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Fixed-time convergent consensus algorithm of networked nonholonomic
multi-agent systems

Michael Defoort Thierry Floquet Wilfrid Perruquetti

Abstract— In this paper, the problem of fixed-time leader-
follower consensus problem of nonholonomic multi-agent sys-
tems is under study. Using the “desingularisation method”
introduced in the seminal paper by J.M. Coron [5], new fixed-
time controllers/observers for the double integrator system
are designed. Following those results, a switching consensus
protocol which guarantees the tracking errors stabilization in
fixed-time which does not depend on the initial conditions of
the multi-agent system is provided. Simulation results on a fleet
of wheeled mobile robots show the effectiveness of the proposed
scheme.

I. INTRODUCTION

Stabilization and tracking problems of nonholonomic sys-
tems, e.g. systems subject to nonintegrable constraints with
respect to velocity, have received a lot of attention in the
literature (see [14] for an extended survey). Indeed, there are
significant technical challenges due to the Brockett’s neces-
sary condition [2]. Hence, several time-varying or discontinu-
ous controllers have been investigated such as sinusoidal and
polynomial controls [17], smooth time-varying feedbacks
[22], backstepping based schemes [25] and hybrid schemes
[15]. Nowadays, there are lot of applications in autonomous
vehicles, wheeled mobile robots [8], under-actuated ships
[10], etc.

During the last decades, distributed control of multi-agent
systems (MAS) has attracted a lot of attention due to its wide
range of applications in different areas such as flocking [27],
swarming, target tracking, etc. Among them, the consensus
problem is one of the most fundamental problems for coop-
erative control of MAS. Its objective is to design distributed
controllers so that each agent reaches an agreement regarding
to a given quantity of interest using only local information
[20].

The consensus problem has been widely investigated for
linear systems [24], [16], [23]. Nevertheless, many mechan-
ical systems (e.g. wheeled mobile robots, UAVs, or manip-
ulators) cannot be described by quasi-linear systems since
they present nonintegrable constraints on velocity. Hence,
consensus protocols have been derived for nonholonomic
systems [11], [12], [4]. However, these controllers only
guarantee asymptotic consensus or finite-time consensus (i.e.
the settling time depends on the initial conditions of the
multi-agent system).
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The concept of fixed-time stability has been proposed
to derive controllers such that the settling time is bounded
independently of the initial conditions [6], [19]. Based on this
concept, fixed-time consensus protocols have been proposed
for first and second integrator MAS [24], [16], [9]. Recently,
the fixed-time consensus problem for nonholonomic MAS
has been investigated [8], [21], [1], [18]. In [8], only the case
of static leader is studied. This work has been extended in
[21], [1], [18] to the dynamic leader case. In [1], a specific
sliding surface is designed based on results from [19] for
second order systems. However, it requires a careful tuning
of four control parameters and the settling time is highly
over-estimated. The methodology given for instance in [21],
[18] is based on the power integrator method (which relies on
[5]) that requires the design of a sufficiently small positive
constant. Furthermore, the resulting controller is relatively
complex with many parameters to be carefully tuned.

In this paper, a new fixed-time leader-follower consensus
controller for nonholonomic MAS are derived. The main
features of the present work are as follows:

i) A new fixed-time leader-follower consensus controller
for nonholonomic MAS is provided. The settling time
is upper bounded by a positive constant which only
depends on the controller parameters.

ii) A detailed Lyapunov analysis is provided to show the
fixed-time stabilization of the tracking errors for the
double integrator system.

iii) Compared to [21], [1], [18], the controller, based on the
“desingularisation method” (see [5]), uses exponential
functions and shows good robustness properties.

This paper is structured as follows. The consensus problem
for nonholonomic MAS is stated in Section II. The next
section III is divided as follows: new fixed-time controller-
s/observers are derived for the double integrator system
(see Subsection III-A/III-B). Then, based on these results,
a switching consensus protocol which guarantees the fixed-
time stabilization of the tracking errors of the multi-agent
system is derived in Subsection III-C.2. Finally, simulation
results for a fleet of wheeled mobile robots are shown in
Section IV.

