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Abstract—This paper investigates the capacity of block fading
optical intensity channels with more transmit than receive an-
tennas under different assumptions on the transmitter’s channel
state information (CSI). Lower and upper bounds on the capac-
ities are derived using the entropy power inequality (EPI) and
a dual expression for capacity. Our lower bounds for perfect
and partial CSI utilize a transmit-antenna cooperation strategy
based on minimum-energy signaling, which we proposed recently.
For perfect CSI, this lower bound matches the upper bound
asymptotically in the high signal-to-noise ratio (SNR) regime.
For imperfect CSI, our lower bound is close to its perfect-CSI
counterpart.

I. INTRODUCTION

We consider a block fading optical wireless communication
system where the transmitter modulates the intensity of optical
signals that are emitted by light emitting diodes (LEDs), and
the receiver measures incoming optical intensities by means
of photodetectors which produce output electrical currents.
As a first approximation, the noise in such systems can be
assumed to be Gaussian and independent of the transmitted
signal (thermal noise, background light sources). Inputs are
nonnegative because they represent optical intensities, while
outputs can be negative because they represent output elec-
trical currents. Moreover, inputs are typically subject to both
peak- and average-power constraints, where the peak-power
constraint is mainly due to technical limitations of the used
components, whereas the average-power constraint is imposed
by battery limitations and safety considerations.

Recent years have seen extensive studies of intensity-
modulation-direct-detection (IM-DD) systems [1]–[6], where
transmitters are equipped with nT ≥ 1 LEDs and receivers
with nR ≥ 1 photodetectors. In the high signal-to-noise ratio
(SNR) regime, [5] determined the asymptotic capacity when
the channel matrix is invertible or of full column rank. For
general MIMO channels with average-power constraint only,
the asymptotic high-SNR capacity was determined in [7], [8].
In the case when the channel input is subject to both peak-
and average-power constraints, the achievable high-SNR pre-
log (degrees of freedom) is shown in [7], [8], and recently, the
exact high-SNR asymptotic capacity is characterized in [9].
Furthermore, the asymptotic capacity in the low-SNR regime
is also derived in [6], [9].

In this paper, we consider a block fading IM-DD channel
where there are more transmit than receive antennas:

nT > nR ≥ 1. (1)

The capacity of block fading channels heavily depends on
the channel modeling (such as the models for turbulence,
fading, and antenna correlation) and the availability of channel
state information (CSI) at the transmitter and receiver. Inspired
by the previous works [10]–[12] in the classic block fading
Gaussian channels, we assume that the receiver has perfect
CSI, and study three different versions of transmitter CSI: no
CSI, perfect CSI, and limited CSI. The main contributions of
this paper are as follows.
• Lower bounds are presented for the capacities without

CSI, with perfect CSI, and with limited CSI.
• The lower bounds for perfect and limited CSI are ob-

tained using the minimum-energy signaling strategy we
have derived in [9], which sets at each instant in time a
subset of nT − nR antennas to zero or to full power, and
uses only the remaining nR antennas for signaling.

• For perfect CSI, the lower bound matches a new duality-
based upper bound in the high-SNR regime.

• For limited CSI, the lower bound is close to the one with
perfect CSI, but requires only (nT−nR) log2

(
nT
nR

)
bits of

feedback in each block.

II. CHANNEL MODEL

Consider the following nR × nT block fading channel:

Yt[n] = Htxt[n] + Zt[n], (2)

where t ∈ {1, 2, . . . ,B} denotes the block index, with B being
the number of blocks; n ∈ {1, 2, . . . ,N} denotes the symbol
index along a block, with N being the block length; xt[n] =(
x

(1)
t [n], . . . , x

(nT)
t [n]

)T
denotes the nT-dimensional channel

input vector; Zt[n] denotes the nR-dimensional noise vector
with independent standard Gaussian entries,

Zt[n] ∼ N (0, I); (3)

and

Ht =
[
H

(1)
t ,H

(2)
t , . . . ,H

(nT)
t

]
(4)

is a random nR×nT channel matrix with nonnegative entries.
Thus, H

(1)
t , . . . ,H

(nT)
t are nR-dimensional random column



vectors. The channel noises {Zt[n]} are independent and
identically distributed (IID) inside and across blocks. The
channel matrix Ht remains constant within each block and is
IID across blocks. We assume it has finite density f(Ht) over
the set of nonnegative real numbers (e.g., Rayleigh, Weibull,
Pareto, or gamma distributions).

