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Thresholds for ecological responses to global change do not emerge from empirical data

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

In order to understand ecosystem responses to anthropogenic global change, a prevailing framework is the definition of threshold levels of pressure, above which response magnitudes and their variances increase disproportionately. However, we lack systematic quantitative evidence as to whether empirical data allow definition of such thresholds. Here, we summarize 36 meta-analyses measuring more than 4600 global change impacts on natural communities. We find that threshold transgressions were rarely detectable, either within or across meta-analyses. Instead, ecological responses were characterized mostly by progressively increasing magnitude and variance when pressure increased. Sensitivity analyses with modelled data revealed that minor variances in the response are sufficient to preclude the detection of thresholds from data, even if they are present. The simulations reinforced our contention that global change biology needs to abandon the general expectation that system properties allow defining thresholds as a way to manage nature under global change. Rather, highly variable responses, even under weak pressures, suggest that 'safe-operating spaces' are unlikely to be quantifiable.

Concepts of thresholds, tipping points and regime shifts dominate current ecological frameworks aiming to understand ecosystem responses to anthropogenic global change [START_REF] Scheffer | Catastrophic shifts in ecosystems[END_REF][START_REF] Scheffer | Critical Transitions in Nature and Society[END_REF][START_REF] Rockström | A safe operating space for humanity[END_REF][START_REF] Folke | Regime shifts, resilience and biodiversity in ecosystem management[END_REF] . A threshold corresponds to a level of environmental pressure that creates a discontinuity in the ecosystem response to this pressure. Thresholds and tipping points pervade environmental policy documents [START_REF] Donohue | Navigating the complexity of ecological stability[END_REF][START_REF]Aichi biodiversity targets[END_REF] as they allow definition of levels of pressure below which ecosystem responses remain within "safe ecological limits" [START_REF]Aichi biodiversity targets[END_REF] , and above which response magnitudes and their variances increase disproportionately [START_REF] Carpenter | Rising variance: a leading indicator of ecological transition[END_REF][START_REF] Scheffer | Early-warning signals for critical transitions[END_REF] . Anticipating when and under what conditions such threshold transgression might occur is important for sustainable environmental management.

Threshold-related concepts and their implementation in policy hinge upon the assumption that the presence of thresholds can be detected in data or -even better -predicted. 3 Testing this assumption requires knowledge of the ecosystem response to an environmental pressure for present-day and potential future pressure magnitudes. Ecological meta-analysis has led to the publication of thousands of effect sizes in response to in-situ trends or experimental manipulations of key pressures of global change such as eutrophication, warming, land-use change, fisheries, and ocean acidification. Each study in a meta-analysis quantifies the magnitude of the response of an ecosystem variable to the strength of an applied environmental pressure (Fig. 1a). The entire set of studies in the meta-analysis then represents a wide range of pressure strengths, which often exceed the conditions observed in nature, but might be expected in future ecosystems. We capitalize on this richness of data by combining available information from 36 meta-analyses, providing 4601 effect sizes across ecosystems and pressures of global change into multiple tests of whether these data setsindividually or aggregated -reveal a response pattern that indicates transgression of a threshold (Fig. 1b). We first tested whether and how ecosystems respond to increased environmental pressures by simply exploring whether ecosystems show a directional change in response to a pressure, regardless of the presence of a threshold (Fig. 1c). Second, we quantified discontinuities in the variance of responses, which would be a way to define the existence of a threshold. Finally, we tested for existence of multimodality of responses, which would be stronger evidence for alternative states under different environmental pressures.

Results

To test for general changes of systems along gradients of environmental pressures, we used an averaged Kullback-Leibler (KL) divergence method (see Methods) to quantify the overall deviation between the response distribution for a given stressor value and the marginal response distribution, that is, the response distribution when collapsing all response data onto a single axis ignoring the magnitude of the stressor variable. Most meta-analyses (23 of 36) showed changes in the response magnitude along the gradient of pressure strengths (KL, Table S1). This provides strong evidence that direction and increasing magnitude of global environmental pressures have significant effects on ecosystem variables. While necessary, this evidence is not sufficient to support the general prevalence of threshold-type responses across ecosystems.

