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Abstract  28	

Recent studies employing body illusions have shown that multisensory conflict can alter body 29	

representations and modulate low-level sensory processing. One defining feature of these body 30	

illusions is that they are sensory driven and thus passive on behalf of the participant. Thus, it remained 31	

to establish whether explicit alteration of own-body representations modulates low-level sensory 32	

processing. We investigated whether tibial nerve somatosensory-evoked potentials were modulated 33	

when participants imagined paralysis of their legs and arms. Imagined paralysis of the legs decreased 34	

P40 amplitude, but not imagined paralysis of the arms. These results show modulation of early 35	

somatosensory processing via explicit,	top-down alteration to the internal representation of the body. 36	

Interestingly, P40 suppression positively correlated with bodily awareness scores whereas it 37	

negatively correlated with body dissociation scores. This suggests that the ability to actively alter 38	

own-body representation and its corresponding sensory processing depends upon dispositions to 39	

attend to and focus on bodily sensations.  40	

 41	
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 43	
Introduction 44	

In the past decade, several studies have demonstrated the ability to modulate the perception of the 45	

body by multisensory conflicts in healthy participants (for a review see Blanke, 2012). For example, 46	

during the rubber hand illusion participants observe a rubber or virtual hand being stroked in front of 47	

them, while simultaneously experiencing their occluded real hand being stroked (Botvinick & Cohen, 48	

1998; Hara et al., 2015; Tsakiris & Haggard, 2005). The integration of the simultaneous seen and felt 49	

stroking results in the participant feeling like the rubber hand is their hand, which is also accompanied 50	

by a drift in the perceived location of their real hand towards the rubber hand. This illusion has 51	

evolved to incorporate a whole virtual body, creating a full-body illusion, characterized by illusory 52	

self-identification with, and self-relocation towards, a virtual body (Lenggenhager, Tadi, Metzinger, 53	

& Blanke, 2007). 54	

 Illusory self-identification with a fake/virtual body is associated with physiological changes, 55	

such as decreased skin temperature (Moseley et al., 2008; Salomon, Lim, Pfeiffer, Gassert, & Blanke, 56	

2013). However De Hann et al. (2017) and Nakul et al. (2020) showed that these results were not 57	

consistent. In addition, illusory self-identification with a body increased pain threshold in healthy 58	

participants (Hansel, Lenggenhager, Kanel, Curatolo, & Blanke, 2011) and evoked mild analgesia in 59	

patients with spinal cord injury (Pozeg et al., 2017). Other studies have provided evidence that the 60	

full-body illusion modulated somatosensory information processing. Aspell, Palluel, & Blanke (2012) 61	

have shown an increase in the amplitude of early (i.e. 40 ms post-stimulus onset) tibial nerve 62	

somatosensory evoked-potentials (SEPs) during the full-body illusion. Similarly, Dieguez and 63	

colleagues (2009) found that median nerve SEPs were larger during experimentally-induced illusion 64	

of numbness in the index finger. These results suggest a link between experimentally-induced changes 65	

in body representation and the way in which the brain processes sensory information, which also has 66	

direct physiological consequences in the case of skin temperature. One common aspect of these 67	

illusions is that they alter body representations through multisensory conflicts, which is passive on 68	

behalf of the participant. That is, participants are not engaged in a cognitive process in order to alter 69	

own-body representations. In the present study we investigated whether mental imagery of altered 70	
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body representation is enough to modulate sensory processing in the brain, as previously shown 71	

during experimentally-induced alterations of body representation. 72	

Imagined paralysis is a useful laboratory paradigm to alter own-body representations by 73	

mental imagery. Hartmann, Falconer, & Mast (2011) instructed participants to imagine that they were 74	

paralysed from the waist down while simultaneously performing a mental imagery task (Parsons, 75	