Since the channel inputs correspond to optical intensities,
they are nonnegative:

x
(k)
t [n] ∈ R+

0 , k = 1, . . . , nT, (5)

for all t ∈ {1, . . . ,B} and n ∈ {1, . . . ,N}. Moreover, we
assume that the inputs are subject to a peak-power (peak-
intensity) and a per-block average-power (average-intensity)
constraint:

Pr
[
X

(k)
t [n] > A

]
= 0, ∀ k ∈ {1, . . . , nT}, (6a)

1

N
E

[
N∑
n=1

∥∥Xt[n]
∥∥

1

]
≤ E, ∀ t ∈ {1, 2, . . . ,B}, (6b)

for some fixed parameters A,E > 0. The ratio between the
allowed average power and the allowed peak power is denoted
by α:

α ,
E

A
. (7)

Note that A describes the maximum power of each single
LED, while E describes the allowed total average power of all
LEDs together. Moreover, power allocation is permitted only
inside each block. This restriction on power allocation is to
prevent large visible fluctuations in the light.

The goal of the communication is to convey a random
message M ∈ {1, 2, . . . ,M} from the transmitter to the re-
ceiver over a fixed number of B blocks. Encoding is described
separately for each kind of CSI. Decoding is as follows.
Based on its observed NB outputs Y1[1], . . . ,YB[N] and its
knowledge of the B channel state matrices H1, . . . ,HB, it
produces an estimate

M̂ , ψ(Y1[1], . . . ,YB[N],H1, . . . ,HB). (8)

The probability of error is defined as

P (NB)
e = Pr

[
M̂ 6= M

]
, (9)

and the communication rate is given as

R =
log2 M

NB
. (10)

A rate R is said to be achievable if there exists a sequence of
codes such that P (NB)

e → 0 as B→∞ (N remains fixed). The
ergodic capacity CH of the channel is defined as the supremum
of all achievable rates.

III. NO CSI AT THE TRANSMITTER

In this section we assume that the transmitter has no CSI.1

In this case, the channel input Xt[n] is just a function of the
message M :

Xt[n] = φt(M), (11)

1Note that the channel statistics are always assumed to be known every-
where.

and the ergodic capacity is given by the following proposition.
Proposition 1: If the transmitter has no CSI, then

CH = max
PX satisfying (6)

EH
[
I(X; X̄ + Z|H = H)

]
, (12)

where

X̄ , HX. (13)

To obtain a lower bound on CH, we lower-bound the mutual
information I(X;Y|H = H) for a given channel realization H
by using the independence between H and Z and invoking the
EPI:

I(X;HX + Z|H = H)

= h(HX + Z|H = H)− h(Z) (14)

≥ 1

2
log2

(
e2h(HX|H=H) + e2h(Z)

)
− h(Z) (15)

=
1

2
log2

(
1 +

e2h(HX|H=H)

(2πe)nR

)
(16)

=
1

2
log2

(
1 +

e2h(HX)

(2πe)nR

)
, (17)

where the last equality holds because without CSI at the
transmitter, the input vector X is independent of the channel
matrix H.

We now present choices of the distribution PX. Fix some
λ ∈ (0, nR

2 ) and let the nR-dimensional random vector V be
exponentially distributed with density

f(v) =
1

AnR

(
µ

1− e−µ

)nR

e−
µ‖v‖1

A , v ∈ [0,A]nR , (18)

where µ denotes the unique solution to

1

µ
− e−µ

1− e−µ
=

λ

nR
. (19)

Choose then some matrix G with nonnegative entries, with
rank(G) = nR, with ‖G‖1 ≤ α/λ, and with row vectors
satisfying ‖gi‖1 ≤ 1, ∀ i ∈ {1, . . . , nT}, and define PX as
the distribution of the vector

X = GV. (20)

It can be verified that this choice of PX satisfies the power
constraints (6) and puts nonzero density only on nonnegative
inputs.