If thresholds are common, then we expect to see increased variance in response variables as the pressure strength crosses the threshold value [START_REF] Carpenter | Rising variance: a leading indicator of ecological transition[END_REF][START_REF] Scheffer | Early-warning signals for critical transitions[END_REF] (as sketched in Fig. 1c). To test for discontinuities in the variance of effect size responses, we used a weighted quantile ratio (QR) of interquantile range (95%-5%) to quantify substantial inhomogeneity in the width of the response distribution across the range of observed stressors (see Methods).

Significant changes in the variance of effect sizes were present in only 8 out of 36 cases (QR, Table S1), challenging the widespread expectation of rising variance as a signal of threshold transgression. Moreover, in those cases with a significant QR test, the increase in variance occurred frequently only at the most extreme pressure level observed in the respective metaanalysis (see below for further details).

Stronger evidence for threshold-type ecosystem responses to increasing environmental pressure would be provided by the existence of multimodal distributional patterns, reflecting a state transition. We used Hartigan's dip test method (HD; see Methods) to assess the multimodality of effect sizes [START_REF] Hartigan | The Dip Test of Unimodality[END_REF] , which provides a narrow test for the case of bi-(multi)-stability of responses. We found no support for widespread existence of alternative states in ecological responses to increasing pressure intensities. None of the 36 meta-analyses revealed any sign of bimodality in the frequency distribution of effect sizes (HD, p>0.3 in every case, Table S1).

Comparing these empirical results (Table S1) to model data (Fig. 2, Extended Data S1) with known presence or absence of thresholds shows that our three approaches are suitable to detect threshold transgression. For idealized data, the three tests provide a clear differentiation between gradual and threshold-associated disproportional changes in response magnitudes. However, empirical observations will be affected by different sources of variance, both systematic (cases with different locations of thresholds and magnitudes of response shift) and stochastic. With increasing noise to signal ratios, thresholds -although present -quickly become undetectable, as the power of QR and HD declines rapidly. The exponential decline in detection probability for QR shows that thresholds can only be identified reliably for nearly ideal data without random variation around the response magnitude (scenarios g-i in Fig. 2), with the exception of the unlikely case that all systems are characterized by the same threshold (scenario f in Fig. 2). For HD, the power collapses completely with only moderate noise levels (Fig. 2). Only KL is still able to detect changes in response magnitude with increasing pressure with increasing variance, either around gradual shifts in response magnitude (scenarios c-d in Fig. 2) or around thresholds (scenarios e-i). The simulations corroborate our general empirical finding across the 36 datasets that thresholds are rarely detectable in data even if using statistical methods developed for threshold detection.

Even when thresholds were empirically detected, limited inference can be made as shown by highlighting several individual meta-analysis datasets to illustrate specific ecosystem responses to particular environmental pressures. The first meta-analysis in our data set (MA1.1) exemplifies the general results. The overall response of biomass production to biodiversity loss tended to be negative, and became more negative for larger proportions of species lost without changes in the variational range of effect sizes (Fig. 3). This gradual response type was also found in the analysis of fertilization effects on biomass production S1). In all of these cases, the magnitude of the environmental change altered the magnitude of the response -as expected -but the variance around this relationship did not indicate the emergence of a "novel" ecosystem response beyond a pressure threshold. Eight cases showed significant QR tests, of which three showed an increase in response variance only at highest pressure strength and two a reduction in response variance with increasing pressure. Thus, only three out of 36 cases showed a shifting distribution of effect sizes with increasing pressure that was consistent with the emergence of new types of responses above a threshold. These comprise land-use change effects on mammal abundance (MA6.5), warming effects on corals (MA10), and fertilization effects on microbial respiration (MA17.2, all Extended Data S2). By contrast, in 12 of the 36 metaanalyses, neither KL nor QR were significant (exemplified by MA23.1 in Fig. 3, for others see Extended Data S2), indicating that no increases in response magnitudes or threshold trangressions were observed.

