

Multiplicity among solar-type stars

J.-L. Halbwachs, M. Mayor, S. Udry

▶ To cite this version:

J.-L. Halbwachs, M. Mayor, S. Udry. Multiplicity among solar-type stars. Astronomy and Astrophysics - A&A, 2018, 619, pp.A81. 10.1051/0004-6361/201833377. hal-03009234

HAL Id: hal-03009234 https://hal.science/hal-03009234v1

Submitted on 17 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. A&A 619, A81 (2018) https://doi.org/10.1051/0004-6361/201833377 © ESO 2018

Multiplicity among solar-type stars

IV. The CORAVEL radial velocities and the spectroscopic orbits of nearby K dwarfs^{$\star,\star\star$}

J.-L. Halbwachs¹, M. Mayor², and S. Udry²

¹ Université de Strasbourg, CNRS, Observatoire Astronomique de Strasbourg, UMR 7550, 11, rue de l'Université, 67 000 Strasbourg, France

e-mail: jean-louis.halbwachs@astro.unistra.fr

² Observatoire Astronomique de l'Université de Genève, 51, chemin des Maillettes, 1290 Sauverny, Switzerland

Received 7 May 2018 / Accepted 2 August 2018

ABSTRACT

Context. The statistical properties of binary stars are clues for understanding their formation process. A radial velocity survey was carried on amongst nearby G-type stars and the results were published in 1991.

Aims. The survey of radial velocity measurements was extended towards K-type stars.

Methods. A sample of 261 K-type stars was observed with the spectrovelocimeter CORAVEL (COrrelation RAdial VELocities). Those stars with a variable radial velocity were detected on the basis of the $P(\chi^2)$ test. The orbital elements of the spectroscopic binaries were then derived.

Results. The statistical properties of binary stars were derived from these observations and published in 2003. We present the catalogue of the radial velocity measurements obtained with CORAVEL for all the K stars of the survey and the orbital elements derived for 34 spectroscopic systems. In addition, the catalogue contains eight G-type spectroscopic binaries that have received additional measurements since 1991 and for which the orbital elements are revised or derived for the first time.

Key words. solar neighborhood – binaries: spectroscopic – stars: solar-type – stars: late-type

1. Introduction

The spectrovelocimeter CORAVEL (COrrelation RAdial VELocities; Baranne et al. 1979) was installed on the Swiss 1-m telescope at the Observatory of Haute-Provence (OHP) from the late 1970s until its decommissioning in 2000. Amongst other programmes, it provided the radial-velocity (RV) measurements exploited in two statistical studies of binarity among the stars in the solar neighbourhood: the study of solar-type stars until G8, and its extension towards the K-type stars. A series of articles has been devoted to these programmes. The first (Duquennoy et al. 1991; Paper I hereafter) presented the radial-velocity measurements of the sample of F-G type stars; these data led to the orbital elements of several spectroscopic binaries (SBs), and to the statistical properties of solar-type binaries (Duquennoy & Mayor 1991; DM91 hereafter). Later, Halbwachs et al. (2003; Paper III hereafter) extended the statistical investigations to the K-type binaries with periods shorter than ten years, again on the basis of CORAVEL observations. This paper presented the parameters relevant for statistics, namely the periods, the semi-amplitudes, the mass ratios, and the orbital eccentricities of the spectroscopic binaries, excluding the other orbital elements. The long period K-type binaries were eventually studied by Eggenberger et al. (2004).

The present paper completes the series by presenting the radial velocity measurements and the full set of orbital elements that gave rise to Paper III. It will give the orbits we have discovered all the visibility they deserve, so that they are henceforth taken into account in statistical studies, such as that of Raghavan et al. (2010). Moreover, they will be available for the validation of the spectroscopic orbits derived from the Radial Velocity Spectrometer of the *Gaia* satellite (Gaia Collaboration 2016). The CORAVEL programme is presented in Sect. 2, the RV catalogue is in Sect. 3, and the spectroscopic orbital elements are in Sect. 4. Section 5 is the conclusion.

2. The CORAVEL survey of nearby K-type stars

The CORAVEL survey for nearby SBs was initiated in the early 1980s, although some stars (especially among the F–G types) had been measured before. The stars were taken from the second edition of the Catalogue of Nearby Stars (CNS; Gliese 1969) and from its supplement (Gliese & Jahreiss 1979). The stars discarded from the preliminary third version of the CNS (CNS3; Gliese & Jahreiss 1991) were kept in the observing runs. All stars were observed with CORAVEL from the Haute-Provence Observatory. Due to the location of the instrument and to its characteristics, only the stars as late as F7 and northern to -15° in declination were observed. Some stars with declination below -15° were observed, but they were not taken into account in Paper III. The programme was split according to the spectral types of the stars: the search for SBs amongst 288 F-G stars ended in December 1989, but the detection of SBs amongst the

^{*} Based on photoelectric radial-velocity measurements collected at Haute-Provence Observatory.

^{**} Tables A.1 and A.2 are also available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http:// cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/619/A81

GJ	ep vymmdd	och BID-2400000	RV km s ⁻¹	$\sigma_{ m RV}$ km s ⁻¹	comp.	Remark
	yymmuu	DJD 2400000	KIII 5	KIII 5		
5	780213	43553.279	-5.90	0.41	1	
5	780825	43746.491	-7.00	0.32	1	
5	780914	43766.509	-6.08	0.35	1	
5	830903	45581.567	-5.92	0.33	1	
5	851219	46419.286	-6.52	0.31	1	
53.1A	771103	43451.441	6.94	0.32	1	
1124	870330	46885.380	-54.20	0.89	2	R
1069	970821	50681.6321	24.440	0.044	1	
554	980109	50822.7302	-18.863	0.014	1	R

Table 1. Sample records of the RV measurement catalogues.

Notes. The first records refer to CORAVEL RVs, and the last records refer to the file of the Elodie RV measurements.

K-type stars was intensively performed until July 1993. After this date, the SBs were observed until 2000; at the same time, the RV of a few stars were still measured in order to confirm that it was constant.

3. Radial-velocity catalogues

3.1. CORAVEL individual measurements

The catalogue of the RV measurements provides 5413 measurements for 269 stars: 261 K-type stars and eight stars from the sample of DM91. These eight G-type stars were already in Paper I or another paper quoted in DM91, but they fulfil two conditions: they received enough additional RV measurements between 1991 and 2000 to significantly improve their spectroscopic orbit, and this new CORAVEL orbit was not published elsewhere. Moreover, the reduction of the CORAVEL observations was slightly improved, and the RV measurements are not exactly the same as in Paper I.

The format of the catalogue is presented in Table 1. Each record consists in the following data:

- The number of the star in the CNS, followed by a letter designating the component, if any.
- The epoch of the observation, given as a date with the year, the month, and the day, and also as barycentric Julian Day (BJD).
- The RV, in km s⁻¹.
- The uncertainty of the RV.
- The index of component ("1" for the primary, "2" for the secondary).
- A flag "R" indicates the measurement was discarded from the calculation of the orbital elements.

The records are sorted by stars (from the smallest to the largest right ascension), and then by observation epochs.

3.2. Elodie individual measurements

The CORAVEL observations were not sufficiently accurate to derive valuable SB orbital elements for two stars of the sample, GJ 1069 and GJ 554. The latter of these two stars is even a constant velocity star when only the CORAVEL RVs are considered. Fortunately, RV measurements were performed thanks to the spectrograph Elodie of the 193 cm telescope at the Haute-Provence Observatory, and they are provided by the Elodie archive¹. Fifteen Elodie RVs of GJ 1069 and 58 RVs of GJ 554 are presented in a separate file, with a slightly different format due to their accuracy. The uncertainties of the Elodie RVs were estimated as explained in Sect. 4.1. Sample records are presented at the end of Table 1.

