Michael Defoort 
  
Thierry Floquet 
  
Wilfrid Perruquetti 
email: wilfrid.perruquetti@centralelille.fr
  
  
  
  
Fixed-time convergent consensus algorithm of networked nonholonomic multi-agent systems

, new fixedtime controllers/observers for the double integrator system are designed. Following those results, a switching consensus protocol which guarantees the tracking errors stabilization in fixed-time which does not depend on the initial conditions of the multi-agent system is provided. Simulation results on a fleet of wheeled mobile robots show the effectiveness of the proposed scheme.

I. INTRODUCTION

Stabilization and tracking problems of nonholonomic systems, e.g. systems subject to nonintegrable constraints with respect to velocity, have received a lot of attention in the literature (see [START_REF] Kolmanovsky | Developments in nonholonomic control problems[END_REF] for an extended survey). Indeed, there are significant technical challenges due to the Brockett's necessary condition [START_REF] Brockett | Asymptotic stability and feedback stabilization[END_REF]. Hence, several time-varying or discontinuous controllers have been investigated such as sinusoidal and polynomial controls [START_REF] Murray | Nonholonomic motion planning: Steering using sinusoids[END_REF], smooth time-varying feedbacks [START_REF] Tian | Exponential stabilization of nonholonomic dynamic systems by smooth time-varying control[END_REF], backstepping based schemes [START_REF] Xi | Output feedback exponential stabilization of uncertain chained systems[END_REF] and hybrid schemes [START_REF] Kolmanovsky | Hybrid feedback laws for a class of cascade nonlinear control systems[END_REF]. Nowadays, there are lot of applications in autonomous vehicles, wheeled mobile robots [START_REF] Defoort | Fixed-time stabilisation and consensus of non-holonomic systems[END_REF], under-actuated ships [START_REF] Do | Universal controllers for stabilization and tracking of underactuated ships[END_REF], etc.

During the last decades, distributed control of multi-agent systems (MAS) has attracted a lot of attention due to its wide range of applications in different areas such as flocking [START_REF] Zhu | Flocking of multi-agent non-holonomic systems with proximity graphs[END_REF], swarming, target tracking, etc. Among them, the consensus problem is one of the most fundamental problems for cooperative control of MAS. Its objective is to design distributed controllers so that each agent reaches an agreement regarding to a given quantity of interest using only local information [START_REF] Ren | Consensus algorithms for double-integrator dynamics[END_REF].

The consensus problem has been widely investigated for linear systems [START_REF] Wang | Prescribed-time consensus and containment control of networked multiagent systems[END_REF], [START_REF] Liu | Appointed-time consensus: Accurate and practical designs[END_REF], [START_REF] Wang | Semi-global robust tracking consensus for multi-agent uncertain systems with input saturation via metamorphic low-gain feedback[END_REF]. Nevertheless, many mechanical systems (e.g. wheeled mobile robots, UAVs, or manipulators) cannot be described by quasi-linear systems since they present nonintegrable constraints on velocity. Hence, consensus protocols have been derived for nonholonomic systems [START_REF] Dong | Leader-following control of multiple nonholonomic systems over directed communication graphs[END_REF], [START_REF] Du | Finite-time consensus of multiple nonholonomic chained-form systems on recursive distributed observer[END_REF], [START_REF] Cheng | Robust finitetime consensus formation control for multiple nonholonomic wheeled mobile robots via output feedback[END_REF]. However, these controllers only guarantee asymptotic consensus or finite-time consensus (i.e. the settling time depends on the initial conditions of the multi-agent system).

