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ABSTRACT

This paper describes an “all-in-one” solution for the real-time recog-
nition of users’ mental workloads in virtual reality through the cus-
tomization of a commercial HMD with physiological sensors. First,
we describe the hardware and software solution employed to build
the system. Second, we detail the machine learning methods used
for the automatic recognition of the users’ mental workload, which
are based on the well-known Random Forest algorithm. In order
to gather data to train the system, we conducted an extensive user
study with 75 participants using a VR flight simulator to induce
different levels of mental workload. In contrast to previous works
which label the data based on a standardized task (e.g. n-back task)
or on a pre-defined task-difficulty, participants were asked about
their perceived mental workload level along the experiment. With
the data collected, we were able to train the system in order to clas-
sify four different levels of mental workload with an accuracy up
to 65%. In addition, we discuss the role of the signal normalization
procedures, the contribution of the different physiological signals
on the recognition accuracy and compare the results obtained with
the sensors embedded in the HMD with commercial grade systems.
Preliminary results show our pipeline is able to recognize mental
workload in real-time. Taken together, our results suggest that such
all-in-one approach, with physiological sensors directly embedded
in the HMD, is a promising path for VR applications in which the
real-time or off-line estimation of Mental Workload assessment is
beneficial.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Virtual reality

1 INTRODUCTION

Using virtual reality (VR), complex virtual environments (VEs) can
be simulated in order to study human behaviour and psychological
states. In addition, VR has the ability to create reproducible and
sophisticated protocols in a safe way, which might be not feasible
or too expensive in real-life. It can immerse and engage users by
making them feel “present” in the virtual world [71]. For those
reasons, VR has been used extensively to design training applica-
tions, and to test system design. On the other hand, mental workload
(MW), which can refer to the “ratio of demand to allocated re-
sources” [22], has long been recognized as an important factor in
these fields [14,27,55,82]. It was shown to have an effect on workers’
well-being and work performances [27, 82].

The most common methods to assess MW in VR rely on the
use of questionnaires (e.g., NASA TLX [33]) that are administered
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punctually (e.g., at the end of the experience), or physiological mon-
itoring which can be done continuously [18, 47, 48, 60, 81]. While
the administration of the questionnaires can disrupt the VR experi-
ence, thus degrading users’ immersion, physiological monitoring
is non-invasive and if done in real-time allows to customize the
training/experience based on the users’ psychological states.

However, due to the complexity of physiological data, machine
learning (ML) methods are typically required in order to extract the
users’ mental workloads. A particular challenge remains the training
of the ML models as they require the gathering of labeled physio-
logical data and specific induction protocols to ensure that different
levels of MW are generated. For now, induction protocols have
mainly used single standardized tasks (e.g., n-back task) or relied
on task-difficulty metrics to label MW data. However, single tasks
tend to stimulate limited pools of cognitive resources depending on
the nature of the stimuli [90], which can influence the physiological
signals. Moreover, although a number of different physiological
measurements has been used to classify MW, it still remains unclear
which are the ones that provide better classification rates in VR and
whether they can be used in real-time recognition scenarios. Fur-
thermore, the VR context implies different constraints than in the
real-world, such as the amount of interaction, the cumbersomeness
of VR equipment, the lack of visual feedback of the real world, and
the effect of cybersickness on users’ responses. While a wide range
of commercial physiological sensors exist (e.g., bracelets, torso belts,
electrodes patch) refereed hereinafter “Commercial Grade Systems”
(CGS), a number of recent initiatives started to embed VR HMD
with physiological sensors [1, 6, 7, 36]. Such setups proved to be
convenient to reduce the potential cumbersomeness added by sen-
sors, but this type of setups also implies different signals shapes and
sensitivity compared to CGS sensors, which can interfere with the
MW classification accuracy.

In this paper, we present an all-in-one solution to assess users’
MW in real-time in VR. Section 2 presents an overview of related
work. The all-in-one solution is depicted in Section 3 considering
the hardware and software perspectives. Section 4 describes the
study, which was conducted to assess the physiological (i.e., ocular
activity, electrodermal activity (EDA), and cardiac activity) and
task performance measures of 75 participants in the context of a
VR flight simulator, where users had to perform different sub-tasks.
The users self-reported their subjective MW levels throughout the
experiment, and this measure was then used to label the dataset to
train models, using the random forest (RF) algorithm, to classify
4 levels of MW. The classification performances are compared in
Section 5, considering the HMD sensors setup and the CGS setup,
as well as the different types of measure, and normalization methods.
The analysis results show overall similar classification performances
between the HMD setup and the CGS setup, reaching a classification
accuracy of 65%. This supports the use of the physiological sensors
integrated into VR HMDs for the recognition of users’ MW in
VR. Ocular activity features were especially important, followed
by EDA, cardiac activity, and task performance features. Moreover,



preliminary results show that our solution pipeline is able to do MW
recognition in real-time. Finally, these results are further discussed
in Sections 6 and 7; and Section 8 provides the concluding remarks.

There are 2 main contributions provided by this work: (1) a
technical contribution with an all-in-one solution to recognize MW
in VR in real-time using physiological sensors directly integrated
into a VR HMD; (2) an experimental contribution which evaluates
the approach using HMD sensors in comparison to CGS sensors,
and which proposes an original evaluation based on classification
performances. The experimental results also provide insights on
the methods of normalization and the contribution of each type of
measure and sensors on the classification accuracy.

2 RELATED WORK

2.1 Mental Workload Measurement

O’Donnell classified the methods to measure MW in 3 cate-
gories [55]: subjective measures, task performances, and physiologi-
cal measures. In this paper, our main focus is on physiological mea-
sures as they can provide a continuous assessment of the users’ states
and are less task-dependent as performance measurements [16, 40].
Changes in the user’s physiological state can reflect processes in
the Autonomic Nervous System (ANS) and in the Central Nervous
System (CNS) [20,35]. Nevertheless, subjective measurements (e.g.,
questionnaires [87]) are typically needed for data labeling purposes
in supervised machine learning methods [54].

