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Large-time asymptotics of the wave fronts
length I

The Euclidean disk

Yves Colin de Verdière∗

David Vicente, †

November 27, 2020

In the paper [Vi-20], the second author proves that the length |St| of the
wave front St at time t of a wave propagating in an Euclidean disk D of
radius 1, starting from a source q, admits a linear asymptotics as t → +∞:
|St| = λ(q)t + o(t) with λ(q) = 2 arcsin a and a = d(0, q). We will give
a more direct proof and compute the oscillating corrections to this linear
asymptotics. The proof is based on the “stationary phase” approximation.

1 Wave fronts

Let us consider a 2D-Riemannian compact manifold (X, g) possibly with a
smooth convex boundary. We denote by g? : T ?X → R the half of the dual
metric which is the Hamiltonian of the geodesic flow.

We denote by πX the canonical projection of T ?X onto X and φt : T ?X →
T ?X, t ∈ R the Hamiltonian flow of g? which is the geodesic flow. If X has
a non empty boundary, we define φt using the law of reflection. Let q ∈ X
be given. For any t > 0, we define the wave front St at time t as the set of
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CNRS-UGA 5582, BP 74, 38402-Saint Martin d’Hères Cedex (France);
yves.colin-de-verdiere@univ-grenoble-alpes.fr
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points of X of the form πX(φt(Σ
q)) where Σq := {(q, ξ) ∈ T ?X|g?(q, ξ) = 1}.

The set St could also be defined as the image by the exponential map at q
of the circle Σt of radius t in the tangent space TqX.

Let us define the length of St and denote it by |St|. The wave front St
is a curve parametrized by a circle: St := expq(Σt). This allows to define its
length using the Riemannian metric. Note that St can admit some singular
points. The length of the corresponding part vanishes and the remaining part
is an immersed co-oriented curve with only transversal self-intersections.

In this article, we focus on the case where X is the unit disk in R2 and
g is the Euclidean metric. In this context, we will prove that the following
expansion holds:

|St| = 2α0t+ t
∞∑
n=0

Japprox
n (t) + O(1) (1)

as t→ +∞, with

Japprox
n (t) =

−8
√

2

π2(2n+ 1)5/2
√
t

cos ((2n+ 1)πa) cos

(
π

(
(2n+ 1)t+

1

4

))
where a is the distance from the point q to the center of the disk.

The case of closed surfaces with integrable geodesic flows will be the
subject of [CV-20].

2 Numerics

In this section, we will compare the expansion given by (1) with the numerical
calculations. We introduce a (small) time step δt > 0, a (large) number of
points n which compose the wave front, two vectors M and V in (R2)n such
that, for any k ∈ [[1, n]], Xk ∈ R2 represents the position and Vk ∈ R2 the
speed of the kth point of the wave front at a given time. We fix a ∈]0, 1[
such that (a, 0) are the coordinates of the source q. Thus, we introduce the
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following iterative scheme

initialization:
M ← ((a, 0), . . . , (a, 0)) ∈ (R2)n,
for any k ∈ [[1, n]], Vk ←

(
cos
(
2kπ
n

)
, sin

(
2kπ
n

))
,

iterative step:

M̃ ←M + δtV,

for any k ∈ [[1, n]],



if M̃k ∈ D then Mk ← M̃k,
else

compute δkt s.t. ‖Mk + δkt Vk‖ = 1 and δkt ≥ 0,
Mk ←Mk + δkt Vk,

Vk ← Vk − 2
〈
Vk| Mk

‖Mk‖

〉
Mk

‖Mk‖
,

Mk ←Mk + (δt − δkt )Vk.

The iterative loop consists in the computation of a linear motion outside
the boundary and at the boundary one applies the familiar law the angle of
incidence equals the angle of reflection. After p iterations, M represents the
points of the wave front (see Figure 1 and Videos1).

Figure 1: Wave Front for a = 0.5 and t ∈ {0.5, 10, 20, 50}

First, we can observe that |St| admits a linear asymptotic as t grows to
+∞. Then, the oscillations are of period 2 with a phase independent of a
(see Figure 2). One may remark the following points.