The above results are relevant for across-system analyses of single pressure gradients, but in many cases management might not have a priori knowledge of which pressure gradient leads to transgressions. In order to analyze this situation, we further aggregated our analysis across drivers, organism groups and ecosystems, by standardizing and normalizing the pressure gradient to a median of 0 and a range of -1 to 1 (Fig. 4). The range of responses was impressive, the effect sizes in cases indicated more than 200-fold increase or decrease in the measured ecosystem variable (Fig. 4a). Both KL and QR tests were highly significant for the aggregated data, indicating a strong impact of pressure intensity on the strength and variance of the ecological response (Table S1). However, this increase in the variance of effect sizes was found for studies with normalized pressures greater than 0.5, which comprised the top 3.5% of the manipulated range of potential impacts (Fig. 4b). This observation resembles a "sledgehammer effect", that is, system transformation by huge impact, which is a trivial consequence of the large pressure magnitude and the complete transformation of the system.

As the sign of the effect size depends upon the specific association of driver and effect in each meta-analysis, we also analyzed the absolute magnitude of response (|LRR|) independent of sign for the aggregated data set (Fig. 4c). We found that the median |LRR| increased with increasing environmental pressure, as did the variance, particularly so at the highest pressure magnitudes (significant KL and QR tests, Table S1). The median |LRR| corresponded to 1.5-2-fold increases or decreases in process rates or properties, whereas the range of responses (i.e., the 5-95% quantiles of |LRR|) exceeded 5-fold changes even at the smallest pressure strengths. Thus, even at very small pressures, very large responses can occur.

Discussion

Analysis of the 4601 experiments that we assembled here, potentially the most comprehensive data available, did not enable us to estimate where thresholds might have been crossed. Instead, the data suggest that the ecosystem impacts of human-induced changes in environmental drivers are better characterized by gradual shifts in response magnitudes with increasing pressure coupled with broad variations around this trend. While our analyses do not rule out the existence of tipping points, they bring into question the utility of thresholdbased concepts in management and policy if we cannot detect thresholds in nature [START_REF] Montoya | Planetary Boundaries for Biodiversity: Implausible Science, Pernicious Policies[END_REF][START_REF] Pimm | Measuring resilience is essential to understand it[END_REF] .

Expectation of threshold responses ultimately leads to an underestimation of the large consequences of small environmental pressures [START_REF] Clark | Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands[END_REF] . Moreover, it marginalizes the importance of other, more complex non-linear dynamics under global change, which may underlie the considerable variance around gradually increasing response magnitudes.

Our use of field and semi-natural experiments has the advantage that these often involve pressures that are larger than observed environmental conditions, as they commonly incorporate future scenarios of severe environmental change [START_REF] Korell | We need more realistic climate change experiments for understanding ecosystems of the future[END_REF] . This counters the argument that thresholds exist but have not yet been reached. Still, some caveats to our approach need to be acknowledged. First, the absence of evidence is obviously not the evidence of absence: as shown by our explicit analysis of test power, the existence of thresholds can be masked by high inter-study variance (especially for HD). However, this also questions the usefulness of thresholds if their occurrence is dependent on the complex interaction of multiple pressures and their detection is only possible under very high signal-to-noise ratios. Without a priori knowledge across specific systems of when thresholds might appear, any definition of thresholds -even if precautionary principles are used -must remain arbitrary. Second, we focused on functional, not compositional aspects of ecosystems, and do not make conclusions about threshold pressures for changes in composition. However, compositional and functional stability often show interdependencies [START_REF] Hillebrand | Decomposing multiple dimensions of stability in global change experiments[END_REF] because compensatory dynamics between species may dampen the response in ecosystem functions [START_REF] Connell | Resisting regime-shifts: the stabilising effect of compensatory processes[END_REF] or allow for rapid recovery from a phase shift [START_REF] Bruno | Assessing evidence of phase shifts from coral to macroalgal dominance on coral reefs[END_REF][START_REF] Diaz-Pulido | Doom and Boom on a Resilient Reef: Climate Change, Algal Overgrowth and Coral Recovery[END_REF][START_REF] Carpenter | Early Warnings of Regime Shifts: A Whole-Ecosystem Experiment[END_REF] . Given that the functions addressed here often are aggregate properties of the communities investigated, we thus consider it unlikely that thresholds are more prevalent for compositional responses. Third, the temporal extent of the experimental studies in our data base is limited; it rarely exceeds the scale of tens of generations of organisms. However, there is no strong support to why threshold transgressions should increase through time. Thresholdrelated concepts thus would be untestable in ecology, as their absence could always be ascribed to insufficiently long observation periods.