Notations: R+ denotes the set of nonnegative real
numbers. Γ denotes the Gamma function. For any real
number a ≥ 0 and for all x ∈ R, the signed power a
of x is defined by {x}a = sign(x)|x|a. Clearly we have:
{x}0 = sign(x), {{x}a}b = {x}ab , {x}a {x}b = |x|a+b,
{x}a |x|b = {x}a+b, and for a ≥ 1, d{x}a

dx = a |x|a−1 and
d|x|a
dx = a {x}a−1. Let us define the two following functions



∀(x, y) ∈ R2
+,∀µ, ν ∈ R+:

ϕµ(x, y) = {y}µ − {x}µ, (1)

Φνµ(x, y) =

∫ y

x

{ϕµ(x, s)}ν ds ≥ 0. (2)

Ck(X,Y ) is the set of functions f : X → Y which are k
times continuously differentiable (noted as Ck when the sets
X,Y are obvious from the context). CL(X,Y ) is the set of
continuous functions (including at 0) f : X → Y which
are locally Lipschitz everywhere except at 0. A continuous
function α : [0, a[⊂ R+ → R+, r 7→ α(r), is said to be a
class-K function if it is strictly increasing with α(0) = 0.
α is a class-K∞ function if it is a class-K function with
a = ∞ and α(r) → ∞ as r → ∞. A continuous function
β : [0,+∞[⊂ R+ × R → R+, (r, t) 7→ β(r, t), belongs to
class-KL if for each fixed t, the mapping r 7→ β(r, t) belongs
to class K∞ with respect to r and for each fixed r ∈ R+,
the mapping t 7→ β(r, t) is decreasing with respect to t and
limt→+∞ β(r, t) = 0.

In this paper, all the proofs are given in the Appendix.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Problem statement

Consider a set of N + 1 homogeneous nonholonomic
agents (i.e. one leader that can be virtual and N follow-
ers). Each agent i is described by the following kinematic
equations:ẋiẏi

θ̇i

 =

cos(θi) 0
sin(θi) 0

0 1

(vi
ωi

)
, i ∈ {0, . . . , N}, (3)

where vi(t) and ωi(t) are linear and angular velocities,
respectively. This model can be used in many applications,
as for example when the agents are unicycle mobile robots
or a (2, 0)−type mobile robots [3]. The leader state is q0 =
(x0, y0, θ0)

> and the leader control input is u0 = (v0, ω0)
>.

The state of agent i is qi = (xi, yi, θi)
> and the control input

of agent i is ui = (vi, ωi)
>.

The communication topology among the N follower
agents can be represented by a fixed graph G = {V, E} where
V = {1, . . . , N} is the node set and E ⊆ {V × V} defines
the edge set. There is a link between two agents i and j,
i.e. (j, i) ∈ E , with i 6= j, if agent i receives information
from agent j. The adjacency matrix A = (aij) ∈ RN×N
is defined as aij > 0 if (j, i) ∈ E and aij = 0, otherwise.
The corresponding Laplacian matrix is given by L = (lij) ∈
RN×N with lii =

∑N
j=1, j 6=i aij and lij = −aij for i 6= j.

Since the leader state is available to only a portion of the N
followers, the communication topology among the followers
and the leader is given by the matrix D = diag(d1, . . . , dN )
where di > 0 if the leader state is available to agent i and
where di = 0 otherwise.

In this paper, the control objective is to design a distributed
controller ui for each follower agent (i = 1, . . . , N ), based
on available information, such that the leader-follower con-
sensus problem is solved in fixed time. This means that

there is a positive constant T (independent of the initial
conditions) such that ∀qi(0) ∈ R3, ∀i = 1, . . . , N ,

limt→T ‖qi(t)− q0(t)‖ = 0,
qi(t) = q0(t), ∀t ≥ T. (4)

Before designing the consensus controller, let us con-
sider the so-called "chained form transformation". For any
i ∈ {0, · · · , N}, with θi ∈] − π

2 ,
π
2 [, the mapping φi :

(θi, vi, ωi) 7→ (Θi = tan(θi), u1,i = vi cos(θi), u2,i =
ωi(1 + tan2(θi)) ) is a diffeomorphism under which system
(3) can be rewritten into the so-called chained form as
follows 

ẋi = u1,i

ẏi = u1,iΘi

Θ̇i = u2,i

, i ∈ {0, · · · , N}. (5)

In order to solve the leader-follower consensus problem,
the following assumptions are needed.

Assumption 1: The graph G is undirected and connected.
The leader state is available at least to one agent i, i.e.
∃i, di > 0.

Assumption 2: The control input of the leader is bounded
as follows 

umin
1,0 < u1,0(t) < umax

1,0 ,
|u̇1,0(t)| < τ,
|u2,0(t)| < umax

2,0 ,
(6)

with umin
1,0 , u

max
1,0 , τ, umax

2,0 ∈ R+.
Assumption 3: All the followers do not know the leader

input. However, its neighboring agents know its upper
bounds.