3.3. The mean RV and the detection of SBs

The RV measurements were used to derive statistical information to decide whether a star is binary or not. These data are provided in Table A.1. The content is the following:

- The identification of the star is the CNS number (GJ), as in the RV catalogue, and another identification, which is HD when it exists, otherwise BD, or HIP, or AG (Astronomische Gesellschaft catalogue). Three stars are designated only by the GJ identification; these stars are all visual secondary components, as indicated by letter "B" following their GJ number: GJ 57.1B, GJ 615.1B, and GJ 764.1B.
- The B-V colour index used to derive the CORAVEL RVs of the star. For the eight stars from the G-type sample, B-V = 0.63 was assumed.
- The mean RV, RV. When the star is a binary with known orbital elements, the RV of the barycentre is provided, as it is in Table A.2.
- ϵ is the uncertainty of $\overline{\text{RV}}$.
- $\sigma_{\rm RV}$ is the standard deviation of the RV measurements.
- E/I is the ratio of external to internal errors.
- $P(\chi^2)$ is the probability to obtain the χ^2 of the RVs of the star, assuming that the RV is constant in reality.
- N_1 is the number of observations of the star.
- N_{tot} is the number of RV measurements of the primary and of the secondary components.
- ΔT is the time span of the observation.
- The spectroscopic status is "CST" (ConStanT) when $P(\chi^2)$ is more than 1%. Otherwise, it is SB1, or SB2 when the RV of the secondary component was measured. An "O" indicates that the orbital elements were derived, as explained in Sect. 4 hereafter. One star, GJ 554, has a constant CORAVEL RV, but an SB orbit derived by adding Elodie RV; this star is flagged "CSTO". The status of two stars (GJ 893.2B and GJ 907.1) is "?" since only one RV measurement was obtained; these stars have both declinations around -10° , and are too faint to be easily observable. However, they were

http://atlas.obs-hp.fr/elodie/

Fig. 1. Histogram of the number of observations. The shaded area refers to the stars that were not considered as variable and the white area to the spectroscopic binaries. The last bin represents all the stars with at least 21 observations; for the spectroscopic binaries, the count in this bin is 72.

Fig. 2. Histogram of the time span of the observations. The shaded area refers to the stars that were not considered as variable and the white area to the spectroscopic binaries.

only in the so-called "extended sample" of Paper III, and they were not relevant in the statistical investigations.

 A flag indicates that the SB orbital elements of the star are in Table A.2, "*" when they are derived for the first time, and "+" otherwise. The velocity curves of the flagged stars are in Figs. 3–5.

The efficiency of the detection of the SBs depends on the time spans of the RV survey and on the numbers of RV measurements per star. The histograms of N_1 and of ΔT are presented in Figs. 1 and 2, respectively. The stars with variable RV are counted apart from the others, since they received more observations when their variability was detected.

It appears from Fig. 1 that a few stars received much less observations than the others. In addition to the two stars with only one observation already mentioned above, two stars have three observations, although one of them have a variable RV. This star is GJ 142, which was not taken into account in the binarity statistics because its declination is close to -20° . The other star is GJ 764.1B; it is difficult to observe since it is 5 arcsec

away from its brighter companion GJ 764.1A, and it is only in the "extended" sample.

Half of the 209 constant RV stars received 11 observations or less. For the 269 stars in Table A.1, the median number of observations is 12.

The distribution of the time span, Fig. 2, also indicates that a few stars seem to have been less well observed than others. In addition to the two stars with one measurement and $\Delta T = 0$, 3 stars were observed during less than 1500 days, although their RVs were variable. In fact, these stars are GJ 1124, GJ 343.1, and GJ 870, three short-period binaries, and their observations were completed in a few years; they received enough RV measurements to derive their orbital elements, which are listed in Table A.2. The median time span is 3689 days for all the 270 stars, and 3410 days for the 209 constant RV stars.

4. Orbital elements of the spectroscopic binaries

4.1. Taking into account the Elodie RV measurements of GJ 1069 and GJ 554

The accuracy of the CORAVEL RVs precludes the derivation of relevant orbital elements for GJ 1069 and GJ 554, and it was necessary to take into account RVs provided by the Elodie archive. For that purpose, the uncertainty of the Elodie RVs must be estimated in order to assign them a reliable weight with respect to the CORAVEL RVs. For each star, the same weight was assigned to all the Elodie RV measurements and the SB orbital elements were derived from Elodie alone. The residuals of the RVs were calculated and the uncertainty of the RVs was then chosen so that the F_2 estimator of the goodness-of-fit is zero. According to Stuart & Ord (1994), F_2 is derived from theRV formula

$$F_2 = \left(\frac{9\nu}{2}\right)^{1/2} \left[\left(\frac{\chi^2}{\nu}\right)^{1/3} + \frac{2}{9\nu} - 1 \right],\tag{1}$$

where ν is the number of degrees of freedom and χ^2 is the weighted sum of the squares of the differences between the predicted and the observed RVs, normalised with respect to their uncertainties. It was thus found that the uncertainty is 44 m s⁻¹ for GJ 1069 and 14 m s⁻¹ for GJ 554. The final elements were then derived taking into account simultaneously the RVs from Elodie and those of CORAVEL. A systematic offset between the two sets of measurements was derived with the SB solution. It is worth noticing that, although the CORAVEL RVs have weights much smaller than those of Elodie, they slightly improve the accuracy of the solution terms.

4.2. Presentation of the orbital elements

We used the RV measurements to derive the SB orbital elements for all stars sufficiently observed. The number of these stars is 45; they are flagged "O" in Table A.1. An SB orbit based on our CORAVEL RV measurements has already been published for three of them: GJ 1064B, GJ 692.1, and GJ 765.2; the orbits of the last two stars are even SB+VB orbits, since interferometric observations were also taken into account; the references of these three orbits are given in the footnotes of Table A.1. The SB orbital elements of the remaining 42 stars are listed in Table A.2. Since two stars are triple spectroscopic systems, this table contains 44 orbits.

Fig. 3. Spectroscopic orbits of the first 15 SBs in Table A.2; the circles refer to the non-rejected CORAVEL RV measurements and, for GJ 1069, the open triangles refer to the measurements obtained with Elodie; the Elodie RVs are shifted to the zero point of the CORAVEL measurements.

The footnotes of Table A.2 indicate that 23 of these orbits were previously published on the basis of a part of our measurements or from RVs measured with a different instrument than CORAVEL. The 21 other orbits refer to new SBs.

there, thanks to additional RV measurements. The 44 SB orbits in Table A.2 are presented in Figs. 3–5.

The orbits of eight G-type stars mentioned in DM91 are included in Table A.2. DM91 provided a preliminary orbit for six of these stars, but the orbital elements are significantly improved

5. Conclusion

We have drawn up a catalogue of 5413 RV measurements obtained with CORAVEL for 269 stars, 261 K-type dwarfs, and

Fig. 4. Spectroscopic orbits of the second set of 15 SBs in Table A.2; the circles refer to the non-rejected CORAVEL RV measurements and, for GJ 554, the open triangles refer to the measurements obtained with Elodie; the Elodie RVs are shifted to the zero point of the CORAVEL measurements.

eight G-type dwarfs of the solar neighbourhood. These measurements were used to detect the SBs on which were based the statistical investigations of Paper III. We calculated the elements of 44 SB orbits, corresponding to 42 stellar systems. Twenty-one orbits, corresponding to 20 stellar systems, are the first orbits ever published for these stars.

All these data will be available through the VizieR service of the Centre de Donnée astronomique de Strasbourg (CDS). The

Fig. 5. Spectroscopic orbits of the 14 last SBs in Table A.2; the circles refer to the non-rejected CORAVEL RV measurements.

SB orbits and the corresponding RV measurements will also be included in the on-line SB9 catalogue².

Acknowledgements. It is a pleasure to thank Salim Hillali for his contribution to the derivation of the orbits. The referee, Roger Griffin, indicated some relevant references. We have benefited during the entire period of these observations from the support of the Swiss National Foundation and Geneva University. We are

particularly grateful to our technicians Bernard Tartarat, Emile Ischi, and Charles Maire for their dedication to that experiment for more than 20 years. We made use of Simbad, the database of the CDS and of the SB9 catalogue.