The lack of clearly-defined and generally applicable thresholds distinguishing between tolerable and non-tolerable responses has obvious implications for environmental policies. The use of thresholds has been critically discussed in ecosystem management, conservation and restoration [START_REF] Suding | Threshold models in restoration and conservation: a developing framework[END_REF][START_REF] Vaquer-Sunyer | Thresholds of hypoxia for marine biodiversity[END_REF][START_REF] Groffman | Ecological Thresholds: The Key to Successful Environmental Management or an Important Concept with No Practical Application?[END_REF] to establish precautionary principles for environmental policy. Using such threshold arguments in a world where changes are too case-specific and variable to allow prediction of tipping points undermines this precautionary argument. It leads to the anticipation of major system transformation as thresholds are passed, whereas the majority of observed responses to environmental change represent progressively shifting baselines on time-scales of human perceptions [START_REF] Hughes | Multiscale regime shifts and planetary boundaries[END_REF][START_REF] Papworth | Evidence for shifting baseline syndrome in conservation[END_REF] . Consequently, environmental concerns might appear overstated if thresholds are taken for the general case but critical transitions associated with transgressing thresholds are not observed [START_REF] Schlesinger | Thresholds risk prolonged degradation[END_REF][START_REF] Duarte | Reconsidering Ocean Calamities[END_REF] . The frequently major and highly variable responses we observed even at low pressure magnitudes indicate that safe-operating spaces are unlikely to be definable from data. The data resonate well with the fact that conceptually thresholds occur under special and limiting conditions. Our results thus question the pervasive presence of threshold concepts in management and policy. We developed two robust non-parametric test statistics and assessed their statistical significance using permutation tests: Kullback-Leibler (KL) divergence to test for general changes in the response magnitude along the pressure gradient and the weighted quantile ratio (QR) of interquantile (5%-95%) ranges to test for changes in the variability of effect sizes.

We tested for multimodal frequency distribution of effect sizes, reflecting alternative responses to a common driver using Hartigan's dip test (HD). To visualize the KL approach, we indicated a potential realized distribution of responses by a red area, compared to a randomized distribution (blue area, see Methods). The significant deviation between realized and randomized responses can occur if there is gradual increase in response with increasing pressure (orange line) or if shifts in the response (red solid line) occur at a threshold (vertical dashed line). Fig. 2: Detection probability for thresholds in global change experiments using kernel density estimation. We analyzed the test power for 9 scenarios of responses to pressure in meta-analyses, the derivation of each scenario is described in the supplementary online material, Extended Data S3. Scenarios a-d do not comprise a threshold, where scenario a is the null model without an effect of the pressure on the response. Scenarios e-i do comprise a threshold, for the latter two combined with intermediate responses. For the three statistical test used in our analyses, the expected outcome is colour-coded, with green representing that the test should be significant. We then tested the proportion of 1000 simulated data sets for which the tests were significant with a probability p = 0.05 (black) and p = 0.01 (blue). We did for increasing noise variance (= inverse signal-to-noise ratio). Bandwidth selection was based on the "solve-the-equation" method of Sheater & Jones [START_REF] Sheather | A Reliable Data-Based Bandwidth Selection Method for Kernel Density Estimation[END_REF] . The estimated bandwidth was adjusted by a factor of 2.5 in each case because this optimized test power for all cases. The three tests together allow perfect detection of thresholds in the absence of noise (scenarios eh), only if threshold-type and gradual responses are mixed (scenario i), the analysis of multimodality (HD) is no longer able to pick up the threshold embedded in the data, as the simultaneous increase in mean and variance of the response (as in scenario d) masks modes in the response distribution. With increasing noise variance, however, the detection probability for thresholds via HD and QR rapidly decreases. Note the change in scale of the Y-axis in the three panels.