1987). This task requires that participants mentally align and transform the internal representation of 76	

their body composition (body representation) to match a target composition. Imagined leg paralysis 77	

impaired the participant’s ability to mentally transform their body. This suggests that the 78	

biomechanical constraints associated with paralysis are incorporated into the body representation, 79	

impinging their ability to mentally transform it into another composition. The majority of research in 80	

this field has used mental transformations and motor imagery, which focus on the use of the body 81	

representation in performing simulated actions (Kakigi et al., 1997). Our paradigm allows to 82	

investigate the extent to which we can explicitly access and alter the body representation, and 83	

consequently somatosensory cortex activity.  84	

The aim of the current study was to build upon the behavioural results of Hartmann, Falconer, 85	

& Mast (2011) by investigating whether the top-down process of imagining leg paralysis can 86	

influence physiological signals relevant to the body representation. We hypothesize that imagined 87	

paralysis of the legs would influence the processing of tibial nerve signals in the somatosensory 88	

cortex. This is in contrast to imagined paralysis of the arms, which has no link with the tibial nerve. 89	

We used electroencephalography (EEG) recordings during tibial nerve electrical stimulation to assess 90	

SEP modulation during imagined paralysis. Our hypothesis is two-tailed in that there is evidence to 91	

suggest either an attenuation or amplification of SEPs and an altered body representation. On the one 92	

hand, evidence from conversion paralysis, a psychogenic inability to perform voluntary movement, 93	

shows a suppression of SEPs during the symptomatic period (Vuilleumier, 2005; Yazici, Demirci, 94	

Demir, & Ertugrul, 2004). Furthermore, during hypnotic suggestion, imagery of the self-floating 95	

outside the body suppresses SEPs (V.  De Pascalis, Magurano, Bellusci, & Chen, 2001). On the other 96	

hand, alterations in body representation in the full-body illusion and numbness illusion have shown an 97	
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amplification of SEPs (Aspell et al., 2012; Dieguez et al., 2009), in line with the deafferentation 98	

literature showing that a reduction in dominant sensory inputs allows for the expression of latent 99	

inputs (Tinazzi, Rosso, Zanette, Fiaschi, & Aglioti, 2003; Urasaki, Genmoto, Wada, Yokota, & 100	

Akamatsu, 2002).  101	

 102	

Methods 103	

Participants 104	

Fourteen right-handed healthy volunteers took part (six females, eight males, age range: 22–105	

30 years). All participants gave written informed consent and were given monetary compensation for 106	

their participation. The study was approved by the local research ethics committee at École 107	

Polytechnique Fédérale de Lausanne. Data from four participants had to be discarded because they did 108	

not show identifiable SEP (SEP amplitudes have a large inter-individual variability: Aspell et al., 109	

2012; Van de Wassenberg, Kruizinga, Van der Hoeven, Leenders, & Maurits, 2008), thus ten 110	

participants data was included in the analysis (five females, five males, age range: 22–30 years).  111	

Task and Procedures 112	

The experiment consisted of three blocks: Imagined Arm Paralysis, Imagined Leg Paralysis 113	

and Baseline. Each block included 1) an immersion task to induce the corresponding paralysis state or 114	

the baseline, 2) EEG recordings, and 3) two questionnaires to fill in at the end of each block. The 115	

immersion tasks lasted 2-5 minutes as each participant worked at their own pace and were to provide 116	

participants with an opportunity to draw upon an experience that emphasized the “uselessness” of 117	

either their arms or legs and therefore help to put themselves into the situation of being unable to 118	

move the respective body part. All participants remarked that the immersion tasks for the leg and arm 119	

paralysis were "challenging", "tricky" or said that "I didn't think it would be that difficult to do. For 120	

the arm paralysis, participants were imagining arm paralysis and were required to write “my name 121	

is…” using a pen inserted into the mouth during the immersion task. During EEG recordings they sat 122	
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on a normal chair and were asked to imagine that both of their arms were paralyzed. They were 123	

instructed to imagine that they could not move nor feel their arms. For the leg paralysis, participants 124	

were required to navigate the experimental room in a manual wheelchair following an L-path during 125	

the immersion task. This was done twice and involved turning. During EEG recordings, they were 126	

asked to imagine that both of their legs were paralysed. They were instructed to imagine that they 127	

could not move nor feel their legs from the waist down. They remained seated on a manual 128	

wheelchair throughout the recordings in order to help to maintain the imagery state. For the baseline, 129	