In this way, Heart Rate (HR) and Heart Rate Variability (HRV)
seem to be impacted by MW (e.g., [11, 28, 32, 51]). For example,
De Rivecourt et al. [21] showed that the HR is sensitive to task
complexity and mental effort during a simulated flight. The HRV
seems also to be sensitive to MW and usually decreases when MW
increases [11]. Second, EDA revealed to be sensitive to MW accord-
ing to prior research (e.g., [32, 50, 53, 73]). For instance, in a driving
simulation, the addition of a visual stimulus to the driving task sig-
nificantly influences EDA, suggesting that EDA is sensitive to MW
in realistic tasks [50]. Third, many features from ocular activity have
been related to MW, ranging from blink rate and blink frequency, to
pupil diameter (e.g., [16, 19, 46, 85]). For example, pupil diameter
has been shown to be sensitive to errors in a nuclear power plant sim-
ulation [52], suggesting that this measure is sensitive to MW. Finally,
Recarte and Nunes observed significant changes in pupil diameters
when a verbal output is added to a real driving task [64]. Other phys-
iological signals such as electroencephalography (EEG) (e.g., [81])
or functional near-infrared spectroscopy (fNIRS) (e.g., [60]) have
been explored in the context of MW measurement. Nevertheless,
EEGs are cumbersome [12] and their installation can be tricky, and
the exploitation of fNIRS in real-time can be challenging [76].

The exploitation of the relationship between physiological signals
and MW is not straightforward. Typical signal processing methods
such as normalization [54], feature extraction and classification via
ML algorithms (e.g., [3,73,74,87]) are required in order to tackle the
inter-individual variability [79] and the non-linearity between physi-
ological signals and MW [92]. Regarding the classification methods,
the RF model has shown great results in the physiological comput-
ing field [18, 26]. Mostly based on a supervised approach, these
ML methods require the collection of labeled data under specific
experimental conditions that VR can offer.

In summary, physiological signals can offer a suitable solution
to evaluate MW, but their exploitation requires complex solutions
involving ML and labeled datasets.

2.2 Mental Workload Recognition in VR

VR implies different constraints than those in the real-world. Cyber-
sickness is still a major issue in VR, and the literature shows that it in-
fluences users’ physiological responses when using an HMD [23,65].
Other findings support that breaks in presence can also influence

physiological signals [70], and that presence can modulate the inten-
sity of physiological responses [49]. Users also behave differently
in VR compared to in the real world due to the interactions and
the cumbersomeness of VR equipment, which can impact measures
linked to their psychological states. For these reasons, assessing
MW can differ in VR compared to in the real world.

Recently, a number of works have explored the recognition of
MW in VR using EEG [81], fNIRS [60], EDA [18] or cardiac
signals [18]. They labeled their physiological features based on
task difficulty levels [60, 81] which were sometimes inferred using
users’ overall performances [18], and used different protocols of
induction to elicit several levels of mental workload in VR. Most
focused on a standardized single task. For instance, the n-back task
is a cognitive method, where the user is asked to react (e.g., by
pressing a button, or by interacting with virtual objects [60, 81]) if
the presented stimulus is the same as the n-th previous one. It relies
on the working memory paradigm and has shown to induce different
levels of mental workload depending on its level of difficulty (as n
increases, the difficulty increases) [4]. In another study, Collins et
al. used a spatial rotation task to classify 3 levels of difficulty based
on the participants’ overall performances [18]. Their task consisted
in rotating an hypercube (a four-dimensional ”cube”) to match the
rotation of a static hypercube. They manipulated the difficulty in
function of the combinations of 4D rotational planes rotated and the
extent of the rotation.

However, there was no VR study which tried to classify MW
levels using the users’ subjective response to label the data and
which elicited mental workload in a multitask context.

2.3 Physiological Sensors Integrated in VR HMDs

From a practical perspective, the use of physiological monitoring in
VR poses several challenges. Physiological sensors are cumbersome
therefore particularly troublesome when using VR HMDs. As users
cannot see their real bodies nor the physiological sensors, their
motion could be disrupted by them (e.g., cables). This can disturb
the sensors functioning, generating artifacts in the recordings, and
reduce users’s immersion and engagement in the VEs. In addition,
each physiological sensor often has to be installed and calibrated
individually which increases the setup time and between-individual
differences on the sensors placement.

In fact, physiological signal quality and shape greatly depends on
the sensor’s positions [91]. As a consequence, training classification
models using a sensor located at a specific place will not necessarily
work with the same sensor at another place. Fixing sensors directly
on the headset allows to help maintaining them at the same place
overtime, between sessions and between users. This is a great
advantage to improve the signal quality and when building a dataset
based on physiological signals for classification purposes. Moreover,
the literature shows that the face location can be relevant to assess
some physiological data related to users’ psychological states [7,91].

For all these reasons, some companies and laboratories focused
on the integration of physiological sensors directly into the VR head-
sets. As such, some commercialized headsets directly integrates
eye-tracking and gaze-tracking technologies, such as the Vive Pro
Eye or the FOVE headsets [39]. Pupil Labs also offers add-on
solutions for virtual and augmented reality headsets. Other head-
sets were developed to integrate EEG, such as LooxidVR [1] and
Neurable [36] HMDs. Finally, the MIT Fluid Interface laboratory
developed HMDs which integrates EDA and PPG sensors [6], as
well as EEG, electromyography, and electrooculography sensors [7],
with applications targeting mainly facial and emotion recognition.

However, none of these HMDs compared their sensors to CGS
sensors in the same study, especially in the context of the real-time
recognition of users’ MW in VR.



3 OUR ”ALL-IN-ONE” APPROACH TO ASSESS USER’S
MENTAL WORKLOAD IN VR IN REAL-TIME

In this section, we present our all-in-one solution to assess MW in
VR in real-time. First, the hardware components concerning the
sensor integration in the HMD will be addressed. Next, the software
components presenting the solution proposed for the data synchro-
nization and the real-time recognition pipeline will be addressed.

3.1 Integrated Hardware
Several physiological dimensions relevant to MW measurement were
mentioned in Section 2.1. We chose to focus on cardiac activity,
EDA, and oculomotor activity as those have proved to be influenced
by MW [40], are non-intrusive, and can easily be positioned inside
and on VR HMDs. The main efforts focused on the integration of
cardiac and EDA into the VR HMD.

The cardiac activity was monitored via a PPG sensor: the Maxim
MAX30102, which was fixed on a small clip to assess data on one of
the user’s earlobes (see Fig. 1). This location was chosen following
the recommendation of the literature for PPG sensors, as blood
vessels are close to the surface of the skin and light can readily be
detected [77, 91].