Methods

Data

We searched the ISI® Web of Science (WoS) using a search string targeted towards detecting meta-analyses in a global change context (Topic: ["metaanalysis" or "meta-analysis" or "metaanalyses" or "meta-analyses"] AND Topic: ["global change" or "fertili*" or "landuse" or "acidification" or "warming" or "temperature" or "eutrophication" or "disturbance" or "invasion" or "extinction" or "drought" or "ultraviolet"] AND Topic: [chang* or manipulation* or experim* or treatm*]). We refined the results by focusing on the WoS research area "Environmental sciences and ecology". This search (done September 11, 2016) yielded 979 studies, from which the majority did not fit all of our inclusion criteria (upon request, we provide a list of all studies with the study-specific criteria to include or exclude), which were:

• The paper provided a formal meta-analysis with effect sizes, which quantified the responses to a factor that represented a global change impact. The factor was either an experimental treatment or an in-situ change. This excluded numerous studies that either were verbal/vote-counting reviews or provided effect sizes as a response to non-globalchange factors (e.g. mitigation efforts).

• The response was measured at the level of ecological communities or ecosystems. This excluded studies where responses were measured at the level of single species, as these were deemed inappropriate to detect regime shifts, or at the level of human societies (e.g., health aspects, economy). We also excluded fossil data as not being affected by anthropogenic global change and non-biological response variables (e.g., the effect of CO 2enrichment on water pH).

• Given that effect sizes on species richness have recently been criticized strongly for being statistically biased [START_REF] Chase | Scale-dependent effect sizes of ecological drivers on biodiversity: why standardised sampling is not enough[END_REF] , we decided not to use biodiversity response variables but only functional processes or properties at the community or ecosystem level (details see below).

As we explicitly address the statistical distribution of effect sizes (see below), this statistical bias was considered to be potentially misleading in the context of our analysis. However, we used cases where biodiversity loss was the manipulated component of global change and a functional response was measured.

From the remaining 162 meta-analyses that fulfilled these criteria, we extracted the information needed to perform our analyses. This included a measure of the magnitude of the stressor (impact, driver) and the effect size as well as its sampling variance or weight (response). When the information was not given in an online appendix or associated data table, we contacted the authors to ask for data access. Still, we had to exclude further metaanalyses, as they • did not quantify the stressor magnitude. This was especially common in meta-analyses addressing the response to invasive species • did not contain enough cases to perform analysis. We set the critical number of effect sizes to 35 as a minimum to detect variance shifts • overlapped with other meta-analyses on the same subject. This was especially found for analyses on eutrophication and biodiversity loss, where we always opted for the most consistent and information-dense alternative.

• did not provide available data.

The final database contained 24 meta-analyses (information derived from 29 papers 28- 56 ), which were divided into a total of 36 cases (Table S1). Subsetting multiple cases from a meta-analysis was done if different drivers were tested or different response categories were used in a single meta-analysis. We followed the authors in defining response categories and stressor variables. We excluded laboratory experiments and focused our study solely on field experiments and observational studies. The resulting dataset reflects ecological responses in the form of ecosystem processes (primary or secondary production, feeding rates, element fluxes) to the most pervasive anthropogenic alterations of our planet (Table S1).

If the NH were valid, this permutation should induce no substantial difference. Computing the two test statistics (KL, QR) for the permuted data set (X', LRR, var.LRR) and repeating these steps 10,000 times generates the distribution of the test statistics under validity of the NH and allows extraction of a p-value as the fraction of permutations that yielded a similar or larger value for the test statistic (KL or QR) as the original data set (X, LRR, var.LRR).