1. For a = 0, the family of curves (St)t are concentric circles and |St| is of
period 2.

2. For a = 0.5, the terms Japprox
k (t) vanish for any t and, in this case, this

expansion is not able to capture the oscillating part of t 7→ |St|.
1https://www.youtube.com/channel/UCMTvpxuhYwbYBYDErSlU0EA/
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Figure 2: Length of the wave front |St| for t ∈ [0, 50] and for differents values
of a, respectively (from bottom to top), for a = 0.1, a = 0.3, a = 0.5, a = 0.7
and a = 0.9

3. The terms |Japprox
k (t)| are bounded by Ck−5/2t−1/2, where C is a con-

stant. For t fixed, this ensures the (fast) convergence of the serie∑
k J

approx
k (t) and then the amplitude of t 7→ t

∑
k∈N

Japprox
k (t) is of or-

der t1/2 (see Figure 2).

3 A short proof of the Arcsinus formula

In the paper [Vi-20], the author was able to prove by elementary calculations
the

Theorem 3.1 If X is the unit disk, |St| = λ(q)t + o(t) as t → +∞ with
radius 1 with λ(q) = 2 arcsin a where a is the distance from q to the center
of the disk.

We will reprove it using tools which will be extended to integrable geodesic
flows in a forthcoming paper. For this, we will prove an integral formula:

Theorem 3.2 Let ψ be the function periodic of period 1 whose restriction
to [0, 1] is given by ψ(θ) = |2θ − 1|. We have

|St| = tΣ±

∫
Iα0

ψ

(
θ±,q2 (ξ)− t

2 sin ξ

)
dξ + O(1) (2)
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Figure 3: Comparison between |St| and 2 arcsin(a)t + t
∑N

k=0 J
approx
k (t) for

N = 10, t ∈ [0, 50] and a ∈ {0.1, 0.3, 0.7, 0.9}.

as t→ +∞, where Iα0 := [π/2− α0, π/2 + α0], α0 = arcsin a and

θ±,q2 (ξ) =
1

2
±
√
a2 − cos2 ξ

2 sin ξ

This integral can also be written as an integral over T:

|St| = t

∫
T
ψ

(
1

2
− a cosα + t

2
√

1− a2 sin2 α

)
a cosα√

1− a2 sin2 α
dα + O(1) (3)

as t→ +∞.

Let us show how Theorem 3.1 follows from Theorem 3.2. We consider an
integral

I(t) =

∫
Iα0

ψ

(
θ(ξ)− t

2 sin ξ

)
dξ
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with θ smooth. We first approximate uniformly ψ by a sequence of trigono-
metric polynomials ψN(u) =

∑
|n|≤N anexp(2iπnu) with a0 =

∫ 1

0
ψ(θ)dθ = 1

2
.

This way we get

IN(t) = 2α0 +
∑

|n|≤N, n 6=0

an

∫
Iα0

e2iπnθ(ξ)e−2iπnt/ sin ξdξ

It follows from the stationary phase approximations that all these integrals
tend to 0 as t→∞, Theorem 3.1 follows.

Proof of Theorem 3.2.–
We will first parametrize the dynamics using angle coordinates on tori.

Let us denote bym(s) = (cos s, sin s) on the circle and by ~us the vector
−→
0m(s).

Let us introduce a set of coordinates. In what follows, we parametrize the
2D-submanifold of the phase space consisting of oriented chords joining a
point m(s) to m(s+ 2ξ) with speed 1 by ξ ∈]0, π[. Changing the orientation
of the chords moves ξ into π − ξ. For ξ ∈]0, π[ and r ∈ [0, 2 sin ξ], we define
Fξ(s, r) = m(s) + r~us+ξ+π/2. This describes the chord Cξ between m(s) and
m(s + 2ξ). The function Fξ is extended as a function on R2 periodic with
respect to the lattice Lξ spanned by the vectors (2π, 0) and (2ξ, − 2 sin ξ).
The function Fξ is continuous, but only piecewise smooth. The pull-back
under Fξ on R2 of the billiard dynamics is generated by the vector ∂r.

The coordinates (s, r) range over a torus R2/Lξ. In order to continue the
computation, we need to fix the lattice Z2. For that we introduce the linear
map Mξ : R2

θ1,θ2
→ R2

s,r sending the canonical basis of Z2 onto the previous

basis of Lξ. The dynamics on the torus R2/Lξ is the image of ∂r under M−1
ξ ;

let us denote it by V . We get

V =
1

2π sin ξ
(ξ∂θ1 − π∂θ2)

Then, we need to compute the Euclidean norm of F ′ξ(Mξ(∂ξV )). We have

∂ξV =
− cos ξ

2π sin2 ξ
(ξ∂θ1 − π∂θ2) +

1

2π sin ξ
∂θ1

Hence

Mξ(∂ξV ) =
1

sin ξ
(− cos ξ∂r + ∂s)

Then
F ′ξ(∂r) = ~us+ξ+π/2, F

′
ξ(∂s) = ~us+π/2 − r~us+ξ
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This gives

‖∂ξV ‖ =
|r − sin ξ|

sin ξ

As could have been anticipated, this length vanishes on the caustic! We now
take the pull back of ‖∂ξV ‖ under Mξ and get |2θ2 − 1|.