Evaluating the lower bound in (17) for the proposed PX

and averaging over the channel matrix H, yields the following
result.

Theorem 2: If the transmitter has no CSI, then

CH ≥
1

2
sup

λ∈(0,
nR
2 )

sup
G

EH

[
log2

(
1 +

A2nR(detHG)2 e2ν

(2πe)nR

)]
.

(21)

Here, the supremum is over all nT × nR matrices G with
nonnegative entries, with rank(G) = nR, with ‖G‖1 ≤ α/λ,



and with row vectors satisfying ‖gi‖1 ≤ 1, ∀ i ∈ {1, . . . , nT};
and ν is defined as

ν , nR

(
1− log2

µ

1− e−µ
− µ e−µ

1− e−µ

)
(22)

with µ being the unique solution to (19).
Proof: We use the choice of PX specified before Theo-

rem 2. For a given realization of the channel matrix H = H,
it implies the following density on the channel image vector
X̄ = HX:

fHX(x̄) =
1

AnR |detHG|
·
(

µ

1− e−µ

)nR

e
−µ‖(HG)−1x̄‖1

A . (23)

The differential entropy h(HX) thus evaluates to:

h(HX) = nR log2(A · |detHG|)

+ nR

(
1− log2

µ

1− e−µ
− µ e−µ

1− e−µ

)
. (24)

Combining this with (17), taking expectation over H, and
maximizing over the free parameters conclude the proof.

IV. PERFECT CSI AT TRANSMITTER

In this section, we assume that the transmitter has perfect
CSI, i.e., the channel input Xt[n] is a function of the message
M and the channel matrix Ht:2

Xt[n] = φt(M,Ht). (25)

The ergodic capacity in this scenario is characterized as
follows.

Proposition 3: If the transmitter has perfect CSI, then

CH = EH

[
max

PX|H=H satisfying (6)
I(X; X̄ + Z|H = H)

]
. (26)

As before, we present a choice of the input distribution
PX|H=H and evaluate the lower bound on capacity obtained
with this distribution and the EPI. Our choice of PX|H=H is
based on the minimum-energy signaling strategy proposed in
[9], [13], which we recall in the following.

A. Minimum-Energy Signaling

We notice that for a fixed channel matrix H, when there are
more transmit than receive antennas, i.e., nT > nR, then for
a certain image vector x̄ there are different input vectors x
inducing x̄, i.e., satisfying Hx = x̄. In [9], [13], an algorithm
is presented which for each x̄ characterizes the vector x that
has minimum energy ‖x‖1 among all input vectors inducing
x̄.

Fix an nR × nT channel matrix H for which every tuple of
nR columns is linearly independent. (The probability of the
random channel matrix H not being of this kind is 0 for any
bounded density f(H).) Note that since the input vector x

2More generally, one could allow the channel input Xt[n] to depend on all
previous channel matrices H1, . . . ,Ht. But since we do not allow for power
allocation across blocks and since the channel matrices are independent across
blocks, the more general definition is not helpful.

lies in [0,A]nT , the image vector x̄ = Hx takes value in the
zonotope

R(H) ,
{
x̄ : x̄ = Hx, ∀x ∈ [0,A]nT

}
. (27)

Figure 1 shows the zonotope R(H) for two different 2 × 4
channel matrices H.

We need some notation to describe the minimum-energy
signaling in Lemma 4 ahead. Let U be the set

U ,
{
I ⊆ {1, 2, . . . , nT} : |I| = nR

}
, (28)

and for each I ∈ U , define
• the complement

Ic , {1, . . . , nT} \ I; (29)

• the nR-dimensional parallelepiped

DI ,

{∑
i∈I

λih
(i) : λi ∈ [0,A], ∀ i ∈ I

}
; (30)

• the nR × nR submatrix

HI ,
[
h(i) : i ∈ I

]
; (31)

• the nonnegative number

sI ,
∑
j∈Ic

1
{
1T
nR
H−1
I h(j) > 1

}
, I ∈ U , (32)

where 1{·} denotes the indicator function; and
• the nR-dimensional vector

vI , A
∑
j∈Ic

1
{
1T
nR
H−1
I h(j) > 1

}
· h(j). (33)

Lemma 4 ([9], [13]): Given an nR × nT channel matrix H,
the following holds:

1) The zonotope R(H) is covered by the parallelepipeds
{vI +DI}I∈U , which overlap only on sets of measure
zero.