In comparison to alternative approaches, our methods are robust and non-parametricthey do not rely on functional assumptions and use only the supposed smoothness of a possible connection between stressor and response. Reconstructing the NH by simulating surrogate data guarantees perfect control of errors of the first kind (false positive statements) and even would handle a constant bias of estimators. Given the breadth of underlying metaanalyses, we also consider our analysis highly conservative with regard to publication bias and study selection. Finally, using a weighted approach downgrades the influence of studies with very high internal variance, and thus decreases the chance of missing threshold-like responses because of too noisy data (false negative statements).

It should be noted that neither the single experiments summarized in each metaanalysis nor the meta-analyses themselves, were designed to detect thresholds. The inclusion of studies not necessarily looking for thresholds actually reduces the risk of publication bias towards positive results. However, even if the underlying experiments were not planned to detect thresholds, our statistical approach should reveal these if they fall into the covered range of stressors, which can be expected as this range encompasses stressor magnitudes not yet experienced under realistic conditions.

Statistical analyses

For each effect size in each meta-analysis, a statistical weight is assigned to each data point as the log-transformed inverse sampling variance of the effect size random fluctuations reflecting natural variability. In such situations, the underlying threshold structure, though present, will no longer be ecologically relevant because it is overridden by natural variability.

(MA2. 1 )

 1 , and in soil responses to changes in precipitation (MA8) and land-use change (MA9) as well as prey responses to predator loss (MA 16.1). Ten additional examples of this type of response involving other drivers of environmental change are provided in the supporting material (Extended Data S2, Table

Fig. 1 .

 1 Fig. 1. Detecting thresholds in response to environmental change. (a) Classically, the approach to detecting thresholds is to address the discontinuity of responses to an environmental driver over time. Instead of a temporal axis, our analyses use the multitude of experiments or observations testing the same driver in independent studies. Each metaanalysis summarizes the results of multiple experiments characterized by different magnitudes of the same pressure and response magnitudes ± sampling variance. The basis of each metaanalysis is represented by single experiments (or observational studies) measuring the response in a variable of interest in control and disturbed environments (insert). The distance in the environmental variable (e.g., temperature in warming experiments) between control and treatment gives the intensity of the pressure, the log response ratios (LRR) measure the relative change in the response variable (e.g., plant biomass) based on treatment and control means, whereas the pooled standard deviations result in an estimate of sampling variance per study (varLRR). (b) If the response shows discontinuity, we expect a tendency towards a new category of responses (red cases reflecting critical transitions) at higher pressure strengths. (c)

Fig. 3 :

 3 Fig. 3: Example meta-analyses testing for changes in the response magnitude along with increasing pressure intensity. Red and blue shaded regions indicate the (5%-95%) interquantile ranges for, respectively, the bivariate data (including the pressure gradient) and the marginal distribution of LRR (integrating out the pressure gradient). Dashed red and blue thick lines trace the related median (50% quantile). Overlain are the data points and, at the bottom, the yellow shaded area indicates the distribution of stressor variables resulting from a weighted kernel density estimation (Extended Data S2). Color codes for habitat (dark blue: freshwater; aquamarine: marine; green: terrestrial), circle size reflects statistical weight. Please note that the suggestive break in the responses in MA8 is induced by a lack of data covering intermediate pressure magnitude.

Fig. 4 .

 4 Fig. 4. Analysis of aggregate data across meta-analyses. (a) Log response ratios (LRR) of ecological processes across a gradient of environmental change, where the different pressures were normalized to a median of 0 and a range of -1 to 1. Color codes for habitat (dark blue: freshwater; aquamarine: marine; green: terrestrial), circle size reflects statistical weight. Shaded regions indicate the interquantile (5%-95%) ranges for the marginal distribution (blue) and the bivariate distribution (red). Density of values along the stressor and the response axis are given below (yellow) or at the right margin (green), respectively. (b) Same as (a), but without single effect sizes, focusing on the distribution of response magnitudes over the normalized pressure gradient. (c) Same as (b), but for absolute response magnitudes.
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Statistical approach

For each meta-analysis data set containing a measure of the stressor magnitude (X), the response variable (log response ratio, LRR) and its sampling variance (var.LRR), we assessed whether the data set reflects any statistically significant influence of the stressor variable on the response. As the data basis of each meta-analysis, and thus the sources of variation of LRR within each data set, is unknown to us, we devised three robust nonparametric test statistics and assessed their statistical significance by permutation tests.

