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In the paper , the second author proves that the length |S t | of the wave front S t at time t of a wave propagating in an Euclidean disk D of radius 1, starting from a source q, admits a linear asymptotics as t → +∞: |S t | = λ(q)t + o(t) with λ(q) = 2 arcsin a and a = d(0, q). We will give a more direct proof and compute the oscillating corrections to this linear asymptotics. The proof is based on the "stationary phase" approximation.

Wave fronts

Let us consider a 2D-Riemannian compact manifold (X, g) possibly with a smooth convex boundary. We denote by g : T X → R the half of the dual metric which is the Hamiltonian of the geodesic flow.

We denote by π X the canonical projection of T X onto X and φ t : T X → T X, t ∈ R the Hamiltonian flow of g which is the geodesic flow. If X has a non empty boundary, we define φ t using the law of reflection. Let q ∈ X be given. For any t > 0, we define the wave front S t at time t as the set of points of X of the form π X (φ t (Σ q )) where Σ q := {(q, ξ) ∈ T X|g (q, ξ) = 1}. The set S t could also be defined as the image by the exponential map at q of the circle Σ t of radius t in the tangent space T q X.

Let us define the length of S t and denote it by |S t |. The wave front S t is a curve parametrized by a circle: S t := exp q (Σ t ). This allows to define its length using the Riemannian metric. Note that S t can admit some singular points. The length of the corresponding part vanishes and the remaining part is an immersed co-oriented curve with only transversal self-intersections.

In this article, we focus on the case where X is the unit disk in R 2 and g is the Euclidean metric. In this context, we will prove that the following expansion holds:

|S t | = 2α 0 t + t ∞ n=0 J approx n (t) + O(1) (1) 
as t → +∞, with

J approx n (t) = -8 √ 2 π 2 (2n + 1) 5/2 √ t cos ((2n + 1)πa) cos π (2n + 1)t + 1 4
where a is the distance from the point q to the center of the disk.

The case of closed surfaces with integrable geodesic flows will be the subject of .

Numerics

In this section, we will compare the expansion given by (1) with the numerical calculations. We introduce a (small) time step δ t > 0, a (large) number of points n which compose the wave front, two vectors M and V in (R 2 ) n such that, for any k ∈ [[1, n]], X k ∈ R 2 represents the position and V k ∈ R 2 the speed of the kth point of the wave front at a given time. We fix a ∈]0, 1[ such that (a, 0) are the coordinates of the source q. Thus, we introduce the following iterative scheme

                                     initialization: M ← ((a, 0), . . . , (a, 0)) ∈ (R 2 ) n , for any k ∈ [[1, n]], V k ← cos 2kπ n , sin 2kπ n , iterative step: M ← M + δ t V, for any k ∈ [[1, n]],                  if M k ∈ D then M k ← M k , else compute δ k t s.t. M k + δ k t V k = 1 and δ k t ≥ 0, M k ← M k + δ k t V k , V k ← V k -2 V k | M k M k M k M k , M k ← M k + (δ t -δ k t )V k .
The iterative loop consists in the computation of a linear motion outside the boundary and at the boundary one applies the familiar law the angle of incidence equals the angle of reflection. After p iterations, M represents the points of the wave front (see Figure 1 and Videos1 ).

Figure 1: Wave Front for a = 0.5 and t ∈ {0.5, 10, 20, 50}

First, we can observe that |S t | admits a linear asymptotic as t grows to +∞. Then, the oscillations are of period 2 with a phase independent of a (see Figure 2). One may remark the following points.

1. For a = 0, the family of curves (S t ) t are concentric circles and |S t | is of period 2.

2. For a = 0.5, the terms J approx k (t) vanish for any t and, in this case, this expansion is not able to capture the oscillating part of t → |S t |. , where C is a constant. For t fixed, this ensures the (fast) convergence of the serie k J approx k (t) and then the amplitude of t → t k∈N J approx k (t) is of order t 1/2 (see Figure 2).