Remark 1: It should be highlighted that system (5) can
be seen as two coupled subsystems: a single integrator
and a second-order subsystems. Hence, it appears to be
important to derive a fixed-time controller for single and
double integrator systems before designing the fixed-time
leader-follower consensus protocol.

B. Non asymptotic concepts
Let us consider

ż(t) = f(z), z ∈ Rn, (7)

where the function f is assumed to be of CL−class (con-
tinuous everywhere and locally Lipschitz in z except at the
origin). Let us denote Φt(z(t0)) the solution of system (7)
starting from z(t0). Using class-KL functions, the stability
properties are given as follows:

Definition 1: At equilibrium z = 0 the system (7) is said
to be
• Uniformly finite-time stable (in short 0−UFTS) if there

exist a class KL function β and a positive constant c,
independent of t0, such that ∀t ≥ t0 ≥ 0,∀‖z(t0)‖ < c:

‖Φt(z(t0))‖ ≤ β(‖z(t0)‖, t),

with β(‖z(t0)‖, t) = 0,∀t ≥ T (z(t0)),
• Uniformly fixed-time stable (in short 0−UFxTS) if it is

finite-time stable with sup‖z0‖<c T (z0) < +∞.
These notions have their "global" version when c =∞ and
are denoted as 0−UGFTS and 0−UGFxTS.



C. Preliminary results

Lemma 1: System (7) with f(z) = −r(z), r(0) = 0, n =
1 is 0−UGFxTS iff xr(x) > 0,∀x ∈ R \ {0} and
supx0∈R

∫ |x0|
0

dx
r(x) <∞.

From which one deduces the following result:
Theorem 1: For 0 ≤ α < 1 and k > 0, b > 0, system ẋ =

−k{x}α exp(b|x|), x ∈ R is 0−UGFxTS with settling time
bounded as follows T (x0) ≤ Tmax = Γ(1−α)

kb(1−α) . Moreover,
any differentiable positive scalar function V (t) satisfying
the following differential inequality V̇ ≤ −kV α exp(b|V |),
decreases to zero in fixed-time less than Tmax.

III. MAIN RESULTS

Before designing the fixed-time leader-follower consensus
protocol, let us derive new fixed-time controllers and ob-
servers for the double integrator system.

A. Fixed-time stabilization of a double integrator system

Let us consider the double integrator system:

ẋ1 = x2 + π1(x), ẋ2 = u+ π2(x), (8)

where the state is x = (x1, x2)> ∈ R2, the control is u ∈ R
and πi, i = 1, 2 represents disturbances.

Theorem 2: Assume that πi, i = 1, 2 satisfy:

|π1(x)| ≤ |x1|Π1(x), (9)
|π2(x)| ≤ Π2(x), (10)

where Π1,Π2 are known smooth positive functions of their
arguments and Π1 is assumed to be C1. Then, system (8) is
0−UGFxTS under the following feedback control:

u(x) = −{ζ(x)}4α−3 γ2(x)− sign (ζ(x)) Π2(x), (11)
ζ(x) = ϕ 1

2α−1
(x?2(x1), x2), (12)

x?2(x1) = −{x1}2α−1 γ1(x), (13)

γ1(x) = 2 +
k

2
exp(bx21) + (1 + |x1|2(1−α))Π1(x), (14)

γ2(x) = 2 +A(x) +B(x) +
1

2
(A(x)γ1(x))2α

+
|x1ζ(x)|2(1−α)

4
A2(x)Π1(x), (15)

A(x) = 6|x?2|
2(1−α)
2α−1

∣∣∣∣∂x?2∂x1

∣∣∣∣ , (16)

B(x) = k22α−1 exp
(
4bζ2(x)

)
, (17)

where u is discontinuous and x?2 is a CL−class function,
with parameters tuned as follows:
• 3

4 < α < 1,
• k, b are positive parameters to be tuned for selecting the

settling-time bound Tmax = Γ(1−α)
kb(1−α) .

Remark 2: Let us stress that γ1 is C1 (since Π1 is assumed
to be C1), thus x?2 is a CL−class function. Moreover, A :
R → R+, x 7→ A(x1) (given by (16) is continuous with
respect to x1 and B : R2 → R+, x 7→ B(x) (given by (17))
is C∞, thus the applied control u has two parts: a continuous
one −{ζ(x)}4α−3

γ2(x) and a discontinuous one (due to the
signum function).