The concept of fixed-time stability has been proposed to derive controllers such that the settling time is bounded independently of the initial conditions [START_REF] Cruz-Zavala | Uniform second-order sliding mode observer for mechanical systems[END_REF], [START_REF] Polyakov | Nonlinear feedback design for fixed-time stabilization of linear control systems[END_REF]. Based on this concept, fixed-time consensus protocols have been proposed for first and second integrator MAS [START_REF] Wang | Prescribed-time consensus and containment control of networked multiagent systems[END_REF], [START_REF] Liu | Appointed-time consensus: Accurate and practical designs[END_REF], [START_REF] Defoort | Leader-follower fixed-time consensus for multi-agent systems with unknown non-linear inherent dynamics[END_REF]. Recently, the fixed-time consensus problem for nonholonomic MAS has been investigated [START_REF] Defoort | Fixed-time stabilisation and consensus of non-holonomic systems[END_REF], [START_REF] Shi | Robust fixed-time consensus tracking control of high-order multiple nonholonomic systems[END_REF], [START_REF] Anggraeni | Control strategy for fixed-time leader-follower consensus for multi-agent systems with chained-form dynamics[END_REF], [START_REF] Ning | Prescribed finite-time consensus tracking for multiagent systems with nonholonomic chained-form dynamics[END_REF]. In [START_REF] Defoort | Fixed-time stabilisation and consensus of non-holonomic systems[END_REF], only the case of static leader is studied. This work has been extended in [START_REF] Shi | Robust fixed-time consensus tracking control of high-order multiple nonholonomic systems[END_REF], [START_REF] Anggraeni | Control strategy for fixed-time leader-follower consensus for multi-agent systems with chained-form dynamics[END_REF], [START_REF] Ning | Prescribed finite-time consensus tracking for multiagent systems with nonholonomic chained-form dynamics[END_REF] to the dynamic leader case. In [START_REF] Anggraeni | Control strategy for fixed-time leader-follower consensus for multi-agent systems with chained-form dynamics[END_REF], a specific sliding surface is designed based on results from [START_REF] Polyakov | Nonlinear feedback design for fixed-time stabilization of linear control systems[END_REF] for second order systems. However, it requires a careful tuning of four control parameters and the settling time is highly over-estimated. The methodology given for instance in [START_REF] Shi | Robust fixed-time consensus tracking control of high-order multiple nonholonomic systems[END_REF], [START_REF] Ning | Prescribed finite-time consensus tracking for multiagent systems with nonholonomic chained-form dynamics[END_REF] is based on the power integrator method (which relies on [START_REF] Coron | Adding an integrator for the stabilization problem[END_REF]) that requires the design of a sufficiently small positive constant. Furthermore, the resulting controller is relatively complex with many parameters to be carefully tuned.

In this paper, a new fixed-time leader-follower consensus controller for nonholonomic MAS are derived. The main features of the present work are as follows: i) A new fixed-time leader-follower consensus controller for nonholonomic MAS is provided. The settling time is upper bounded by a positive constant which only depends on the controller parameters. ii) A detailed Lyapunov analysis is provided to show the fixed-time stabilization of the tracking errors for the double integrator system. iii) Compared to [START_REF] Shi | Robust fixed-time consensus tracking control of high-order multiple nonholonomic systems[END_REF], [START_REF] Anggraeni | Control strategy for fixed-time leader-follower consensus for multi-agent systems with chained-form dynamics[END_REF], [START_REF] Ning | Prescribed finite-time consensus tracking for multiagent systems with nonholonomic chained-form dynamics[END_REF], the controller, based on the "desingularisation method" (see [START_REF] Coron | Adding an integrator for the stabilization problem[END_REF]), uses exponential functions and shows good robustness properties.

This paper is structured as follows. The consensus problem for nonholonomic MAS is stated in Section II. The next section III is divided as follows: new fixed-time controllers/observers are derived for the double integrator system (see Subsection III-A/III-B). Then, based on these results, a switching consensus protocol which guarantees the fixedtime stabilization of the tracking errors of the multi-agent system is derived in Subsection III-C.2. Finally, simulation results for a fleet of wheeled mobile robots are shown in Section IV.

