
HAL Id: hal-03009021
https://hal.science/hal-03009021

Submitted on 17 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pattern Sampling in Distributed Databases
Lamine Diop, Cheikh Talibouya Diop, Arnaud Giacometti, Arnaud Soulet

To cite this version:
Lamine Diop, Cheikh Talibouya Diop, Arnaud Giacometti, Arnaud Soulet. Pattern Sampling in
Distributed Databases. Advances in Databases and Information Systems - 24th European Conference,
ADBIS 2020, Lyon, France, August 25-27, 2020, Proceedings, pp.60-74, 2020, �10.1007/978-3-030-
54832-2_7�. �hal-03009021�

https://hal.science/hal-03009021
https://hal.archives-ouvertes.fr

Pattern Sampling in Distributed Databases

Lamine Diop12, Cheikh Talibouya Diop2, Arnaud Giacometti1, and Arnaud Soulet1

1Université de Tours, Tours, France
{arnaud.giacometti, arnaud.soulet}@univ-tours.fr

2Université Gaston Berger de Saint-Louis, Saint-Louis, Sénégal
{diop.lamine3,cheikh-talibouya.diop}@ugb.edu.sn

Abstract. Many applications rely on distributed databases. However,
only few discovery methods exist to extract patterns without centraliz-
ing the data. In fact, this centralization is often less expensive than the
communication of extracted patterns from the different nodes. To cir-
cumvent this difficulty, this paper revisits the problem of pattern mining
in distributed databases by benefiting from pattern sampling. Specifi-
cally, we propose the algorithm DDSampling that randomly draws a
pattern from a distributed database with a probability proportional to
its interest. We demonstrate the soundness of DDSampling and analyze
its time complexity. Finally, experiments on benchmark datasets high-
light its low communication cost and its robustness. We also illustrate its
interest on real-world data from the Semantic Web for detecting outlier
entities in DBpedia and Wikidata.

1 Introduction

Many applications require storage and manipulation of distributed databases [14]
like large-scale wireless sensor networks [15] or the Semantic Web [2]. In most
cases, the centralization of data is very costly, in particular when the databases
evolve continuously. Sometimes legal constraints also prevent this centralization
[6]. Thus, [16] underlines the importance of extending knowledge discovery to
distributed databases. In the context of the Semantic Web, Table 1 illustrates
an example of Resource Description Framework (RDF) data distributed over
four triplestores P = {D1,D2,D3,D4} accessible via SPARQL queries. In this
context, the properties describing the entity identified by TId 1 (e.g., the singer
“Youssou N’Dour”) are spread over several fragments (i.e., DBpedia D1 with
the property A, and Wikidata D2 with the properties B and C). There exist
federated systems to execute SPARQL queries on multiple triplestores [9]. Un-
fortunately, SPARQL is not expressive enough to directly extract patterns like
frequent itemsets. By relying on a basic communication model, this paper aims
at extracting patterns from a distributed database P (including RDF data) as
if the data were centralized (see P∗ in Table 1).

Few works in the literature [4,13,10,11] are dedicated to pattern mining in
distributed databases. Unfortunately, they suffer from three major limitations.
First, they exclusively address horizontally partitioned data (i.e, unlike the ex-
ample P in Table 1, a transaction cannot be split into two fragments). Second,

P
D1

TId Trans.
1 A
4 B E
5 B C

D2

TId Trans.
1 B C
2 F G
5 D

D3

TId Trans.
2 D
4 F G

D4

TId Trans.
2 A
3 D E F

→

P∗
TId Trans.
1 A B C
2 A D F G
3 D E F
4 B E F G
5 B C D

Table 1: Example of a distributed database P = {D1,D2,D3,D4}

as these proposals focused on an exhaustive extraction of patterns, the volume
of data exchanged between the different fragments can be very high. Finally,
these proposals need computing capacity on each fragment for locally mining
patterns, which is often impossible (for example, in the case of the SPARQL
endpoints of the Semantic Web). To overcome these limitations, we propose to
benefit from pattern sampling [1,3]. Pattern sampling consists in randomly draw-
ing a collection of patterns with a probability proportional to their interest. This
technique has a low computational cost, but it is also useful in many tasks such
as classification [3], outlier detection [8] or interactive data mining [7].

In this paper, we show how to sample patterns from a distributed database
that can be partitioned both horizontally and vertically, without using the com-
puting capacity of the different fragments. Our main contributions are as follows:

– We propose a generic algorithm called Distributed Database Sampling
(DDSampling) which randomly draws a pattern from a distributed
database proportionally to an interestingness measure combining frequency
and length-based utility functions (including length constraints).

– We demonstrate that DDSampling performs an exact sampling and analyze
its complexity on average. Experiments show that DDSampling is very fast
and that the communication cost of our proposal is much lower than that of
data centralization for drawing a few thousand patterns. We also show that
in the context of distributed databases, DDSampling is a fault-resistant
algorithm against network and node failures.

– We illustrate the interest of DDSampling on a use case by detecting outliers
in two real-world triplestores: DBpedia and Wikidata. These experiments
show the importance of using a maximum length constraint and that output
space sampling is more efficient than input space sampling.