B. Fixed-time observation of a double integrator system

Let us consider system (8). Here, the objective is to
estimate the state x in fixed time using only the measurement
y = x1. The control input u is assumed to be known. The
observer is designed as

˙̂x1 = x̂2 +O1(e1), ˙̂x2 = u+O2(e1). (18)

where x̂ = (x̂1, x̂2)T ∈ R2 is the estimated state and the
output injection terms O1(·) and O2(·) are given hereafter.

The observation error dynamics ei = xi − x̂i, i = 1, 2 are
as follows

ė1 = e2 −O1(e1), ė2 = π2 −O2(e1). (19)

Theorem 3: Assume that πi, i = 1, 2 satisfy:

π1(x1) = 0, (20)
π2(x) ≤ Π2, (21)

where Π2 is a known constant. System (19) is 0−UGFxTS
under the following output injection terms

O1(e1) = −l1 {e1}α1 exp(b1e
2
1) (22)

O2(e1) = −l2 {e1}α2 exp(b2e
2
1)−Π2sign(e1) (23)

where the parameters are selected as follows:

• l1 > 0, l2 > 0, b1 > 0, b2 > 0 (free parameters),
• 0 < α1 < 1, α2 = 2α1 − 1.

C. Fixed-time leader-follower consensus protocol

To avoid the communication loop problem due to the
dependence of the control inputs of the followers on the
inputs of its neighbors in [8], distributed fixed-time observers
are designed to estimate the state of the leader. Then, based
on this estimate, an observer-based consensus protocol is
designed to achieve the objective stated in (4).

Assumption 4: All the agents can measure its whole state
qi. The leader transmits its state only to its neighbors. All the
followers i = 1, . . . , N transmit their estimate of the leader
denoted ξ̂i computed according to the next subsection.

Remark 3: One should highlight that the observer, derived
hereafter, is not designed to reconstruct the system state from
incomplete measurements. Its objective is to provide, in a
distributed way, an accurate estimate of the leader state for
each follower. Indeed, the leader state is only transmitted to
a portion of agents. According to Assumption 4, the estimate
ξ̂i is sent from agent i to its neighbors instead of q0 to avoid
safety and robustness issues due to centralization.

1) Distributed fixed-time observers: Now setting, ξ1,i =
xi, ξ2,i = u1,i, ξ̇2,i = u̇1,i, ξ3,i = yi, ξ4,i = Θi, system (5)
can be rewritten as

ξ̇1,i = ξ2,i
ξ̇2,i = u̇1,i

ξ̇3,i = ξ4,iξ2,i
ξ̇4,i = u2,i

, i ∈ {0, · · · , N}. (24)



For each follower, let us denote the disagreement: ∀i =
{1, . . . , N}, ∀k = {1, . . . , 4},

Γk,i =

N∑
j=1

aij(ξ̂k,j − ξ̂k,i) + di(ξk,0 − ξ̂k,i). (25)

Based on [1] and using Theorem 1, the following distributed
observers are applied

˙̂
ξ1,i = ξ̂2,i + k1{Γ1,i}α

′
exp(k2|Γ1,i|),

˙̂
ξ2,i = k1{Γ2,i}α

′
exp(k2|Γ2,i|) + τsign(Γ2,i),

˙̂
ξ3,i = ξ̂4,iξ̂2,i + k1{Γ3,i}α

′
exp(k2|Γ3,i|),

˙̂
ξ4,i = k1{Γ4,i}α

′
exp(k2|Γ4,i|) + umax

2,0 sign(Γ4,i),
(26)

where ξ̂i =
(
ξ̂1,i, ξ̂2,i, ξ̂3,i, ξ̂4,i

)T
(i = {1, . . . , N}) is the

estimation of the state of the leader ξ0 for the ith follower.
k1, k2 are positive constants and 0 ≤ α′ < 1. Let us define
the estimation errors

ξ̃k,i = ξ̂k,i − ξk,0, (i = {1, . . . , N}, k = {1, . . . , 4}).
(27)

Hence, the disagreement (25) can be expressed as ∀i =
{1, . . . , N}, ∀k = {1, . . . , 4},

Γk,i =

N∑
j=1

aij(ξ̃k,j − ξ̃k,i)− diξ̃k,i. (28)

Denoting Γk = (Γk,1, . . . ,Γk,N )
T and ξ̃k =(

ξ̃k,1, . . . , ξ̃k,N

)T
, Eq. (28) can be written in a compact

form as
Γk = −(L+D)ξ̃k. (29)

Note that matrix (L + D) is symmetric positive definite
under Assumption 1 (see [26]). λm denotes the smallest
eigenvalues of (L+D).