Notations: R + denotes the set of nonnegative real numbers. Γ denotes the Gamma function. For any real number a ≥ 0 and for all x ∈ R, the signed power a of x is defined by {x} a = sign(x)|x| a . Clearly we have:

{x} 0 = sign(x), {{x} a } b = {x} ab , {x} a {x} b = |x| a+b ,
{x} a |x| b = {x} a+b , and for a ≥ 1, d{x} a dx = a |x| a-1 and d|x| a dx = a {x} a-1 . Let us define the two following functions

∀(x, y) ∈ R 2 + , ∀µ, ν ∈ R + : ϕ µ (x, y) = {y} µ -{x} µ , (1) 
Φ ν µ (x, y) = y x {ϕ µ (x, s)} ν ds ≥ 0. (2) 
C k (X, Y ) is the set of functions f : X → Y which are k times continuously differentiable (noted as C k when the sets X, Y are obvious from the context). CL(X, Y ) is the set of continuous functions (including at 0) f : X → Y which are locally Lipschitz everywhere except at 0.

A continuous function α : [0, a[⊂ R + → R + , r → α(r), is said to be a class-K function if it is strictly increasing with α(0) = 0. α is a class-K ∞ function if it is a class-K function with a = ∞ and α(r) → ∞ as r → ∞. A continuous function β : [0, +∞[⊂ R + × R → R + , (r, t) → β(r, t
), belongs to class-KL if for each fixed t, the mapping r → β(r, t) belongs to class K ∞ with respect to r and for each fixed r ∈ R + , the mapping t → β(r, t) is decreasing with respect to t and lim t→+∞ β(r, t) = 0.

In this paper, all the proofs are given in the Appendix.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Problem statement

Consider a set of N + 1 homogeneous nonholonomic agents (i.e. one leader that can be virtual and N followers). Each agent i is described by the following kinematic equations:

  ẋi ẏi θi   =   cos(θ i ) 0 sin(θ i ) 0 0 1   v i ω i , i ∈ {0, . . . , N }, (3) 
where v i (t) and ω i (t) are linear and angular velocities, respectively. This model can be used in many applications, as for example when the agents are unicycle mobile robots or a (2, 0)-type mobile robots [START_REF] Campion | Structural properties and classification of kinematic and dynamic models of wheeled mobile robots[END_REF]. The leader state is q 0 = (x 0 , y 0 , θ 0 ) and the leader control input is u 0 = (v 0 , ω 0 ) . The state of agent i is q i = (x i , y i , θ i ) and the control input of agent i is

u i = (v i , ω i ) .
The communication topology among the N follower agents can be represented by a fixed graph G = {V, E} where V = {1, . . . , N } is the node set and E ⊆ {V × V} defines the edge set. There is a link between two agents i and j, i.e. (j, i) ∈ E, with i = j, if agent i receives information from agent j. The adjacency matrix

A = (a ij ) ∈ R N ×N is defined as a ij > 0 if (j, i) ∈ E and a ij = 0, otherwise. The corresponding Laplacian matrix is given by L = (l ij ) ∈ R N ×N with l ii = N j=1, j =i a ij and l ij = -a ij for i = j.
Since the leader state is available to only a portion of the N followers, the communication topology among the followers and the leader is given by the matrix D = diag(d 1 , . . . , d N ) where d i > 0 if the leader state is available to agent i and where d i = 0 otherwise.

In this paper, the control objective is to design a distributed controller u i for each follower agent (i = 1, . . . , N ), based on available information, such that the leader-follower consensus problem is solved in fixed time. This means that there is a positive constant T (independent of the initial conditions) such that ∀q i (0) ∈ R 3 , ∀i = 1, . . . , N , lim t→T q i (t) -q 0 (t) = 0, q i (t) = q 0 (t), ∀t ≥ T.

(4)

Before designing the consensus controller, let us consider the so-called "chained form transformation". For any

i ∈ {0, • • • , N }, with θ i ∈] -π 2 , π 2 [, the mapping φ i : (θ i , v i , ω i ) → (Θ i = tan(θ i ), u 1,i = v i cos(θ i ), u 2,i = ω i (1 + tan 2 (θ i ))
) is a diffeomorphism under which system (3) can be rewritten into the so-called chained form as follows

   ẋi = u 1,i ẏi = u 1,i Θ i Θi = u 2,i , i ∈ {0, • • • , N }. (5) 
In order to solve the leader-follower consensus problem, the following assumptions are needed.