For the EDA, pairs of electrodes were made out of a flexible
printed circuit board. The latter was chosen based on previous works
(e.g., [7]) and for its various qualities. It is robust enough to weld
electrical wires on it to make the connection to the electronic card.
As for the conductive material, gold was chosen as it is stainless and
biocompatible. The prefrontal area has been found to be relevant
in order to measure EDA [86, 91], so we chose to place one pair
of electrodes on the foam in contact with the forehead part of the
headset (see Fig. 1). The dimensions of electrodes were chosen to
be thin (i.e., 100 µm) to not mark the skin, and large to palliate the
reduced presence of sweat glands in the prefrontal area. Those were
spaced a few inches apart to let a weak current flow through the skin,
and the EDA was given as the difference in potential between the 2
electrodes.

All these sensors were plug in a custom-made electronic card (see
Fig. 1), based on SOM Variscite i.MX8M Mini, which was powered
by a 5V powerbank. The later were placed in a designed 3D printed
case, which was positioned in the back of the HMD using the vertical
strap of the headset (see Fig. 1). The electronic card main features
are that (i) it can collect physiological data from multiple sensors,
(ii) it allows the aggregation and time stamping of all samples, (iii) it
has the capacity to process AI models and algorithms (not currently
considered), and (iv) it can transmit the data to a computer either
by a wired medium, using ethernet, or in a wireless way, via wifi
connection. Further slots were available on the electronic card to
plug in more sensors if necessary.

As for the ocular activity assessment, Section 2.3 presents a few
HMDs which already integrate eye-tracking solutions and can be
used as a base to input the remaining sensors (i.e., EDA and PPG
here). We chose to use the Vive Pro Eye HMD.

3.2 Data Processing and MW Assessment
The software component aims at recognizing users’ MW level in
real-time using multiple sources of measurements. It is composed
of several steps depicted in the Figure 2 which can be divided in 2
parts: the training phase and the real-time phase.

3.2.1 Data collection
The recording of data coming from various sensors could be tricky
especially due to problems such as time synchronization, or data
format. Moreover, sensors usually come with their own software,
and dealing with all of them to record participants’ signals can
be tedious. For these reasons, a middleware, called LibSTR, has
been developed for the collection of physiological and behavioral
data. It allows to collect, synchronize and distribute in real-time
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Figure 1: Hardware solution. The sensors are placed on a Vive Pro
Eye HMD, which has eye-tracking. (1) PPG sensor, (2), electrodes to
assess the EDA, (3) electronic card, (4) 3D printed case.
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Figure 2: Software processing chain of the real-time recognition of
users’ MW. There are 2 main steps: the training of the recognition
model and the real-time use of the model.

the data coming from various sensors by abstracting the capture of
data. It is composed of three components: hub, sensors wrappers
and listeners. The hub collects and synchronizes the data from the
sensors wrappers, and exposes them to the listeners. Developed in C
and without software dependency, it works on multiple platforms.

3.2.2 Data windowing
The training of ML models in a supervised way requires labeled
data [54] (i.e., the labels correspond to the subjective measures of the
user’s state and the baseline in our case). For this purpose, a fixed-
size window of the collected data (e.g., blood volume pulse (BVP),
performance) are extracted before each label. Based on previous
studies [73], a window size of 30 seconds was selected as it seems
an appropriate compromise between performance and real-time use.
Thus, for each label, the 30 seconds of data preceding the label
timestamp are used to calculate the said-label dataset features [29]
(see Fig. 3).

3.2.3 Features extraction
The exploitation of physiological signals requires the extraction of
specific physiological features [2]. Based on the window of signals
described above, common features from the relevant state of the art
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Figure 3: Illustration of a data windowing in the case of a physiological
signal (in green). The time window (in red) is used to extract the
physiological features based on given labels.

were used. It should be noted that performance measures depend on
the context of the application and of the tasks users have to perform.
A summary of all the features extracted using our setup can be found
in Table. 1. The windowing of data as well as the extraction of
features was implemented in Python using numpy [56], pandas [57]
and scipy [89].

Cardiac activity. 6 time-domain and 5 frequency-domain
features related to the Heart Rate Variability (HRV) were ex-
tracted [41]. These features are based on the InterBeat Interval
(IBI). For this purpose, a bandpass filter was firstly applied (cutoff
frequency = [0.66;3.33] Hz, order = 3). It allows to reduce noise
such as user’s motions [2] and to assess the cardiac activity situated
between 40 and 200 beats per minute. Then, the peaks on the BVP
signal are detected using a threshold (arbitrarily set) and an estima-
tion of local minima/maxima [80], allowing to estimate the IBI and
to calculate the related features (see Table 1).

Electrodermal activity. The EDA signal is composed of 2 com-
ponents: the phasic part and the tonic part [8]. The phasic part (also
called Skin Conductance Level - SCL) corresponds to slow changes
in the EDA while the tonic part (also called Skin Conductance Re-
sponses - SCR) corresponds to the rapid physiological responses to
a stimulus. The extraction of those two components from the raw
signal is composed of several steps. First, a low-pass filter (cutoff
frequency = 1Hz, order = 3) is applied to reduce noise in the
signal [8]. Second, a low-pass filter (cutoff frequency = 0.05Hz,
order = 3) is applied on previously filtered signals to extract the
tonic part of the EDA [9]. Lastly, the phasic part is obtained by
subtracting the tonic signal to the filtered signal. For the phasic part,
9 features were extracted based on the estimated EDA peaks1. For
the tonic part, 29 features were calculated (see Table 1). Inspired by
research from other domains, some are computed based on the shape
of the signal [44], others from the data-driven signal decomposition
(i.e., Empirical Mode Decomposition - EMD) [34] and finally some
are EDA components from the frequency-domain [67, 69].

Ocular activity. 18 features have been extracted from the pupil
diameter, the dynamic of pupil diameter, and the dilatation and
constriction of the pupil (see Table 1). The signal was cleaned by
taking into account the data only when the pupil was detected.

1An EDA peak is characterized by the amplitude (the height of the
peak) and the recovery time (time to return to the level of EDA before the
peak) [8, 72].