This paper is structured as follows. After the related work in Section 2, Sec-
tion 3 introduces basic definitions and formalizes the problem of pattern sampling
in distributed databases. We detail the algorithm DDSampling in Section 4 that
exactly draws patterns as if the distributed database was centralized. Section 5
evaluates its performance on benchmarks datasets and illustrates the interest of
pattern sampling to detect outliers in the Semantic Web.

2 Related Work

Several approaches in the literature focused on frequent pattern mining in dis-
tributed databases. This task is complex because whatever the minimum fre-
quency threshold user-specified on the distributed database (global frequency),
it is not possible to constrain the local frequency on each fragment without
communicating information between sites. In this context, [4] proposes the first
method to extract all the globally frequent patterns by identifying the sites where
the patterns are the most frequent and thus, reducing communication costs. More
drastically, [13] proposes to save communication costs by limiting themselves to
the collection of the maximal frequent patterns. To prevent each fragment from
enumerating all its patterns, [10] imposes a minimum local frequency threshold
on each fragment. From the different local extractions, [11] builds an approxi-
mate global collection of frequent patterns. A centralized pruning proposed by
[18] is based on the construction of a tree containing for each pattern all its
occurrences (i.e., fragment/transaction pairs), which still requires a consider-
able volume of communications. More recently, [17] implements a decentralized
pruning technique within the extraction on each fragment by exchanging Bloom
filters. This approach significantly reduces computation time but the cost of com-
munications remains too large. Indeed, for low support threshold, the volume of
extracted patterns invariably generates an enormous communication cost much
higher than that of data centralization. In addition, all these frequent pattern
mining approaches are limited to horizontal partitioning of data, i.e. the same
transaction cannot be distributed on two separate fragments. Finally, all the ex-
isting proposals require a computation capacity on each fragment, which is not
always possible. For instance, the Semantic Web provides access to distributed
data via SPARQL endpoints, but it is not possible to execute a pattern mining
routine on these endpoints. For all these reasons, in this paper, we revisit the
discovery of patterns in distributed databases in the light of pattern sampling.
We will see that our approach does not require computation capacity on the
fragments and it reduces the communication costs because all the patterns are
not extracted.

Output space sampling methods [1,3] aim at drawing patterns with a prob-
ability distribution proportional to their interest. Most sampling techniques fall
into two broad categories: stochastic methods [1] and multi-step methods [3]. In
order to randomly walk from a pattern X to another, stochastic methods require
to consider the global interest of all the neighboring patterns of X. For example,
in the case of frequency, it would be necessary to know the global frequency of
all the subsets and supersets of X, which would generate many communications.
For this reason, we prefer to adopt a multi-step random method. This type of
method has already been used for several interestingness measures (e.g., support
or area [3] or exceptional measure [12]) and several data types like sequential
data [5]. Nevertheless, the context of distributed databases is an orthogonal chal-
lenge. In particular, we determine minimal information that the fragments must
communicate to make an unbiased draw of patterns.

3 Problem Formulation

3.1 Pattern language and distributed databases

Given a set I of distinct literals called items, an itemset (or pattern) is a subset
of I. The language of itemsets corresponds to L = 2I , and the size or length of an
itemsetX ∈ L, denoted by |X|, is its cardinality. In our approach, a transactional
database D is a set of pairs (j,X) where j is the unique identifier of a transaction
and X is an itemset in L, i.e. D ⊆ N×L. In the following, given a transactional
database D, for every integer j ∈ N, D[j] represents the itemset of transaction j,
i.e. D[j] = X if (j,X) ∈ D (otherwise, we consider that D[j] = ∅). Moreover, |D|
is the number of transactions in D and ||D|| =

∑
j∈N |D[j]| defines the size of the

transactional database D. For example, in Table 1, the transactional database
D1 contains 3 transactions of identifiers 1, 4 and 5. Besides, we have D1[1] = A,
D1[4] = BE and D1[5] = BC. Thus, we have ||D1|| = 1 + 2 + 2 = 5.

Intuitively, a (transactional) distributed database is a set of transactional
databases, also called fragments, where transactions do not overlap. More for-
mally, a distributed database is defined as follows:

Definition 1 (Transactional distributed and centralized databases). A
(transactional) distributed database P = {D1, . . . ,DK} is a set of transactional
databases Dk (k ∈ [1..K]) such that for each j ∈ N, we have Dk[j] ∩ Dl[j] = ∅
if k 6= l. Then, the centralized version of P, denoted by P∗, is the transactional
database defined by: P∗ = {(j,X) : X =

⋃K
k=1Dk[j] ∧X 6= ∅}.

For example, in Table 1, it is easy to see that P∗ is the centralized version
of the distributed database P = {D1, . . . ,D4}. In the following, we also say that
P is a partitioning of the centralized database P∗. In general, different types
of partitioning are distinguished. On the one hand, a distributed database is a
horizontal partitioning if every transaction is described in only one fragment, i.e.
if for every j ∈ N, Dk[j] 6= ∅ and Dl[j] 6= ∅ implies that k = l. On the other hand,
a distributed database is a vertical partitioning if every item is present in only
one fragment, i.e. if for every x ∈ I, x ∈

⋃
j∈NDk[j] and x ∈

⋃
j∈NDl[j] implies

that k = l. Finally, a partitioning is said to be hybrid if it is neither horizontal
nor vertical. For example, in Table 1, P is a hybrid partitioning of P∗. Indeed,
the transaction 2 is described both in the fragments D2, D3 et D4 and the item
A is both present in fragments D1 and D4.

