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In order to understand ecosystem responses to anthropogenic global change, a 34 

prevailing framework is the definition of threshold levels of pressure, above which 35 

response magnitudes and their variances increase disproportionately. However, we lack 36 

systematic quantitative evidence as to whether empirical data allow definition of such 37 

thresholds. Here, we summarize 36 meta-analyses measuring more than 4600 global 38 

change impacts on natural communities. We find that threshold transgressions were 39 

rarely detectable, either within or across meta-analyses. Instead, ecological responses 40 

were characterized mostly by progressively increasing magnitude and variance when 41 

pressure increased. Sensitivity analyses with modelled data revealed that minor 42 

variances in the response are sufficient to preclude the detection of thresholds from 43 

data, even if they are present. The simulations reinforced our contention that global 44 

change biology needs to abandon the general expectation that system properties allow 45 

defining thresholds as a way to manage nature under global change. Rather, highly 46 

variable responses, even under weak pressures, suggest that  ‘safe-operating spaces’ are 47 

unlikely to be quantifiable. 48 

Concepts of thresholds, tipping points and regime shifts dominate current ecological 49 

frameworks aiming to understand ecosystem responses to anthropogenic global change1-4. A 50 

threshold corresponds to a level of environmental pressure that creates a discontinuity in the 51 

ecosystem response to this pressure. Thresholds and tipping points pervade environmental 52 

policy documents5,6 as they allow definition of levels of pressure below which ecosystem 53 

responses remain within “safe ecological limits”6, and above which response magnitudes and 54 

their variances increase disproportionately7,8. Anticipating when and under what conditions 55 

such threshold transgression might occur is important for sustainable environmental 56 

management.  57 

Threshold-related concepts and their implementation in policy hinge upon the 58 

assumption that the presence of thresholds can be detected in data or – even better – predicted. 59 



 
 

 3 
 

Testing this assumption requires knowledge of the ecosystem response to an environmental 60 

pressure for present-day and potential future pressure magnitudes. Ecological meta-analysis 61 

has led to the publication of thousands of effect sizes in response to in-situ trends or 62 

experimental manipulations of key pressures of global change such as eutrophication, 63 

warming, land-use change, fisheries, and ocean acidification. Each study in a meta-analysis 64 

quantifies the magnitude of the response of an ecosystem variable to the strength of an 65 

applied environmental pressure (Fig. 1a). The entire set of studies in the meta-analysis then 66 

represents a wide range of pressure strengths, which often exceed the conditions observed in 67 

nature, but might be expected in future ecosystems. We capitalize on this richness of data by 68 

combining available information from 36 meta-analyses, providing 4601 effect sizes across 69 

ecosystems and pressures of global change into multiple tests of whether these data sets – 70 

individually or aggregated – reveal a response pattern that indicates transgression of a 71 

threshold (Fig. 1b). We first tested whether and how ecosystems respond to increased 72 

environmental pressures by simply exploring whether ecosystems show a directional change 73 

in response to a pressure, regardless of the presence of a threshold (Fig. 1c). Second, we 74 

quantified discontinuities in the variance of responses, which would be a way to define the 75 

existence of a threshold. Finally, we tested for existence of multimodality of responses, which 76 

would be stronger evidence for alternative states under different environmental pressures.  77 

 78 

Results 79 

 To test for general changes of systems along gradients of environmental pressures, we 80 

used an averaged Kullback-Leibler (KL) divergence method (see Methods) to quantify the 81 

overall deviation between the response distribution for a given stressor value and the marginal 82 

response distribution, that is, the response distribution when collapsing all response data onto 83 

a single axis ignoring the magnitude of the stressor variable. Most meta-analyses (23 of 36) 84 

showed changes in the response magnitude along the gradient of pressure strengths (KL, 85 
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Table S1). This provides strong evidence that direction and increasing magnitude of global 86 

environmental pressures have significant effects on ecosystem variables. While necessary, 87 

this evidence is not sufficient to support the general prevalence of threshold-type responses 88 

across ecosystems.   89 

If thresholds are common, then we expect to see increased variance in response 90 

variables as the pressure strength crosses the threshold value7,8 (as sketched in Fig. 1c). To 91 

test for discontinuities in the variance of effect size responses, we used a weighted quantile 92 

ratio (QR) of interquantile range (95%-5%) to quantify substantial inhomogeneity in the 93 

width of the response distribution across the range of observed stressors (see Methods). 94 

Significant changes in the variance of effect sizes were present in only 8 out of 36 cases (QR, 95 

Table S1), challenging the widespread expectation of rising variance as a signal of threshold 96 

transgression. Moreover, in those cases with a significant QR test, the increase in variance 97 

occurred frequently only at the most extreme pressure level observed in the respective meta-98 

analysis (see below for further details).  99 

Stronger evidence for threshold-type ecosystem responses to increasing environmental 100 

pressure would be provided by the existence of multimodal distributional patterns, reflecting a 101 

state transition. We used Hartigan's dip test method (HD; see Methods) to assess the 102 

multimodality of effect sizes9, which provides a narrow test for the case of bi-(multi)-stability 103 

of responses. We found no support for widespread existence of alternative states in ecological 104 

responses to increasing pressure intensities. None of the 36 meta-analyses revealed any sign 105 

of bimodality in the frequency distribution of effect sizes (HD, p>0.3 in every case, Table 106 