References

Al-Wardat, M. A., Balega, Y. Y., Leushin, V. V., et al. 2014, Astrophys. Bull., 69, 198

Balega, Y. Y., Beuzit, J.-L., Delfosse, X., et al. 2007, A&A, 464, 635

² http://sb9.astro.ulb.ac.be/, Pourbaix et al. 2004

- Baranne, A., Mayor, M., & Poncet, J.-L. 1979, Vistas Astron., 23, 279
- Batten, A. H., & Fletcher, J. M. 1991, PASP, 103, 546
- Batten, A. H., & van Dessel, E. L. 1976, Publications of the Dominion Astrophysical Observatory Victoria, 14, 345
- Batten, A. H., Fletcher, J. M., & Campbell, B. 1984, PASP, 96, 903
- Beavers, W. I., & Salzer, J. J. 1983, PASP, 95, 79
- Berman, L. 1932, Lick Observatory Bulletin, 16, 24
- Bopp, B. W., & Evans, D. S. 1973, MNRAS, 164, 343
- Christie, W. H. 1934, ApJ, 80, 181
- Duquennoy, A. 1987, A&A, 178, 114
- Duquennoy, A., & Mayor, M. 1988, A&A, 195, 129
- Duquennoy, A., & Mayor, M. 1991, A&A, 248, 485
- Duquennoy, A., Mayor, M., & Halbwachs, J.-L. 1991, A&AS, 88, 281
- Duquennoy, A., Mayor, M., Andersen, J., Carquillat, J.-M., & North, P. 1992, A&A, 254, L13
- Duquennoy, A., Tokovinin, A. A., Leinert, C., et al. 1996, A&A, 314, 846
- Eggenberger, A., Halbwachs, J.-L., Udry, S., & Mayor, M. 2004, Rev. Mex. Astron. Astrofis. Conf. Ser., 21, 28
- Gaia Collaboration (Prusti, T., et al.) 2016, A&A, 595, A1
- Gliese, W. 1969, Catalogue of Nearby Stars, Veröffentlichungen des Astronomischen Rechen-Instituts Heidelberg, 22
- Gliese, W., & Jahreiss, H. 1979, A&AS, 38, 423
- Gliese, W., & Jahreiss, H. 1991, in Preliminary version of the third edition of the Catalogue of Nearby Stars (Heidelberg: Astron. Rechen Inst.)
- Griffin, R. F. 1987, The Observatory, 107, 194
- Griffin, R. F. 1991, The Observatory, 111, 37
- Griffin, R. F., & Emerson, B. 1975, The Observatory, 95, 23
- Griffin, R. F., & Griffin, R. E. M. 1982, The Observatory, 102, 217
- Griffin, R. F., & Griffin, R. E. M. 1983, PASP, 95, 889

- Griffin, R. F., Griffin, R. E. M., Gunn, J. E., & Zimmerman, B. A. 1985, AJ, 90, 609
- Halbwachs, J.-L., Mayor, M., Udry, S., & Arenou, F. 2003, A&A, 397, 159
- Heintz, W. D. 1988, JRASC, 82, 140
- Jasniewicz, G., & Mayor, M. 1988, A&A, 203, 329
- Kamper, K. W., & Lyons, R. W. 1981, JRASC, 75, 56
- Katoh, N., Itoh, Y., Toyota, E., & Sato, B. 2013, AJ, 145, 41
- Katoh, N., Itoh, Y., Toyota, E., & Sato, B. 2016, AJ, 151, 87
- Kiefer, F., Halbwachs, J.-L., Lebreton, Y., et al. 2018, MNRAS, 474, 731
- Latham, D. W., Stefanik, R. P., Torres, G., et al. 2002, AJ, 124, 1144
- Mason, B. D., McAlister, H. A., & Hartkopf, W. I. 1996, AJ, 112, 276 McClure, R. D. 1983, PASP, 95, 201
- Nidever, D. L., Marcy, G. W., Butler, R. P., Fischer, D. A., & Vogt, S. S. 2002, ApJS, 141, 503
- Pourbaix, D. 2000, A&AS, 145, 215
- Pourbaix, D., Tokovinin, A. A., Batten, A. H., et al. 2004, A&A, 424, 727
- Raghavan, D., McAlister, H. A., Henry, T. J., et al. 2010, ApJS, 190, 1
- Sahlmann, J., Ségransan, D., Queloz, D., et al. 2011, A&A, 525, A95
- Scarfe, C. D. 1988, JRASC, 82, 274
- Stuart, A., & Ord, K. 1994, in Kendall's Advanced Theory of Statistics (London: Edward Arnold), 1
- Tokovinin, A. A. 1990, Sov. Astron. Lett., 16, 440
- Tokovinin, A. A. 1991, A&AS, 91, 497
- Tokovinin, A. A., & Latham, D. W. 2017, ApJ, 838, A54
- Tokovinin, A. A., Duquennoy, A., Halbwachs, J.-L., & Mayor, M. 1994, A&A, 282, 831
- Tokovinin, A. A., Mason, B. D., Hartkopf, W. I., Mendez, R. A., & Horch, E. P. 2015, AJ, 150, 50
- Vogt, S. S., & Fekel, F. J. 1979, ApJ, 234, 958

Appendix A: Tables of mean RVs and of orbital elements

Table A.1. Average RV and the variability status.

Ide GJ	entificat HD/B	ions BD/HIP/AG	B-V	$\overline{\text{RV}}$ km s ⁻¹	$\epsilon km s^{-1}$	$\sigma_{ m RV} \ m kms^{-1}$	E/I	$P(\chi^2)$	N_1	N _{tot}	ΔT days	spect. status	Table A.2
5	HD	166	0.75	-6 57	0.07	0.33	1 13	0 195	21	21	5410	CST	
27	HD	3651	0.75	_32.99	0.07	0.33	1.15	0.193	25	21	4043	CST	
28	HD	3765	0.03	-63.28	0.00	0.32	0.82	1 000	183	183	8037	CST	
30	RD	+33.99	1 13	-36.29	0.02	0.25	0.02	0.540	105	105	2884	CST	
31.4	HD	4256	0.99	9 40	0.10	0.24	0.77	0.838	12	12	3262	CST	
33	HD	4628	0.88	-10.33	0.02	0.21	1 11	0.000	17	17	5132	CST	
39	HD	4913	1 21	6 56	0.00	0.31	0.90	0.666	14	14	3266	CST	
44	BD	-02.129	0.83	-48.00	0.10	0.26	0.72	0.863	10	10	3261	CST	
50	BD	-10212	1.25	-1.16	0.09	0.52	1 19	0.005	33	33	5588	CST	
52	BD	+63137	1.20	2 73	0.02	0.32	1.12	0.350	10	10	2994	CST	
53 1 A	HD	6660	1.50	6 58	0.13	0.41	0.87	0.330	15	15	4838	CST	
53.2	BD	+16120	1.12	-5742	0.00	0.20	0.93	0.579	9	9	2623	CST	
55.2	HIP	5957	1.36	-23.66	0.13	0.28	0.70	0.868	9	9	2629	CST	
56	HD	7808	1.00	-7.31	0.13	0.30	0.70	0.896	11	11	2968	CST	
56 3A	HD	7895	0.82	16 37	0.09	0.24	0.76	0.870	13	13	3603	CST	
56.4	BD	+79.38	1.29	-20.61	0.03	0.21	0.70	0.529	9	9	2626	CST	
56.5	HD	7924	0.82	-22.63	0.10	0.26	0.91	0.327	9	9	2621	CST	
57.1A	HD	8389	0.91	34 55	0.08	0.25	0.81	0.811	14	14	2955	CST	
57.1R	ΠD	0507	1 38	34 78	0.00	0.43	0.95	0.573	13	13	2955	CST	
58.2	HD	8997	0.96	21.35	0.10	27.50	60.04	0.000	31	54	2662	SB2O	+
1040	HIP	7655	1.20	32.30	0.15	0.52	1.23	0.134	12	12	5229	CST	
67	HD	10307	0.63	3.33	0.05	1.59	4.90	0.000	32	32	7416	SB10	+
68	HD	10476	0.84	-33.67	0.08	0.24	0.80	0.844	15	15	5846	CST	•
69	HD	10436	1.22	-50.94	0.10	0.31	0.88	0.680	13	13	2958	CST	
74	HD	10853	1.04	21.56	0.10	0.36	1.00	0.462	13	13	3249	CST	
75	HD	10780	0.81	2.82	0.08	0.28	0.90	0.642	14	14	4711	CST	
90	HD	13579	0.92	-12.58	0.10	0.17	0.58	0.950	9	9	2621	CST	
91.1A	HD	13959	1.10	-0.17	0.11	0.54	1.42	0.004	23	23	7428	SB1?	
91.2A	HD	14001	1.02	2.89	0.12	0.24	0.65	0.922	10	10	5427	CST	
92.1	HD	14039	0.92	9.02	0.05	11.14	34.47	0.000	52	52	5588	SB10	*
98 A	HD	15285	1.39	6.57	0.14	4.71	3.95	0.000	27	54	7410	SB2	
105 A	HD	16160	0.97	25.53	0.06	0.28	0.95	0.603	24	24	6837	CST	
106	HD	16909	1.07	31.28	0.06	4.41	13.32	0.000	23	23	3604	SB10	+
112	HD	17190	0.84	14.00	0.08	0.28	0.92	0.631	15	15	2891	CST	
112.1	HD	17230	1.28	11.01	0.10	0.32	0.91	0.623	12	12	3303	CST	
113	HD	17382	0.82	9.11	0.06	2.07	6.47	0.000	26	26	5592	SB10	+
114	HD	17660	1.27	-29.02	0.12	0.28	0.81	0.731	9	9	2615	CST	
117	HD	17925	0.87	17.92	0.06	0.30	1.02	0.422	24	24	4851	CST	
118.2A	HD	18143	0.93	32.06	0.11	0.17	0.54	0.959	8	8	2950	CST	
120.1C	HD	18445	0.63	49.90	0.07	0.93	2.85	0.000	32	32	5929	SB10	*
138.1A	HD	20727	0.63	7.51	0.08	4.07	12.17	0.000	31	31	3982	SB10	+
141	HD	21197	1.16	-13.22	0.10	0.29	0.94	0.546	10	10	2959	CST	
142	HD	21531	1.34	34.35	0.58	1.00	3.04	0.000	3	3	2039	SB1	