We consider only two forms of query can be sent to the fragment:

1. lengthOf primitive: Given a transaction identifier j and a fragment Dk, the
query lengthOf(j,Dk) returns the length of the transaction j in fragment k,
i.e. lengthOf(j,Dk) = |Dk[j]|. In our example, we have lengthOf(4,D1) = 2
since |D1[4]| = |BE| = 2.

2. itemAt primitive:Given a position i, a transaction j and a fragmentDk, the
query itemAt(i, j,Dk) returns the i-th item of the transaction j in fragment
Dk (assuming an arbitrary order over the set of items I). In our example,
considering the lexicographic order over I, we have itemAt(2, 4,D1) = E.

Our communication model is generic since more complex queries can be reduced
to these two basic primitives for describing the exchanges. For instance, ad-
vanced queries may directly obtain a transaction of ` items from a fragment
corresponding to ` itemAt primitives. For the Semantic Web, for the prim-
itive lengthOf, the SPARQL query SELECT (COUNT(DISTINCT ?p) AS ?length)
WHERE {wd:Q210734 ?p ?o} returns the length of Youssou N’Dour’s transaction
(wd:Q210734) fromWikidata SPARQL endpoint (here, the length is 143 items). In
the same way, the query SELECT DISTINCT ?p WHERE {wd:Q210734 ?p ?o} OFFSET
2 LIMIT 1 gives the second item of the transaction. Of course, it is possible to
use the query SELECT DISTINCT ?p WHERE {wd:Q210734 ?p ?o} for having the en-
tire transaction instead of using 143 itemAt queries. Unlike the two primitives
that have 1 as communication cost, the communication cost of this query is 143.

3.2 Class of interestingness measures

Pattern discovery is based on interestingness measures that evaluate the qual-
ity of a pattern. One of the most popular of interestingness measures is the
frequency which is an intuitive interestingness measure for experts and is an
essential atomic element to build many other interestingness measures (like
area or discriminative measures). The frequency of an itemset X ∈ L in the
transactional database D, denoted by freq(X,D), is defined by: freq(X,D) =
|{(j, T) ∈ D : X ⊆ T}|. In Table 1, we have freq(DF,P∗) = 2 since the itemset
DF is included in transactions 2 and 3.

It is also common to associate a utility to an itemset, and to combine the fre-
quency of an itemset with its utility. For example, if we consider the utility func-
tion u(X) = |X|, we obtain the area measure: freq(X,D)× |X|. More generally,
we consider the class of interestingness measures of the form freq(X,D)× u(X)
where u exclusively depends on the length of itemsets:

Definition 2 (Length-based utilities and measures). A utility u defined
from L to R is called a length-based utility if there exists a function fu from
N to R such that u(X) = fu(|X|) for each X ∈ L. Given the set U of length-
based utilities,MU is the set of interestingness measures mu such that for every
pattern X and database D, mu(X,D) = freq(X,D)× u(X) with u ∈ U .

We already see that the utility function defined for every pattern X ∈ L
by uarea(X) = |X| allows us to consider the area measure freq(X,D) × |X|.
Obviously, let us notice that the utility function defined by ufreq(X) = 1 en-
ables us to consider the frequency as interestingness measure. Besides, the util-
ity function defined by u≤M (X) = 1 iff |X| ≤ M (0 otherwise) simulates a
maximum length constraint. Indeed, with the induced interestingness measure
freq(X,D)× u≤M (X), an itemset with a cardinality strictly greater than M is
judged useless (whatever its frequency). Dually, the utility function defined by
u≥m(X) = 1 iff |X| ≥ m (0 otherwise) simulates a minimum length constraint.
Finally, the utility function defined by udecay(X) = α|X| with α ∈]0, 1[, named
exponential decay, is useful for penalizing large itemsets but in a smooth way in
comparison with u≤M .

3.3 Pattern sampling in a distributed database

A pattern sampling method aims at randomly drawing a pattern X from a
language L according to an interestingness measure f . X ∼ π(L) denotes such
a pattern where π(.) = f(.)/Z is a probability distribution over L (with Z as
normalizing constant). In this paper, our goal is to randomly draw patterns in
a distributed database according to an interestingness measure inMU :

Given a distributed database P, an interestingness measure m ∈
MU , we aim at randomly drawing a pattern X ∈ L with a prob-
ability distribution π proportional to its interestingness measure m
i.e., π(X) = m(X,P∗)

Z
where P∗ is the centralized version of P and

Z =
∑

X∈Lm(X,P∗) is a normalizing constant.
A naive approach could apply the classical two-step random procedure [3] af-

ter having centralized all the fragments of the distributed database P for building
P∗ (using itemAt queries). The communication cost of this preliminary central-
ization would be very high. Indeed, it would be proportional to the size of P∗,
i.e. ||P∗|| =

∑K
k=1 ||Dk||. Next section shows that it is only necessary to central-

ize the lengths of the transaction parts stored in the different fragments of P in
order to draw an exact sample of patterns.