A short proof of the Arcsinus formula

In the paper , the author was able to prove by elementary calculations the Theorem 3.1 If X is the unit disk, |S t | = λ(q)t + o(t) as t → +∞ with radius 1 with λ(q) = 2 arcsin a where a is the distance from q to the center of the disk.

We will reprove it using tools which will be extended to integrable geodesic flows in a forthcoming paper. For this, we will prove an integral formula: Theorem 3.2 Let ψ be the function periodic of period 1 whose restriction to [0, 1] is given by ψ(θ) = |2θ -1|. We have 

|S t | = tΣ ± Iα 0 ψ θ ±,q 2 (ξ) - t 2 sin ξ dξ + O(1) (2)
I α 0 := [π/2 -α 0 , π/2 + α 0 ], α 0 = arcsin a and θ ±,q 2 (ξ) = 1 2 ± a 2 -cos 2 ξ 2 sin ξ
This integral can also be written as an integral over T:

|S t | = t T ψ 1 2 - a cos α + t 2 1 -a 2 sin 2 α a cos α 1 -a 2 sin 2 α dα + O(1) (3) as t → +∞.
Let us show how Theorem 3.1 follows from Theorem 3.2. We consider an integral

I(t) = Iα 0 ψ θ(ξ) - t 2 sin ξ dξ
with θ smooth. We first approximate uniformly ψ by a sequence of trigonometric polynomials ψ N (u) = |n|≤N a n exp(2iπnu) with a 0 = 1 0 ψ(θ)dθ = 1 2 . This way we get

I N (t) = 2α 0 + |n|≤N, n =0 a n
Iα 0 e 2iπnθ(ξ) e -2iπnt/ sin ξ dξ It follows from the stationary phase approximations that all these integrals tend to 0 as t → ∞, Theorem 3.1 follows.

Proof of Theorem 3.2.-We will first parametrize the dynamics using angle coordinates on tori. Let us denote by m(s) = (cos s, sin s) on the circle and by u s the vector -→ 0m(s). Let us introduce a set of coordinates. In what follows, we parametrize the 2D-submanifold of the phase space consisting of oriented chords joining a point m(s) to m(s + 2ξ) with speed 1 by ξ ∈]0, π[. Changing the orientation of the chords moves ξ into π -ξ. For ξ ∈]0, π[ and r ∈ [0, 2 sin ξ], we define F ξ (s, r) = m(s) + r u s+ξ+π/2 . This describes the chord C ξ between m(s) and m(s + 2ξ). The function F ξ is extended as a function on R 2 periodic with respect to the lattice L ξ spanned by the vectors (2π, 0) and (2ξ, -2 sin ξ). The function F ξ is continuous, but only piecewise smooth. The pull-back under F ξ on R 2 of the billiard dynamics is generated by the vector ∂ r .

The coordinates (s, r) range over a torus R 2 /L ξ . In order to continue the computation, we need to fix the lattice Z 2 . For that we introduce the linear map M ξ : R 2 θ 1 ,θ 2 → R 2 s,r sending the canonical basis of Z 2 onto the previous basis of L ξ . The dynamics on the torus R 2 /L ξ is the image of ∂ r under M -1 ξ ; let us denote it by V . We get

V = 1 2π sin ξ (ξ∂ θ 1 -π∂ θ 2 )
Then, we need to compute the Euclidean norm of F ξ (M ξ (∂ ξ V )). We have

∂ ξ V = -cos ξ 2π sin 2 ξ (ξ∂ θ 1 -π∂ θ 2 ) + 1 2π sin ξ ∂ θ 1 Hence M ξ (∂ ξ V ) = 1 sin ξ (-cos ξ∂ r + ∂ s ) Then F ξ (∂ r ) = u s+ξ+π/2 , F ξ (∂ s ) = u s+π/2 -r u s+ξ
This gives

∂ ξ V = |r -sin ξ| sin ξ
As could have been anticipated, this length vanishes on the caustic! We now take the pull back of ∂ ξ V under M ξ and get |2θ 2 -1|.