Let us parametrize the chords starting from q by the angle α ∈ T defined
by α := 〈q, Cξ〉. We get cos ξ = a sinα. Hence ξ is the smooth function
ξ(α) = arccos(a sinα). The length |St| is given by

|St =

∫
T
‖ d
dα

(φt(~uα)‖dα

where φt is the geodesic flow. Let us denote by θ(α) the coordinates of q in
T2
θ. We get, using the parametrization of the flow on the tori Tθ,

|St| =

∫
T
‖(F ′ξ ◦Mξ)θ(α)+tV (α)(θ

′(α) + tV ′(α))‖dα,

= t

∫
T
‖(F ′ξ ◦Mξ)θ(α)+tV (α)(V

′(α))‖dα + O(1)

as t→ +∞. We rewrite the integral in terms of ξ, using cos ξ = a sinα and

θ2(ξ) = 1
2
±
√
a2−cos2 ξ
2 sin ξ

with + if α ∈ [π/2, 3π/2] and − otherwise. From this
follows the result.

4 Local asymptotics of the length

In this section, we describe the asymptotics of the length of the intersection
of the wave front with a smooth domain K included in the disk D. We have

Theorem 4.1 We have

l(St ∩K) ∼ 2t

π

∫
K

Ψ
(√

x2 + y2
)
|dxdy|

as t→ +∞, where

Ψ(r) =
min(r, a)√

1−min(r, a)2
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Note that the function Ψ is continuous, vanishes at r = 0 and is constant for
a ≤ r ≤ 1. This implies that the density of the wave front is smaller near
the center of the disk.

Proof.– Let φ ∈ C(D,R+), we want to calculate the asymptotics of the
length |St,φ| of St computed in the metric φ2Eucl. Following the proof of
Theorem 3.1, we get |St,φ|/t→ λ(q, φ) as t→ +∞, with

λ(q, φ) = 2

∫
Iα0

∫
T2

|2θ2 − 1|φ ◦G(θ, ξ)|dξdθ|

with G(θ, ξ) = Fξ ◦Mξ(θ). We will first make the change of variable (θ, ξ)→
(s, r, ξ) whose Jacobian is 4π sin ξ. This gives

λ(q, φ) =
1

2π

∫
Iα0

∫
R2/Lξ

∣∣∣∣r − sin ξ

sin2 ξ

∣∣∣∣φ ◦ Fξ(s, r)|dξdsdr|
Finally, we pass from (s, r) to (x, y). We have |dxdy| = |r− sin ξ||dsdr|. The
domain of integration is ρ =

√
x2 + y2 ≥ cos ξ which is covered twice by the

torus R2/Lξ, we get hence

λ(q, φ) =
1

π

∫
Iα0

∫
cos ξ≤ρ

∣∣∣∣ 1

sin2 ξ

∣∣∣∣φ(x, y)|dξdxdy|

An elementary calculus gives then

λ(q, φ) =
2

π

∫
D

Ψ(ρ)φ(x, y)|dxdy|

The result follows then by approximating the characteristic function of K by
continuous fonctions. �

5 Oscillations of the length

The numerical computations of the second author in [Vi-20] show clearly
some regular oscillations of the length |St| around the linear asymptotics.
These oscillations are given in the

Theorem 5.1 The following expansion holds:

|St| = 2α0t+ t
∞∑
n=0

Japprox
n (t) + O(1)
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as t→ +∞, with

Japprox
n (t) =

−8
√

2

π2(2n+ 1)5/2
√
t

cos ((2n+ 1)πa) cos

(
π

(
(2n+ 1)t+

1

4

))
The oscillations have an amplitude of the order of

√
t, are periodic of period

2. If a = 1
2
, we get |St| = πt/3 + O(1) as t→ +∞.

We start from the formula given by Equation (2):

|St| = tΣ±

∫
Iα0

ψ

(
θ±,q2 (ξ)− t

2 sin ξ

)
dξ + O(1)

as t → +∞, where Iα0 := [π/2 − α0, π/2 + α0] and ψ restricted to [0, 1] is
given by ψ(θ) = |2θ − 1| and ψ is periodic of period 1. We have

θ±,q2 (ξ) =
1

2
±
√
a2 − cos2 ξ

2 sin ξ

The idea is to start with the Fourier expansion of ψ and then to apply
the stationary phase asymptotics.