4 Decentralized Pattern Sampling

4.1 DDSampling algorithm

This section presents our algorithm called DDSampling (for Distributed
Database Sampling), which randomly draws a pattern from a distributed
database P proportionally to an interestingness measure m ∈MU .

The key idea of our proposal is first to centralize only the lengths of the
transaction parts contained in the different fragments. Indeed, this information
requires a low communication cost and it enables us to draw a transaction iden-
tifier j according to its weight ω(j) and an itemset length ` proportionally to
ω`(j). Finally, we show how to emulate a decentralized sampling of a subset of
D[j] of length ` without centralizing all the items of D[j].
Preprocessing phase. In this phase (see lines 1-2 of Algorithm 1), we first
compute and store locally a matrix M that contains for every transaction j and
every fragment Dk of P, the length of the transaction j in Dk.

Definition 3 (Weight matrix). Given a distributed database P = {D1, . . . ,
DK}, let M ∈ R|P∗|×|P| be the matrix defined for every j ∈ [1..|P∗|] and k ∈
[1..K] by Mjk = lengthOf(j,Dk).

In practice, it is important to note that the matrixM is computed offline be-
fore the drawing phase. In the following,Mj• denotes the sumMj• =

∑K
k=1Mjk.

It is easy to see that Mj• represents the length of the transaction j in P∗, i.e.
Mj• = |P∗[j]|. For example, Table 2 presents the weight matrix M of the dis-
tributed database of Table 1. We can also check that M1• = 1 + 2 = |P∗[1]|.

j M Mj•
∑Mj•

`=0 ω
freq
` (j) = ωfreq(j) ωarea(j) ω62(j) ωdecay(j)

1 1 2 0 0 3 1 + 3 + 3 + 1 = 8 12 7 1.331
2 0 2 1 1 4 1 + 6 + 4 + 4 + 1 = 16 32 11 1.6441
3 0 0 0 3 3 1 + 3 + 3 + 1 = 8 12 7 1.331
4 2 0 2 0 4 1 + 6 + 4 + 4 + 1 = 16 32 11 1.6441
5 2 1 0 0 3 1 + 3 + 3 + 1 = 8 12 7 1.331

Table 2: Weight matrix M and transaction drawing weights

Algorithm 1 DDSampling

Input: A distributed database P = {D1, · · · ,DK} and a length-based utility u ∈ U
Output: An itemset X ∈ L randomly drawn w.r.t. freq(X,P∗)× u(X)

// Preprocessing Phase
1: Compute M defined by Mjk := lengthOf(j,Dk) for j ∈ [1..|P∗|] and k ∈ [1..K]

2: Compute the weights ω defined by ω(j) :=
∑Mj•

`=0

(
Mj•
`

)
× fu(`) for j ∈ [1..|P∗|]

// Drawing Phase – Step 1: sampling of a transaction
3: Draw a transaction identifier j ∈ [1..|P∗|] proportionally to ω: j ∼ ω(P∗)

// Drawing Phase – Step 2: decentralized sampling of an itemset
4: Compute the weights defined by ω`(j) :=

(
Mj•
`

)
× fu(`) for every ` ∈ [0..Mj•]

5: Draw a length ` proportionally to ω`(j): ` ∼ ω[0..Mj•](j)
6: ϑ := ∅ and X := ∅
7: while |X| < ` do
8: i ∼ u([1..Mj•] \ ϑ)
9: k := min{p ∈ [1..K] : i ≤

∑p
m=1Mjm}

10: i′ :=
∑k

m=1Mjm − i+ 1 and x := itemAt(i′, j,Dk)
11: X := X ∪ {x}
12: ϑ := ϑ ∪ {i}
13: od
14: return X

Given a distributed database P and its associated weight matrix M , Prop-
erty 1 shows how the weights ω(j) and ω`(j) can be computed for each transac-
tion j and length ` for any length-based utility function u:

Property 1. Let P = {D1, . . . ,DK} be a distributed database and u ∈
U a length-based utility. Given the weight matrix M associated with P,
for each transaction j ∈ [1..|P∗|] and ` ∈ [1..Mj•], we have: ω`(j) =∑

X⊆P∗[j]∧|X|=` u(X) =
(
Mj•
`

)
× fu(`). Moreover, we have ω(j) =

∑Mj•
`=0 ω`(j).

Due to space limitation, the proofs have been omitted. Intuitively, this prop-
erty is valid because all the itemsets of length ` in a transaction j have the
same utility. In Algorithm 1, this property is useful during the preprocessing
phase to compute the weights of all the transactions. This preprocessing phase
is illustrated in Table 2 with four length-based utility functions: ufreq, uarea,
u≤2 and udecay (with α = 0.1). For example, because ufreq(X) = 1 for ev-
ery X ∈ L, we have ωfreq(1) =

∑3
`=0

(
3
`

)
= 1 + 3 + 3 + 1 = 8 = 23. Con-

sidering the area utility function uarea, we have ωarea(1) =
∑3

`=0

(
3
`

)
× ` =

(1 · 0) + (3 · 1) + (3 · 2) + (1 · 3) = 3 + 6 + 3 = 12 since uarea(X) = ` for
every pattern X of length `. With the maximum length constraint, it is easy
to see that ω62(1) =

∑2
`=0

(
3
`

)
= 1 + 3 + 3 = 7. Finally, with the decay

utility function udecay and α = 0.1, we have ωdecay(1) =
∑3

`=0

(
3
`

)
× 0.1` =

(1 · 0.10) + (3 · 0.11) + (3 · 0.12) + (1 · 0.13) = 1 + 0.3 + 0.03 + 0.001 = 1.331.