Table 1: Extracted physiological and performance features

Features on cardiac activity
Heart Rate
Average of NN intervals
Standard deviation of NN intervals (SDNN)
Root mean square of successive differences between NN intervals (RMSQ)
Number of interval differences of successive NN intervals greater than 50 ms
Percentage of interval differences of successive NN intervals greater than 50 ms
Very low frequency (0.003 to 0.004 Hz)
Low frequency (0.04 to 0.15 Hz)
High frequency (0.15 to 0.4 Hz)
Ratio of low frequency and high frequency
Total spectral power
Features on tonic EDA
Max, range, inter-quartile range, root mean square error, mean, SD, skewness and
kurtosis of the signal
Mean absolute value of 1st differences and mean absolute value of 2nd differences
of the signal
Mean absolute value of the 1st differences and mean absolute value of the 2nd
differences of the standardized signal
Mean, SD, min and max of 3 Intrinsic Mode Functions
Very low frequency (0 to 0.1 Hz)
Low frequency (0.1 to 0.2 Hz)
Middle frequency (0.2 to 0.3 Hz)
High frequency (0.3 to 0.4 Hz)
Very high frequency (0.4 to 0.5 Hz)
Features on phasic EDA
Number of peaks
Mean, SD, min and max of peak amplitude
Mean, SD, min and max of half of recovery time of peaks
Features on ocular activity
Min, max, range, mean and SD on pupil diameter
Min, max, range, mean and SD of the pupil amplitude
Min, max, range, mean and SD of the pupil constriction and dilatation speed
Features on task performance
Min, max, range, mean and SD on distance to the center of the circle

3.2.4 Normalization of physiological features

Considering the inter-individual variability is a key point in research
dealing with physiological data [5, 29], several methods have been
proposed in the literature to reduce its influence on the recognition
accuracy and to make data comparable between participants. One
of the most common approaches is to collect data during a rest time
(i.e., the baseline) and to subtract the mean value of the data collected
during this rest time from the whole signal [9]. This approach can be
effective on non-periodic signals such as the EDA signal, but is not
compatible with periodic signals (e.g., BVP 2). As such, the methods
of normalization at feature level seem interesting (e.g., subtraction
of feature values during rest time from other feature values) as they
can be applied to all signals. However, as no de facto normalization
method exists, the most common approaches used in the literature
will be evaluated.

3.2.5 Model training using Machine Learning

Models are trained, using supervised ML algorithms, to recognize
MW based on the extracted physiological features, task performance
measures, and related subjective responses (i.e., the subjective mea-
sures of users’ state). In this way, the function between the input
data (e.g., extracted physiological and performance features) and

2Contrarily to the EDA signal, the BVP signal is periodic. Therefore,
subtracting the mean value of the BVP signal collected during the baseline
to the signal will only bring the BVP signal to the same amplitude level
(roughly the same mean). However, the features related to the BVP signal
are time-based, which makes such normalization not relevant.



output data (i.e., subjective responses) is automatically inferred [54].
The objective is to be able to detect users’ subjective MW level
using only objective measures (i.e., physiological responses and/or
task performance) without requesting any evaluation from the users,
which could disrupt their experience [61]. RF [10] was selected as it
presented the best performance in similar contexts (e.g., [18, 26]).
The number of trees as well as the number of randomly selected
predictors at each cut in the tree were tuned during the training. As
the evaluation of feature selection (i.e., principal component analy-
sis) showed no improvement of the recognition accuracy and as the
tree-based models are generally robust against unhelpful features, all
the features per sensor were considered. All trainings were realized
using R [63] and the caret library [42].

3.2.6 Real-time recognition
The real-time pipeline adopts a similar processing chain as the train-
ing part. However, there are some adaptations.

Data buffering. As the data is progressively captured, it is nec-
essary to store it in a buffer. Indeed, 30 seconds windows of data
are required to calculate the features. The buffer starts empty and
is progressively filled with available data. When the 30 seconds of
data are reached, the data are fed to the rest of the processing chain.
Then, whenever new data is available, it is added to the buffer by
pushing the oldest data at a 1 second step.

Normalization. The recording of data during a baseline is re-
quired to normalize the calculated features, regardless of the method
used. The normalization should be done in the same way as in the
training part.

Real-time prediction. The predicted MW level and related phys-
iological signals are displayed in an interface (see Fig. 4). Wrappers
were written to communicate the estimated MW level output from
Python to other environments, such as C# for Unity3D VR environ-
ments.

In order to have a unified processing chain, the best ML configura-
tion was implemented in Python using scikit-learn [58] for real-time
purpose.

Figure 4: Interface for mental workload recognition in real-time. It
depicts on the left: the EDA, BVP, and pupil diameter signals overtime;
on the right: the predicted mental workload level (i.e., the probability
that a user is at a particular mental workload level).
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Figure 5: Virtual cockpit view. (1) Instantaneous Self Assessment
(ISA) interface. (2) Resources management task interface (deacti-
vated); when activated, the interface lit up (with a green outline). (3)
Communication task interface (activated); when deactivated, the in-
terface lit off (no green outline). (4) Informative panel which gives
information about which task is activated or not at the current time. (5)
Virtual representation of the joystick used to pilot the aircraft and of the
right hand. The left hand is represented in the same way, but tracked
by a Vive Controller and animated depending on the interaction.

4 DATA ACQUISITION PROTOCOL

A user study was conducted to test the viability of our solution to
classify MW levels. The objective was to create a dataset to train the
recognition model. Three major constraints were enforced. First, a
real-life task which required the user to perform different sub-tasks.
Second, the possibility to modulate the task difficulty ensuring that
a wide range of mental workload levels could be induced. Third,
enforce a good balance between the different levels of mental work-
load induced in order to ensure an optimal classification model. In
addition, we compare our solution to CGS sensors, in regards to the
MW classification performances.

4.1 Tasks Design
The Multi-Attribute Task Battery II (MATB-II) was originally de-
veloped to study human performances in a multi-task context [68].
It has been used extensively to study mental workload and to train
users to situations where they might be overloaded. Three tasks of
the MATB-II [68] were adapted in VR to induce different levels of
subjective MW: the tracking task, the communication task, and the
resources management task. The VR cockpit is depicted in Fig. 5.