S1).  107 

Comparing these empirical results (Table S1) to model data (Fig. 2, Extended Data 108 

S1) with known presence or absence of thresholds shows that our three approaches are 109 

suitable to detect threshold transgression. For idealized data, the three tests provide a clear 110 

differentiation between gradual and threshold-associated disproportional changes in response 111 
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magnitudes. However, empirical observations will be affected by different sources of 112 

variance, both systematic (cases with different locations of thresholds and magnitudes of 113 

response shift) and stochastic. With increasing noise to signal ratios, thresholds – although 114 

present – quickly become undetectable, as the power of QR and HD declines rapidly. The 115 

exponential decline in detection probability for QR shows that thresholds can only be 116 

identified reliably for nearly ideal data without random variation around the response 117 

magnitude (scenarios g-i in Fig. 2), with the exception of the unlikely case that all systems are 118 

characterized by the same threshold (scenario f in Fig. 2). For HD, the power collapses 119 

completely with only moderate noise levels (Fig. 2). Only KL is still able to detect changes in 120 

response magnitude with increasing pressure with increasing variance, either around gradual 121 

shifts in response magnitude (scenarios c-d in Fig. 2) or around thresholds (scenarios e-i). The 122 

simulations corroborate our general empirical finding across the 36 datasets that thresholds 123 

are rarely detectable in data even if using statistical methods developed for threshold 124 

detection.   125 

Even when thresholds were empirically detected, limited inference can be made as 126 

shown by highlighting several individual meta-analysis datasets to illustrate specific 127 

ecosystem responses to particular environmental pressures. The first meta-analysis in our data 128 

set (MA1.1) exemplifies the general results. The overall response of biomass production to 129 

biodiversity loss tended to be negative, and became more negative for larger proportions of 130 

species lost without changes in the variational range of effect sizes (Fig. 3). This gradual 131 

response type was also found in the analysis of fertilization effects on biomass production 132 

(MA2.1), and in soil responses to changes in precipitation (MA8) and land-use change (MA9) 133 

as well as prey responses to predator loss (MA 16.1). Ten additional examples of this type of 134 

response involving other drivers of environmental change are provided in the supporting 135 

material (Extended Data S2, Table S1). In all of these cases, the magnitude of the 136 

environmental change altered the magnitude of the response – as expected – but the variance 137 
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around this relationship did not indicate the emergence of a “novel” ecosystem response 138 

beyond a pressure threshold. Eight cases showed significant QR tests, of which three showed 139 

an increase in response variance only at highest pressure strength and two a reduction in 140 

response variance with increasing pressure. Thus, only three out of 36 cases showed a shifting 141 

distribution of effect sizes with increasing pressure that was consistent with the emergence of 142 

new types of responses above a threshold. These comprise land-use change effects on 143 

mammal abundance (MA6.5), warming effects on corals (MA10), and fertilization effects on 144 

microbial respiration (MA17.2, all Extended Data S2). By contrast, in 12 of the 36 meta-145 

analyses, neither KL nor QR were significant (exemplified by MA23.1 in Fig. 3, for others 146 

see Extended Data S2), indicating that no increases in response magnitudes or threshold 147 

trangressions were observed. 148 

The above results are relevant for across-system analyses of single pressure gradients, 149 

but in many cases management might not have a priori knowledge of which pressure gradient 150 

leads to transgressions. In order to analyze this situation, we further aggregated our analysis 151 

across drivers, organism groups and ecosystems, by standardizing and normalizing the 152 

pressure gradient to a median of 0 and a range of -1 to 1 (Fig. 4). The range of responses was 153 

impressive, the effect sizes in cases indicated more than 200-fold increase or decrease in the 154 

measured ecosystem variable (Fig. 4a). Both KL and QR tests were highly significant for the 155 

aggregated data, indicating a strong impact of pressure intensity on the strength and variance 156 

of the ecological response (Table S1). However, this increase in the variance of effect sizes 157 

was found for studies with normalized pressures greater than 0.5, which comprised the top 158 

3.5% of the manipulated range of potential impacts (Fig. 4b). This observation resembles a 159 

“sledgehammer effect”, that is, system transformation by huge impact, which is a trivial 160 

consequence of the large pressure magnitude and the complete transformation of the system.   161 