Drawing phase. In this phase, we can apply a direct generalization of the
two-step random procedure proposed in [3] to draw itemsets with a probability
proportional to their interest in the manner of the area measure. We start by
drawing in Step 1 a transaction identifier j with a probability proportional to its
weight ω(j) (see line 3 of Algorithm 1). The only difference is that the weights
ω(j) are computed during the preprocessing phase using the weight matrix M
and Property 1.

In Step 2, as the weights ω`(j) of the transaction j are not stored during the
preprocessing phase to reduce the storage cost, line 4 computes them for any
length `. After drawing the length ` of the itemset that will be returned (lines
4-5), DDSampling draws an itemset of length ` from the different fragments of
P. At each iteration of the while loop (lines 7-13), the key idea is to draw without
replacement the position i of an item in the transaction j (line 8) and to search
the fragment Dk that contains this item (line 9). Then, we compute the position
i′ of this item in the fragment Dk before querying the corresponding item x (see
line 10). Finally, the item x is added to the itemset X (line 11) that will be
returned (line 14) and the position i is added to the set ϑ (line 12) in order
to avoid sampling the same position (and item) twice (see line 8). This process
is repeated ` times in order to return an itemset X of length `. For example,
considering the toy example in Table 2, if we draw the position i = 2 in the
transaction j = 1, we find that the involved fragment is D2 since 2 > M11 = 1
whereas 2 ≤ M11 +M12 = 3. Then, we compute i′ = 2 − 1 = 1 and the item
itemAt(1, 1,D2) = B is added to the itemset X.

4.2 Theoretical analysis of the method

The following property states that DDSampling returns an exact sample of
itemsets without centralizing the distributed database:

Property 2 (Correction). Given a distributed database P = {D1, ..., DK} and a
length-based utility function u ∈ U , Algorithm 1 draws an itemset X according
to a distribution proportional to mu(X,D) = freq(X,D)×u(X) where D = P∗.

This follows from the fact that the three different draws (i.e., transaction
j, length ` and the sampled itemset) take into account the number of itemsets
occurring in each transaction weighted by the utility function. We now study the
complexity of our method by distinguishing the two main phases: the preprocess-
ing phase (where the matrixM is computed) and the drawing phase of itemsets.
For each phase, we evaluate the complexity in time and in communication.

Time and space complexity. In the preprocessing phase, the weight matrix
M is first computed with a complexity in time O(|P∗| · |P|). Then, the weight
ω(j) of all transactions j ∈ [1..|P∗|] is computed in time O(|P∗| · |I|) due to the
use of the binomial function. Thus, the preprocessing phase is performed in time
O(|P∗| · (|P| + |I|)). The draw of itemsets is less expensive. First, the draw of
a transaction identifier can be achieved in O(log(|P∗|)). Then, the drawing of
an itemset from this transaction is done in time O(|I|). Therefore, the drawing
complexity of an itemset is in O(log(|P∗|) + |I|). Besides, the space complexity
only depends on the weight matrix dimension and it is in O(|P∗| · |P|). As this
storage cost is really low in practice, we store the matrix in memory. In an
extreme case, the matrix could be stored in a database with a B-tree index to
have quick access to the rows.

Communication complexity. In order to evaluate the communication cost,
we simply count the number of queries lengthOf and itemAt required for the
two main phases. First, it is easy to see that for the preprocessing phase, the
construction of the weight matrix M requires O(|D1| + · · · + |DK |) exchanges
(using lengthOf queries), which is in general significantly lower than the cost of
a complete centralization of P in O(||D1||+ · · ·+ ||DK ||) = O(||P∗||) exchanges
(using itemAt queries). For the drawing of an itemset of length `, it is clear
that ` itemAt queries are necessary to return an itemset. Therefore, the average
communication cost to draw an itemset is equal to the average length E[L] of
an itemset returned by DDSampling. Given a distributed database P, we can
easily see that E[L] is equal to

∑
+∞
`=1 P (`) × ` where P (`) =

∑
j∈[1..|P∗|] ω`(j)∑
j∈[1..|P∗|] ω(j) is

the probability to draw an itemset of length `. Considering our toy example in
Table 2 and the maximum length utility function u≤2, we have P (L = 1) =
3+6+3+6+3

7+11+7+11+7 = 21
43 and P (L = 2) = 3+4+3+4+3

7+11+7+11+7 = 17
43 . Thus, the average

communication cost for drawing an itemset is equal to E[L] = (2143 ·1)+(1743 ·2) ≈
1.28. Note that without length constraint (using ufreq utility function), this cost
is higher and equal to E[L] = (2156 · 1) + (1756 · 2) + (1156 · 3) + (2

56 · 4) ≈ 1.71.