participants were asked to walk twice following the same L-path than during the immersion task of 130	

the imagined leg paralysis. During EEG recordings, they sat relaxed in a normal chair without 131	

performing any task and with their arms on their legs. In all conditions participants were asked to 132	

keep their eyes closed. The three EEG recordings lasted 3.5 minutes each and were counterbalanced 133	

across participants. After each imagery block, participants answered two questionnaires pertaining to 134	

the perception of their leg and arm during imagined paralysis. 135	

Tibial Nerve Stimulation 136	

Participants received tibial nerve stimulation via two skin electrodes attached to the inside site 137	

of the right leg ankle. We used a Grass S48 stimulator to generate electrical pulses and a Matlab 138	

(version R2012B, MathWorks®) script synchronized EEG recordings and electrical stimulation. 139	

During each experimental condition the tibial nerve was stimulated 400 times at a frequency of 2 Hz 140	

with pulse duration of 0.2 ms (for a similar procedure see Aspell et al., 2012) with intensity just below 141	

motor threshold (Hume & Cant, 1978). No participant reported pain or discomfort with this level of 142	

stimulation.  143	

Electroencephalography: Acquisition and Pre-processing 144	

Continuous EEG was recorded with a sampling frequency of 2048 Hz from 64 active scalp 145	

electrodes (BioSemi, Netherlands) arranged in accordance with the 10-20 system and referenced to 146	

the common mode sense-driven right leg ground (CMS-DRL). Electrooculogram was recorded to 147	

control for artefacts related to eye movements, using a bipolar montage with electrodes positioned on 148	
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the left and right side of the eyes (for horizontal eye movements), as well as above and below the right 149	

eye (for vertical movements). Participants were instructed to avoid to move their eyes.  150	

EEG pre-processing and analysis were performed with the software Cartool version 3.8 151	

(https://sites.google.com/site/cartoolcommunity/). EEG epochs were calculated from 100 ms before to 152	

600 ms after the onset of right tibial nerve stimulation. A baseline correction was applied from 100 to 153	

20 ms before stimulus onset. An artefact rejection threshold of ± 50 µV was applied to both EEG and 154	

electrooculography signals. All accepted epochs were visually inspected and transient contaminating 155	

noise such as eye movements and muscle artefacts were rejected. On average 80 epochs (20%) per 156	

participant were rejected. The data was band-pass filtered (1-40 Hz) with a 50 Hz notch filter. 157	

EEG Analysis 158	

Somatosensory-evoked potentials: Because tibial SEPs are maximal for midline electrodes Cz 159	

and CPz (Cruse, Klem, Lesser, & Leuders, 1982), we defined ten target electrodes (Pz, CPz, CP1, 160	

CP2, Cz, C1, C2, FCz, FC1, FC2) located in a region of interest around Cz and CPz. Individual SEPs 161	

were calculated for each target electrode and each condition after normalization to their mean global 162	

field power (GFP). GFP is the spatial standard deviation of the scalp’s electrical field at a given 163	

moment in time (Mercier, Schwartz, Michel, & Blanke, 2009) and normalization by the GFP reduces 164	

inter-subjects variability. Individual SEPs were then combined across participants to create grand-165	

average SEPs for each target electrode. 166	

We looked for classical early tibial SEP components in each participant. The first cortical 167	

component of tibial stimulation appears ipsilateral to the leg of stimulation at 40 ms (P40) (Cruse et 168	

al., 1982; Kakigi et al., 1995; Kakigi et al., 1997). Tibial SEP components also include the N50 (~50 169	

ms) and P60 (~60 ms), all of which originate from area 3b in the primary somatosensory cortex 170	

(Kakigi et al., 1995). Accordingly, three time windows corresponding to each of the SEP components 171	

were considered: 30-45 ms, 45-60 ms and 60-75 ms. As the Shapiro-Wilk tests confirmed the 172	

normality of data, SEP amplitudes from each target electrode were subjected to a repeated-measures 173	
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analysis of variance (ANOVA) with two factors: experimental condition (Baseline, Imagined Arm 174	