Theorem 4: Suppose that Assumptions 1-4 hold. Using
the distributed observer (26), the estimation errors (27)
converge to zero in a fixed time bounded by

To = 2
NΓ(1− α′)
k1λmk

1−α′
2

. (30)

2) Observer-based fixed-time consensus: Using the pro-
posed distributed observers, each follower i can estimate
the leader state after time To and uses the estimate in the
consensus protocol. For each agent, after To, the tracking
errors are defined as ∀i = {1, . . . , N}, ∀k = {1, 3, 4},

ek,i = ξk,i − ξ̂k,i. (31)

From Theorem 4, for each follower i = {1, . . . , N} and after
time To, the tracking error dynamics reduces to

(Σ1) ė1,i = u1,i − u1,0,

(Σ2)
ė3,i = e4,iu1,0 + (e4,i + ξ4,0)(u1,i − u1,0),
ė4,i = u2,i − u2,0.

(32)
One can note that system (32) is divided into two coupled
subsystems (i.e. Σ1 and Σ2).

To deal with the consensus tracking problem, for each
follower i = {1, . . . , N}, the following two steps are
proposed:
• The controller u1,i is designed such that the origin of

Σ1 is fixed-time stable with the settling time estimate
Ts.

• For t ≥ Ts, the controller u2,i is designed such that the
origin of Σ2 is fixed-time stable with the settling time
estimate Tmax. It could be highlighted that for t ≥ Ts,
Σ2 reduces to

ė3,i = e4,iu1,0,
ė4,i = u2,i − u2,0.

(33)

Using results of the previous subsection, the following
theorem can be derived.

Theorem 5: Suppose that Assumptions 1-4 hold. The
fixed-time leader follower consensus problem is achieved
under the distributed controller

u1,i =

{
0, ∀t < To

−k3{e1,i}β exp(k4|e1,i|)− umax
1,0 sign(e1,i), ∀t ≥ To

(34)

u2,i =

{
0, ∀t < Ts

1

ξ̂2,i
u(e3,i, ξ̂2,ie4,i), ∀t > Ts

(35)

where 0 ≤ β < 1, k3 > 0, k4 > 0, u(e3,i, ξ̂2,ie4,i) is given
in Theorem 2 with Π1 = 0 and Π2 = umax

2,0 , the switching
time is defined as

Ts = To +
Γ(1− β)

k3k
(1−β)
4

, (36)

with To given by (30). The settling time bound is given by
Tmax = Ts + Γ(1−α)

kb(1−α) .

IV. SIMULATIONS

Let us consider a MAS which consists of N = 6 followers
labeled by 1− 6 and one leader labeled by 0. Each agent is
described by Eq. (3). The communication topology between
agents is given in Figure 1. One can easily check that
Assumption 1 is fulfilled.

✍✌✎☞

✍✌✎☞ ✍✌✎☞✍✌✎☞
1 52

0

✍✌✎☞
3 ✍✌✎☞

4

✍✌✎☞
6

Fig. 1. Communication topology for the nonholonomic MAS.



In the following simulation, the leader control input is
set to u1,0 = 1 − 0.1 cos(t), u2,0 = −0.2 cos(0.1t). Hence,
Assumption 2 is verified with umin

1,0 = 0.9, umax
1,0 = 1.1,

τ = 0.1 and umax
2,0 = 0.2. The observer (26) is implemented

with k1 = 20, k2 = 0.5 and α′ = 1
3 . The control input

(34)-(35) is implemented with k3 = 2, k4 = 0.1, β = 1
3 ,

k = 0.01, b = 0.001, α = 7
8 . The initial state of the

leader is q0(0) = [3, 2, 0.46]T and the initial states of the
followers are q1(0) = [5, 3,−0.78]T , q2(0) = [2,−1, 0]T ,
q3(0) = [7, 9,−1.1]T , q4(0) = [5, 3,−0.78]T , q5(0) =
[7,−3, 0.78]T , q6(0) = [3,−0.5, 0.2]T . The upper bound of
the settling time for the observer part can be estimated as
To = 1s.