Rejection rate. Two main problems arise in distributed databases: network
communication errors (network failure) and node inaccessibility (node failure).
These phenomena induce a bias in the performed drawings because we have
to reject a pattern X as soon as an itemAt query fails during its drawing.
In the case of network failure, let εnet be the probability that an itemAt query
failed. Assuming that the failures are independent, we can show that P(reject) =∑

` P (`)·
(
1− (1− εnet)`

)
. Thus, if εnet is a small number, we have P(reject) ≈

εnet · E[L] (where E[L] is the average length of a sampled itemset). Now, in
the case of node failure, let εnode be the probability that a node is down. If the
distributed database is an horizontal partitioning of a centralized database, it is
clear that P(reject) = εnode. Otherwise, if the distributed database is a vertical
or hybrid partitioning of P∗, assuming that the items are uniformly distributed
over the nodes, we can show that P(reject) =

∑
` P (`) ·

(
1− (1− εnode)`

)
. Thus,

if εnode is a small number, we have P(reject) ≈ εnode ·E[L]. Nowadays, εnet and
εnode are very small. Therefore, it follows that the rejection is negligible.

5 Experimental Evaluation

In this section, we evaluate the efficiency of our approach compared to a central-
ized solution (see Section 5.1) and its interest to find outliers in knowledge bases
of the Semantic Web (see Section 5.2). Note that our prototype is implemented
in Java and is available at https://github.com/DDSamplingRDF/ddsampling.
git. All experiments are conducted on a 3.5 GHz 2 core processor with the
Windows 10 operating system and 16 GB of RAM.

5.1 Efficiency and robustness of DDSampling

In our first experiments, we use 4 UCI datasets that we uniformly partition into
K = 10 fragments to simulate distributed databases. In the case of horizon-
tal partitioning (resp. vertical partitioning), each transaction (reps. each item)
is randomly placed to a fragment with the same probability 1/K; in the case
of hybrid partitioning, all the items of a transaction are randomly placed to a
fragment (with the same probability 1/K). The first columns of Table 3 show
statistical information about all datasets. In all experiments, we use an interval
length constraint u≥1 and u≤M (with M = {3, 5}). This choice avoids drawing
too much infrequent patterns, in particular for datasets containing long trans-
actions.
Execution times and communication costs. Table 3 indicates the execution
times of our method by distinguishing the preprocessing and sampling phase,
only in the case of vertical partitioning for M = 3. As expected, the preprocess-
ing time (which can be prepared offline) increases with the size of the dataset.
However, it is very small (less than 3 s). Regarding the sampling phase, whatever
the dataset, it is always under 0.02 ms (per pattern). For the communication
costs, we consider the three types of partionings. In the preprocessing phase,
the communication cost corresponds to the number of lengthOf calls for con-
structing the weight matrix. This cost is naturally higher for hybrid and vertical
partitionings since the items of a transaction may not be in the same fragment.
In the drawing phase, the communication cost corresponds to the number of
itemAt calls, and Table 3 shows the mean number of calls for drawing a pattern.
This cost does not depend on the type of partitioning, but on the maximum
length (M ∈ {3, 5}). Finally, we compare the communication cost between dis-
tributed and centralized approaches by evaluating the number Nmax of drawn
patterns in the worst case (when M = 5 for vertical partitioning) that are nec-
essary for the sampling approach to be as costly as data centralization. For all
datasets, we can see that DDSampling can draw a few thousand patterns with
a communication cost lower than that of a data centralization.
Robustness. As seen in Section 4.2, network or node failures induce the rejec-
tion of some patterns. In this context, we evaluate the mean rejection rate by
drawing 10,000 patterns by varying p and z. We repeat 100 times each exper-
iment by randomly generating the dataset partition and changing down nodes.
As rejection rates are independent of datasets, Figure 1 plots the average rejec-
tion rate and the standard deviation computed by averaging the results from the

https://github.com/DDSamplingRDF/ddsampling.git
https://github.com/DDSamplingRDF/ddsampling.git

Nb of lengthOf calls #itemAt Vertical
Centralized databases Distributed databases Distributed Nmax Time (s)

D |I| |D| ||D|| Hor. Hybrid Vertical M=3 M=5 vertical Prep. Sampl.
Chess 75 3,196 118k 3,196 31,312 31,427 2.91 4.83 17,976 0.13 1·10−5

Connect 129 67,557 2,905k 67,557 668,296 668,547 2.92 4.86 460,165 2.59 2·10−5

Mush. 119 8,124 187k 8,124 74,036 74,180 2.85 4.70 23,973 0.21 1·10−5

Wave. 67 5,000 110k 5,000 45,081 45,324 2.84 4.68 13,820 0.16 1·10−5

Table 3: Communication costs and execution times for 4UCI partitioned datasets

4 UCI datasets. For network failures, the average rejection rate does not depend
on a particular partitioning type and Figure 1 (left) presents the evolution of
the average rejection rates according to p for M ∈ {1, 2, 3, 4, 5}. In accordance
with the theoretical analysis, for a given p, we see that the rejection rate in-
creases with M since E[L] increases with M . Moreover, for a given M , we see
that the increase of the rejection rate is sub-linear because E[L] decreases with
p. Nevertheless, it remains inferior to 50% if p is inferior to 0.1, which already is
a level of network failure that is much higher than what is observed in practice.
Figure 1 (right) presents the average rejection rates with the proportion of down
nodes. First, as proved in Section 4.2, we observe that the average rejection rate
is lower for horizontal partitioning than for hybrid or vertical partitioning (since
E[L] ≥ 1). Second, the standard deviation of vertical partitioning is higher than
that of other partitioning. Indeed, with vertical partitioning, the average rejec-
tion rate can be very low or very high depending on whether the most frequent
items are placed or not into down nodes. However, as for network failures, we
note that the rejection rate remains acceptable.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5

