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THE ALTERNATING PRESENTATION OF Uq(̂gl2)

FROM FREIDEL-MAILLET ALGEBRAS

PASCAL BASEILHAC

Abstract. An infinite dimensional algebra denoted Āq that is isomorphic to a central extension of U+
q - the positive

part of Uq(̂sl2) - has been recently proposed by Paul Terwilliger. It provides an ‘alternating’ Poincaré-Birkhoff-Witt
(PBW) basis besides the known Damiani’s PBW basis built from positive root vectors. In this paper, a presentation

of Āq in terms of a Freidel-Maillet type algebra is obtained. Using this presentation: (a) finite dimensional tensor
product representations for Āq are constructed; (b) explicit isomorphisms from Āq to certain Drinfeld type ‘alternating’

subalgebras of Uq(̂gl2) are obtained; (c) the image in U+
q of all the generators of Āq in terms of Damiani’s root vectors

is obtained. A new tensor product decomposition for Uq(̂sl2) in terms of Drinfeld type ‘alternating’ subalgebras follows.
The specialization q → 1 of Āq is also introduced and studied in details. In this case, a presentation is given as a
non-standard Yang-Baxter algebra. This paper is dedicated to Paul Terwilliger for his 65th birthday.

MSC: 16T25; 17B37; 81R50.

Keywords: Reflection equation; Drinfeld second presentation; Uq(̂sl2); q-shuffle algebra

1. Introduction

Quantum affine algebras are known to admit at least three presentations. For Uq(̂sl2), the first presentation
originally introduced in [J85, D86] - referred as the Drinfeld-Jimbo presentation in the literature - is given in terms
of generators {Ei, Fi,K

±1
i |i = 0, 1} and relations, see Appendix A. The so-called Drinfeld second presentation was

found later on [D88], given in terms of generators {x±k , h�,K
±1, C±1/2|k ∈ Z, � ∈ Z\{0}} and relations. The third

one, obtained in [RS90], takes the form of a Faddeev-Reshetikhin-Takhtajan (FRT) presentation [FRT89]. In these
definitions, note that the so-called derivation generator is ommited (see [CP94, Remark 2, p. 393]). In the following,

we denote respectively UDJ
q , UDr

q and URS
q these presentations of Uq(̂sl2). In addition, for Uq(̂sl2) note that a fourth

presentation called ‘equitable’, denoted U IT
q , has been introduced in [IT03]. It is generated by {y±i , k

±
i |i = 0, 1}. For

the explicit isomorphism U IT
q → UDJ

q , see [IT03, Theorem 2.1].

The construction of a Poincaré-Birkhoff-Witt (PBW) basis for Uq(̂sl2) [Da93, Be94] on one hand, and the FRT
presentation of Ding-Frenkel [DF93] on the other hand brought major contributions to the subject, by establishing
the explicit isomorphisms between UDJ

q , UDr
q and URS

q (see also [Ji96, Da14]). To motivate the goal of the present
paper, as a preliminary let us briefly review the main results of [Da93, Be94] and [DF93].

• To establish the isomorphism between UDJ
q and UDr

q , the main ingredient is the construction of a PBW basis.

In [Da93], it is shown that the so-called positive part of Uq(̂sl2) denoted UDJ,+
q - cf. Notation 1.2 - is generated by

positive (real and imaginary) root vectors [Da93, Section 3.1]. The root vectors are obtained using Lusztig’s braid
group action on UDJ

q [L93]. Based on the structure of the commutation relations among the root vectors, a PBW basis

for UDJ,+
q is first obtained [Da93, Section 4]. Then, introduce the subalgebras UDJ,−

q , UDJ,0
q of UDJ

q . Thanks to the

tensor product decomposition UDJ
q

∼= UDJ,+
q ⊗UDJ,0

q ⊗UDJ,−
q [L93] and some automorphism of UDJ

q , the PBW basis

for UDJ,+
q induces a PBW basis for Uq(̂sl2) [Da93, Section 5]. Then, the explicit isomorphism UDr

q → UDJ
q [Be94]

maps Drinfeld generators to root vectors. See [BCP98, Lemma 1.5], [Da14].