As the sign of the effect size depends upon the specific association of driver and effect 162 

in each meta-analysis, we also analyzed the absolute magnitude of response (|LRR|) 163 
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independent of sign for the aggregated data set (Fig. 4c). We found that the median |LRR| 164 

increased with increasing environmental pressure, as did the variance, particularly so at the 165 

highest pressure magnitudes (significant KL and QR tests, Table S1). The median |LRR| 166 

corresponded to 1.5-2-fold increases or decreases in process rates or properties, whereas the 167 

range of responses (i.e., the 5-95% quantiles of |LRR|) exceeded 5-fold changes even at the 168 

smallest pressure strengths. Thus, even at very small pressures, very large responses can 169 

occur.  170 

Discussion 171 

Analysis of the 4601 experiments that we assembled here, potentially the most 172 

comprehensive data available, did not enable us to estimate where thresholds might have been 173 

crossed. Instead, the data suggest that the ecosystem impacts of human-induced changes in 174 

environmental drivers are better characterized by gradual shifts in response magnitudes with 175 

increasing pressure coupled with broad variations around this trend. While our analyses do 176 

not rule out the existence of tipping points, they bring into question the utility of threshold-177 

based concepts in management and policy if we cannot detect thresholds in nature10,11. 178 

Expectation of threshold responses ultimately leads to an underestimation of the large 179 

consequences of small environmental pressures12. Moreover, it marginalizes the importance 180 

of other, more complex non-linear dynamics under global change, which may underlie the 181 

considerable variance around gradually increasing response magnitudes. 182 

Our use of field and semi-natural experiments has the advantage that these often 183 

involve pressures that are larger than observed environmental conditions, as they commonly 184 

incorporate future scenarios of severe environmental change13. This counters the argument 185 

that thresholds exist but have not yet been reached. Still, some caveats to our approach need 186 

to be acknowledged. First, the absence of evidence is obviously not the evidence of absence: 187 

as shown by our explicit analysis of test power, the existence of thresholds can be masked by 188 

high inter-study variance (especially for HD). However, this also questions the usefulness of 189 
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thresholds if their occurrence is dependent on the complex interaction of multiple pressures 190 

and their detection is only possible under very high signal-to-noise ratios. Without a priori 191 

knowledge across specific systems of when thresholds might appear, any definition of 192 

thresholds – even if precautionary principles are used – must remain arbitrary. Second, we 193 

focused on functional, not compositional aspects of ecosystems, and do not make conclusions 194 

about threshold pressures for changes in composition.  However, compositional and 195 

functional stability often show interdependencies14 because compensatory dynamics between 196 

species may dampen the response in ecosystem functions15 or allow for rapid recovery from a 197 

phase shift16-18. Given that the functions addressed here often are aggregate properties of the 198 

communities investigated, we thus consider it unlikely that thresholds are more prevalent for 199 

compositional responses. Third, the temporal extent of the experimental studies in our data 200 

base is limited; it rarely exceeds the scale of tens of generations of organisms. However, there 201 

is no strong support to why threshold transgressions should increase through time. Threshold-202 

related concepts thus would be untestable in ecology, as their absence could always be 203 

ascribed to insufficiently long observation periods. 204 

The lack of clearly-defined and generally applicable thresholds distinguishing between 205 

tolerable and non-tolerable responses has obvious implications for environmental policies. 206 

The use of thresholds has been critically discussed in ecosystem management, conservation 207 

and restoration19-21 to establish precautionary principles for environmental policy. Using such 208 

threshold arguments in a world where changes are too case-specific and variable to allow 209 

prediction of tipping points undermines this precautionary argument. It leads to the 210 

anticipation of major system transformation as thresholds are passed, whereas the majority of 211 

observed responses to environmental change represent progressively shifting baselines on 212 

time-scales of human perceptions22,23. Consequently, environmental concerns might appear 213 

overstated if thresholds are taken for the general case but critical transitions associated with 214 

transgressing thresholds are not observed24,25. The frequently major and highly variable 215 
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responses we observed even at low pressure magnitudes indicate that safe-operating spaces 216 

are unlikely to be definable from data. The data resonate well with the fact that conceptually 217 

thresholds occur under special and limiting conditions. Our results thus question the pervasive 218 

presence of threshold concepts in management and policy.  219 
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Figure Legends 373 

 374 
Fig. 1. Detecting thresholds in response to environmental change. (a) Classically, the 375 

approach to detecting thresholds is to address the discontinuity of responses to an 376 

environmental driver over time. Instead of a temporal axis, our analyses use the multitude of 377 

experiments or observations testing the same driver in independent studies. Each meta-378 

analysis summarizes the results of multiple experiments characterized by different magnitudes 379 

of the same pressure and response magnitudes ± sampling variance. The basis of each meta-380 

analysis is represented by single experiments (or observational studies) measuring the 381 

response in a variable of interest in control and disturbed environments (insert). The distance 382 

in the environmental variable (e.g., temperature in warming experiments) between control and 383 

treatment gives the intensity of the pressure, the log response ratios (LRR) measure the 384 

relative change in the response variable (e.g., plant biomass) based on treatment and control 385 

means, whereas the pooled standard deviations result in an estimate of sampling variance per 386 

study (varLRR). (b) If the response shows discontinuity, we expect a tendency towards a new 387 

category of responses (red cases reflecting critical transitions) at higher pressure strengths. (c) 388 