Paralysis, Imagined Leg Paralysis) and SEP component (P40, N50, P60).  175	

Scalp topography: Topographical analysis of tibial SEP was conducted to investigate periods 176	

of stable brain activation within and between experimental conditions (Murray, Brunet, & Michel, 177	

2008). EP topographical analysis searches for time-segments of stable map topography that represent 178	

functional microstates of the brain during information processing. This method has been applied to the 179	

analysis of tibial SEPs (Aspell et al., 2012), visual EPs (Lopez, Mercier, Halje, & Blanke, 2011), and 180	

auditory Eps (Giroud, Lemke, Reich, Matthes, & Meyer, 2017). In the first step of the analysis, EP 181	

topographies (maps or microstate segments) were established using a spatial clustering algorithm 182	

(Tibshirani & Walther, 2005). The cluster analysis is dependent upon the global explained variance 183	

(GEV), which is the goodness of fit to a template map during a specific time period and the strength 184	

of the global field power (GFP) during that time period (Murray et al., 2008). This step identifies the 185	

dominant map topographies on the scalp in the group-average SEP data during and across the three 186	

experiment conditions. In the second step, we analysed the extent to which these dominant maps are 187	

present and verified in participant data. This was achieved by performing a fitting procedure based on 188	

the spatial correlations between participant data and the template maps identified from the group-189	

average EP data in the temporal domain (Lopez et al., 2011). Participant data corresponding to the 190	

dominant maps established in the first step are subjected to statistical analysis (two-tailed t-test). In 191	

keeping with our investigation into somatosensory processing, we analysed map topographies only 192	

during the time windows that correspond to SEPs. 193	

Questionnaires 194	

After each imagined paralysis condition, participants completed two questionnaires concerned 195	

with the perception of their legs and arms during imagery (adapted from Hartmann et al., 2011). 196	

Participants rated on a 7-point Likert scale (1 = not true, 7 = true) the extent to which they agreed 197	

with seven statements (Table 1). As in Hartman et al. (2011) we averaged the seven statements 198	

concerned with the perception of the legs for each participant and for each state of paralysis. The 199	
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seven statements concerned with the perception of the arms were also averaged for each participant 200	

and for each state of paralysis. The averaged scores were compared for both conditions by means of 201	

non-parametric Friedman ANOVA and Wilcoxon. We compared ratings for leg-related statement 202	

during imagined paralysis of the legs and imagined paralysis of the arms. This was also done for arm-203	

related statements. Bonferroni correction was applied in order to account for multiple comparisons. 204	

At the end of the experiment participants completed two questionnaires. The Private Body 205	

Consciousness Subscale (PBCS; Miller, Murphy, & Buss, 1981) is a 5-item questionnaire gauging the 206	

extent to which participants are consciously aware of internal bodily processes. Participants rated on a 207	

5-point scale (1 = not true of me, 5 = very true of me) the extent to which they agreed with statements 208	

such as “I am sensitive to internal bodily tensions”. The Scale of Body Connection (SBC; Price & 209	

Thompson, 2007) gauge the extent to which participants can connect with or disconnect from bodily 210	

processes (for a review see Mehling et al., 2009). Participants rated on a 5-point scale (1 = not at all, 5 211	

= all the time) the extent to which they agreed with statements pertaining to two subscales measuring 212	

body awareness (12 items, e.g., “Take cues from the body”) and body dissociation (8 items, e.g., 213	

“Feel separated from body”). Average scores from each of the scales were correlated with the 214	

maximum amplitude difference between the imagined leg paralysis and the Baseline condition using 215	

Spearman correlations. Statistical analysis was performed using Statistica 10. 216	

Results 217	

EEG Results 218	

Somatosensory-evoked potentials: As predicted, the results show a significant modulation of 219	

the SEP P40 component during imagined leg paralysis, but not during imagined arm paralysis, when 220	

compared to Baseline conditions.  221	

The ANOVA revealed a significant main effect of SEP component for each target electrode, 222	

whereby the N50 amplitude was significantly lower than the P40 and P60 amplitudes (all F(2,18) > 223	