A
v
e

ra
g

e
 r

e
je

c
ti
o

n
 r

a
te

Probability of network failure

 M=1
 M=2
 M=3
 M=4
 M=5

0.0

0.2

0.4

0.6

0.8

1.0

10% 20% 30% 40% 50%

A
v
e

ra
g

e
 r

e
je

c
ti
o

n
 r

a
te

Probability of node failure (with M=5)

Vertical
Hybrid

Horizontal

Fig. 1: Average number of rejections with failures

Time (s)
D |D| |I|DBpedia |I|Wikidata |t|min |t|max |t|avg Prep. Sampl.
Person 772,432 13,142 6,213 8 552 50.02 8,400.80 0.34
Organisation 338,402 19,022 5,504 8 328 36.22 1,847.88 0.27

Table 4: Characteristics and execution times for classes Person and Organisation

5.2 Outlier detection in distributed databases using pattern
sampling

This section aims at detecting outliers in knowledge bases of the Semantic Web
by approximating Frequent Pattern Outlier Factor (FPOF) with sampled pat-
terns. More precisely, we use this measure for identifying misclassified entities
from two classes (Person and Organisation) described inDBpedia andWikidata.
In this context, each entity of a class C is a transaction distributed over DBpedia
and Wikidata where each property p from a RDF triple (x, p, y) is an item. Ta-
ble 4 provides some statistics about the two classes. Execution times are longer
than that for UCI benchmarks because we use public SPARQL endpoints.
Long tail problem and norm constraints. The exact FPOF of a trans-
action can be approximated using pattern sampling [8]. More precisely, given
a database D and a sample S, the approximated FPOF of a transaction
t ∈ D is defined by f̃pofS(t,D) = |{X∈S : X⊆t}|

maxu∈D(|{X∈S : X⊆u}|) . Given a maximum

length constraint M , we can show that f̃pofS(t,D) tends to the exact FPOF
fpof≤M (t,D) =

∑
X⊆t,|X|≤M freq(X,D)

maxu∈D(
∑

X⊆u,|X|≤M freq(X,D)) when the size of S tends to infinity
and S is sampled according to m(X,D) = freq(X,D) × u≤M (X). Figure 2 de-
picts the FPOF distributions of all entities for Person and Organisation without
constraint (M =∞) or with a maximum length constraintM ∈ {1, 2, 3, 4, 5, 10}.
We see that without constraint or with a large value for M (≥ 5), a large ma-
jority of FPOF values are equal to zero, which implies that it is impossible to
distinguish outliers from normal entities. Indeed, without constraint, FPOF suf-
fers from the long tail problem [5]. Therefore, the use of a maximum length
constraint is crucial for detecting outliers by means of FPOF. Consequently, we
use M = 3 in the following experiments.
Output space vs. input space sampling. This experiment compares input
and output space sampling to determine which method is the best for the same
budget (same number of patterns, same communication cost). For a pattern bud-
get k, we start by drawing a sample Sout of k patterns with DDSampling and
we calculate its communication cost Costout. Then, we draw a sample of trans-
actions D̃ requiring the same communication cost: Costin = Costout. Finally, we
draw a sample Sin of k patterns from D̃. Given a sample S, we evaluate the
quality of its approximated FPOF by using the Euclidean distance ε(S,D) as

error: ε(S,D) =

√∑
t∈D(f̃pofS(t,D)− fpof≤M (t,D))2. Figure 3 reports ε(Sout,D)

and ε(Sin,D) w.r.t. the pattern budget (each measure is the arithmetic mean of

 0

 200000

 400000

 600000

 800000

 1e+06

[0
,0

]
]0

,0
.1

]

]0
.1

,0
.2

]

]0
.2

,0
.3

]

]0
.3

,0
.4

]

]0
.4

,0
.5

]

]0
.5

,0
.6

]

]0
.6

,0
.7

]

]0
.7

,0
.8

]

]0
.8

,0
.9

]

]0
.9

,1
.0

]

N
um

be
r

of
 in

st
an

ce
s

FPOF

DBpedia+Wikidata(Person)

M=∞
M=10
M=5
M=4
M=3
M=2
M=1

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

[0
,0

]
]0

,0
.1

]

]0
.1

,0
.2

]

]0
.2

,0
.3

]

]0
.3

,0
.4

]

]0
.4

,0
.5

]

]0
.5

,0
.6

]

]0
.6

,0
.7

]

]0
.7

,0
.8

]

]0
.8

,0
.9

]

]0
.9

,1
.0

]

N
um

be
r

of
 in

st
an

ce
s

FPOF

DBpedia+Wikidata(Organization)