We developed two robust non-parametric test statistics and assessed their statistical 389 

significance using permutation tests: Kullback-Leibler (KL) divergence to test for general 390 

changes in the response magnitude along the pressure gradient and the weighted quantile ratio 391 

(QR) of interquantile (5%-95%) ranges to test for changes in the variability of effect sizes. 392 

We tested for multimodal frequency distribution of effect sizes, reflecting alternative 393 

responses to a common driver using Hartigan’s dip test (HD). To visualize the KL approach, 394 

we indicated a potential realized distribution of responses by a red area, compared to a 395 

randomized distribution (blue area, see Methods). The significant deviation between realized 396 

and randomized responses can occur if there is gradual increase in response with increasing 397 

pressure (orange line) or if shifts in the response (red solid line) occur at a threshold (vertical 398 

dashed line).  399 

 400 

Fig. 2: Detection probability for thresholds in global change experiments using kernel 401 

density estimation. We analyzed the test power for 9 scenarios of responses to pressure in 402 

meta-analyses, the derivation of each scenario is described in the supplementary online 403 

material, Extended Data S3. Scenarios a–d do not comprise a threshold, where scenario a is 404 

the null model without an effect of the pressure on the response. Scenarios e–i do comprise a 405 

threshold, for the latter two combined with intermediate responses. For the three statistical 406 

test used in our analyses, the expected outcome is colour-coded, with green representing that 407 

the test should be significant. We then tested the proportion of 1000 simulated data sets for 408 

which the tests were significant with a probability p = 0.05 (black) and p = 0.01 (blue). We 409 

did for increasing noise variance (= inverse signal-to-noise ratio). Bandwidth selection was 410 

based on the “solve- the-equation” method of Sheater & Jones26. The estimated bandwidth was 411 

adjusted by a factor of 2.5 in each case because this optimized test power for all cases. The 412 

three tests together allow perfect detection of thresholds in the absence of noise (scenarios e-413 

h), only if threshold-type and gradual responses are mixed (scenario i), the analysis of 414 

multimodality (HD) is no longer able to pick up the threshold embedded in the data, as the 415 

simultaneous increase in mean and variance of the response (as in scenario d) masks modes in 416 
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the response distribution. With increasing noise variance, however, the detection probability 417 

for thresholds via HD and QR rapidly decreases.   418 

 419 

Fig. 3: Example meta-analyses testing for changes in the response magnitude along with 420 

increasing pressure intensity. Red and blue shaded regions indicate the (5%-95%) 421 

interquantile ranges for, respectively, the bivariate data (including the pressure gradient) and 422 

the marginal distribution of LRR  (integrating out the pressure gradient). Dashed red and blue 423 

thick lines trace the related median (50% quantile). Overlain are the data points and, at the 424 

bottom, the yellow shaded area indicates the distribution of stressor variables resulting from a 425 

weighted kernel density estimation (Extended Data S2). Color codes for habitat (dark blue: 426 

freshwater; aquamarine: marine; green: terrestrial), circle size reflects statistical weight.  427 

Please note that the suggestive break in the responses in MA8 is induced by a lack of data 428 

covering intermediate pressure magnitude. 429 

 430 

Fig. 4. Analysis of aggregate data across meta-analyses. (a) Log response ratios (LRR) of 431 

ecological processes across a gradient of environmental change, where the different pressures 432 

were normalized to a median of 0 and a range of -1 to 1. Color codes for habitat (dark blue: 433 

freshwater; aquamarine: marine; green: terrestrial), circle size reflects statistical weight. 434 

Shaded regions indicate the interquantile (5%-95%) ranges for the marginal distribution 435 

(blue) and the bivariate distribution (red). Density of values along the stressor and the 436 

response axis are given below (yellow) or at the right margin (green), respectively. (b) Same 437 

as (a), but without single effect sizes, focusing on the distribution of response magnitudes 438 

over the normalized pressure gradient. (c) Same as (b), but for absolute response magnitudes. 439 

Note the change in scale of the Y-axis in the three panels. 440 

  441 
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Methods 442 

Data 443 

We searched the ISI® Web of Science (WoS) using a search string targeted towards 444 

detecting meta-analyses in a global change context (Topic: ["metaanalysis" or "meta-analysis" 445 

or "metaanalyses" or "meta-analyses"] AND Topic: ["global change" or "fertili*" or "land-446 

use" or “acidification” or “warming” or “temperature” or “eutrophication” or “disturbance” or 447 