2) For any I ∈ U and x̄ ∈ (vI + DI), the vector x =
(x1, . . . , xnT)T that induces x̄ with minimum energy is:

xi =

{
aI,i(H) if i ∈ Ic,

βI,i(H, x̄) if i ∈ I,
(34)

where

aI,i(H) , A · 1
{
1T
nR
H−1
I h(i) > 1

}
, i ∈ Ic, (35)

and where the vector

βI(H, x̄) =
(
βI,i(H, x̄) : i ∈ I

)T
(36a)

is given by

βI(H, x̄) , H−1
I (x̄− vI). (36b)

Figure 1 shows the partition of R(H) into 6 parallelepipeds
for two 2× 4 examples.
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Fig. 1. Partition of R(H) into 6 parallelepipeds for two 2 × 4 MIMO
examples. The example on the top is for H = [7, 5, 2, 1; 1, 2, 2.9, 3] and
the example on the bottom for H = [7, 5, 2, 1; 1, 3, 2.9, 3].

B. The Choice of PX|H=H

Fix an nR × nT channel matrix H for which every tuple of
nR columns is linearly independent.

The following parameters are important in this section. Let
q be a probability vector on U with entries

qI ,
|detHI |∑
I′∈U |detHI′ |

, I ∈ U , (37)

and define

αth(H) ,
nR

2
+
∑
I∈U

sI qI . (38)

If α ≥ αth(H), we choose PX so that X̄ is uniform over
R(H). This is obtained by defining a random variable over
U with probability mass function (PMF) q and conditional on
Ũ = I, choose X according to the minimum-energy signaling
in (34) and so that X̄ is uniform over the shifted parallelepiped
vI +DI .

If α < αth(H), we fix a parameter

λ ∈
(

max
{

0,
nR

2
+ α− αth(H)

}
,min

{nR

2
, α
})

(39)

and a PMF p = (pI : I ∈ U) over the set U so that∑
I∈U

pIsI = α− λ. (40)

Let then Ũ be a random variable over U with PMF p,
and conditional on Ũ = I, choose X according to the
minimum-energy signaling in (34) and so that X̄ follows
an nR-dimensional truncated exponential distribution over the
shifted parallelepiped vI+DI . Specifically, given H = H and
Ũ = I, the inputs {Xi : i ∈ Ic} are deterministically set to

Xi = aI,i(H), i ∈ Ic, (41)

where aI,i(H) is defined in (35), and the remaining inputs
{Xi : i ∈ I} are chosen according to the truncated exponential
distribution

fXi|Ũ=I(xi) =
µ

1− e−µ
e−

µxi
A , ∀i ∈ I. (42)

Then at the receiver side, the image vector X̄ = HX is of
conditional density

fX̄|Ũ=I(x̄)

=
1

AnR |detHI |
·
(

µ

1− e−µ

)nR

e
−µ‖H−1

I (x̄−vI)‖1
A . (43)

C. Capacity Lower Bound

Theorem 5: If the transmitter has perfect CSI, then

CH ≥
1

2
EH

[
log2

(
1 +

A2nRV2
H

(2πe)nR
e2ν(H)

)]
, (44)

where for each realization of the channel matrix H:

VH ,
∑
I∈U
|detHI |, (45)

and if α ≥ αth(H), then

ν(H) , 0, (46)

whereas if α < αth(H), then

ν(H) , sup
λ∈(max{0,nR

2 +α−αth},min{nR
2 ,α})

{

nR

(
1− log2

µ

1− e−µ
− µ e−µ

1− e−µ

)
− inf

p
D(p‖q)

}
. (47)

Thus, ν(H) is nonpositive and corresponds to the penalty due
to α.