Notes. A flag in the last column indicates that the orbital elements are presented in Table A.2; it is "*" when the orbital elements are derived for the first time, and "+" otherwise. ⁽¹⁾ Our measurements were taken into account in the SB orbit of Tokovinin et al. (1994). ⁽²⁾ The RV is constant when the measurement of 13 April 1987 is discarded. ⁽³⁾ The SB nature of the star was inferred from Elodie observations. ⁽⁴⁾ The RV is constant when the measurement of 22 May 1983 is discarded. ⁽⁵⁾ Our RV measurements were used by Duquennoy et al. (1996) to derive a combined spectroscopic and interferometric orbit. ⁽⁶⁾ Combined spectroscopic and visual orbit by Berman (1932), Batten & van Dessel (1976), Batten et al. (1984), Heintz (1988), Batten & Fletcher (1991), and Pourbaix (2000). Griffin & Griffin (1983) and Griffin (1991) pointed out the risk that the RV measurements are distorted due to contamination by the secondary component. ⁽⁷⁾ Our RV measurements were used by Balega et al. (2007) to derive a combined spectroscopic and interferometric orbit.

144	HD	22049	0.88	16.31	0.06	0.28	1.02	0.407	21	21	3989	CST	
150.2	HD	23140	0.86	22.24	0.04	3 94	12.38	0.000	38	38	5585	SB10	*
153 A	HD	23189	1 30	2 58	0.01	0.20	0.48	0.986	9	9	3984	CST	
1063	RD	± 11514	1.50	83 73	0.13	0.20	0.10	0.900	8	8	2889	CST	
1064 A	HD	23430	0.78	50.66	0.13	0.10	1.03	0.388	11	11	6113	CST	
1064 P		+ 41 207	0.70	51.10	0.12	7.09	12.03	0.000	20	20	2244	SP101	
1004 D		+41 397	0.90	20.05	0.00	7.08	18.94	0.000	29	29	2244 2265	SDIU	
155.2	HD	24238	0.85	38.95	0.12	0.23	0.70	0.842	8	8	2203	CSI	
156.2	HD	24451	1.15	17.69	0.10	0.20	0.62	0.945	10	10	3245	CST	
157 A	HD	24916	1.12	3.64	0.11	0.29	0.85	0.687	9	9	3405	CST	
158	HD	25329	0.88	-25.89	0.13	0.53	1.16	0.173	17	17	5564	CST	
161	HD	25665	0.91	-13.57	0.10	0.30	0.94	0.552	10	10	3245	CST	
165.1	HD	26581	1.00	23.99	0.12	0.25	0.74	0.804	8	8	3136	CST	
165.2	HD	26794	0.97	56.51	0.11	0.36	1.00	0.448	10	10	3410	CST	
1069	BD	-04 782	1.22	25.23	0.02	0.85	2.15	0.000	25	25	5223	SB10	*
166 A	HD	26965	0.82	-42.52	0.07	0.35	1.16	0.131	22	22	5913	CST	
168	BD	+47 977	1.17	-78.60	0.13	0.37	0.97	0.480	8	8	3248	CST	
171	HD	237287	0.89	45.06	0.09	4.86	15.09	0.000	26	26	5517	SB1O	+
171.2A	HD	283750	1.12	35.51	0.04	7.70	22.48	0.000	54	54	2492	SB1O	+
173.1A	HD	286955	1.02	-27.57	0.08	3.23	8.65	0.000	24	24	3306	SB10	*
174	HD	29697	1.19	1.01	0.06	0.32	1.00	0.482	30	30	5840	CST	
176.2	HD	29883	0.92	17.67	0.10	0.24	0.74	0.845	10	10	3245	CST	
2035	HD	30973	1.01	26.24	0.13	0.29	0.80	0.721	8	8	2891	CST	
183	HD	32147	1.01	20.21	0.07	0.2°	0.82	0.839	18	18	4164	CST	
200 4	HD	34673	1.00	87.84	0.07	0.24 0.22	0.02	0.886	11	11	2628	CST	
200 A		15/ 006	1.04	52 71	0.09	0.22	1 55	0.000	17	17	5400	CD12	
204		+34 880	1.30	55 72	0.14	0.37	1.55	0.002	10	10	2628	CST	
204		30003	1.10	-33.72	0.11	0.50	1.10	0.211	10	10	4802	CST	
211		3/394	0.84	1.55	0.09	0.55	1.13	0.160	14	14	4602	CSI	
217		38230	0.85	-29.17	0.09	0.27	0.84	0.708	14	14	3140	CSI	
221	BD	-06 1339	1.32	22.87	0.18	0.50	1.10	0.302	8	8	3425	CSI	
223	HD	39/15	1.01	-33.80	0.13	0.33	0.92	0.560	8	8	3399	CSI	
226.2	HIP	29067	1.25	-1.90	0.13	0.20	0.52	0.977	9	9	3256	CST	
227	HD	41593	0.81	-9.75	0.09	0.24	0.78	0.816	11	11	4815	CST	
233	HD	45088	0.94	-8.92	0.08	42.25	139.71	0.000	41	46	5603	SB2O	+
241	HD	47752	1.02	-44.29	0.10	0.12	0.36	0.999	11	11	3072	CST	
249	HD	49601	1.24	19.44	0.14	0.46	1.27	0.107	11	11	2943	CST	
250 A	HD	50281	1.05	-7.20	0.11	0.39	1.29	0.076	12	12	3238	CST	
254	HD	266611	1.36	-14.95	0.15	0.40	0.90	0.603	9	9	4410	CST	
256	HD	51849	1.13	-5.84	0.39	1.47	3.45	0.000	14	14	5416	SB1	
257.1	HD	51866	0.99	-21.51	0.11	0.28	0.86	0.664	9	9	3071	CST	
1094	HD	52919	1.08	-30.81	0.12	0.30	0.85	0.688	9	9	2561	CST	
267	HD	54359	0.96	26.44	0.12	0.33	0.93	0.553	9	9	4611	CST	
273.1	BD	+32 1561	0.95	-3.98	0.09	0.24	0.82	0.776	12	12	2601	CST	
276	HD	59582	1.10	66.03	0.12	0.26	0.71	0.860	9	9	2615	CST	
282 A	HD	61606	0.96	-18.21	0.09	0.31	1.02	0.418	11	11	4760	CST	
282 B	BD	-03 2002	1.33	-19.02	0.14	0.43	1.10	0.289	10	10	4760	CST	
292.1	HD	64468	0.95	-15.91	0.10	3.97	12.55	0.000	24	24	6124	SB1O	*
293.1A	HD	65277	1.04	-4.34	0.13	0.37	1.10	0.294	8	8	2958	CST	
295.1	BD	$+14\ 1802$	1.28	20.35	0.19	0.55	1.33	0.103	8	8	3984	CST	
301.1	BD	+311781	1.14	13.47	0.10	0.31	0.97	0.499	10	10	2617	CST	
313	HD	73583	1.12	20.22	0.13	0.22	0.61	0.925	8	8	3277	CST	
315	HD	73667	0.82	-12.03	0.11	0.25	0.75	0.808	g	9	3591	CST	
1113	НП	7355/	1 08	54.61	0.13	0.25	0.73	0.000	8	8	3303	CST	
321	П	7/277	0.04	_73.62	0.15	0.19	1.00	0.902	7	7	3503	CST	
325 A	П	75627	1 30	23.03 43.52	0.15	2 02	2 27	0.102	á	18	5516	SB2	
323 A	סח	+ 21 1040	1.37	43.32 50.26	0.97	2.92 0.14	0.25	0.000	7 0	10	2026	CCT	
330.1 221 1	עם תם	+21 1949	1.11	-30.30	0.14	0.14	0.55	0.997	ð o	ð	3930 5054	COL	
227 A	עם תוו	+/344/	1.20	-27.09	0.10	0.40	11.05	0.409	ð 56	ð 101	5201	COL	
33/ A		/9090	0.73	49.99	0.07	8.30	11.27	0.000	30	101	3391	SB2U	+
338.1A	RD	+// 361	1.38	-11.34	0.19	0.56	1.25	0.149	9	9	4050	CSI	

Table A.1. continued.