We have

ψ(θ) =
1

2
+
∑
n∈Z

2

π2(2n+ 1)2
e2(2n+1)iπθ

We need to evaluate the integrals

In(t) =
−4

((2n+ 1)π)2

∫
Iα0

cos

(
(2n+ 1)π

√
a2 − cos2 ξ

sin ξ

)
e−iπ(2n+1) t

sin ξ dξ

and then we have
|St| = 2α0t+ t

∑
n∈Z

In(t) + O(1)

as t→ +∞. Note first that the function cos

(
(2n+ 1)

√
a2−cos2 ξ
sin ξ

)
is smooth

on Iα0 with a non vanishing derivative at the boundaries. The non vanishing
contributions come from the critical point ξ = π/2 and the boundaries of
Iα0 . The boundary contributions are O(1/t). They contribute to the O(1)
remainder. The contribution of the critical point can be calculated using the
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formula (4). We get an asymptotic for Jn = In + I−n−1, n = 0, 1, · · · given
by

Jn(t) ∼ Japprox
n =

−8
√

2

π2(2n+ 1)5/2
√
t

cos ((2n+ 1)πa) cos

(
π

(
(2n+ 1)t+

1

4

))
The previous calculation is only formal. We need to control the remainder

terms in a uniform way with respect to n. Let us rewrite the integral In as
combination of integrals of the form∫

Iα0

e
−iπ(2n+1)t

(
1

sin ξ
− 1
t

√
a2−cos2 ξ
sin ξ

)
dξ

and apply the stationary phase with the phase functions depending on t:

Φt(ξ) = 1
sin ξ
− 1

t

√
a2−cos2 ξ
sin ξ

. This phase function is non degenerate and con-

verges in C∞ topology to 1
sin ξ

as t→∞. Hence the remainder is O
(
(nt)−3/2

)
as t→ +∞, uniformly with respect to n.

A Stationary phase

For this section, we refer the reader to [GS-77], chap. 1.
We want to evaluate the asymptotics as t→ +∞ of integrals of the form

I(t) :=

∫
T
eitS(x)a(x)dx

where S is a real valued smooth function. We assume that the critical points
of S, ie the zeroes of S ′, are non degenerate, ie S ′′(x) 6= 0. We will first
assume that a ∈ C∞o (R) with only one critical point x = 0 in the support of
a. Then I(t) admits a full asymptotic expansion given by

I(t) =

√
2πeiεπ/4

|tS ′′(0)| 12
eitS(0) (a(0) + O(t)) (4)

as t→ +∞, with ε = ±1 depending on the sign of S ′′(0). We will need some
uniform estimates in the remainder term. This is provided by the following

Proposition A.1 Let us consider the integrals

I(t;S, a) :=

∫
T
eitS(x)a(x)dx
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Let S0 be a smooth real valued Morse function and a0 be a smooth function.
Let Sλ and aλ be smoothly dependent of a real parameter λ. Then, for λ
small enough,

I(t;Sλ, aλ) := Iasympt(t, λ) + O
(
t−3/2

)
as t → +∞, where the O is uniform and Iasympt(t, λ) is the sum of terms
given by the formula (4) for all critical points of Sλ.

If λ is small enough, Sλ is still a Morse function. We localize the integrals
near the critical points and apply the Morse Lemma with parameters. We
are then reduced locally to the case where Sλ(x) = ±x2. We apply then any
proof of the stationary phase approximation.

It will also be useful to consider the case of an integral on a closed interval
[c, d] with c < d.

I(t) :=

∫ d

c

eitS(x)a(x)dx

Assuming that S ′ does not vanish on the support of a and that a is C1, we
have

I(t) =
1

it

(
a(d)eitS(d)

S ′(d)
− a(c)eitS(c)

S ′(c)
+O(t)

)
(5)

as t→ +∞.
Note that in both asymptotic formulae, the remainders “O(t)” are uni-

form if S ′ (resp. a′) is close to S (resp. close to a) in C2 topology.
The previous asymptotics extend to higher dimensional integrals.
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