Assumption 1: The graph G is undirected and connected. The leader state is available at least to one agent i, i.e. ∃i, d i > 0.

Assumption 2: The control input of the leader is bounded as follows

   u min 1,0 < u 1,0 (t) < u max 1,0 , | u1,0 (t)| < τ, |u 2,0 (t)| < u max 2,0 , (6) 
with u min 1,0 , u max 1,0 , τ, u max 2,0 ∈ R + . Assumption 3: All the followers do not know the leader input. However, its neighboring agents know its upper bounds.

Remark 1: It should be highlighted that system (5) can be seen as two coupled subsystems: a single integrator and a second-order subsystems. Hence, it appears to be important to derive a fixed-time controller for single and double integrator systems before designing the fixed-time leader-follower consensus protocol.

B. Non asymptotic concepts

Let us consider

ż(t) = f (z), z ∈ R n , (7) 
where the function f is assumed to be of CL-class (continuous everywhere and locally Lipschitz in z except at the origin). Let us denote Φ t (z(t 0 )) the solution of system [START_REF] Brigitte D'andréa | Small-time stabilization of nonholonomic or underactuated mechanical systems: the unicycle and the slider examples[END_REF] starting from z(t 0 ). Using class-KL functions, the stability properties are given as follows: Definition 1: At equilibrium z = 0 the system ( 7) is said to be

• Uniformly finite-time stable (in short 0-UFTS) if there exist a class KL function β and a positive constant c, independent of t 0 , such that ∀t ≥ t 0 ≥ 0, ∀ z(t 0 ) < c:

Φ t (z(t 0 )) ≤ β( z(t 0 ) , t),
with β( z(t 0 ) , t) = 0, ∀t ≥ T (z(t 0 )), • Uniformly fixed-time stable (in short 0-UFxTS) if it is finite-time stable with sup z0 <c T (z 0 ) < +∞. These notions have their "global" version when c = ∞ and are denoted as 0-UGFTS and 0-UGFxTS.

C. Preliminary results

Lemma 1:

System (7) with f (z) = -r(z), r(0) = 0, n = 1 is 0-UGFxTS iff xr(x) > 0, ∀x ∈ R \ {0} and sup x0∈R |x0| 0 dx r(x) < ∞.
From which one deduces the following result:

Theorem 1: For 0 ≤ α < 1 and k > 0, b > 0, system ẋ = -k{x} α exp(b|x|), x ∈ R is 0-UGFxTS with settling time bounded as follows T (x 0 ) ≤ T max = Γ (1-α) kb (1-α) . Moreover, any differentiable positive scalar function V (t) satisfying the following differential inequality V ≤ -kV α exp(b|V |), decreases to zero in fixed-time less than T max .

III. MAIN RESULTS

Before designing the fixed-time leader-follower consensus protocol, let us derive new fixed-time controllers and observers for the double integrator system.

A. Fixed-time stabilization of a double integrator system

Let us consider the double integrator system:

ẋ1 = x 2 + π 1 (x), ẋ2 = u + π 2 (x), (8) 
where the state is x = (x 1 , x 2 ) ∈ R 2 , the control is u ∈ R and π i , i = 1, 2 represents disturbances. Theorem 2: Assume that π i , i = 1, 2 satisfy:

|π 1 (x)| ≤ |x 1 |Π 1 (x), (9) 
|π 2 (x)| ≤ Π 2 (x), (10) 
where Π 1 , Π 2 are known smooth positive functions of their arguments and Π 1 is assumed to be C 1 . Then, system (8) is 0-UGFxTS under the following feedback control:

u(x) = -{ζ(x)} 4α-3 γ2(x) -sign (ζ(x)) Π2(x), (11) ζ(x) = ϕ 1 2α-1 (x 2 (x1), x2), (12) 
x 2 (x1) = -{x1} 2α-1 γ1(x),