339	HD	79555	1.02	6.74	0.22	0.70	2.18	0.000	10	10	3991	SB1	
340 A	HD	79969	1.02	-20.52	0.06	0.23	0.72	0.983	27	27	5796	CST	
340.2	HD	80367	0.87	50.95	0.11	0.31	0.93	0.549	9	9	4091	CST	
340.3	HD	80632	1.17	36.55	0.13	0.30	0.77	0.800	9	9	3703	CST	
1124	HD	80715	0.99	-4 23	0.08	48.85	90.03	0.000	48	100	1462	SB2O	*
341.1	BD	+81.297	1 23	-18.02	0.00	0.44	1 23	0.183	7	7	3598	CST	
342	ЧП	80768	1 10	-6.32	0.17	0.11	0.60	0.103	14	14	3613	CST	
342		140.2208	1.19	-0.52	0.10	36.78	53 52	0.958	21	14	1120	SBJO	*
240		+40 2206 92106	1.52	-32.13	0.15	0.10	0.60	0.000	21 10	10	2604	SB20	
549 255		82100	1.00	29.97	0.10	0.19	0.00	0.955	10	10	2140	CST	
355	HD	82558	0.91	/.58	0.27	0.81	1.1/	0.211	9	9	2140	CSI	
365	HD	84035	1.15	-12.30	0.11	0.32	1.01	0.421	8	8	3598	CST	
378.1	HD	86856	1.07	30.35	0.11	0.32	0.94	0.551	9	9	5073	CST	
379 A	BD	+75 403	1.40	-55.35	0.20	0.50	1.12	0.306	6	6	3563	CST	
380	HD	88230	1.36	-26.21	0.09	0.22	0.70	0.898	11	11	3568	CST	
388.2	HD	89707	0.63	82.70	0.09	2.34	6.26	0.000	64	64	6144	SB1O	+
389.1	BD	-09 3063	1.23	-3.97	0.30	0.90	2.20	0.000	9	9	5145	SB1 ²	
394	HD	237903	1.36	8.84	0.15	0.23	0.63	0.856	6	6	3663	CST	
396	HD	90343	0.82	9.80	0.10	0.30	0.95	0.520	9	9	3691	CST	
397	BD	+46 1635	1.33	20.62	0.10	0.35	1.02	0.434	13	13	3979	CST	
402.1	BD	+002709	0.90	-48.33	0.13	0.30	0.72	0.873	10	10	4769	CST	
1139	BD	+76404	1 10	-25.82	0.15	0.43	1.02	0.402	8	8	3037	CST	
414 A	HD	97101	1 35	-16.63	0.13	0.15	0.75	0.846	11	11	3984	CST	
418	HD	97503	1 18	16.03	0.11	0.31	0.89	0.676	10	10	3988	CST	
420 A	HD	97584	1.10	9.12	0.12	0.31	0.07	0.020	7	7	3602	CST	
426 A	П	08736	0.80	_3 37	0.12	0.23	0.74	0.407	8	8	3060	CST	
420 A	нD	00/01	0.80	J.J7 A 1A	0.11	0.25	0.74	0.727	13	13	175A	CST	
429 A		00/02	1.00	3 50	0.09	0.20	0.05	0.727	6	6	3607	CST	
429 D		105 2520	1.00	10.48	0.15	2.48	2 / 2	0.409	31	57	5750	SB3	
435.1		+032329	1.24	20.99	0.45	2.40	0.50	0.000	0	57	2729	SD2 CST	
439		+31 2290	1.15	29.00	0.12	7.09	0.50	0.975	20	0 56	5452	CO1 SD20	*
441		+72.343	1.17	-17.15	0.10	7.08	8.73 0.77	0.000	29 10	10	2690	SD2U COT	
444 A		102392	1.12	18.99	0.11	0.28	0.77	0.814	10	10	3089	CSI	
454		104304	0.70	0.28	0.08	0.28	0.90	0.525	12	12	4//4	CSI	
469.1	HD	108/54	0.63	0.40	0.07	5.11	14./1	0.000	39	39	3692	SBIO	+
1160	HD	109011	0.93	-10.45	0.15	6.99	11./3	0.000	35	/0	54/5	SB20	*
479.1	HD	110010	0.63	-18.31	0.05	2.12	6.30	0.000	36	36	6141	SBIO	+
481	HD	110315	1.12	24.90	0.10	0.24	0.71	0.873	10	10	3292	CST	
483	HD	110833	0.94	9.52	0.15	0.79	2.63	0.000	48	48	6129	SBIO	*
488.2	BD	-05 3596	1.34	-12.84	0.14	0.49	1.15	0.224	12	12	3297	CST	
489	HD	112575	1.12	-7.77	0.06	1.80	5.02	0.000	41	41	5892	SB10	*
491 A	HD	112758	0.79	3.95	0.01	1.38	4.02	0.000	32	32	7413	SB10	*
498	HD	113827	1.17	-6.51	0.13	0.32	0.83	0.707	9	9	3568	CST	
505 A	HD	115404	0.92	7.51	0.08	0.25	0.81	0.817	14	14	3244	CST	
509 A	HD	116495	1.33	-39.18	0.12	0.44	1.07	0.338	13	13	3981	CST	
511	HD	116858	0.93	-12.61	0.13	0.43	1.08	0.325	11	11	2956	CST	
2102	HD	117936	0.80	-6.00	0.15	0.41	1.26	0.136	8	8	2958	CST	
517	HD	118100	1.18	-22.47	0.11	0.48	1.15	0.186	18	18	4012	CST	
1176	HD	119291	1.19	-43.17	0.13	0.23	0.62	0.917	8	8	2903	CST	
521.1	HD	118926	1.39	27.27	0.20	0.64	1.33	0.071	10	10	4189	CST	
523	BD	+39 2675	1.10	1.24	0.13	0.34	0.93	0.542	8	8	2905	CST	
528 A	HD	120476	1.12	-20.18	0.15	0.36	1.04	0.375	6	6	5577	CST	
529	HD	120467	1.27	-38.34	0.13	0.27	0.78	0.732	7	7	4008	CST	
542.2	HD	125354	1.30	11.55	0.51	2.44	5.76	0.000	23	23	6151	SB10	*
544 A	HD	125455	0.84	-9.93	0.10	0.21	0.65	0.929	10	10	3282	CST	
546	BD	+302512	1.26	-37.18	0.08	0.30	0.89	0.699	17	17	3688	CST	
554	HD	127506	1.13	-18 69	0.07	0.26	0.76	0.946	24	24	5893	CSTO ³	*
556	HD	128165	0.99	11 46	0.08	0.22	0.76	0.880	14	14	4040	CST	
	110	120105	0.77	11.40	0.00	0.22	0.70	0.000	1 7	17	10-10	0.01	

Table A.1. continued.