4.2 and p < 0.032, ηp
2 = 0.32). None of the target electrodes showed a significant main effect of the 224	

paralysis condition (p > 0.05). Interestingly, electrode CPz showed a significant interaction between 225	
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the paralysis condition and the SEP component (F(4,36) = 3.49, p = 0.016, ηp
2 = 0.28) (Fig. 1). Tukey 226	

post-hoc tests revealed that the P40 amplitude (mean ± SEM, 0.51 µV ± 0.16 µV) was lower during 227	

Imagined Leg Paralysis when compared to the Baseline condition (0.90 µV ± 0.16 µV, p = 0.033). Yet 228	

the amplitude did not differ from the Imagined Arm Paralysis condition (0.83 µV ± 0.28 µV, p = 0.25) 229	

(Fig. 2). The analysis also revealed a trend for a similar interaction at electrodes Cz (F(4,36) = 2.39, p 230	

= 0.069, ηp
2 = 0.210) and C2 (F(4,36) = 2.47, p = 0.062, ηp

2 = 0.216). 231	

 232	

Please insert figures 1 and 2 about here 233	

 234	

Scalp topography: Analysis of group-average EPs revealed eight sequential maps of stable 235	

brain activation (up to 175 ms after stimulus onset) following tibial stimulation in all three conditions 236	

(Fig. 3). We analysed Map 4 (~25–60 ms) and Map 5 (~60–90 ms) overlapping with the main SEP 237	

components (30–75ms). The maximum GFP for Map 4 was significantly reduced for Imagined Leg 238	

Paralysis (mean ± SEM, 0.55 µV ± 0.09 µV) when compared to the Baseline condition (0.73 µV ± 239	

0.10 µV; t(9) = 2.38, p = 0.041, d = 0.71). No statistically significant differences were found between 240	

the Baseline and Imagined Arm Paralysis conditions (t(9) = 0.92, p = 0.382, d = 0.25; Figure 4). 241	

Interestingly, the P40 component falls within Map 4 and the maximum positivity in Map 4 is at 242	

electrode CPz. There was no significant difference between the arm and leg paralysis conditions for 243	

Map 5. 244	

Please insert figures 3 and 4 about here 245	

 246	

Questionnaires 247	

Limb perception: Participants reported perceptual changes in the limbs congruent with the 248	

imagined paralysis condition (Table 1). A non-parametric Friedman ANOVA was conducted and 249	

rendered a Chi-square value of 25.2, which was significant (p < 0.001). Participants rated the legs 250	

statement significantly higher after imagined leg paralysis than imagined arm paralysis (z = 2.8; p = 251	

0.005, d = 0.83). The reverse was true for arm-related statements during imagined arm paralysis (z = 252	
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2.8; p = 0.005, d = 0.64). A non-parametric Friedman ANOVA was conducted and rendered a Chi-253	

square value of 25.2, which was significant (p < 0.001). We used Bonferroni correction for multiple 254	

comparisons; αcorr = 0.05/4 = 0.013, and the effect reported above was still statistically significant. 255	

There was no significant difference between the rating of arm statements during imagined arm 256	

paralysis and leg statements during imagined leg paralysis (z = 1.22, p = 0.221, d=0.59). The intensity 257	

of perceptual changes between arms and legs during their corresponding paralysis conditions were not 258	

significantly different. In conclusion, subjective perception of the limbs was differentially influenced 259	

by the two paralysis conditions (Figure 5). 260	

 Bodily consciousness: Spearman correlations revealed a significant negative correlation 261	

between maximum peak amplitude difference of the P40 between the Baseline and imagined leg 262	

paralysis conditions and PBCS scores (ρ = -0.78, p = 0.008). That is, those scoring high in their 263	

awareness of body sensations, exhibit the greatest amount of amplitude suppression of the P40 264	

component during imagined leg paralysis (Figure 5). Conversely, those scoring high on the body 265	

dissociation (BD) subscale of the SBC showed the least amount P40 amplitude suppression during 266	

imagined leg paralysis (ρ = 0.65, p = 0.028). That is, participants who have a higher disposition to 267	

disconnect themselves from sensory and emotional states show less modulation of somatosensory 268	

processing. By contrast, the body awareness subscale of the SBC did not correlate significantly with 269	