The tracking task of the MATB-II was adapted into a piloting
task in VR. Users could orientate the aircraft using a joystick, but
they could not accelerate nor decelerate. They were asked to follow
the green line which went through all circles centers as closely as pos-
sible (see Fig. 5). Three different difficulty levels were considered:
easy, medium, and hard. Those were manipulated by modulating
the speed of the aircraft, and the number of circles users could see
at a time. For the communication task, users could hear a voice
in the headset asking a specific aircraft to turn the radio on a given
frequency in french. Users had to pay attention to determine if the
message targeted their aircraft or not and could click on the “+”
and “−” buttons in the VR cockpit to change the radio frequency
(see Fig. 5). Two difficulty levels were considered here: activated
(audio messages) or deactivated (no audio message). Finally, for the
resources management task, users were asked to maintain 2 tanks
levels in the blue zone (see Fig. 6) by activating or deactivating 8
different pumps buttons. There were 2 difficulty levels: activated



Figure 6: Resources management task interface. A and B are the
main tanks; their fuel levels are indicated below the tanks. C and D are
supply tanks; their fuel levels are indicated on their right side. E and
F are supply tanks with unlimited capacities. The buttons numbered
from 1 to 8 are pumps button. Pumps 3, 4 and 6 are activated, pump
5 is failed, and all other grey pump buttons are deactivated.

or deactivated. When the task was activated, the two tanks levels
started to decrease, otherwise, the resources management task inter-
face was unlit (see Fig. 5) and frozen. More details about the tasks
instructions can be found in [45] and [68].

All these tasks levels could be associated to form 12 tasks
levels associations (TLAs) (3 piloting levels × 2 communication
levels × 2 resources management levels). For the sake of clarity,
each TLA was labeled using 3 digits, one for each task. The
first, second, and third digits represent respectively the piloting
task difficulty level (0-easy, 1-medium, 2-hard), the radio task
level (0-deactivated, 1-activated), and the resources management
task level (0-deactivated, 1-activated). For instance, in the TLA
”110”, the difficulty of the piloting task is set to ”1-medium”, the
radio task is ”1-activated”, and the resources management task is
”0-deactivated”. Each TLA was set to last 107s on average.

4.2 Apparatus
The participants were installed on a cockpit, which was assembled
for the experiment (see Fig. 7). The virtual cockpit was modeled in
3D and calibrated so it matched the real one in position and size (see
Fig. 5).

Users were equipped with the customized Vive Pro Eye (see
Section. 3.1) and the Shimmer3 GSR+ [13] sensors (i.e., the CGS
sensors) (see Fig. 7). The Shimmer wristband was disposed on
users’ left wrist. Its EDA sensors were placed on the middle pha-
lanx of the users’ left ring and middle fingers, and the PPG sensor
ear clip, on users’ left earlobe. The data were collected using our
libSTR middleware (see Section 3.2.1) with homogeneous times-
tamp formats at different frequencies (Vive Pro Eye-tracker: 250Hz,
HMD-PPG:100Hz, HMD-EDA: 50Hz, Shimmer sensors: 60Hz).

Users could pilot the virtual aircraft using the Logitech 3M X52
Pro joystick with their right hand. They were also equipped with
a Vive Controller with their left hand to interact with the virtual
interfaces. In the VE, both hands were represented by transparent
virtual hands. The right hand was placed on the virtual joystick (see
Fig. 5), which moved when the user was interacting with the real
one, and the left hand was tracked with the Vive Controller. The
users did not need to use any of the buttons on the Vive Controller or
on the joystick to perform the tasks. The interactive virtual objects
were highlighted when the participants advanced their virtual hands
in their direction, and the animation turned into a pointing index
upon approaching. A haptic pulse feedback on the Vive controller
informed the participants that their action had been carried out.
Audio instructions were provided using the audio headset supplied

   

Figure 7: Multiple views of the experimental setup. The user is wearing
a Vive Pro Eye equipped with sensors on the headset, a Shimmer3
GSR+ on his left hand, and using a joystick and a Vive Controller on
the cockpit.

with the Vive Pro Eye Headset during the flight simulation.
The support application was developed in Unity 3D, and run with

the recording on a computer equipped with an Intel(R) Core(TM)
i9-7900X CPU, a Nvidia Titan V graphic card, and 16 GB Random-
Access Memory.

4.3 Collected Data

The assessed data were: self-report (i.e., the subjective MW reported
by participants), physiological, and tasks performance measures.

4.3.1 Self-Report

We wanted to assess users’ MW while they were performing other
tasks. Therefore, the focus was set on the Instantaneous Self-
Assessment (ISA) [78], which rates the MW level using 5 dif-
ferent ratings (1-underutilized, 2-relaxed, 3-comfortable, 4-high,
5-excessive) and has been especially used during air traffic control
tasks [78]. The meaning of each rating of the ISA is described
in [78] and was explained to each participant before the experiment.
They were asked to report the MW level they experienced during the
last 30s, when a screen appeared in front of them with the 5 buttons
corresponding to the ISA ratings (see Fig. 5). First, they were asked
to push the button corresponding to their MW level, and then, to
click on the validate button on the same screen to make it disappear.

4.3.2 Physiological Measures

Multiple types of physiological signals were assessed during the
experiment: ocular activity via the eye-tracking cameras present in
the HMD, and cardiac activity and EDA via our hardware solution
integrating sensors into the HMD (see Section 3.1) and via the
Shimmer3 GSR+ (i.e., the CGS sensors). The features extracted
from these sensors are depicted in Table 1.

4.3.3 Task Performance Measures

Some performance indicators of all 3 tasks were assessed throughout
the experiment. However, among the three tasks used in the experi-
ment, only one was always present across the different TLAs: the
piloting task. Thus, only this measure is considered as a performance
measure.

Users were given indications on how to align the aircraft with
the green line optimally before the experiment, and the distance to
each circle centre when they passed it was recorded throughout the
experiment.



4.4 Experimental Design
In a previous study [45], 38 participants did the 12 TLAs in a row
in a randomized order and reported their subjective MW level using
the ISA scale [78], 3 times per TLA. Since unbalanced datasets can
lead to poor recognition performance for minority classes [25], the
experimental protocol was designed to induce the highest number of
different subjective MW levels in the most balanced way possible.

The constraints were the following: a TLA could not appear more
than 3 times in total, and the total duration of the experiment was set
not to last more than 25 min, conducting to a number of 10 TLAs.
Following these constraints and based on the ISA responses reported
during the first study [45], the best subjective MW level distribution
was given for the following 10 TLAs: “000− 000− 000− 100−
111−111−201−211−211−211”. Those were selected for the
new experimental study, which results and analysis are depicted and
discussed in this paper.

