Does the Control Law Matter? Characterization and Evaluation of Control Laws for Virtual Steering Navigation
Résumé
This paper aims to investigate the influence of the control law in virtual steering techniques, and in particular the speed update, on users' behaviour while navigating in virtual environments. To this end, we first propose to characterize existing control laws. Then, we designed a user study to evaluate the impact of the control law on users' behaviour and performance in a navigation task. Participants had to perform a virtual slalom while wearing a head-mounted display. They were following three different sinusoidal-like trajectory (with low, medium and high curvature) using a torso-steering navigation technique with three different control laws (constant, linear and adaptive). The adaptive control law, based on the biomechanics of human walking, takes into account the relation between speed and curvature. We propose a spatial and temporal analysis of the trajectories performed both in the virtual and the real environment. The results show that users' trajectories and behaviors were significantly affected by the shape of the trajectory but also by the control law. In particular, users' angular velocity was higher with constant and linear laws compared to the adaptive law. The analysis of subjective feedback suggests that these differences might result in a lower perceived physical demand and effort for the adaptive control law. The paper concludes discussing the potential applications of such results to improve the design and evaluation of navigation control laws.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...