SEP data (ρ = -0.28, p = 0.441). 270	

Please insert figures 5 and 6 about here 271	

 272	

Discussion 273	

We examined whether imagined paralysis modulates somatosensory information processing. 274	

We found modulation of tibial nerve SEPs compared to a Baseline condition, specifically during 275	

imagined paralysis of the legs, but not of the arms. This effect is characterised by a reduction in the 276	

maximum peak amplitude of the P40 at electrode CPz, suggesting that imagined paralysis modulates 277	

sensory processing of the leg in primary somatosensory cortex (S1). In addition to single trace 278	
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analysis, we showed that imagined paralysis influenced topographical brain, whereby the GFP 279	

decreased during imagined paralysis of the legs, but not of the arms, when compared to a Baseline 280	

condition. GFP modulation corresponds to a topographical map overlapping with the P40 SEP 281	

component, thus corroborating findings from single trace analysis. 282	

We have previously shown that imagined paralysis can influence mental imagery of the body 283	

(Hartmann et al., 2011). During imagined paralysis, the biomechanical constraints of paralysis are 284	

attributed to the limbs represented in the body representation, impinging upon the ability to mentally 285	

transform them. Subjective reports indicate that imagined paralysis evoked weakness, heaviness, and 286	

immobility of the limbs (Hartmann et al., 2011). Here, we expand upon our understanding of paralysis 287	

imagery by showing that it is a cognitive process which is able to modulate low-level somatosensory 288	

information processing.  289	

Modified somatosensory processing has previously been shown during experimentally-290	

induced body illusions (Aspell et al., 2012; Dieguez et al., 2009). The SEP amplification found in 291	

these studies is consistent with SEP amplitude increases in response to transient physical anaesthesia 292	

of a body part (Tinazzi et al., 2003; Urasaki et al., 2002). The increase in SEP amplitude 293	

accompanying altered body representation found by Aspell et al. (2012) and Dieguez et al. (2009) is 294	

likely the consequence of multisensory reweighting of signals in the brain. In contrast with these 295	

findings, our results showed P40 suppression during imagined paralysis. One of the major differences 296	

between altered body representation achieved in these studies and in the current study is that Aspell et 297	

al. (2012) and Dieguez et al. (2009) altered body representations via spatiotemporal multisensory 298	

conflicts. Although participants consciously perceived altered body representations in these studies, it 299	

was somewhat sensory driven and did not require active cognitive effort on their behalf. Paralysis 300	

imagery, on the other hand, requires participants to consciously and mentally act to alter own-body 301	

representations. Thus, attenuation of SEPs in the present study may reflect explicit efforts to alter the 302	

body representation and inhibit sensory perceptions of the legs that might not be considered as crucial 303	

by the central nervous system. Our results are consistent with several studies using hypnotic 304	

suggestion. For example, De Pascalis, Cacace, & Massicolle (2008) instructed participants to imagine 305	
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an obstructive object (a glove) between their hand and a painful stimulus, and found a reduction in the 306	

N140 and P200 amplitudes. Likewise, De Pascalis et al. (2008) found a similar suppression of the 307	

N140 and P200 responses to painful stimulation when participants imagined floating outside of their 308	

body. While the body representation was not the primary target of these studies, they suggest that 309	

own-body imagery can modulate somatosensory processing.  310	

Later activation changes have also been observed in the literature. Long-latency (>40 ms) 311	

components are thought to be generated by several areas, including area 3b, areas 1 and 2, secondary 312	

somatosensory cortex (SII), and primary motor cortex (area 4). SEP components to tibial nerve 313	

stimulation around the time period of the later response at 110–200 ms originate in or near to SII, as 314	

well as in the posterior parietal and frontal cortex (Allison, McCarthy, Wood, Darcey, et al., 1989; 315	

Allison, McCarthy, Wood, Williamson, & Spencer, 1989; Kakigi et al., 1995). These later changes 316	

were mostly attributed to the detection of visuo-tactile conflicts that were not present in our study 317	

(Aspell et al., 2012; Press, Heyes, Haggard, & Eimer, 2008). Heydrich et al. (2018) suggested that 318	

areas beyond S1 (such as the secondary motor cortex, see Bufalari, Aprile, Avenanti, Di Russo, & 319	