M=∞
M=10
M=5
M=4
M=3
M=2
M=1

Fig. 2: Long tail problem of the FPOF distributions

 0

 5

 10

 15

 20

 25

1000 5000 10000 50000 100000

E
rr

o
r

Sample size

DBpedia + Wikidata (Person)

Output
Input

 0

 5

 10

 15

 20

 25

1000 5000 10000 50000 100000

E
rr

o
r

Sample size

DBpedia + Wikidata (Organisation)

Output
Input

Fig. 3: Evolution of the Euclidean norm error for input/output space sampling

100 repeated samples with its standard deviation). Of course, both errors tend to
zero when the sample size tends to infinity. But, it is clear that the convergence
is faster and more stable with output space sampling (e.g., the FPOF quality of
Sout with 10k patterns equals that of Sin with 100k patterns). This experience
shows that output space sampling is more efficient at equal budget.
Qualitative evaluation. We manually analyze the 50 best and worse entities
of Person according to the FPOF. It is interesting to note that all entities with
the highest FPOF are real persons, and not outliers. On the contrary, only 36%
of the entities with the lowest FPOF are real persons, and 64% of them can be
considered as outliers. Indeed, 44% of entities are fictional characters and more
importantly, 8% of them should be classified in Organisation (a sibling class of
Person), and 12% of them should be classified in another class (e.g., Event).

6 Conclusion

This paper proposes the first pattern sampling method in a distributed database.
It allows to consider different interestingness measures and interestingly, hybrid
or vertical partitioning. As only transaction lengths are centralized, the commu-
nication costs of DDSampling are low because the exchange of items is done
only when the patterns are drawn. The experimental study emphasizes this low

communication cost on several benchmarks datasets whatever the partitioning.
We also illustrate the interest of the sampled patterns in RDF data for detect-
ing abnormal entities among persons and organizations without centralizing all
the data. In future work, we plan to replace the exact drawing of transactions
with a stochastic method so that we do not have to centralize the lengths of all
transactions for each fragment.

References

1. Al Hasan, M., Zaki, M.J.: Output space sampling for graph patterns. Proc. of the
VLDB Endowment 2(1), 730–741 (2009)

2. Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Scientific amer-
ican 284(5), 28–37 (2001)

3. Boley, M., Lucchese, C., Paurat, D., Gärtner, T.: Direct local pattern sampling by
efficient two-step random procedures. In: Proc. of KDD. pp. 582–590 (2011)

4. Cheung, D.W., Ng, V.T., Fu, A.W., Fu, Y.: Efficient mining of association rules
in distributed databases. IEEE Transactions on Knowledge and Data Engineering
8(6), 911–922 (1996)

5. Diop, L., Diop, C.T., Giacometti, A., Haoyuan, D.L., Soulet, A.: Sequential pattern
sampling with norm constraints. In: Proc. of ICDM 2018 (2018)

6. Domadiya, N., Rao, U.P.: Privacy preserving distributed association rule mining
approach on vertically partitioned healthcare data. Procedia computer science 148,
303–312 (2019)

7. Dzyuba, V., van Leeuwen, M.: Learning what matters–sampling interesting pat-
terns. In: Proc. of PAKDD 2017. pp. 534–546. Springer (2017)

8. Giacometti, A., Soulet, A.: Anytime algorithm for frequent pattern outlier detec-
tion. International Journal of Data Science and Analytics 2(3-4), 119–130 (2016)

9. Gombos, G., Kiss, A.: Federated query evaluation supported by sparql recommen-
dation. In: Proc. of HIMI 2016. pp. 263–274. Springer (2016)

10. Jin, R., Agrawal, G.: Systematic approach for optimizing complex mining tasks on
multiple databases. In: Proc. of ICDE. pp. 17–17 (April 2006)

11. Kum, H.C., Chang, J.H., Wang, W.: Sequential pattern mining in multi-databases
via multiple alignment. Data Mining and Knowledge Discovery 12(2-3), 151–180
(2006)

12. Moens, S., Boley, M.: Instant exceptional model mining using weighted controlled
pattern sampling. In: Proc. of IDA 2014. pp. 203–214. Springer (2014)

13. Otey, M.E., Wang, C., Parthasarathy, S., Veloso, A., Meira, W.: Mining frequent
itemsets in distributed and dynamic databases. In: Proc. of ICDM 2003. pp. 617–
620. IEEE (2003)

14. Özsu, M.T., Valduriez, P.: Principles of distributed database systems. Springer
Science & Business Media (2011)

15. Shen, H., Zhao, L., Li, Z.: A distributed spatial-temporal similarity data stor-
age scheme in wireless sensor networks. IEEE Transactions on Mobile Computing
10(7), 982–996 (2011)

16. Zhang, S., Zaki, M.J.: Mining multiple data sources: local pattern analysis. Data
Mining and Knowledge Discovery 12(2-3), 121–125 (2006)

17. Zhu, X., Li, B., Wu, X., He, D., Zhang, C.: CLAP: Collaborative pattern mining
for distributed information systems. Decision support systems 52(1), 40–51 (2011)

18. Zhu, X., Wu, X.: Discovering relational patterns across multiple databases. In:
Proc. of ICDE. pp. 726–735. IEEE (2007)

	Pattern Sampling in Distributed Databases