• To establish the explicit isomorphism between URS
q and UDr

q , the main ingredient in [DF93] is the construction of

a FRT presentation for Uq(̂gl2), which can be interpreted as a central extension of Uq(̂sl2) [FMu02]. In this approach,
the defining relations are written in the form of a Yang-Baxter algebra. Namely, two quantum Lax operators L±(z)

1

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0550321321000973
Manuscript_36e769c48660011271c4a34bb7af696e

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0550321321000973
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0550321321000973


2 PASCAL BASEILHAC

which entries are generating functions with coefficients in two different subalgebras of UDr
q are introduced. They satisfy

certain functional relations (the so-called ‘RTT’ relations) characterized by an R-matrix. The explicit isomomorphism

URS
q → UDr

q is obtained as a corollary of the FRT presentation of Uq(̂gl2).

In these works, Damiani’s root vectors (or equivalently the Drinfeld generators), associated PBW bases and the
Yang-Baxter algebra play a central role. Later on, these objects found several applications. For instance, the universal

R-matrix is built from elements in PBW bases of Uq(̂sl2) subalgebras [Da98]. Also, irreducible finite dimensional

representations of Uq(̂sl2) are classified using UDr
q [CP91]. A natural question is the following: for Uq(̂sl2), is it

possible to construct a different ‘triplet’ of mutually isomorphic algebras other than UDJ
q (or U IT

q ), UDr
q and URS

q ?

Recent works by Paul Terwilliger bring a new light on this subject, and give a starting point for a precise answer.

Indeed, in [T18, T19a] Terwilliger investigated the description of PBW bases of Uq(̂sl2) from the perspective of
combinatorics, using a q-shuffle algebra V introduced earlier by Rosso [R98]. Remarkably, using an injective algebra
homomorphism UDJ,+

q → V a closed form for the images in V of Damiani’s root vectors of UDJ,+
q - the basic building

elements of Damiani’s PBW basis - was obtained in terms of Catalan words [T18, Theorem 1.7]. Then, in [T19a], he

introduced a set of elements {W−k,Wk+1, Gk+1, G̃k+1|k ∈ N} into the q-shuffle algebra named as ‘alternating’ words.
It was shown that the alternating words generate an algebra denoted U [T19a, Section 5] for which a PBW basis
was constructed [T19a, Theorem 10.1,10.2]. Considering the preimage in UDJ,+

q of the alternating words of U , a new

PBW in basis - called alternating - for UDJ,+
q arises, besides Damiani’s one [Da93, Theorem 2]. A comparison between

the images in V of both PBW bases was done, see [T19a, Section 11]. More recently [T19b], a central extension
of the preimage of the algebra U arising from the exchange relations between alternating words, denoted U+

q , has

been introduced. Its generators are in bijection with ‘alternating’ generators recursively built in UDJ,+
q and form an

‘alternating’ PBW basis for the new algebra U+
q [T19b, Section 10].

In this paper, we investigate further these new ‘alternating’ algebras motivated by the construction of a new triplet of

presentations for Uq(̂sl2). To this aim, following [T19b] we introduce the algebra Āq with generators {W−k,Wk+1,Gk+1,

G̃k+1|k ∈ N} - see Definition 2.1. Note that to enable a non-trivial specialization q → 1, the definitions of Āq and U+
q

slightly differ. However, for q �= 1 Āq and U+
q are essentially the same object. Also, the center Z of Āq is introduced.

Adapting the results of [T19b], the ‘alternating’ PBW basis of Āq is given, see Theorem 2.12. Following [T19a],

similarly we introduce the algebra Āq with generators {W−k,Wk+1, Gk+1, G̃k+1|k ∈ N}. One has:

Āq
∼= Āq ⊗Z .(1.1)

Let 〈W0,W1〉 denote the subalgebra of Āq generated by W0,W1. The simplest relations satisfied by W0,W1 are the
q-Serre relations (2.44), (2.45), of UDJ,+

q - see (A.1). Actually, according to [T19a], Āq
∼= UDJ,+

q
∼= UDJ,−

q . So,

having in mind the isomorphic pair consisting of UDJ,+
q (or UDJ,−

q ) and certain subalgebras of UDr
q [Be94, BCP98],

an ‘alternating’ isomorphic pair is provided by 〈W0,W1〉 and Āq. Furthermore, by analogy with [Be94], the explicit
isomorphism Āq → 〈W0,W1〉 follows from Lemma 2.9 using a map γ : Āq → Āq. Details are reviewed in Section 2.
For completeness, the specialization q → 1 of Āq, denoted Ā, is also introduced.