“invasion” or “extinction” or “drought” or “ultraviolet”] AND Topic: [chang* or 448 

manipulation* or experim* or treatm*]). We refined the results by focusing on the WoS 449 

research area “Environmental sciences and ecology”. This search (done September 11, 2016) 450 

yielded 979 studies, from which the majority did not fit all of our inclusion criteria (upon 451 

request, we provide a list of all studies with the study-specific criteria to include or exclude), 452 

which were:  453 

• The paper provided a formal meta-analysis with effect sizes, which quantified the 454 

responses to a factor that represented a global change impact. The factor was either an 455 

experimental treatment or an in-situ change.  This excluded numerous studies that either 456 

were verbal/vote-counting reviews or provided effect sizes as a response to non-global-457 

change factors (e.g. mitigation efforts).  458 

• The response was measured at the level of ecological communities or ecosystems. This 459 

excluded studies where responses were measured at the level of single species, as these 460 

were deemed inappropriate to detect regime shifts, or at the level of human societies (e.g., 461 

health aspects, economy). We also excluded fossil data as not being affected by 462 

anthropogenic global change and non-biological response variables (e.g., the effect of CO2-463 

enrichment on water pH). 464 

• Given that effect sizes on species richness have recently been criticized strongly for being 465 

statistically biased27, we decided not to use biodiversity response variables but only 466 

functional processes or properties at the community or ecosystem level (details see below). 467 
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As we explicitly address the statistical distribution of effect sizes (see below), this 468 

statistical bias was considered to be potentially misleading in the context of our analysis.  469 

However, we used cases where biodiversity loss was the manipulated component of global 470 

change and a functional response was measured.  471 

From the remaining 162 meta-analyses that fulfilled these criteria, we extracted the 472 

information needed to perform our analyses. This included a measure of the magnitude of the 473 

stressor (impact, driver) and the effect size as well as its sampling variance or weight 474 

(response). When the information was not given in an online appendix or associated data 475 

table, we contacted the authors to ask for data access. Still, we had to exclude further meta-476 

analyses, as they 477 

• did not quantify the stressor magnitude. This was especially common in meta-analyses 478 

addressing the response to invasive species  479 

• did not contain enough cases to perform analysis. We set the critical number of effect sizes 480 

to 35 as a minimum to detect variance shifts 481 

• overlapped with other meta-analyses on the same subject. This was especially found for 482 

analyses on eutrophication and biodiversity loss, where we always opted for the most 483 

consistent and information-dense alternative.  484 

• did not provide available data. 485 

The final database contained 24 meta-analyses (information derived from 29 papers28-486 

56), which were divided into a total of 36 cases (Table S1). Subsetting multiple cases from a 487 

meta-analysis was done if different drivers were tested or different response categories were 488 

used in a single meta-analysis. We followed the authors in defining response categories and 489 

stressor variables. We excluded laboratory experiments and focused our study solely on field 490 

experiments and observational studies. The resulting dataset reflects ecological responses in 491 

the form of ecosystem processes (primary or secondary production, feeding rates, element 492 

fluxes) to the most pervasive anthropogenic alterations of our planet (Table S1).   493 
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 494 

Statistical approach 495 

For each meta-analysis data set containing a measure of the stressor magnitude (X), 496 

the response variable (log response ratio, LRR) and its sampling variance (var.LRR), we 497 

assessed whether the data set reflects any statistically significant influence of the stressor 498 

variable on the response. As the data basis of each meta-analysis, and thus the sources of 499 

variation of LRR within each data set, is unknown to us, we devised three robust non-500 

parametric test statistics and assessed their statistical significance by permutation tests. 501 

An averaged Kullback-Leibler (KL) divergence quantified the overall deviation 502 

between the response distribution for a given stressor value and the marginal response 503 

distribution, that is, the response distribution when collapsing all response data onto a single 504 

axis ignoring the stressor variable. Second, a weighted quantile ratio (QR) of interquantile 505 

range (95%-5%) was then used to quantify substantial variability of the response distribution 506 

width across the range of observed stressors. Finally, we used Hartigan's dip (HD) test to 507 

assess the multimodality of effect sizes9. Based on simulation-based p-values, HD provides a 508 

narrow test for the case of bi-(multi)-stability of responses, analogous to the bimodality test 509 

proposed by Scheffer & Carpenter57. A significant HD indicates that the responses along the 510 

pressure gradient fall into two (or more) clearly separated categories, which indicates the 511 

presence of two (or more) alternative ecosystem states. Essentially, strict bimodality across a 512 

wide range of studies is a rather narrow expectation, but we include this test as the bifurcation 513 

case is the one most often discussed in considerations of thresholds, tipping points and regime 514 

shifts57,58.  515 

For both KL and QR, the assessment of statistical significance was done by a 516 

permutation test: the null-hypothesis (NH) that the response distribution is unrelated to the 517 

stressor is simulated by breaking up paired variables (X, LRR, var.LRR) and recombining 518 

them in the form (X’, LRR, var.LRR), where X’ is a permutation of recorded stressor values. 519 
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If the NH were valid, this permutation should induce no substantial difference. Computing the 520 

two test statistics (KL, QR) for the permuted data set (X’, LRR, var.LRR) and repeating these 521 

steps 10,000 times generates the distribution of the test statistics under validity of the NH and 522 

allows extraction of a p-value as the fraction of permutations that yielded a similar or larger 523 

value for the test statistic (KL or QR) as the original data set (X, LRR, var.LRR). 524 