561	BD	+27 2411	0.80	-77.89	0.12	0.35	0.88	0.676	11	11	2904	CST	
562	BD	+17 2785	1.26	42.47	0.07	0.35	0.93	0.720	34	34	5721	CST	
563.3	HD	130871	0.97	-32.32	0.11	0.25	0.68	0.916	11	11	3291	CST	
567	HD	131511	0.84	-31.42	0.04	11.19	38.02	0.000	82	82	6669	SB1O	+
569.1	HD	132142	0.79	-14.59	0.09	0.28	0.87	0.719	14	14	4025	CST	
570 A	HD	131977	1.10	26.73	0.05	0.29	1.00	0.465	41	41	7364	CST	
573	HD	132950	1.04	-1.73	0.08	0.36	0.97	0.563	21	21	7272	CST	
576	BD	+06 2986	1.30	-84.79	0.12	0.43	0.80	0.806	12	12	5092	CST	
579	BD	+25 2874	1.36	-69.43	0.09	0.52	1.17	0.100	32	32	5500	CST	
1189	BD	+24 2824	1.06	-53.64	0.32	1.33	3.63	0.000	17	17	5161	SB1	
579.3	HD	134985	0.78	-61.49	0.14	0.45	1.10	0.290	10	10	3689	CST	
580 A	HD	135204	0.77	-69.54	0.06	0.23	0.74	0.962	23	23	1331	CST	
1190	BD	-033/46	1.13	-112.42	0.13	0.22	0.50	0.992	11	11	4091	CST	
585	BD	-04 38/3	1.30	-19.10	0.15	0.32	0.77	0.783	8	8	20/0	CSI	
1192 596 A	HD	130834	1.00	-26.65	0.07	0.28	0.85	0.816	22	120	4892	CSI	
586 P		137703	0.81	7.47	0.20	21.20	00.80	0.000	110	120	6013	SD2U CST	+
501 D		13///8	0.90	7.30	0.07	0.51	0.98	0.307	10	10	5830	CST	
503 A		139323	0.95	-07.13	1.00	5 37	11.09	0.992	20	58	5651	SB1	
610	HD	144253	0.92	-05.10	0.00	19.12	32.80	0.000	29	38 47	2073	SB2 SB20	*
612	HD	144872	0.97	23 43	0.09	0.35	1.00	0.000 0.452	11	11	2991	CST	
614	HD	145675	0.90	-13.88	0.09	0.35	0.90	0.452	10	10	6291	CST	
615.1A	HD	145958	0.77	18.37	0.11	0.37	1.01	0.424	11	11	5812	CST	
615 1B	112	110,000	0.80	18.50	0.19	0.63	1.81	0.000	11	11	5812	SB1 ⁴	
621	HD	147776	0.00	7.08	0.10	0.32	0.87	0.699	13	13	5225	CST	
626	HD	148467	1.22	-36.54	0.13	0.13	0.34	0.998	8	8	2994	CST	
627 A	HD	148653	0.86	-31.13	0.10	0.28	0.85	0.704	11	11	4849	CST	
631	HD	149661	0.81	-12.95	0.09	0.18	0.62	0.952	11	11	3803	CST	
632.1	HD	149957	1.20	-11.16	0.13	0.27	0.72	0.824	8	8	2963	CST	
632.2A	BD	+76 614	1.17	-9.37	0.12	0.33	0.82	0.759	11	11	4546	CST	
637.1	HD	151541	0.77	9.57	0.11	0.20	0.61	0.934	9	9	3339	CST	
638	HD	151288	1.37	-32.07	0.09	0.26	0.79	0.855	15	15	3619	CST	
639	HD	151877	0.82	2.33	0.12	0.29	0.86	0.639	8	8	2674	CST	
640	HD	151995	1.02	-5.61	0.14	0.31	0.87	0.620	7	7	3033	CST	
649.1A	HD	153557	0.99	-6.65	0.09	0.33	1.02	0.404	15	15	4847	CST	
649.1C	HD	153525	1.00	-7.15	0.09	0.27	0.83	0.790	15	15	4847	CST	
650	HD	153631	0.63	83.21	0.09	4.10	11.36	0.000	38	38	5246	SB10	+
653	HD	154363	1.16	34.02	0.08	0.30	0.86	0.779	18	18	6307	CST	
658	HD	155456	0.87	-59.79	0.12	0.11	0.34	0.997	8	8	2655	CST	
659 A	HD	155674	1.16	3.15	0.13	0.21	0.55	0.952	8	8	2643	CST	
659 B	BD	+54 1862	1.20	2.23	0.15	0.32	0.77	0.768	8	8	2643	CSI	
003 A	HD	155880	0.86	0.44	0.10	0.25	0.81	0.751	10	10	3273	CSI	
003 B		155885	0.80	0.10	0.13	0.40	1.27	0.113	10	10	3273	CSI	
673		157881	1.10	-0.09	0.08	0.26	0.93	0.020	15	13	3094 4477	CST	
675		158633	0.76	-23.89	0.07	0.20	0.74	0.938	16	16	4477	CST	
688	HD	160346	0.70	-38.50	0.08	0.28 4 27	1/ 16	0.727	38	38	4021	SB10	т.
689	HD	160964	1 10	-24.41	0.03	0.36	1 02	0.000	38	90	2561	CST	т
692.1	НП	161108	0.77	24.41	21.35	6.23	18.63	0.410	105	105	2301 4360	SB10 ⁵	
697	BD	+21 3245	0.95	-13.00	0.17	0.23 0.47	1 29	0.114	8	8	2618	CST	
698	BD	+183497	1 18	-29.78	0.17	0.48	1.27	0 152	8	8	2226	CST	
700.2	HD	164922	0.80	20.14	0.07	0.40	0.75	0.911	17	17	3717	CST	
702 A	HD	165341	0.86	_9.73	0.52	2.16	7 03	0.000	17	17	5911	SB1 ⁶	
706	HD	166620	0.87	-19.47	0.07	0.22	0.74	0.911	16	16	4092	CST	

Table A.1. continued.