Let us parametrize the chords starting from q by the angle α ∈ T defined by α := q, C ξ . We get cos ξ = a sin α. Hence ξ is the smooth function ξ(α) = arccos(a sin α). The length |S t | is given by

|S t = T d dα (φ t ( u α ) dα
where φ t is the geodesic flow. Let us denote by θ(α) the coordinates of q in T 2 θ . We get, using the parametrization of the flow on the tori T θ ,

|S t | = T (F ξ • M ξ ) θ(α)+tV (α) (θ (α) + tV (α)) dα, = t T (F ξ • M ξ ) θ(α)+tV (α) (V (α)) dα + O(1)
as t → +∞. We rewrite the integral in terms of ξ, using cos ξ = a sin α and

θ 2 (ξ) = 1 2 ± √ a 2 -cos 2 ξ 2 sin ξ with + if α ∈ [π/2, 3π
/2] and -otherwise. From this follows the result.

Local asymptotics of the length

In this section, we describe the asymptotics of the length of the intersection of the wave front with a smooth domain K included in the disk D. We have

Theorem 4.1 We have l(S t ∩ K) ∼ 2t π K Ψ x 2 + y 2 |dxdy| as t → +∞, where 
Ψ(r) = min(r, a) 1 -min(r, a) 2
Note that the function Ψ is continuous, vanishes at r = 0 and is constant for a ≤ r ≤ 1. This implies that the density of the wave front is smaller near the center of the disk.

Proof.-Let φ ∈ C(D, R + ), we want to calculate the asymptotics of the length |S t,φ | of S t computed in the metric φ 2 Eucl. Following the proof of Theorem 3.1, we get |S t,φ |/t → λ(q, φ) as t → +∞, with

λ(q, φ) = 2 Iα 0 T 2 |2θ 2 -1|φ • G(θ, ξ)|dξdθ| with G(θ, ξ) = F ξ • M ξ (θ).
We will first make the change of variable (θ, ξ) → (s, r, ξ) whose Jacobian is 4π sin ξ. This gives

λ(q, φ) = 1 2π Iα 0 R 2 /L ξ r -sin ξ sin 2 ξ φ • F ξ (s, r)|dξdsdr|
Finally, we pass from (s, r) to (x, y). We have |dxdy| = |r -sin ξ||dsdr|. The domain of integration is ρ = x 2 + y 2 ≥ cos ξ which is covered twice by the torus R 2 /L ξ , we get hence

λ(q, φ) = 1 π Iα 0 cos ξ≤ρ 1 sin 2 ξ φ(x, y)|dξdxdy|
An elementary calculus gives then

λ(q, φ) = 2 π D Ψ(ρ)φ(x, y)|dxdy|
The result follows then by approximating the characteristic function of K by continuous fonctions.

Oscillations of the length

The numerical computations of the second author in show clearly some regular oscillations of the length |S t | around the linear asymptotics. These oscillations are given in the Theorem 5.1 The following expansion holds:

|S t | = 2α 0 t + t ∞ n=0 J approx n (t) + O(1)
as t → +∞, with

J approx n (t) = -8 √ 2 π 2 (2n + 1) 5/2 √ t cos ((2n + 1)πa) cos π (2n + 1)t + 1 4
The oscillations have an amplitude of the order of √ t, are periodic of period

2. If a = 1 2 , we get |S t | = πt/3 + O(1) as t → +∞.
We start from the formula given by Equation ( 2):

|S t | = tΣ ± Iα 0 ψ θ ±,q 2 (ξ) - t 2 sin ξ dξ + O(1)
as t → +∞, where I α 0 := [π/2 -α 0 , π/2 + α 0 ] and ψ restricted to [0, 1] is given by ψ(θ) = |2θ -1| and ψ is periodic of period 1. We have

θ ±,q 2 (ξ) = 1 2 ± a 2 -cos 2 ξ 2 sin ξ
The idea is to start with the Fourier expansion of ψ and then to apply the stationary phase asymptotics.