In comparison to alternative approaches, our methods are robust and non-parametric - 525 

they do not rely on functional assumptions and use only the supposed smoothness of a 526 

possible connection between stressor and response. Reconstructing the NH by simulating 527 

surrogate data guarantees perfect control of errors of the first kind (false positive statements) 528 

and even would handle a constant bias of estimators. Given the breadth of underlying meta-529 

analyses, we also consider our analysis highly conservative with regard to publication bias 530 

and study selection. Finally, using a weighted approach downgrades the influence of studies 531 

with very high internal variance, and thus decreases the chance of missing threshold-like 532 

responses because of too noisy data (false negative statements).   533 

It should be noted that neither the single experiments summarized in each meta-534 

analysis nor the meta-analyses themselves, were designed to detect thresholds. The inclusion 535 

of studies not necessarily looking for thresholds actually reduces the risk of publication bias 536 

towards positive results. However, even if the underlying experiments were not planned to 537 

detect thresholds, our statistical approach should reveal these if they fall into the covered 538 

range of stressors, which can be expected as this range encompasses stressor magnitudes not 539 

yet experienced under realistic conditions. 540 

 541 

Statistical analyses 542 

For each effect size in each meta-analysis, a statistical weight is assigned to each data 543 

point as the log-transformed inverse sampling variance of the effect size  544 
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݃݋݈ ቀ1 + ଵ௩௔௥.௅ோோቁ        (1) 545 

As described above, surrogate data sets (reflecting the NH) are created by permuting the list 546 

of stressor values in X (yielding X’ = X shuffled). From the list of stressor values, a smooth 547 

probability distribution ݌௑ሺ݃ݔሻ is computed via weighted [with statistical weights calculated 548 

following equation (1)] kernel density estimation (with a Gaussian kernel and an optimized 549 

bandwidth, cf. Simulations below) for grid points gx that span the range of observed stressor 550 

values (Extended Data S4). A smooth density surface over the grid (gx, gy) in the (X, LRR) 551 

plane is computed from the data set (and the surrogates) via a two-dimensional weighted 552 

([with statistical weights calculated following equation (1)]  kernel density estimation 553 

(bivariate Gaussian D-class kernel with optimized bandwidth) (Extended Data S5). For each 554 

grid point gx, the density profile along gy is converted to a conditional probability distribution 555 ݌௅ோோ|௑ሺ݃ݔ݃|ݕሻ by normalization (Extended Data S6, with results for the original data and the 556 

surrogate data). Based on the conditional cumulative distribution function, 557 

ሻݔ݃|ݕ௅ோோ|௑ሺ݃ܨ = ∑ ௅ோோ|௑௚௬ᇲஸ௚௬݌ ௅ோோ|௑݌∑ ሺ݃ݔ݃|′ݕሻ   (2) 558 

(Extended Data S7), the 5%, 50% (median), and 95% quantiles can be extracted for each grid 559 

point gx (Extended Data S8). The test statistics that we devised are: 560 

 561 

(i) the average Kullback-Leibler divergence 562 

ܮܭ = ∑ ሻ௚௫ݔ௑ሺ݃݌ ∑ ௅ோோ|௑௚௬݌ ሺ݃ݔ݃|ݕሻ݈݃݋ ௣ಽೃೃ|೉ሺ௚௬|௚௫ሻ௣ಽೃೃሺ௚௬ሻ    (3) 563 

that shares the useful property of being non-negative and that vanishes if, and only if, 564 ݌௅ோோ|௑ ≡  ௅ோோ (almost everywhere). Pronounced differences between the two empirical 565݌

distributions are thus condensed in values substantially larger than zero. 566 

 567 

(ii) the ratio of interquantile (5%-95%) ranges 568 
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ܴܳ = ூொோఱవఱሺଽଽ%ሻூொோఱవఱሺଵ%ሻ         (4) 569 

where ܴܳܫହଽହሺݔݍሻ denotes the qx-quantile of the 5%-95% interquantile range of the 570 

conditional probability distribution ݌௅ோோ|௑ሺ݃ݔ݃|ݕሻ, and the subsequent percentage in brackets 571 

indicates the related weighted quantile across the stressor grid points. We choose this latter 572 

definition for robustness, rather than the max/min ratio which may be prone to distortions by 573 

extremes. This measure was devised to indicate substantial changes of the LRR variance 574 

along the stressor axis. 575 

 576 

(iii) the Hartigan's dip (HD) test statistic tests for multimodality, which, if significant, 577 

indicates that a frequency distribution has more than one mode.  578 

 579 

Values of all test statistics obtained for the original data set were assessed for 580 

statistical significance. This was done by excessively repeating the permutation strategy to 581 

create surrogate data in accordance with the null hypothesis of a non-existent connection 582 

between stressor X and response LRR. p-values for both test statistics (KL and QR) were 583 

obtained as fractions of 10,000 surrogate sets (in case of HD, 2000 permutations), leading to 584 

test statistics exceeding related values of the original data set. 585 

In addition to the employed kernel density estimates generating cumulative 586 

distribution functions and derived quantiles, we used a nonlinear quantile regression supplied 587 

by the R package “qgam”59. This package is based on general additive models (GAMs) and 588 

returns quantiles instead of standard mean response. With “qgam” we estimated the following 589 

quantiles: 0.001, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.999. Because these quantile curves 590 

were computed sequentially, independently resultant lines could intersect. To resolve this 591 

problem, we used the R package “cobs” to perform a penalized B-spline regression of 592 

obtained quantiles (separately for every grid point gx), bound to the constraint of a monotonic 593 
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increase, thus yielding a smooth cumulative distribution function. As for the kernel density 594 

estimation, exemplary 5%, 50% (median), and 95% quantiles are shown in Extended Data S8. 595 