γ1(x) = 2 + k 2 exp(bx 2 1 ) + (1 + |x1| 2(1-α) )Π1(x), (13) 
(x) = 2 + A(x) + B(x) + 1 2 (A(x)γ1(x)) 2α + |x1ζ(x)| 2(1-α) 4 A 2 (x)Π1(x), (14) γ2 
A(x) = 6|x 2 | 2(1-α) 2α-1 ∂x 2 ∂x1 , (15) 
B(x) = k2 2α-1 exp 4bζ 2 (x) , ( (16) 
) 17 
where u is discontinuous and x 2 is a CL-class function, with parameters tuned as follows:

• 3 4 < α < 1,
• k, b are positive parameters to be tuned for selecting the settling-time bound T max = Γ(1-α) kb (1-α) . Remark 2: Let us stress that γ 1 is C 1 (since Π 1 is assumed to be C 1 ), thus x 2 is a CL-class function. Moreover, A : R → R + , x → A(x 1 ) (given by ( 16) is continuous with respect to x 1 and B : R 2 → R + , x → B(x) (given by ( 17)) is C ∞ , thus the applied control u has two parts: a continuous one -{ζ(x)} 4α-3 γ 2 (x) and a discontinuous one (due to the signum function).

B. Fixed-time observation of a double integrator system

Let us consider system [START_REF] Defoort | Fixed-time stabilisation and consensus of non-holonomic systems[END_REF]. Here, the objective is to estimate the state x in fixed time using only the measurement y = x 1 . The control input u is assumed to be known. The observer is designed as

ẋ1 = x2 + O 1 (e 1 ), ẋ2 = u + O 2 (e 1 ). (18) 
where x = (x 1 , x2 ) T ∈ R 2 is the estimated state and the output injection terms O 1 (•) and O 2 (•) are given hereafter. The observation error dynamics e i = x i -xi , i = 1, 2 are as follows

ė1 = e 2 -O 1 (e 1 ), ė2 = π 2 -O 2 (e 1 ). ( 19 
)
Theorem 3: Assume that π i , i = 1, 2 satisfy:

π 1 (x 1 ) = 0, ( 20 
) π 2 (x) ≤ Π 2 , ( 21 
)
where Π 2 is a known constant. System ( 19) is 0-UGFxTS under the following output injection terms

O 1 (e 1 ) = -l 1 {e 1 } α1 exp(b 1 e 2 1 ) (22) O 2 (e 1 ) = -l 2 {e 1 } α2 exp(b 2 e 2 1 ) -Π 2 sign(e 1 ) (23) 
where the parameters are selected as follows:

• l 1 > 0, l 2 > 0, b 1 > 0, b 2 > 0 (free parameters), • 0 < α 1 < 1, α 2 = 2α 1 -1.

C. Fixed-time leader-follower consensus protocol

To avoid the communication loop problem due to the dependence of the control inputs of the followers on the inputs of its neighbors in [START_REF] Defoort | Fixed-time stabilisation and consensus of non-holonomic systems[END_REF], distributed fixed-time observers are designed to estimate the state of the leader. Then, based on this estimate, an observer-based consensus protocol is designed to achieve the objective stated in [START_REF] Cheng | Robust finitetime consensus formation control for multiple nonholonomic wheeled mobile robots via output feedback[END_REF].

Assumption 4: All the agents can measure its whole state q i . The leader transmits its state only to its neighbors. All the followers i = 1, . . . , N transmit their estimate of the leader denoted ξi computed according to the next subsection.

Remark 3: One should highlight that the observer, derived hereafter, is not designed to reconstruct the system state from incomplete measurements. Its objective is to provide, in a distributed way, an accurate estimate of the leader state for each follower. Indeed, the leader state is only transmitted to a portion of agents. According to Assumption 4, the estimate ξi is sent from agent i to its neighbors instead of q 0 to avoid safety and robustness issues due to centralization.