4.5 Participants
77 healthy participants, who were completely naive to the experi-
ment, were recruited through an external cabinet. They were paid
30C for their participation to the study. Two of the users were
excluded from the study due to motion sickness, resulting in a fi-
nal sample of 75 participants with ages ranging from 18 to 64 (38
females, 37 males; M = 38.69, SD = 13.54).

There were some inclusion criteria: the participants had to be
fluent in french. They should not have taken any medication that
could influence their physiological responses. They were also asked
not to consume coffee and/or tea in the 2 hours preceding the experi-
ment. Moreover, variables such as their experience in VR, games,
flight simulator, aircraft piloting, vision state, and dominant hand
were controlled. One participant reported having a great experience
in VR, 4 reported having few experience in VR, and all others (i.e.,
70 participants), none. As for the gaming experience, 64% of the
participants were novice, 20% played occasionally, and 16% regu-
larly. All of them reported having no experience in flight simulator
and aircraft piloting.

In accordance with ethical principles, participants were required
to complete an informed consent form, advising them of their right
to withdraw at any time from the study, of the preservation of their
anonymity and about the potential side effects of VR.

4.6 Experimental Procedure
The experiment lasted around 1h and was subdivided into the
following steps:

Written Consent and Instructions: Users completed a consent
form, prior to the experiment. They were then instructed with the
nature of the experiment, the equipment used, the data recorded
(which was anonymized), and the tasks instructions. Participants
were also asked to fill a questionnaire (experience with VR,
video games, and piloting an aircraft, dominant hand, level of
alertness, state of vision, demographic information, simulator
sickness questionnaire (SSQ) [37]) to gather information about their
background and their state before the start of the experiment.

Training: Users were then equipped with the Shimmer sensors,
a Vive Controller and the Vive Pro Eye HMD with the sensors.
The eye-tracker of the Headset was first calibrated following the
instructions given in the headset. They were then immersed in the
virtual cockpit environment. Once they got used to the VE, they
were asked to breath normally and to remain still for 1 minute, to
record their physiological signals in a neutral state (i.e., for the
physiological baseline). Users were then asked to interact with the
buttons of the tasks interfaces to familiarized themselves with the
interactions. Then, they travelled the TLAs following this path:
“000− 010− 011− 001− 101− 201− 211”, which gave them a

good overview of each task and their levels. Users were then invited
to ask any question they may have had.

Experiment: In the experiment part, users were
first asked to do a 1-min baseline again. Then, they
travelled the 10 TLAs mentioned in Section. 4.4 (i.e.,
“000−000−000−100−111−111−201−211−211−211”) in
a pseudo-randomized order (two identical TLAs could not appear
twice in a row). The TLAs were set to last 110 seconds with 4
communication calls and 3 ISA calls (spaced in time of 30s).

Debriefing: At the end of the experiment, they were asked to fill
the SSQ again, debriefed and invited to ask questions.

4.7 Resulting Data

3265 subjective responses were collected. As unbalanced datasets
can lead to poor recognition performance for minority classes [25],
we chose to retain 4 classes of subjective MW level, using the
following data distribution (see Table. 2):

Table 2: Contingency table of subjective responses.

MW level 1 2 3 4
ISA value 1 2 3 4 & 5

N 624 822 1143 676
Perc. 19 % 25 % 35 % 21 %

The results for other data splittings (2 classes, 3 classes, and 5
classes) based on the reported ISA levels are presented in supple-
mentary materials.

5 RESULTS

This section presents an overview of the classification accuracy of
the proposed system, considering the 4 levels of MW chosen (see Ta-
ble 2). Table 3 presents the classification results using the EDA and
PPG from the CGS sensors, and Table 4 presents the classification
results using the EDA and PPG from our custom sensors integrated
into the VR HMD (see Section 3.1). Ocular and task performance
measures are the same in these 2 groups. The normalization method,
as well as the different combinations of sensors using either the
Shimmer sensors (i.e., CGS sensors) or our setup (i.e., HMD sen-
sors) are provided. In order to facilitate the interpretation of results,
the performance of a naive model was calculated (i.e., model always
predicting the most represented class in the training dataset).

Classification accuracy was computed using a 10-fold cross-
validation method [54]. To reduce the potential problems linked
to random splitting with cross-validation, 10 independent 10-fold
cross-validations were performed for each trained model.

5.1 Normalization of Physiological Features

As previously explained, the physiological signals are subject to
inter-individual variability, which can affect recognition perfor-
mance. Thus, three types of normalization approaches have been
evaluated in the context of MW detection:

• Normalization by subtraction of features (NSF): For each
participant, subtracting the features estimated for each sub-
jective response with the features estimated during the base-
line [17, 38, 75];

• Normalization by adding features (NAF): For each partici-
pant, adding the features estimated during the baseline to the
dataset (i.e., the feature space) [59, 84].



• Normalization by Min-Max: For each participant, each fea-
ture is normalized using the following formula:

X −min
max−min

The max corresponds to the feature value during the first trial
with the highest ISA score and the min corresponds to the
feature value during the first trial with the lowest ISA score.

5.2 CGS Sensors

The recognition performances based on data collected with the Shim-
mer sensors are presented in Table 3. According to the results of
the training, the best accuracy using the CGS sensors is 64.2%. It is
obtained with a combination of performance and all physiological
signals, using either NSF or NAF normalization.

Taking sensors and task performance measure individually, the
best classification performance is achieved either with the ocular
activity (in the cases of no-normalization and NAF normalization)
or the EDA (in the cases of NSF and min-max normalizations),
followed by the cardiac activity, and the task performance measures.

There is a mean drop in accuracy of only 1.33% when considering
only the EDA and ocular signals instead of all physiological signals
and performance measure, using any normalization method. A
confusion matrix using all data and the NSF normalization is given
in Fig. 8.

5.3 Sensors Integrated Into the HMD

The recognition performances based on data collected with the sen-
sors integrated into the HMD are presented in Table 4. Similarly to
results with CGS sensors, the best accuracy is 65%. It was obtained
when all data are considered, and with NSF normalization.

Taking sensors and task performance measure individually, the
ocular activity lead to the best classification performance, followed
by the EDA, the cardiac activity, then the task performance measure.

Similarly to results with CGS sensors, the combination of EDA
and ocular signals lead to a mean drop of only 2.1% compared to
the best configuration requiring more sensors.

A confusion matrix using all data and the NSF normalization is
given in Fig. 9.
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Figure 8: Confusion matrix for “CGS sensors” (Expected and predicted
classes) in the ”All physio+perf” using NSF normalization setup.