Under default settings, the “qgam” routine was very time consuming and, in 596 

comparison with the bandwidth optimized kernel density method, had inferior test 597 

power (Figs. 2 & S1). This may be due to the fact that, because of excessive 598 

run time an optimization of qgam parameters was not feasible. We therefore constrain 599 

reporting of our results to these obtained with the optimized kernel density method. 600 

 601 

Simulations 602 

We examined the performance of our tests by simulating artificial data sets that combined 603 

nine deterministic backbone structures with additive noise (normally distributed random 604 

fluctuations) of controlled intensity. The deterministic backbone structures were chosen to 605 

reflect a broad range of scenarios. The noise intensity is quantified via the inverse signal-to-606 

noise ratio (ISNR), i.e. the size ratio of fluctuations and backbone structure. The nine cases 607 

are depicted in Extended Data S3, each for small (ISNR: 0.05) and large (ISNR: 0.95) noise 608 

intensity. Fig. 2 and S1, we list the expected outcome of the three designed tests for the noise-609 

free case. To assess the performance of the tests under various noise conditions, we simulated, 610 

for each isnr value (in the range [0-1]), 1000 artificial data sets and collected related test 611 

decisions (for two decision criteria p: 0.05 and 0.01 and all three tests). In case of an expected 612 

positive test, the fraction of positive test decisions thus estimates the test power (1-error of the 613 

second kind). We note that simulations of the test power were also underlying the 614 

optimization of the kernel bandwidth, where Bandwidth selection was based on the “solve- the-615 

equation” method of Sheater & Jones26. 616 

In all simulated cases with small to moderate noise (ISNR< 0.5), threshold structures 617 

in simulated response ~ stressor relations could be detected with high reliability (at least for 618 

the KL and QR test). Of course, for strong noise (ISNR >= 1), thresholds may be masked by 619 
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random fluctuations reflecting natural variability. In such situations, the underlying threshold 620 

structure, though present, will no longer be ecologically relevant because it is overridden by 621 

natural variability. 622 

 623 

Data Availability: All data and code are available at 624 

https://zenodo.org/record/3828869#.XsI4ZmgzaUk (http://doi.org/10.5281/zenodo.3828869).625 
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  626 



 

 

Legends Extended Data 627 
 628 

 629 

Extended Data S1: Test power as in Fig. 2, but for the “qgam” approach. Fractions of 630 

positive test results (equals test power when test should be positive) for simulated test cases. 631 

We analyzed the test power for 9 scenarios of responses to pressure in meta-analyses, the 632 

derivation of each scenario is described in the supplementary online material, Extended Data 633 

S7. Scenarios a–d do not comprise a threshold, where scenario a is the null model without an 634 

effect of the pressure on the response. Scenarios e–i do comprise a threshold, for the latter two 635 

combined with intermediate responses. For the three statistical test used in our analyses, the 636 

expected outcome is colour-coded, with green representing that the test should be significant. 637 

We then tested the proportion of 1000 simulated data sets for which the tests were significant 638 

with a probability p = 0.05 (black) and p = 0.01 (blue). We did for increasing noise variance 639 

(= inverse signal-to-noise ratio). The three tests together allow perfect detection of thresholds 640 

at the absence of noise (scenarios e-h), only if threshold-type and gradual responses are mixed 641 

(scenario i), the analysis of multimodality (HD) fails, giving the same output as a gradual 642 

increase in mean and variance of the response (scenario d). With increasing noise variance, 643 

however, the detection probability for thresholds via HD and QR rapidly decreases.We used 644 

default settings for the “qgam” approach due to high runtimes and computational effort, thus 645 

settings are not optimized as for the test power calculations based on kernel density 646 

estimation. Note: HD is equal to kernel method, because it is not based on different quantile 647 

estimations.  648 

 649 

Extended Data S2: Further meta-analyses testing for changes in the response magnitude 650 

along increasing pressure strength. Red and blue shaded regions indicate the (5%-95%) 651 

interquantile ranges for the bivariate data (including the pressure gradient) and the univariate 652 

LRR data (ignoring the pressure gradient = homogeneous marginal probability), respectively. 653 

Solid red and dashed blue thick lines trace the related median (50% quantile). Overlain are the 654 

data points and at the bottom the yellow shaded area indicates the distribution px(gx) resultant 655 

from a weighted kernel density estimation (Extended Data S2). Color codes for habitat 656 