An averaged Kullback-Leibler (KL) divergence quantified the overall deviation between the response distribution for a given stressor value and the marginal response distribution, that is, the response distribution when collapsing all response data onto a single axis ignoring the stressor variable. Second, a weighted quantile ratio (QR) of interquantile range (95%-5%) was then used to quantify substantial variability of the response distribution width across the range of observed stressors. Finally, we used Hartigan's dip (HD) test to assess the multimodality of effect sizes [START_REF] Hartigan | The Dip Test of Unimodality[END_REF] . Based on simulation-based p-values, HD provides a narrow test for the case of bi-(multi)-stability of responses, analogous to the bimodality test proposed by Scheffer & Carpenter 57 . A significant HD indicates that the responses along the pressure gradient fall into two (or more) clearly separated categories, which indicates the presence of two (or more) alternative ecosystem states. Essentially, strict bimodality across a wide range of studies is a rather narrow expectation, but we include this test as the bifurcation case is the one most often discussed in considerations of thresholds, tipping points and regime shifts 57,[START_REF] Andersen | Ecological thresholds and regime shifts: approaches to identification[END_REF] .

For both KL and QR, the assessment of statistical significance was done by a permutation test: the null-hypothesis (NH) that the response distribution is unrelated to the stressor is simulated by breaking up paired variables (X, LRR, var.LRR) and recombining them in the form (X', LRR, var.LRR), where X' is a permutation of recorded stressor values.

+ .

(1)

As described above, surrogate data sets (reflecting the NH) are created by permuting the list of stressor values in X (yielding X' = X shuffled 

(Extended Data S7), the 5%, 50% (median), and 95% quantiles can be extracted for each grid point gx (Extended Data S8). The test statistics that we devised are:

(i) the average Kullback-Leibler divergence

that shares the useful property of being non-negative and that vanishes if, and only if, | ≡ (almost everywhere). Pronounced differences between the two empirical distributions are thus condensed in values substantially larger than zero.

(ii) the ratio of interquantile (5%-95%) ranges

where denotes the qx-quantile of the 5%-95% interquantile range of the conditional probability distribution

, and the subsequent percentage in brackets indicates the related weighted quantile across the stressor grid points. We choose this latter definition for robustness, rather than the max/min ratio which may be prone to distortions by extremes. This measure was devised to indicate substantial changes of the LRR variance along the stressor axis.

(iii) the Hartigan's dip (HD) test statistic tests for multimodality, which, if significant, indicates that a frequency distribution has more than one mode.

Values of all test statistics obtained for the original data set were assessed for statistical significance. This was done by excessively repeating the permutation strategy to create surrogate data in accordance with the null hypothesis of a non-existent connection between stressor X and response LRR. p-values for both test statistics (KL and QR) were obtained as fractions of 10,000 surrogate sets (in case of HD, 2000 permutations), leading to test statistics exceeding related values of the original data set.

In addition to the employed kernel density estimates generating cumulative distribution functions and derived quantiles, we used a nonlinear quantile regression supplied by the R package "qgam" [START_REF] Fasiolo | Fast calibrated additive quantile regression[END_REF] . This package is based on general additive models (GAMs) and returns quantiles instead of standard mean response. With "qgam" we estimated the following quantiles: 0.001, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.999. Because these quantile curves were computed sequentially, independently resultant lines could intersect. To resolve this problem, we used the R package "cobs" to perform a penalized B-spline regression of obtained quantiles (separately for every grid point gx), bound to the constraint of a monotonic increase, thus yielding a smooth cumulative distribution function. As for the kernel density estimation, exemplary 5%, 50% (median), and 95% quantiles are shown in Extended Data S8.