We have

ψ(θ) = 1 2 + n∈Z 2 π 2 (2n + 1) 2 e 2(2n+1)iπθ
We need to evaluate the integrals remainder. The contribution of the critical point can be calculated using the formula (4). We get an asymptotic for J n = I n + I -n-1 , n = 0, 1, • • • given by

I n (t) = -4 ((2n + 1)π) 2 Iα 0 cos (2n + 1)π a 2 -cos 2 ξ sin ξ e -iπ(
J n (t) ∼ J approx n = -8 √ 2 π 2 (2n + 1) 5/2
√ t cos ((2n + 1)πa) cos π (2n + 1)t + 1 4

The previous calculation is only formal. We need to control the remainder terms in a uniform way with respect to n. Let us rewrite the integral I n as combination of integrals of the form

Iα 0 e -iπ(2n+1)t 1 sin ξ -1 t √ a 2 -cos 2 ξ sin ξ
dξ and apply the stationary phase with the phase functions depending on t:

Φ t (ξ) = 1 sin ξ -1 t √ a 2 -cos 2 ξ sin ξ
. This phase function is non degenerate and converges in C ∞ topology to 1 sin ξ as t → ∞. Hence the remainder is O (nt) -3/2 as t → +∞, uniformly with respect to n.

A Stationary phase

For this section, we refer the reader to [GS-77], chap. 1.

We want to evaluate the asymptotics as t → +∞ of integrals of the form

I(t) := T e itS(x) a(x)dx
where S is a real valued smooth function. We assume that the critical points of S, ie the zeroes of S , are non degenerate, ie S (x) = 0. We will first assume that a ∈ C ∞ o (R) with only one critical point x = 0 in the support of a. Then I(t) admits a full asymptotic expansion given by

I(t) = √ 2πe iεπ/4 |tS (0)| 1 2 e itS(0) (a(0) + O(t)) (4) 
as t → +∞, with ε = ±1 depending on the sign of S (0). We will need some uniform estimates in the remainder term. This is provided by the following Let S 0 be a smooth real valued Morse function and a 0 be a smooth function.

Let S λ and a λ be smoothly dependent of a real parameter λ. Then, for λ small enough, I(t; S λ , a λ ) := I asympt (t, λ) + O t -3/2 as t → +∞, where the O is uniform and I asympt (t, λ) is the sum of terms given by the formula (4) for all critical points of S λ .

If λ is small enough, S λ is still a Morse function. We localize the integrals near the critical points and apply the Morse Lemma with parameters. We are then reduced locally to the case where S λ (x) = ±x 2 . We apply then any proof of the stationary phase approximation. The previous asymptotics extend to higher dimensional integrals.
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 2 Figure 2: Length of the wave front |S t | for t ∈ [0, 50] and for differents values of a, respectively (from bottom to top), for a = 0.1, a = 0.3, a = 0.5, a = 0.7 and a = 0.9

Figure 3 :

 3 Figure 3: Comparison between |S t | and 2 arcsin(a)t + t N k=0 J approx k (t) for N = 10, t ∈ [0, 50] and a ∈ {0.1, 0.3, 0.7, 0.9}.

Proposition A. 1

 1 Let us consider the integrals I(t; S, a) := T e itS(x) a(x)dx

  It will also be useful to consider the case of an integral on a closed interval [c, d] with c < d. I(t) := d c e itS(x) a(x)dxAssuming that S does not vanish on the support of a and that a is C 1 , we have +∞.Note that in both asymptotic formulae, the remainders "O(t)" are uniform if S (resp. a ) is close to S (resp. close to a) in C 2 topology.

https://www.youtube.com/channel/UCMTvpxuhYwbYBYDErSlU0EA/