Proof: Consider first the case α ≥ αth(H). With the
proposed choice (X̄ uniform over R(H)), for each realization
H = H, the conditional differential entropy is

h(X̄|H = H) = log2(AnR · VH). (48)

Combining this with (16) yields the desired result.
Consider now the case α < αth(H). We define U to be

a discrete random variable that is obtained by applying a
function on X̄ in a way to satisfy:(

U = I
)
⇐=

(
X̄ ∈ (vI +DI)

)
. (49)



We then start from (16) and decompose the conditional
differential entropy h(X̄|H = H) as

h(X̄|H = H) = I(X̄;U |H = H) + h(X̄|U,H = H) (50)
= H(U |H = H) + h(X̄|U,H = H) (51)

where we used that U is a function of X̄. By the choice of
the PMF p in (40) and the exponential distribution in (43),
we then have:

h(X̄|H = H) = H(U |H = H) + h(X̄|U,H = H) (52)
= H(p) + log2|detHI |+ nR log2 A

+ nR

(
1− log2

µ

1− e−µ
− µ e−µ

1− e−µ

)
(53)

= −D(p‖q) + log2 VH + nR log2 A

+ nR

(
1− log2

µ

1− e−µ
− µ e−µ

1− e−µ

)
. (54)

The result now follows from substituting (54) into (16),
maximizing over the free parameters λ and p, and taking
expectation over H.

Next, we present an upper bound on capacity. Its proof is
omitted.

Theorem 6: If the transmitter has perfect CSI, then

CH ≤ EH

[
CH,1 · 1

{
α ≥ αth(H)

}
+ CH,2 · 1

{
α < αth(H)

}]
,

(55)

where for each realization of the channel matrix H:

CH,1 , nR log2

(
σmax +

A√
2πe

)
+ log2 VH (56)

and

CH,2 , sup
p

inf
µ>0

{
nR log2

(
σmax +

A√
2πe

1− e−µ

µ

)
+ log2 VH +

µnRσmax

A
√

2π

(
1− e−

A2

2σmin

)
+ µ

(
α−

∑
I∈U

pIsI

)
−D(p‖q)

}
(57)

with the supremum being over all p on U and with

σmax , max
I∈U,

`∈{1,...,nR}

σI,` and σmin , min
I∈U,

`∈{1,...,nR}

σI,`, (58)

where σI,` denotes the square root of the `th diagonal entry
of the matrix H−1

I H−T
I .

Finally, we analyze the asymptotic capacity for A,E→∞
with α held fixed. The following result follows immediately
from Theorems 5 and 6.

Theorem 7: If the transmitter has perfect CSI, then

lim
A→∞

{
CH − nR log2 A

}
=

1

2
EH

[
log2

(
V2
H

(2πe)nR

)
+ ν(H) · 1

{
α < αth(H)

}]
, (59)

where for each realization of the channel matrix H, ν(H) is
defined by (46) for α ≥ αth(H) and by (47) for α < αth(H).

V. LIMITED CSI AT TRANSMITTER

In this section we assume an instantaneous rate-limited
channel state feedback link from the receiver to the transmitter.
At the very beginning of each block, before transmission
begins, the receiver learns Ht and sends a function of it,

Ft(Ht), (60)

back to the transmitter.
The transmitter can thus compute its channel inputs Xt[n]

as a function of the received feedback Ft(Ht) and the message
M :

Xt[n] = φ
(
Ft(Ht),M

)
. (61)

Of course, the capacity of this channel depends on the
functions {Ft}Bt=1. We will assume a stationary feedback
policy where

F1 = · · · = FB = F . (62)

Proposition 8: The capacity CH,F of a channel with limited
CSI F(H) at the transmitter is:

CH,F = EH

[
max

PX|F(H) satisfying (6)
I(X; X̄ + Z|H = H)

]
. (63)

We present a choice of the function F with only
(
nT
nR

)nT−nR

function values, for which the corresponding capacity with
limited CSI is close to the one with perfect CSI. Obviously,
to implement this function it suffices that the receiver can feed
back

RFB = (nT − nR) log2

(
nT

nR

)
(64)

bits in each block.
Before describing our choice of F , we notice that to achieve

the rates in Theorem 5, it suffices that the transmitter learn
the binary values {aI,i(H)}I∈U and the PMF p (and µ when
α < αth) for each realization of H. Learning the PMF p at the
transmitter requires the state-feedback to have infinite number
of bits. In contrast, the binary values {aI,i(H)}I∈U can be
learned with only (nT − nR) log2

(
nT
nR

)
bits of feedback.