1) Distributed fixed-time observers: Now setting, ξ 1,i = x i , ξ 2,i = u 1,i , ξ2,i = u1,i , ξ 3,i = y i , ξ 4,i = Θ i , system (5) can be rewritten as

       ξ1,i = ξ 2,i ξ2,i = u1,i ξ3,i = ξ 4,i ξ 2,i ξ4,i = u 2,i , i ∈ {0, • • • , N }. (24) 
For each follower, let us denote the disagreement: ∀i = {1, . . . , N }, ∀k = {1, . . . , 4},

Γ k,i = N j=1 a ij ( ξk,j -ξk,i ) + d i (ξ k,0 -ξk,i ). (25) 
Based on [START_REF] Anggraeni | Control strategy for fixed-time leader-follower consensus for multi-agent systems with chained-form dynamics[END_REF] and using Theorem 1, the following distributed observers are applied

           ξ1,i = ξ2,i + k 1 {Γ 1,i } α exp(k 2 |Γ 1,i |), ξ2,i = k 1 {Γ 2,i } α exp(k 2 |Γ 2,i |) + τ sign(Γ 2,i ), ξ3,i = ξ4,i ξ2,i + k 1 {Γ 3,i } α exp(k 2 |Γ 3,i |), ξ4,i = k 1 {Γ 4,i } α exp(k 2 |Γ 4,i |) + u max 2,0 sign(Γ 4,i ), (26) 
where ξi = ξ1,i , ξ2,i , ξ3,i , ξ4,i

T (i = {1, . . . , N })
is the estimation of the state of the leader ξ 0 for the ith follower. k 1 , k 2 are positive constants and 0 ≤ α < 1. Let us define the estimation errors

ξk,i = ξk,i -ξ k,0 , (i = {1, . . . , N }, k = {1, . . . , 4}). (27) 
Hence, the disagreement (25) can be expressed as ∀i = {1, . . . , N }, ∀k = {1, . . . , 4},

Γ k,i = N j=1 a ij ( ξk,j -ξk,i ) -d i ξk,i . (28) 
Denoting

Γ k = (Γ k,1 , . . . , Γ k,N )
T and ξk = ξk,1 , . . . , ξk,N T , Eq. ( 28) can be written in a compact form as

Γ k = -(L + D) ξk . (29) 
Note that matrix (L + D) is symmetric positive definite under Assumption 1 (see [START_REF] Zhang | Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics[END_REF]). λ m denotes the smallest eigenvalues of (L + D). Theorem 4: Suppose that Assumptions 1-4 hold. Using the distributed observer [START_REF] Zhang | Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics[END_REF], the estimation errors [START_REF] Zhu | Flocking of multi-agent non-holonomic systems with proximity graphs[END_REF] converge to zero in a fixed time bounded by

T o = 2 N Γ(1 -α ) k 1 λ m k 1-α 2 . ( 30 
)
2) Observer-based fixed-time consensus: Using the proposed distributed observers, each follower i can estimate the leader state after time T o and uses the estimate in the consensus protocol. For each agent, after T o , the tracking errors are defined as ∀i = {1, . . . , N }, ∀k = {1, 3, 4},

e k,i = ξ k,i -ξk,i . (31) 
From Theorem 4, for each follower i = {1, . . . , N } and after time T o , the tracking error dynamics reduces to

(Σ 1 ) ė1,i = u 1,i -u 1,0 , (Σ 2 ) ė3,i = e 4,i u 1,0 + (e 4,i + ξ 4,0 )(u 1,i -u 1,0 ), ė4,i = u 2,i -u 2,0 .
(32) One can note that system (32) is divided into two coupled subsystems (i.e. Σ 1 and Σ 2 ).

To deal with the consensus tracking problem, for each follower i = {1, . . . , N }, the following two steps are proposed:

• The controller u 1,i is designed such that the origin of Σ 1 is fixed-time stable with the settling time estimate T s . • For t ≥ T s , the controller u 2,i is designed such that the origin of Σ 2 is fixed-time stable with the settling time estimate T max . It could be highlighted that for t ≥ T s , Σ 2 reduces to

ė3,i = e 4,i u 1,0 , ė4,i = u 2,i -u 2,0 . (33) 
Using results of the previous subsection, the following theorem can be derived.