715	HD	170493	1.10	-55.20	0.09	0.24	0.76	0.836	11	11	2617	CST	
718	HD	171314	1.12	38.25	0.10	0.20	0.58	0.971	11	11	2612	CST	
719	HD	234677	1.22	-25.53	0.08	19.30	48.35	0.000	47	88	7096	SB2O	+
722.1	HD	172393	0.82	32.24	0.11	0.28	0.80	0.764	10	10	2620	CST	
725.1	HD	173701	0.84	-45.55	0.07	0.31	1.05	0.352	18	18	5204	CST	
727	HD	174080	1.08	-7.17	0.09	0.17	0.55	0.986	12	12	3020	CST	
747.2	BD	+33 3339	1.25	8.78	0.64	2.99	3.34	0.000	22	38	5561	SB2	
753	BD	+87 183	1.06	-5.74	0.14	0.29	0.73	0.843	9	9	2569	CST	
758	HD	182488	0.81	-21.56	0.06	0.20	0.69	0.971	20	20	3026	CST	
1237	HD	183255	0.93	-64.95	0.11	10.65	23.46	0.000	48	96	2259	SB2O	+
761 A	BD	+12 3917	1.10	-18.35	0.13	0.38	1.01	0.415	9	9	2642	CST	
762.1	HD	184467	0.87	11.63	0.08	7.14	7.43	0.000	18	36	4105	SB2O	+
764	HD	185144	0.80	26.64	0.09	0.35	1.14	0.202	14	14	4426	CST	
764.1A	HD	184860	1.01	63.19	0.23	0.75	2.08	0.000	11	11	5564	SB1	
764.1B			1.20	64.68	0.49	0.85	1.92	0.027	3	3	3698	CST	
765.2	HD	186922	0.88	-5.21	0.80	5.81	6.95	0.000	53	103	5516	SB2O ⁷	
773.2	HD	189087	0.80	-29.68	0.06	0.24	0.81	0.873	21	21	5557	CST	
775	HD	190007	1.12	-30.51	0.10	0.32	1.06	0.350	10^{-1}	10	3272	CST	
778	HD	190404	0.82	-2.55	0.06	0.30	0.90	0.777	30	30	7337	CST	
779.1	HD	190470	0.91	-7.33	0.09	0.12	0.41	0.999	12	12	3023	CST	
781.2	HD	191285	1.12	-18.55	0.14	0.44	1.00	0.449	10	10	3008	CST	
783.2A	HD	191785	0.85	-49.52	0.08	0.29	0.94	0.583	14	14	3369	CST	
791.3	BD	+33 3936	1 13	-27.05	0.00	0.15	0.44	0.995	10	10	3008	CST	
795	HD	196795	1.12	-40.86	0.14	2.27	6 49	0.000	99	99	7660	SB10	+
1255 D	HD	199476	0.71	-30.23	0.13	0.36	1.02	0.397	8	8	1772	CST	•
808 2	HD	198550	1.06	-8.48	0.10	0.50	1.02	0.005	21	21	5127	SB1?	
1259	BD	+124499	1.00	-41.03	0.06	1 19	3 57	0.000	$\frac{21}{29}$	29	5177	SB10	*
816 1 A	HD	200560	0.97	-14 11	0.00	0.21	0.69	0.000	12	12	2961	CST	
818	HD	200500	1.22	-66.81	0.09	0.21	0.02	0.520	14	14	3340	CST	
819 A	HD	200968	0.90	-3272	0.09	0.51	0.24	0.996	12	17	2967	CST	
820 A	HD	201091	1 17	-65.82	0.05	0.15	1 11	0.179	30	30	6226	CST	
820 B	HD	201091	1.17	-64.67	0.06	0.30	0.91	0.725	29	29	6226	CST	
824 B	HD	202575	1.07	-18.24	0.00	0.27	0.83	0.720	13	13	2964	CST	
825 3	HD	202751	0.99	-27.65	0.09	0.27	0.65	0.957	13	13	3349	CST	
828.4	HD	202731	0.99	-14.63	0.09	0.20	0.05	0.757	14	14	3639	CST	
836.8	RD	± 40.4631	1 34	9.75	0.02	0.55	0.55	0.470	0	0	2966	CST	
838 1 A	HD	207491	1.04	-11.22	0.10	0.21	0.55	0.933	11	11	3338	CST	
838.2	HD	207491	0.83	_20.20	0.10	0.21	0.00	0.555	11	11	3342	CST	
840	HD	207793	0.05	-13.42	0.10	0.32	0.74	0.907	16	16	2076	CST	
850	HD	210667	0.92	_19.55	0.07	0.21	0.72	0.954	17	10	2976	CST	
851 4	RD	± 56.2737	0.02 0.72	2 45	0.07	11 38	19 42	0.002	76	131	7440	SB20	*
854	BD	+67 1424	1 15		0.15	033	0.01	0.611	10	10	2951	CST	
857 1 4	RD	$+21 \ A747$	1.15	-7 15	0.11	0.33	0.91	0.516	11	10	4063	CST	
867 1 A	лн	214/4/	0.63	-1257	0.10	0.52	1 76	0.000	35	35	7380	SB10	*
870	RD	+47 4471	1 11	-32.57	0.15	6 17	15 98	0.000	25	25	1302	SB10	*
1272 A	חק	17244/1 10/1919	1.11	-1 60	0.13	0.17	0.62	0.000	23 10	2J 10	2582	CST	
871 2	חת חון	215704	0.80	-1.00 -51 /6	0.12	0.24	0.05	0.941	10	10	2000	CST	
886	ПЛ	213704	0.00	-31.40 -4/10	0.10	1 78	5 75	0.713	25	25	2912	SB10	Ŧ
807	ПЛ	21/300	1.00	-++.19 -18 58	0.04	0.26	0.02	0.000	25 16	25 16	4057	CST	Τ'
802 DD	П	217134	1.00	-10.00 -24.20	0.07	0.20	0.92	0.055	10	10	1007 0	$\frac{1}{2}$	
073.2D 801 1	חח חח	219430 220182	1.05	-24.29	0.34	0.05	0.10	0.919	22	1 22	1/25	' CST	
074.4 801 5	חח חח	220102	0.00	5.52 77 22	0.00	0.23	0.70	0.923	23 10	23 10	7866 7866	CST	
074.J 205 1	пD UD	220339	0.89	22.11 25.02	0.10	0.22	0.09	0.090	10	10	2000 2002	CSI	
073.4 004 1 A	пD UD	221554	0.83	-23.02	0.09	0.14	0.40	0.993	10	10	2000 5125	CSI	
904.1A	нD	222474	1.11	-19.24	0.12	0.44	1.55	0.040	14	14	3133		
907.1 009.1	RD RD	-13 6464	1.20	-9.04	0.45	0.45	1.00	9.999	10	10	0	/ 	
908.1	BD	+29 500/	1.20	-5.92	0.11	0.27	0.75	0.000	10	10	2007	COL	
909 A	HD	223778	0.98	4.54	0.37	22.54	29.97	0.000	11	15	2833	2870 2820	+
909.1	нD	223782	1.08	-29.26	0.12	0.29	0.73	0.8/4	11	11	5048	(21	

HD/BD		T ₀ (JD)	e	V_0	εI	$K_{1,2}$	$m_{1,2} \sin^3 i$ or	<i>a</i> _{1,2} sin <i>i</i>	N	σ(0-C)
GJ	(p)	2400000+		(km s^{-1})	(_)	$(\mathrm{km}\mathrm{s}^{-1})$	$f_1(m)$ (M_{\odot})	(Gm)	N_2	(km s^{-1})
HD 8997 ⁸ GJ 58.2	10.98358 0.00012	46482.39 0.17	0.0358 0.0036	21.35 0.10	192.86 5.44	38.87 0.17 46.21 0.36	0.3809 0.0056 0.3203 0.0042	5.867 0.025 6.976 0.054	31 23	0.74
HD 10307 ⁹ GJ 67 (G)	7206. 42.	43259. 75.	0.437 0.024	$3.329 \\ 0.050$	203.71 4.51	2.966 0.110	0.0142 0.0017	264.3 10.5	32	0.24
HD 14039 ¹⁰ GJ 92.1 a-b	80.0342 0.0029	46773.64 0.16	$0.3325 \\ 0.0051$	9.021 0.050	40.24 0.99	14.488 0.079	0.02120 0.00037	15.037 0.087	52	0.35
HD 14039 GJ 92.1 ab-c	4570. 106.	48277.0 27.3	$0.4731 \\ 0.0246$		288.68 3.48	$3.454 \\ 0.100$	0.01338 0.00135	191.27 7.67	52	0.34
HD 16909 ¹¹ GJ 106	1227.77 3.35	46638.50 4.66	$0.492 \\ 0.014$	31.281 0.064	119.35 1.60	6.476 0.096	0.0228 0.0012	95.18 1.66	23	0.24
HD 17382 ¹² GJ 113	5954. 294.	48024.2 25.2	0.663 0.021	9.111 0.065	110.74 3.59	2.957 0.080	0.00671 0.00081	181.3 11.2	26	0.25
HD 18445 C GJ 120.1 C (G)	553.89 1.37	47489.9 8.7	0.528 0.067	49.896 0.070	74.7 9.1	$1.50 \\ 0.13$	0.000119 0.000035	9.72 0.96	32	0.38
Notes. The G-type s GJ identification. ⁽⁸⁾ (1985). ⁽¹²⁾ Prelimini derived taking into a (2002). ⁽¹⁷⁾ First orb by Mason et al. (195 (1988). ⁽²²⁾ We impr elements were deriv (1983); high precision orbit of Duquennoy by Vogt & Fekel (19 precision VB+SB2 (solution derived by ' CORAVFI observat	First orbit by Griffin ary orbit by Griffin ary orbit by Latham account 15 Elodie m uit by Griffin et al. (36) and by Pourbai: ove the preliminary ed taking into accc an orbits by Nideve & Mayor (1988). ⁽²⁾ (79). ⁽³⁰⁾ First orbit arbit was derived b Tokovinin & Lathan tons: other orbit how	n DM91 are included n (1987); other orbit n et al. (2002). ⁽¹³⁾ W neasurements found i (1985); other orbit b x (2000). ⁽²⁰⁾ We im v orbit of DM91; firs ount Elodie RV mea er et al. (2002) and t ³⁸⁾ First orbit by Tok by Tokovinin (1991 by Kiefer et al. (2018 m (2017). ⁽³⁴⁾ Prelin m (2017). ¹ atham et al. (2001)	Lin this table whe by Scarfe (1988) is improve the orthough in the Elodie Arcl y Tokovinin (199 prove the orbit of prove the orbit of the orbit with ΔT 1 surements; the o oy Katoh et al. (2 ovinin (1991); hi); high precision 3). (30) Triple syst intary orbit base ninary orbit base	an their elements a (⁹⁾ Preliminary orl bit of DM91. (¹⁴⁾ Fi hive; the offset of t 00. (¹⁸⁾ First orbit f DM91; high pre- onger than the per fifset of the Elodie 013, 2016). (²⁶⁾ Fi gh precision orbit orbit by Kiefer et tem; first orbit by d on observations	tre significantly i bit in DM91; first irst SB orbit; the he Elodie RVs is by Griffin & En cision orbit by S riod. ⁽²³⁾ The peri iod. ⁽²³⁾ The peri iod. ⁽²³⁾ The peri st orbit by Tokc by Katoh et al. (al. (2018). ⁽³¹⁾ F Duquennoy (19) that do not com	mproved thanks to corbit with ΔT lot star was already a -0.193 km s ⁻¹ . (19 terson (1975). (19 ahlmann et al. (20 od of the interfer km s ⁻¹ . (25) First km s ⁻¹ . (25) The B irst orbit by McC 37). (33) The peric pletely cover the	o additional observation a VB with known orbit ⁽⁶⁾ First orbit by Tokov ⁽⁶⁾ First orbit by Griffin 011). ⁽²¹⁾ We improve onetric orbit by Toko orbit by Kamper & Ly improve the orbit of 1 Y Dra variable star; fin flure (1983); combined and the semi-ampli orbital period. ⁽³³⁾ Fin	^{a)} Triple system. ⁽¹⁾ ^{a)} Triple system. ⁽¹⁾ al elements (AI-W inin et al. (1994); (& Griffin (1992); the CORAVEL o vinin et al. (2015) /ons (1981); othe: Duquennoy et al. rst orbit by Bopp d VB+SB2 orbit l tude were fixed to tude were fixed to	ated by "(G) ¹⁾ First orbit Vardat et al. 2 other orbit b trbit of Jasnic is assumed. r orbit by Be (1992). ⁽²⁷⁾ N & Evans (19 by Pourbaix o the results	" following the by Griffin et al. (014). ⁽¹⁵⁾ Orbit y Latham et al. (B+SB2 orbits wicz & Mayor ⁽²⁴⁾ The orbital avers & Salzer Ve improve the 73); other orbit (2000). A high of the SB+VB