We thus propose to set

F(H) ,
(
aI,i(H) : I ∈ U , i ∈ Ic). (65)

The transmitter then uses the following conditional distribu-
tion PX|F to generate its (random) codebook for transmitting
the desired message M . For any realization F , pick an
arbitrary positive number λ ∈ (0, nR

2 ) and let µ denote the
solution to (19) for the picked value of λ. Then for this λ,
choose an arbitrary PMF p over U satisfying (40) and let
Ũ ∼ p. (By (32), (35), and (65), the parameters {sI}I∈U
in condition (40) depend on H only through F(H), and thus
the proposed p can be used as a parameter for the distribution
PX|F(H).) Similarly to before, given any realizations of F and
Ũ , we deterministically set

Xi = aI,i(H), i ∈ Ic, (66)



and choose the remaining inputs {Xi : i ∈ I} according to the
distribution in (42).

Theorem 9: For the limited CSI function F in (65):

CH,F

≥ EF(H)

[
sup

λ∈(0,
nR
2 )

sup
p

EH|F

[
1

2
log

(
1 +

A2nRVH
2 e2ν?

(2πe)nR

)]]
(67)

where

ν? , nR

(
1− log2

µ

1− e−µ
− µ e−µ

1− e−µ

)
−D(p‖q) (68)

with µ satisfying (19), and where the supremum over p is over
all PMFs satisfying (40).

Proof: The proof is similar to the proof of Theorem 5
except that now the choices of λ and p can depend on H only
through F(H). The details are omitted.

VI. NUMERICAL EXAMPLE

Figure 2 illustrates the derived upper and lower bounds on
the capacities for a 1 × 3 MISO channel where the entries
{hi}i∈{1,2,3} in the channel matrix H are IID and follow a
Gamma-Gamma distribution [14]:

f(hi) =
2(βγ)

β+γ
2

Γ(β)Γ(γ)
h
β+γ

2 −1
i Kβ−γ(2(βγhi)

1
2 ) · 1{hi ≥ 0},

∀ i ∈ {1, 2, 3}, (69)

where Γ(·) is a Gamma function, and Kβ−γ(·) is a modified
Bessel function of the second kind. We have set β , 2.23
and γ , 1.54. As shown in Figure 2, when the SNR tends
to infinity, the lower bound in Theorem 5 coincides with the
upper bound in Theorem 6. Furthermore, the gap between the
lower bound in Theorem 9 below and the upper bound in
Theorem 6 tends to a small constant at high SNR. Thus, at
high SNR a relatively small number of feedback bits suffices
to approach the perfect-CSI capacity.

VII. CONCLUSION

In this paper we derived lower bounds on the capacity
of optical block fading channels in the three cases where
the transmitter has no CSI, perfect CSI, and limited CSI,
respectively. For perfect and limited CSI, our lower bounds
are based on the minimum-energy signaling strategy in [9].
In particular, for limited CSI, in each block, the receiver
feeds back only the binary values {aI,i(H)}I∈U where H
denotes the channel realization in this block. This requires
only (nT − nR) log2

(
nT
nR

)
bits of feedback per block, but the

corresponding lower bound performs close to the lower bound
with perfect CSI.

In the case of perfect CSI we also provided an upper bound
on capacity and showed that it approaches the proposed lower
bound asymptotically in the high-SNR regime. In this regime,
the perfect CSI capacity can thus be closely approached with
only a small number of feedback bits per block.
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Fig. 2. A 1 × 3 MISO channel, where the entries in H follow a Gamma-
Gamma distribution, with α = 0.4.
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