(darkblue: freshwater, aquamarine: marine, green: terrestrial), circle size reflect statistical 657 

weight.   658 

 659 
Extended Data S3: Test cases at different noise levels. In order to assess the power of our 660 

statistical tests, we simulated artificial meta-analyses combining prototypical 661 

response~stressor relationships with (normally distributed) random fluctuations reflecting 662 

natural variability, and compared related statistical test results with expectations. Stressor 663 

range (along horizontal range) and deterministic effect sizes (along vertical axis) are 664 

normalized to [-0.5,0.5] x [0.5,0.5]. Stressor values are normally distributed with mean zero. 665 

The relative intensity of random fluctuations is quantified by inverse signal to-noise ratio 666 

(isnr). A grey background indicates absence of thresholds, yellow background threshold 667 

presence. 668 

 669 



 

 

(a) (neutral -simple-): Here pressure strength has no impact on the response, which falls into a 670 

single response. Thus, we assume that across all “studies” in this “meta-analysis”, there is one 671 

main response type and no threshold. 672 

(b) (neutral -bimodal-): Here pressure strength has no impact on the response, which falls into 673 

either of two alternative attractors: a weak and a strong response. Thus, we assume that across 674 

all “studies” in this “meta-analysis”, there are two main response types and no threshold. 675 

(c) (plain trend, proportionate response): A gradual response with no change in variability 676 

revealing a trend but no threshold. 677 

(d) (gradual, no threshold): A nonlinear but smooth increase with smoothly increasing 678 

variability. Here we assume that the responses increase with some normally distributed error 679 

with the pressure without transgressing any threshold.  680 

(e) (saddle-node bifurcation): A widely discussed model situation in the context of 681 

‘tipping points’ and ‘catastrophic regime shifts’. 682 

(f) (strict threshold): Here we assume that across all studies in a meta-analysis, the 683 

response switches from weak to strong (as defined in case a) at exactly the same threshold for 684 

each study. This assumption is very unrealistic (see below) but makes the case when there are 685 

two main response types and a global threshold holding for any single study in the meta-686 

analysis. 687 

(g) (variable threshold): Here we assume that all studies in a meta-analysis potentially 688 

transgress a threshold, but the position of the threshold differs. Thus, the probability that the 689 

response switches from weak to strong increases with increasing pressure. Response 690 

similar to Case a. 691 

(h) (variable threshold with intermediates): Here we assumed that not all studies in a 692 

meta-analysis potentially transgresses a threshold, but some of the studies show gradual 693 

responses. As in Case f, the position of the threshold differs between studies and the 694 

probability that the response switches from weak to strong increases with increasing pressure. 695 

As for cases a,b,e and f, we assume there are two main response types. This scenario can be 696 

distinguished from case d by the abrupt change in variance along the pressure gradient. 697 

(i) (variable threshold and variable effect sizes below and above threshold): Here we 698 

assumed that the position of the threshold differs between studies (as in Case f) and any 699 

experiment in the study had a 50% chance that the threshold was crossed, independent of the 700 

pressure magnitude. By contrast to cases a, b and e-h, we relax the assumption that there are 701 

two main response types, but transgressing the thresholds leads to an increase in effect size, 702 

which depended on the position on the pressure gradient. Thus, if a study with a large 703 

pressure magnitude transgressed the threshold, the increase in response magnitude was larger 704 

than if a study with an overall small pressure did so. 705 



 

 

Extended Data S4. Permutation example. An example data set (a) together with a surrogate 706 

data set based on permuted X values (b); as in Fig. 2 of the main text, color codes habitat 707 

(blue: marine, green: terrestrial), circle size reflects statistical weight, and the yellow shaded 708 

area indicates the distribution ݌௑ሺ݃ݔሻ resultant from a weighted kernel density estimation.  709 

Extended Data S5: Two-dimensional probability densities.  Densities are calculated over a 710 

grid (gx,gy) for the original data set (a) and the surrogate data set (b) 711 

 712 

Extended Data S6: Conditional probability distribution example. The conditional 713 

probability distribution ݌௅ோோ∨௑ሺ݃ݕ ∨  ሻ for each grid point gx together with the marginal 714ݔ݃

distribution݌௅ோோሺ݃ݕሻ (thick black line). (a) original data set, (b) surrogate data set. 715 

 716 

Extended Data S7: Cumulative distribution example. The cumulative distribution 717 

functions ܨ௅ோோ∨௑ሺ݃ݕ ∨  ሻ(thick black line) for the probability profiles shown 718ݕ௅ோோሺ݃ܨ ሻandݔ݃

in Fig.S3. (a) original, (b) surrogate. 719 

 720 

 721 

Extended Data S8: Comparison of kernel density estimation and “qgam”. Images of the 722 

reconstructed statistical structures for an original data set (MA1.1) and one of its surrogate 723 

data sets. (a) Quantiles estimated by optimized kernel density estimation; (b) Quantiles 724 

estimated by “qgam”. 725 
 726 
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