J.-L. Halbwachs et al.: Multiplicity among solar-type stars. IV.

48636.9 0.275 25.7 0.010
49992.2 0.090 27.8 0.018
46785.14 0.649 2.63 0.016
46999.42 0.0022 0.74 0.0052
47474.27 0.399 5 06 0.033
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
46586.84 0.273 2.01 0.021
47197.82 0.4431 3.04 0.0097
$\begin{array}{rrrr} 47456.2383 & 0.0000 \\ 0.0025 & 0.0032 \end{array}$
46494.695 0.0993
0.047 0.0055
48517.20 0.946 0.50 0.012

A&A 619, A81 (2018)

Table A.2. continued.

BD+72 545 GI 441	632.56 0.57	49608.41 4.93	0.249 0.018	-17.13	278.33 3.31	10.05 0.20	0.274 0.013	84.67 1.73	29	0.77
						10.69 0.22	0.258	90.03 1.95	27	
HD 108754 ²¹ GJ 469.1 (G)	25.93115 0.00100	45956.44 0.30	$0.1759 \\ 0.0117$	0.403 0.069	59.0 4.2	7.713 0.100	0.001179 0.000046	2.707 0.036	39	0.39
HD 109011 GJ 1160	1284.38 2.34	47513.68 7.58	0.501 0.017	-10.45 0.15	250.84 2.98	9.82 0.24	0.443 0.035	150.13 4.07	35	1.20
						11.38 0.41	$0.382 \\ 0.029$	173.99 6.61	35	
HD 110010 ²² GJ 479.1 (G)	4118. 26.	46030. 63.	0.199 0.020	-18.312 0.046	350.60 6.05	$3.156 \\ 0.069$	0.01265 0.00085	175.1 4.0	37	0.27
HD 110833 GJ 483	270.33 0.54	49797.0 1.0	0.902 0.044	9.568 0.047	251.6 7.4	$1.72 \\ 0.31$	0.0000115 0.0000028	2.77 0.23	47	0.24
HD 112575 GJ 489	3572.1 34.5	49872.95 9.04	0.766 0.021	-7.773 0.063	238.51 3.93	2.48 0.10	0.00151 0.00025	78.42 4.45	41	0.34
HD 112758 A GJ 491 A	$103.226 \\ 0.042$	49672.0 5.7	0.141 0.044	3.945 0.061	333. 20.	$1.850 \\ 0.083$	0.0000659 0.0000089	2.60 0.12	32	0.33
HD 125354 ²³ GJ 542.2	6819.	45990. 117.	0.306 0.039	11.55 0.11	67.1 7.6	3.96 0.18	0.0379 0.0054	353. 17.	23	0.49
HD 127506 ²⁴ GJ 554	2669.5 17.7	52527.29 1.52	0.7086 0.0046	-19.117 0.004	244.01 0.45	0.9051 0.0057	0.0000720 0.0000012	23.44 0.21	24+56	$0.24 \\ 0.013$
HD 131511 ²⁵ GJ 567	125.3939 0.0020	44936.898 0.082	0.5096 0.0026	-31.425 0.036	219.48 0.39	18.913 0.076	0.05612 0.00074	28.06 0.12	82	0.31
HD 137763 A ²⁶ GJ 586 A	889.813 0.017	47967.519 0.015	0.9733 0.0006	7.47 0.20	252.64 0.73	36.42 0.38 52.90 1.73	0.4716 0.0146 0.3247 0.0083	102.29 0.70 148.57 2.18	110	0.74
HD 144253 GJ 610	105.947 0.017	48948.02 0.90	$0.1514 \\ 0.0055$	36.759 0.088	85.28 2.04	23.55 0.13 26.72	0.7176 0.0118 0.6323	33.92 0.19 38.48	25 22	0.56
HD 153631 ²⁷ GJ 650 (G)	386.64 0.30	46161.5 4.3	0.186 0.018	83.208 0.088	46.1 4.9	0.222 6.080 0.085	0.00037 0.00037 0.00037	0.22 31.76 0.46	38	0.32

Table A.2. continued.

HD 160346 ²⁸ GJ 688	83.714 0.012	46972.20 0.57	0.210 0.012	21.680 0.045	145.5 2.7	5.644 0.057	0.001460 0.000046	6.351 0.067	38	0.26
HD 234677 ²⁹ GJ 719	5.975114 0.000007	49996.375 0.012	0.3050 0.0032	-25.533 0.075	229.43 0.77	28.43 0.13 31.90 0.19	0.06225 0.0078 0.05548 0.00067	2.225 0.011 2.496 0.015	47 41	0.69
HD 183255 ³⁰ GJ 1237	166.83 0.18	46415.94 1.85	0.141 0.012	-64.95 0.11	69.0 4.5	13.91 0.18 15.49 0.24	0.2252 0.0074 0.2022 0.0064	31.60 0.41 35.18 0.55	48 48	1.01
HD 184467 ³¹ GJ 762.1	494.77 0.50	46662.73 2.18	0.339 0.013	11.632 0.083	177.49 2.31	9.44 0.17 9.90 0.18	0.1583 0.0068 0.1510 0.0065	60.41 1.13 63.35 1.19	18 18	0.48
HD 196795 ³² GJ 795 a-b	918.59 0.56	48082.70 1.80	$0.6872 \\ 0.0122$	-40.860 0.045	116.5 2.0	$3.394 \\ 0.068$	0.001430 0.000109	31.14 0.79	66	0.41
HD 196795 ³³ GJ 795 ab-c	14128.	50796. 555.	0.089 0.035		72. 14.	2.66	0.0273 0.0026	514.70 1.61	66	0.41
BD+12 4499 GJ 1259	2173.3 36.4	47551.2 56.1	0.459 0.044	-41.029 0.060	233.58 8.33	$\begin{array}{c} 1.93\\ 0.10\end{array}$	0.00113 0.00021	51.14 3.20	29	0.28
BD+56 2737 GJ 851.4	650.19 0.26	47 <i>5</i> 72.66 0.91	0.5971 0.0077	2.447 0.105	12.63 1.03	15.56 0.17 20.59	0.938 0.039 0.709	111.61 1.44 147.65	74 53	1.12
HD 214615 ³⁴ GJ 867.1A (G)	7725. 952.	45741. 221.	0.54 0.13	-12.57 0.11	11.43 12.49	0.38 1.36 0.22	0.027 0.00122 0.00070	2.90 122. 27.	35	0.43
BD+42 4471 GJ 870	374.57 0.62	47098.21 1.92	0.440 0.012	-32.64 0.15	343.33 2.68	8.03 0.13	0.01455 0.00077	37.11 0.66	25	0.32
HD 217580 ³⁵ GJ 886	453.90 1.78	49162.2 8.5	0.518 0.041	-44.186 0.058	239.78 3.90	2.501 0.097	0.000426 0.000067	13.36 0.65	25	0.27
HD 223778 ³⁶ GJ 909 A	7.753470 0.000065	47000.4492 0.0094	0.0000 0.0061	4.54 0.37	0.00 60.	46.74 0.75 48.95 0.93	0.3609 0.0045 0.3446 0.0041	4.983 0.025 5.219 0.031	6	0.32

A&A 619, A81 (2018)

Table A.2. continued.