Aglioti, 2007) are associated with changes in somatosensory processing linked to altered states of 320	

bodily self-consciousness (e.g. illusory self-identification with an avatar). However the 321	

electrophysiological data of Press et al. (2008) indicate that the process of filtering what may or may 322	

not become part of one’s body is not the same as volitional alteration of body representation. 323	

Another interesting result of the present study was that the magnitude of SEP suppression 324	

correlated with PBCS and body dissociation scores. Those with the disposition to attend to and focus 325	

on bodily sensations exhibited the largest SEP suppression. It is reasonable to assume that heightened 326	

bodily awareness results in increased accessibility to the internal representation of the body and an 327	

enhanced ability to impose upon this sensory representation. Conversely, those scoring high in body 328	

dissociation exhibited the least amount of suppression, or showed the reverse and exhibited an 329	

increase in SEP amplitudes. It could be the case that those exhibiting high body dissociation are using 330	

a less sensory-bound body representation to achieve imagined paralysis. However, further research 331	
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should aim to elaborate on these findings and establish the causal role of body awareness and body 332	

dissociation in accessing and manipulating own-body representations.  333	

While the underlying mechanisms of top-down modulation in S1 remain a topic for future 334	

research, our findings still have a significant clinical implication for Mindfulness Based Therapy 335	

(MBT) and motor imagery (MI) in the presence of pain. Recent trends in clinical intervention have 336	

ventured towards MBT (Baer, 2003), an intervention that encourages patients to focus on their current 337	

internal bodily sensations, emotions and thoughts with an attitude of non-judgmental acceptance. 338	

MBT has been successful in the treatment of acute anxiety and depression (Hofmann, Sawyer, Witt, 339	

& Oh, 2010), as well as in reducing stress and symptoms associated with physical and psychosomatic 340	

disorders (Grossman, Niemann, Schmidt, & Walach, 2004), including pain (Rosenzweig et al., 2010) 341	

and irritable bowel syndrome (Ljotsson et al., 2010; Zernicke et al., 2013). One commonality between 342	

MBT and paralysis imagery is that they shift attention towards a specific body part and require 343	

participants to focus on the sensory perception of that body part. In light of our findings, future 344	

research should establish whether MBT similarly influences low-level sensory processing. Such 345	

evidence would enable MBT to be tailored to patients with specific body related disorders. Modifying 346	

the body schema via motor imagery (MI) could also be a promising approach for the treatment of 347	

clinical disorders. MI refers to the mental representation of an action without engaging in its actual 348	

execution (Moran, Guillot, Macintyre, & Collet, 2012). It involves the absence of overt motor output 349	

rather than of overt movement itself (MacIntyre, Madan, Moran, Collet, & Guillot, 2018). The 350	

repetitive use of MI has been shown to promote motor recovery and to alleviate phantom-limb pain in 351	

lower limb amputees (Saruco et al., 2019). However, Gustin et al. (2008) reported exacerbation of 352	

pain in response to MI in spinal cord injury patients with neuropathic pain. These authors suggested 353	

that “the generation of pain may be an example of a “mental” or “cognitive” allodynia where 354	

activation of sensory pathways on a background of central neuronal hyperexcitability or sensitization 355	

results in the generation of pain”. Thus, imagined paralysis or the “no movement” imagery may have 356	

analgesic effects in patients with chronic arm/leg pain or phantom limb pain, for example. Further 357	

research should be conducted as MI is altered in a number of pathologies characterized by an 358	
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impairment of action performances (Coslett, Medina, Kliot, & Burkey, 2010; Fiori et al., 2013; Ionta 359	

et al., 2016; Scandola, Aglioti, Avesani, et al., 2017; Scandola, Aglioti, Pozeg, Avesani, & Moro, 360	

