)

32𝜉𝑗(1 − 𝜈𝑗)𝛤(1 − 𝜈𝑗)
. 

                                           
(28) 

 
Here 𝑗 represents a measure, namely a set of time 𝑡𝑗  or 

temperature 𝑇𝑗  (determining the viscoelastic parameters 𝜉𝑗 =

𝜉(𝑇𝑗)and 𝜈𝑗 = 𝜈(𝑇𝑗), average radii of the spheres 〈𝑅𝑗〉 and the 

corresponding average radii of the interconnections 〈𝑟𝑗〉).  

Figure 14 plots the obtained fit for 𝛾(𝑇) together with the 

surface tension values obtained for each data point using the 

reshuffled expression of Equ. (21): 𝛾(𝑇𝑗) = {𝑟𝑗/

[𝐶𝑗
1/3

𝑡𝑗
(1−𝜈𝑗)/3𝑅𝑗

2/3
]}. The characteristic values of 𝛾  0.01 N/m 

are very satisfactory,  since they are compatible with the values 

for the surface tension of paraffin measured in the literature 

(see 

www.accudynet.com/polymer_surface_data/paraffin.pdf), 

where it is found that 𝛾 ≈ 0.02 N/m. Nevertheless, the 

Figure 12:  a) Summary of all data without any scaling. (b) Frenkel’s scaling (α = ½) (c) Milner’s scaling (α = 1/3). The red lines are the best fits obtained using Equ.(26). The 

resulting fitting parameters are summarised in Table 2.  
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temperature dependence of 𝛾(𝑇) we found is not physical, 

since 𝛾(𝑇) has to be a decreasing function of temperature. 

However, a significant increase in temperature is observed only 

for the highest temperature T= 42 °C. For the lower 

temperatures, 𝛾 is essentially independent of temperature. At 

the highest temperature, the problem may presumably arise 

from a failure of our assumption according to which the  

viscoelastic behaviour of  𝜂(𝜔) = 𝜉𝜔−𝜈could be extended to 

the extremely low frequency range appropriated for our 

experiment. At this temperature, the longest relaxation time of 

the paraffin may be shorter than the 18 hours of our longest 

experiment. Another possible cause of discrepancy could be 

sought in the fact that for the highest temperature, the sintering 

dynamics is the fastest, and therefore, the largest values of 

𝑟/𝑅  are measured. As a result, some quantitative 

discrepancies with the theory which is intended to describe the 

Figure 13: Experimental values of 𝑟(𝑡)/𝑅 as a function of the values predicted by the different theories, the best fit of the unknown parameter have been chosen. Data which 

is perfectly described by the theory would fall onto the black line X=Y 
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𝑟  /𝑅  << 1 regime only, might show up here. In particular, 

the smoothing flow described in Section 2.2 may be no longer 

negligible here. 

Using the obtained expression for  (𝑇), we plot in Figure 13 the 

experimental values of 〈𝑟(𝑡)〉/〈𝑅〉 versus the values predicted 

by Milner’s visco-elastic scaling given by Equ. (21). This 

comparison shows convincingly that Milner’s visco-elastic 

model captures very well the experimental data in collapsing it 

fairly neatly on the line X = Y. For 〈𝑟(𝑡)〉/〈𝑅〉 > 0.25 the  

Figure 14: Best fit results for the surface tension (T) with all the data available. The 

different sizes are represented by circles (〈𝑹〉= 33 µm), squares (〈𝑹〉= 62 µm), and 

diamonds (〈𝑹〉= 125 µm) respectively. The different times: t = 2, 4, 7, 11, 18 hours are 

represented by the colour marine blue, red, yellow, purple, green, and cyan, 

respectively. 

experimental data is slightly above the theoretically predicted 

values. This deviation may be explained by three arguments. On 

the one hand it is coherent with the onset of the smoothing 

flow, which is expected to start playing a role for  𝑟/𝑅 > 0.25 

and which follows a different scaling, as discussed in Section 2.2.  

The smoothing flow would lead to larger 〈𝑟(𝑡)〉/〈𝑅〉-values, as 

observed. On the other hand, our extrapolation of the power 

laws describing the rheology data (Section 3.7) may break down 

in this limit which concerns either high temperatures or long 

time scales. Besides, it is worth to mention that when neck radii 

approach the order of magnitude of sphere radii, cross 

interactions of close necks may not be negligible anymore and 

thus, account for the gap between experimental and theoretical 

values (see Figure 10). And last but not least,  at these large 

〈𝑟(𝑡)〉/〈𝑅〉 values, interconnections start to interact on the 

surfaces of the spheres, leading to a shift away from the scalings 

which are derived for isolated interconnections.  

In summary we can state that both of Milner’s scalings capture 

our experiments better than Frenkel’s scaling, while the quality 

of the visco-elastic scaling clearly indicates the importance of 

taking into account the Non-Newtonian nature of the paraffin 

spheres. 

 

Conclusions 

 

In this article we present the results of thoroughly conducted 

sintering experiments with paraffin spheres. All experimental 

results are compared to the historic scaling proposed by Frenkel 

and to the recent models proposed by S. Milner46,47. While both 

models are similar in their approach, we believe that Milner’s 

approximation of the flow field being confined to the contact 

zone (Section 2.1) is physically better justified. The resulting 

viscous model (Equ. (8)) leads to slightly different exponents 

(1/3 instead of 1/2) and pre-factors (3/32 instead of 4) with 

respect to Frenkel’s model, with Milner’s model fitting slightly 

better our experimental data. However, a real breakthrough in 

the quality of the description of the data is made using Milner’s 

visco-elastic model (Equ. (15)), which takes into account the 

visco-elastic nature of the paraffin spheres. The general 

applicability of this model will allow a direct transfer of the 

predictions to other sphere systems, provided their visco-elastic 

properties can be quantified. 

Milner’s visco-elastic model captures very well our data up to 

deformations of 〈𝑟(𝑡)〉/〈𝑅〉  0.25. Beyond this point, the onset 

of the smoothing flow (Section 2.2), interactions between 

contact areas or the breakdown of our rheological 

approximations may play a role. 

In order to fully validate Milner’s model and its limits, it will be 

important to conduct future experiments with different types 

of model-spheres in which both, visco-elasticity and surface 

energy are known and controlled in a quantitative manner. It 

would be important to validate not only the Non-Newtonian 

model, but also to access the transition to the regime in which 

the smoothing flow becomes dominant. Last but not least, it 

would be interesting to analyse the influence of the multiple 

contacts on each sphere54. 

Beyond the analysis of the sintering process, we successfully 

used the obtained sphere templates to generate macro-porous 

polyurethanes whose morphology can be finely tuned in a 

predictive manner thanks to Milner’s model. Since paraffin and 

polyurethane can be replaced by a wide range of alternative 

formulations, this approach can be transferred easily to a 

multitude of systems which require a fine control over the pore 

morphology. Indeed, by the knowledge of only a few 

parameters: surface tension, sphere size and the temperature-

dependent rheological data (𝜈 and 𝜉), the sintering behaviour 

of the system can be predicted 
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