From Theorem 4, one can show that the decentralized
observer (26) ensures the fixed-time stabilization of the
estimation errors toward the origin. This can be seen in
Fig. 2. The switching time in (35) is equal to Ts = 5s.
One can see in Fig. 3 that the tracking errors converge to
zero in a fixed time. The trajectories of the nonholonomic
robots are depicted in Fig. 4. One can see that the proposed
observer-based protocol ensure the fixed-time leader-follower
consensus in fixed-time.
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Fig. 2. Evolution of the estimation errors for each follower.

V. CONCLUSION

In this paper, we have studied the fixed-time leader-
follower consensus problem of nonholonomic multi-agent
systems. Using the “desingularisation method”, new fixed-
time controllers for the double integrator system are de-
signed. Following those results, a switching consensus proto-
col which guarantees the stabilization of the tracking errors
in fixed-time which does not depend on the initial conditions
of the multi-agent system is provided. Simulation results on a
fleet of wheeled mobile robots have shown the effectiveness
of the proposed scheme.
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Fig. 3. Evolution of the tracking errors between each agent and the leader.
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APPENDIX

Jensen’s inequality, leads to
Lemma 2: For any (V1, V2) > 0, 0 < α < 1, b > 0 the

following inequality holds (V =
∑2
i=1 Vi):

−2α−1
2∑
i=1

V αi exp(2bVi) ≤ −V α exp (bV ) . (37)

Due to space limitation, we only provide for Theorem 2
some sketch of the proof (which is inspired from papers [13],
[7]):
Proof: Let us define V1 = 1

2x
2
1, we get

V̇1 = x1x
?
2 + x1(x2 − x?2 + π1),

≤ x1x
?
2 + x1(x2 − x?2) + |x1|2α|x1|2(1−α)Π1(x).



In the sequel we use ζ(x) = ϕ 1
2α−1

(x?2(x1), x2) =

{x2}
1

2α−1 − {x?2(x1}
1

2α−1 for which (x?2(x1), x2) the argu-
ments of ϕ 1

2α−1
will be omitted for sake of brevity. We have

|x1(x2 − x?2)| ≤ 2|x1||ϕ 1
2α−1
|2α−1 which gives:

|x1(x2 − x?2)| ≤ |x1|2α +
2α− 1

α
2α

2α−1

|ζ(x)|2α.

Since 3
4 < α < 1 we have 2α−1

α
2α

2α−1
< 4

3 < 2. Thus, using
x?2(x1) given by (13), we obtain:

V̇1 ≤ −W1(x1) + 2|ζ(x)|2α − (1 + Π1(x))|x1|2α,
W1(x1) = k2α−1V α1 exp(2bV1). (38)

Note that when x2 = x?2 (thus ζ(x) = 0), we have
V̇1 ≤ −W1(x1). Using (2), let us define V2(x) =
Φ3−2α

1
2α−1

(x?2(x1), x2) which is clearly C1 due to the fact that
3
4 < α < 1 thus (3−2α) > 1. Take V (x) = V1(x1)+V2(x).
Since V2(x) = 0 ⇔ x?2(x1) = x2 thus V (x) ≥ 0 (positive
definite). We have V2(x) ≤ 2ϕ2

1
2α−1

(x?2(x1), x2) = 2ζ2(x)

and

V̇2 =
∂V2

∂x1
(x2 + π1) +

∂V2

∂x2
(u+ π2),

∂V2

∂x2
=

{
ϕ 1

2α−1
(x?2(x1), x2)

}3−2α

.

After some lengthly computations we finally get

V̇ ≤ −W1(x1)− (1 + Π1(x))|x1|2α

+(1 + Π1(x))|x1|2α + {ζ(x)}3−2α u+ |ζ(x)|3−2αΠ2(x)

+

(
2 +A(x) +

1

2
(A(x)γ1(x))2α

)
|ζ(x)|2α

+
|x1ζ(x)|2(1−α)

4
A2(x)Π1(x) |ζ(x)|2α .

Finally, using control u given by (11)-(17), we have

V̇ ≤ −W1(x1)−W2(ζ(x)), (39)
W2(ζ(x)) = k23α−1|ζ(x)|2α exp

(
4bζ2(x)

)
. (40)

Since V2(x) ≤ 2ζ2(x) one gets −W2(ζ(x)) ≤
−k2α−1V α2 exp(2bV2). Thus, we obtain:

V̇ ≤ −k2α−1(V α1 exp(2bV1) + V α2 exp(2bV2)).

Using (37) we finally get:

V̇ ≤ −kV α exp(bV ),

from which one concludes using Theorem 1.
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