2017; Schwoebel, Friedman, Duda, & Coslett, 2001).  361	

A limitation of the current study is the relatively low sample size, which can result in an 362	

overestimation of the observed effect. A replication of our findings in a higher-powered sample is 363	

therefore desirable to test the robustness of this effect. To conclude, we have confirmed that the body 364	

representation is malleable via conscious, top-down processes. Previous research has also shown that 365	

body representation can be influenced by passive manipulations to multisensory signals, resulting in 366	

altered low-level sensory processing. The current study expands upon these results by showing that 367	

low-level sensory processing can be modulated by explicit, top-down alterations to the body 368	

representation. Paralysis imagery can penetrate early levels of somatosensory processing.  369	
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Table 1 552	

 553	

Question 

 

Arm Paralysis 

M (SD) 

Leg Paralysis 

M (SD) 

Legs   

During the experiment, my legs felt useless 1.22 (0.44) 3.33 (1.23) 

My legs felt heavy during the experiment 1.00 (0.00) 3.66 (1.23) 

During the experiment I had the impression that I couldn’t use my legs as well as I am 
used to. 

1.00 (0.00) 3.44 (1.13) 

During the experiment my legs felt weak 1.00 (0.00) 3.66 (1.41) 

During the experiment my legs felt strange, as if they did not belong to my body 1.00 (0.00) 1.22 (0.44) 

During the experiment my legs felt paralyzed 1.00 (0.00) 3.33 (0.88) 

During the experiment I had the impression that I could not have moved my legs if I had 
wanted to 

1.00 (0.00) 3.44 (0.88) 

   

Arms   

During the experiment, my arms felt useless 3.22 (1.20) 1.44 (0.53) 

My arms felt heavy during the experiment 3.66 (1.23) 1.22 (0.44) 

During the experiment I had the impression that I couldn’t use my arms as well as I am 
used to. 

3.22 (1.20) 1.00 (0.00) 

During the experiment my arms felt weak 3.33 (1.32) 1.00 (0.00) 

During the experiment my arms felt strange, as if they did not belong to my body 1.33 (0.50) 1.00 (0.00) 

During the experiment my arms felt paralyzed 3.22 (1.39) 1.00 (0.00) 

During the experiment I had the impression that I could not have moved my arms if I 
had wanted to 

2.77 (0.83) 1.00 (0.00) 

 554	

 555	
Table 1. Mean and standard deviations in relation to seven statements concerned with the 556	

perception of either the legs or arms during paralysis imagery. Statements are rated on a 7-557	

point Likert scale (1 = not true, 7 = true).  558	

  559	
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Figure 1 560	

 561	

Figure 1. Single traces for electrode CPz depicting SEP components for all three 562	

experimental conditions 563	

 564	

  565	
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Figure 2 566	

  567	

Figure 2. Mean amplitude (µV) of CPz for the P40 component across experimental 568	

conditions. Asterisk (*) denotes significant differences (p < 0.05).  569	

 570	

 571	

  572	
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Figure 3 573	

 574	

 575	

Figure 3. Segments of stable brain topography (GFP) across all three experimental 576	

conditions. Maps 4 (blue) and 5 (green) denote the topography that corresponds to the SEP 577	

window. Topographical polarity for Map 4 (on the left) and Map 5 (on the right) is displayed 578	

in. The blue cross denotes the area of maximum negativity and the red cross denotes the area 579	

of maximum positivity.  580	

 581	
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Figure 4 583	

 584	
 585	
  586	
Figure 4. Maximum GFP was significantly lower during the Imagined Leg Paralysis 587	

condition for Map 4 as compared to Baseline. Asterisk (*) denotes significant differences (p 588	

< 0.05).  589	

 590	

  591	



25	
	

Figure 5 592	

 593	

Figure 5. Box-and-whiskers plots of the perception of either the legs or arms during paralysis 594	

imagery. Asterisk (*) denotes significant differences (p < 0.05).   595	

 596	

  597	
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Figure 6 598	

599	

 600	

Figure 6. Plots show the maximum peak amplitude difference between the Imagined Leg 601	

Paralysis and the Baseline conditions relative to the mean score of the PBCS (A) and BD 602	

subscale (B). Analysis revealed a significant negative correlation between the amplitude 603	

difference with PBSC scores (ρ = -0.78, p = 0.008) and a significant positive correlation 604	

between the amplitude difference and BD scores (ρ = 0.65, p = 0.028).  605	

 606	
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