Under default settings, the "qgam" routine was very time consuming and, in comparison with the bandwidth optimized kernel density method, had inferior test power (Figs. 2 &S1). This may be due to the fact that, because of excessive run time an optimization of qgam parameters was not feasible. We therefore constrain reporting of our results to these obtained with the optimized kernel density method.

Simulations

We examined the performance of our tests by simulating artificial data sets that combined In all simulated cases with small to moderate noise (ISNR< 0.5), threshold structures in simulated response ~ stressor relations could be detected with high reliability (at least for the KL and QR test). Of course, for strong noise (ISNR >= 1), thresholds may be masked by

Legends Extended Data

Extended Data S1: Test power as in Fig. 2, but for the "qgam" approach. Fractions of positive test results (equals test power when test should be positive) for simulated test cases.

We analyzed the test power for 9 scenarios of responses to pressure in meta-analyses, the derivation of each scenario is described in the supplementary online material, Extended Data S7. Scenarios a-d do not comprise a threshold, where scenario a is the null model without an effect of the pressure on the response. Scenarios e-i do comprise a threshold, for the latter two combined with intermediate responses. For the three statistical test used in our analyses, the expected outcome is colour-coded, with green representing that the test should be significant.

We then tested the proportion of 1000 simulated data sets for which the tests were significant with a probability p = 0.05 (black) and p = 0.01 (blue). We did for increasing noise variance (= inverse signal-to-noise ratio). The three tests together allow perfect detection of thresholds at the absence of noise (scenarios e-h), only if threshold-type and gradual responses are mixed (scenario i), the analysis of multimodality (HD) fails, giving the same output as a gradual increase in mean and variance of the response (scenario d). With increasing noise variance, however, the detection probability for thresholds via HD and QR rapidly decreases.We used default settings for the "qgam" approach due to high runtimes and computational effort, thus settings are not optimized as for the test power calculations based on kernel density estimation. Note: HD is equal to kernel method, because it is not based on different quantile estimations. (a) (neutral -simple-): Here pressure strength has no impact on the response, which falls into a single response. Thus, we assume that across all "studies" in this "meta-analysis", there is one main response type and no threshold.
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(b) (neutral -bimodal-): Here pressure strength has no impact on the response, which falls into either of two alternative attractors: a weak and a strong response. Thus, we assume that across all "studies" in this "meta-analysis", there are two main response types and no threshold.

(c) (plain trend, proportionate response): A gradual response with no change in variability revealing a trend but no threshold.

(d) (gradual, no threshold): A nonlinear but smooth increase with smoothly increasing variability. Here we assume that the responses increase with some normally distributed error with the pressure without transgressing any threshold.

(e) (saddle-node bifurcation): A widely discussed model situation in the context of 'tipping points' and 'catastrophic regime shifts'.

(f) (strict threshold): Here we assume that across all studies in a meta-analysis, the response switches from weak to strong (as defined in case a) at exactly the same threshold for each study. This assumption is very unrealistic (see below) but makes the case when there are two main response types and a global threshold holding for any single study in the metaanalysis.

(g) (variable threshold): Here we assume that all studies in a meta-analysis potentially transgress a threshold, but the position of the threshold differs. Thus, the probability that the response switches from weak to strong increases with increasing pressure. Response similar to Case a.

(h) (variable threshold with intermediates): Here we assumed that not all studies in a meta-analysis potentially transgresses a threshold, but some of the studies show gradual responses. As in Case f, the position of the threshold differs between studies and the probability that the response switches from weak to strong increases with increasing pressure.

As for cases a,b,e and f, we assume there are two main response types. This scenario can be distinguished from case d by the abrupt change in variance along the pressure gradient.

(i) (variable threshold and variable effect sizes below and above threshold): Here we assumed that the position of the threshold differs between studies (as in Case f) and any experiment in the study had a 50% chance that the threshold was crossed, independent of the pressure magnitude. By contrast to cases a, b and e-h, we relax the assumption that there are two main response types, but transgressing the thresholds leads to an increase in effect size, which depended on the position on the pressure gradient. Thus, if a study with a large pressure magnitude transgressed the threshold, the increase in response magnitude was larger than if a study with an overall small pressure did so. 

Extended