5.4 Mental Workload Recognition in Real-Time
The recognition in real-time was simulated using the collected data
and the configuration offering the best performance (i.e., input: all
physiological sensors and performance, NSF normalization, HMD
sensors; see Tables 3 & 4).

To simulate real-time, a sliding window of 30s with 1s step was
applied to the physiological data. Then, these windows of data were
fed every second to the recognition processing chain until the last
available data (see Fig. 1).

For illustrative purposes, the real-time was simulated on one par-
ticipant (the stages of the processing chain are identical between
participants). The predicted MW as well as the ground truth (i.e.,
true MW level, see Table 2) are depicted in Fig. 10. As subjective
responses are only provided punctually, the MW level was linearly
interpolated between the different subjective mental workload re-
sponses in order to have a continuous ground truth. A moving
average (on 10s) was also used to smooth the prediction and limit
the effect of misclassified MW level. The prediction latency did not
exceed 0.20s.

6 DISCUSSION

In this paper, the recognition of MW using physiological signals
and task performance data was explored. Based on data from 75
participants, the trained models were able to classify 4 levels of
MW with an accuracy up to 65%. Yet, it should be noted that the
misclassified levels are mostly contained in the adjacent classes,
as shown in Figures 8 and 9. As such, the classification accuracy
reaches 95.5% using NSF normalization when considering the
classes which are adjacent to the predicted mental workload level
(see Fig. 9). This highlights the good performance of our approach.
Moreover, the recognition accuracy considering CGS sensors and
sensors integrated in the HMD were compared. The normalization
method, as well as each sensors and combination of sensors were
also tested in regards to the classification accuracy.

Unlike previous research exploring the recognition of MW in VR
[18, 60, 81], the data were labeled using subjective responses. This
approach is novel in VR, as previous work labeled their physiological
data based on the task difficulty levels [60, 81] or based on task
performances [18]. While it is true task difficulty has shown to be
correlated to users’ mental workload [4], it does not take into account
the users’ subjective impressions. The same task can induce different
MW levels to users because of individual differences [83]. In the
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Figure 9: Confusion matrix for “HMD sensors” (Expected and pre-
dicted classes) in the ”All physio+perf” using NSF normalization setup.



Table 3: Mental workload classification accuracy results (in %) using the Shimmer sensors (i.e., CGS sensors) in function of the normalization
methods and of the type of measure. “Perf” corresponds to the task performance. Task performances and ocular activity are common to the CGS
and HMD sensors.

Normalization
Input

Perf Ocular
Shimmer Sensors (CGS)

Cardiac EDA Cardiac + EDA Cardiac + Ocular EDA + Ocular All physio Physio + Perf
Naive model 19.1

No Normalization 41.4 44.4 36.7 41.1 44.8 50.5 49.9 52.5 57.6
NSF 41.5 52.3 42.9 54.2 56.4 57.3 62.2 62.5 64.2
NAF 45.8 60.5 50.8 56.9 56.3 61.1 62.1 62.3 64.2

Min-Max 45.3 53.6 45.8 56.6 58.2 57.8 63.3 62.5 63.2

Table 4: Mental workload classification accuracy results (in %) using the sensors integrated into the VR HMD (i.e., HMD sensors) in function of
the normalization methods and of the type of measure. “Perf” corresponds to the task performance. Task performances and ocular activity are
common to the CGS and HMD sensors.

Normalization
Input

Perf Ocular
HMD Sensors

Cardiac EDA Cardiac + EDA Cardiac + Ocular EDA + Ocular All physio Physio + Perf
Naive model 19.1

No Normalization 41.4 44.4 36.5 44.1 49.7 51.0 53.6 57.7 61.2
NSF 41.5 52.3 44.9 50.7 54.5 59.1 62.0 62.8 65.0
NAF 45.8 60.5 49.9 52.9 56.3 60.3 62.6 62.1 63.8

Min-Max 45.3 53.6 45.6 51.6 54.5 56.9 61.3 61.8 63.4
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Figure 10: Simulation of the real-time prediction of mental workload
using the data of one of the participants and the HMD sensors in the
“All Physiosiological signals + task performance” setup with NSF nor-
malization. The blue line represents the ground truth (i.e., the mental
workload level reported by the participant); the red line represent the
predicted mental workload using our trained recognition model.

same way, while performance measures have shown to be correlated
to users’ mental workload in some studies [55], some users might
show similar performances while experiencing different levels of
mental workload [24, 82]. In addition, relying on task difficulty or
task performance for the labeling could result in a recognition based
on features linked to the task specificities, and not linked to the users’
psychological state. Labeling data based on users’ subjective MW
levels via self-report responses provides an efficient way to capture
the actual state of the user as they show greater face validity [54].
Furthermore, subjective measures are task agnostic, as opposed to

task performance measures and task difficulty. This allows to use
models trained using subjective measures in different contexts than
those in which they were trained.

A special attention was given to the data acquisition protocol. It
differs from previous work as it was done in a multitask context.
Usual protocols, which gather data for classification purposes, focus
on a single standardized task which stimulates limited pools of cog-
nitive resources depending on the nature of the stimuli (e.g., visual,
auditory) and information processing (e.g., perception, action) [90].
This has for consequences to influence physiological signals in a
way that might prevent the generalization of the recognition mod-
els.Knowing MW is mostly studied in complex contexts where users
have to perform multiple tasks in parallel, we chose to assess MW
data in a VR flight simulator, with different tasks and stimuli natures.

Although the integration of sensors in HMDs was already ex-
plored in the literature [6, 7, 36], to the best of our knowledge, the
recognition of MW based on ML using multiple physiological sen-
sors integrated into a VR HMD was yet not investigated. Thus,
we conducted a user study to compare CGS and HMD sensors for
MW recognition. The current results showed overall similar recog-
nition performances between CGS sensors and integrated sensors in
a HMD (see Table 3 & Table 4). The best classification performance
was achieved with the HMD sensors when using NSF normalization
(i.e., +0.8% compared to CGS sensors with NSF). Given the advan-
tage brought by the integration of sensors in the HMD in terms of
cumbersomeness, this encourages the use of this kind of setup to
monitor users’ psychological state in VR.