Theorem 5: Suppose that Assumptions 1-4 hold. The fixed-time leader follower consensus problem is achieved under the distributed controller

u1,i = 0, ∀t < To -k3{e1,i} β exp(k4|e1,i|) -u max 1,0 sign(e1,i), ∀t ≥ To (34) u2,i = 0, ∀t < Ts 1 ξ2,i u(e3,i, ξ2,ie4,i), ∀t > Ts (35)
where 0 ≤ β < 1, k 3 > 0, k 4 > 0, u(e 3,i , ξ2,i e 4,i ) is given in Theorem 2 with Π 1 = 0 and Π 2 = u max 2,0 , the switching time is defined as

T s = T o + Γ(1 -β) k 3 k (1-β) 4 , (36) 
with T o given by (30). The settling time bound is given by

T max = T s + Γ(1-α) kb (1-α) .
IV. SIMULATIONS Let us consider a MAS which consists of N = 6 followers labeled by 1 -6 and one leader labeled by 0. Each agent is described by Eq. ( 3). The communication topology between agents is given in Figure 1. One can easily check that Assumption 1 is fulfilled. In the following simulation, the leader control input is set to u 1,0 = 1 -0.1 cos(t), u 2,0 = -0.2 cos(0.1t). Hence, Assumption 2 is verified with u min 1,0 = 0.9, u max 1,0 = 1.1, τ = 0.1 and u max 2,0 = 0.2. The observer ( 26) is implemented with k 1 = 20, k 2 = 0.5 and α = 1 3 . The control input (34)-( 35) is implemented with k

3 = 2, k 4 = 0.1, β = 1 3 , k = 0.01, b = 0.001, α = 7
8 . The initial state of the leader is q 0 (0) = [3, 2, 0.46] T and the initial states of the followers are q 1 (0) = [5, 3, -0.78] T , q 2 (0) = [2, -1, 0] T , q 3 (0) = [7, 9, -1.1] T , q 4 (0) = [5, 3, -0.78] T , q 5 (0) = [7, -3, 0.78] T , q 6 (0) = [3, -0.5, 0.2] T . The upper bound of the settling time for the observer part can be estimated as T o = 1s.

From Theorem 4, one can show that the decentralized observer [START_REF] Zhang | Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics[END_REF] ensures the fixed-time stabilization of the estimation errors toward the origin. This can be seen in Fig. 2. The switching time in (35) is equal to T s = 5s. One can see in Fig. 3 that the tracking errors converge to zero in a fixed time. The trajectories of the nonholonomic robots are depicted in Fig. 4. One can see that the proposed observer-based protocol ensure the fixed-time leader-follower consensus in fixed-time. 

V. CONCLUSION

In this paper, we have studied the fixed-time leaderconsensus problem of nonholonomic multi-agent systems. Using the "desingularisation method", new fixedtime controllers for the double integrator system are designed. Following those results, a switching consensus protocol which guarantees the stabilization of the tracking errors in fixed-time which does not depend on the initial conditions of the multi-agent system is provided. Simulation results on a fleet of wheeled mobile robots have shown the effectiveness of the proposed scheme. 
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APPENDIX

Jensen's inequality, leads to Lemma 2: For any (V 1 , V 2 ) > 0, 0 < α < 1, b > 0 the following inequality holds (V = 2 i=1 V i ):

Due to space limitation, we only provide for Theorem 2 some sketch of the proof (which is inspired from papers [START_REF] Huang | Global finite-time stabilization of a class of uncertain nonlinear systems[END_REF], [START_REF] Brigitte D'andréa | Small-time stabilization of nonholonomic or underactuated mechanical systems: the unicycle and the slider examples[END_REF]):

In the sequel we use

2α-1 will be omitted for sake of brevity. We have

3 < 2. Thus, using x 2 (x 1 ) given by ( 13), we obtain:

Note that when

.

After some lengthly computations we finally get

Finally, using control u given by ( 11)-( 17), we have

. Thus, we obtain: V ≤ -k2 α-1 (V α 1 exp(2bV 1 ) + V α 2 exp(2bV 2 )). Using (37) we finally get:

V ≤ -kV α exp(bV ), from which one concludes using Theorem 1.