Moreover, multiple types of data were gathered to classify MW
level: cardiac, electrodermal, and ocular activities, as well as task
performance measures. The contribution of each signal was explored.
When taking sensors individually, ocular activity lead overall to the
highest classification accuracy (except using CGS sensors and NSF
or Min-Max normalization, where it goes second to EDA), followed
by EDA, cardiac activity, and finally performance measures. Other-
wise, the combination of sensors improved the recognition accuracy
with maximum performance when all physiological sensors are in-
cluded as well as performance data. Performance measures have
been used extensively in the literature as an indicator of users’ MW
level [55]. While it has the disadvantage to be task-dependent and
not to be generic, its impact was expected to be major in the classifi-
cation accuracy. Therefore, it is encouraging to observe that taken



individually, physiological signals, which are less task-dependant,
contributed more than performance features in the classification
accuracy of MW levels. With a normalization, the mean gain of
the ”All Physio + Perf” configuration compared to the ”All physio”
configuration is low (i.e., +1.6%) (see Tables 3 & 4), which is
why we would advise not to use performance measures to make the
recognition model more generic to other contexts.

From a features perspective, 68 were calculated on the cardiac,
EDA and ocular signals, ranging from conventional ones such as
heart rate or mean pupil diameter to less explored ones such as EMD
ones [34] (see Table 1). In particular, the introduction of frequency-
domain EDA measurements features [44, 67, 69] appears promising.
Additional analysis showed that they strongly contributed to the
MW recognition according to the estimated features importance 3.
Four (CGS sensors) and two (integrated sensors) of the five EDA
frequency features appeared among the 20 most important variables.

The exploitation of physiological signals commonly lead to the
well-know problem of inter-individual variability [79]. To minimize
it, three normalization methods have been evaluated: subtraction
of features calculated on baseline, adding features calculated on
baseline, and min-max normalization. Overall, normalizing the
data improved the classification accuracy compared to no normal-
ization (i.e., with a mean gain of +8.2%). When taking sensors
or performance individually, the best normalization methods was
found to be NAF with a mean gain of +11.64% compared to the
no-normalization case. As for the min-max method, the results
are inconsistent between the different sensors associations. It has
the disadvantage to necessitate to record the users’ data when they
are experiencing the lowest and highest mental workload possible
beforehand to train the classification model, which makes it a bad
normalization candidate for a real-time use. In the “Physio+Perf”
measure configuration (i.e., the one which had the best results),
the approach by subtraction was found to be the most effective,
with a mean gain of +5.2% in recognition accuracy compared to
the no-normalization case. In addition, it has the advantage to be
compatible with real-time applications.

A preliminary study allowed to demonstrate the ability of our
processing chain to classify MW in real-time through a simulation. It
showed that the whole pipeline using multiple sensors is compatible
with a real-time use, which is presented for the first time in the
context of MW recognition in VR. This result paves the way to new
HMDs with integrated sensors facilitating the real-time adaptation
of VR environments based on detected MW levels.

7 LIMITATIONS AND FUTURE WORK

Some limits can be pointed out. While efforts have been made to
try to balance the 4 MW level classes, our model tends to predict
more often the class 3 due to its over-representation compared to
the other classes (see Table 2). The classification performance of
subject-independent models (i.e., generalization of recognition on
unseen participants) was not explored in this experiment. The current
approaches (i.e., feature extraction followed by model training)
seem not adapted to this rarely explored problem [88]. Recent
advances in deep learning seem to provide a solution and offer
unmatched performances in various fields [43]. Nevertheless, this
promising approach requires in particular very large datasets [31].
Thus, even if the number of participants in the current paper is similar
to comparable studies (e.g., [30, 73]), the number of labeled data is
small compared to datasets in some other areas (e.g., ImageNet for
object recognition [66]). Collecting such large physiological datasets
is very complex, in particular due to the cost of data collecting.
Moreover, some research pointed out the interest of other sensors
such as EEG [81] or fNIRS [60]. This type of measure will also

3The importance of features was estimated based on the impurity decrease.
It corresponds to the mean decrease in impurity averaged over all nodes where
that feature was used to split the node [62].

be valuable to qualify the nature of the detected state. In fact, only
peripheral data were collected in the present study, which did not
make it possible to ensure the distinction between an activity of
the sympathetic system and the MW. However, as prior research
showed an influence of MATB-II tasks on EEG signals (e.g., [15]),
we can hypothesize that the measured changes in the peripheral data
were related to the stimulus induction. Future work could focus on
integrating this type of sensors in our setup and to compare their
contribution in the MW recognition compared to other sensors.

Our methodology relies on subjective assessment, which makes it
application agnostic when not taking into account task performance.
A further direction would be to test if the recognition of MW can
be shared between different applications (e.g., training the model
using a standardized task, and using it in another application). The
methodology was demonstrated in a situation were users were seated.
Evaluating our method in a context requiring full-body motions
to study the robustness of integrated HMD sensors compared to
CGS setup to motion artefacts could be interesting. While this
paper explores the normalization of physiological signals, further
works could also focus on the normalization of self-reported scores,
addressing users’ scale perception. Another path would be to use
our recognition model in a VR application, and to propose a VEs
adaptation model based on users’ MW.

8 CONCLUSION

This paper proposes an all-in-one approach to assess users’ MW
in VR in real-time, using physiological sensors directly embedded
into the headset and the Random Forest algorithm. The hardware
and software solutions employed to build the system are depicted,
and a user study with 75 participants was conducted to train the
system to recognize 4 MW levels using physiological and perfor-
mance measures. Contrarily to previous work which focused on
single standardized tasks to elicit MW, users performed different
tasks on a VR flight simulator and reported their subjective MW
level during the experiment, which was then used to label the dataset.
Moreover, the contribution of different normalization procedures,
and of different types of measure and sensors, considering our so-
lution integrating sensors into the HMD and CGS, are compared in
regards to the recognition accuracy. Results show similar recogni-
tion performances between the HMD sensors and the CGS sensors
with an accuracy up to 65%. Because of its advantages in terms of
cumbersomeness, this encourages the use of physiological sensors
integrated into VR HMDs to monitor users’ psychological state in
VR. Normalizing the dataset features also greatly improved the clas-
sification performance. As for the type of measures, ocular activity
features were found to be especially important, followed by EDA,
cardiac activity, and task performance features. Preliminary results
demonstrate the ability of our pipeline to recognize mental workload
in real-time. Taken together, the results support that our all-in-one
approach is promising for real-time MW recognition in VR.
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