The main result of this paper is a presentation for Āq which sits into the family of Freidel-Maillet type algebras1

[FM91] for generic q, see Theorem 3.1. For the specialization Ā, a FRT type presentation is obtained. It sits into the
family of non-standard Yang-Baxter algebras, see Proposition 3.6. This is done in Section 3. This Freidel-Maillet type
presentation of Āq gives an efficient framework for studying in more details this algebra and clarifying its relation with
UDJ
q (or U IT

q ), UDr
q and URS

q . The following results are obtained:

(a) Tensor product realizations of Āq in Uq(sl2)
⊗N are explicitly constructed. They generate certains quotients of

Āq, characterized by a set of linear relations satisfied by the fundamental generators. See Proposition 4.5. This is
done in Section 4.

1See also [NC92, Bab92, KuS92].
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(b) Explicit isomorphisms between Āq and certain ‘alternating’ subalgebras of Uq(̂gl2), denoted Uq(̂gl2)
�,+ and

Uq(̂gl2)
�,−, are obtained. See Propositions 5.18, 5.20. The main ingredient in the analysis is the use of the Ding-

Frenkel isomorphism [DF93]. As a corollary, similar results for Āq and the ‘alternating’ subalgebras of Uq(̂sl2) follow.

Also, it is shown that Āq can be regarded as a left (or right) comodule of alternating subalgebras of Uq(̂gl2). An
example of coaction map is given in Lemma 5.25. See Example 5.26.

(c) The explicit isomorphism ι : 〈W0,W1〉 → UDJ,+
q given by (2.46) is extended to the whole set of generators of

Āq: a set of functional equations that determine the explicit relation between Damiani’s root vectors {Enδ+αi , Enδ|i =
0, 1} ∈ UDJ,+

q (or {Fnδ+αi , Fnδ|i = 0, 1} ∈ UDJ,−
q ) and the generators of Āq is derived, see Proposition 5.27.

The results (b) and (c) are given in Section 5. All together, if we denote ĀFM
q as the Freidel-Maillet type presentation

of Āq, we get the isomorphic ‘triplet’

UDJ,+
q

∼= Āq
∼= ĀFM

q .

In the last section, we point out a straightforward application of [T19a, T19b] combined with the results of Section

5. One has the ‘alternating’ tensor product decomposition of Uq(̂sl2):

Uq(̂sl2) ∼= Ā�
q ⊗ UDJ,0

q ⊗ Ā�
q ,(1.2)

where Ā
�(�)
q (∼= U

DJ,+(−)
q ) are certain alternating subalgebras of UDr

q . The corresponding ‘alternating’ PBW basis is
given in Theorem 6.1.

Let us conclude this introduction with some additional comments. In the literature, it is known that solutions of
the Yang-Baxter equation find many applications in the theory of quantum integrable systems such as vertex models,
spin chains,... They can be obtained by specializing solutions of the universal Yang-Baxter equation, the so-called

universal R-matrices. As already mentioned, the construction of a universal R-matrix for Uq(̂sl2) (and similarly for
higher rank cases) essentially relies on the tensor product decomposition

Uq(̂sl2) ∼= UDJ,+
q ⊗ UDJ,0

q ⊗ UDJ,−
q ,(1.3)

and the use of root vectors [KiR90, KhT91, Da98, FMu02, JLM19, JLM20]. Now, the ‘alternating’ tensor product
decomposition (1.2) rises the question of an ‘alternating’ universal K-matrix built from a product of solutions to a
universal Freidel-Maillet type equation. See [CG92, P94, BalKo15, RV16, AV20] for related problems. In view of
the importance of the R-matrix in mathematical physics, it looks as an interesting problem that might be considered
elsewhere.

It should be mentioned that the analysis here presented is also motivated by the subject of the q-Onsager algebra
Oq [T99, B04] and its applications to quantum integrable systems. See e.g. [BK14a, BK14b, BB16, BT17, Ts18,
Ts19, BP19]. The original presentation of Oq is given in terms of generators A,B satisfying a pair of q-Dolan-Grady
relations. The algebra Āq studied in this paper can be viewed as a limiting case of the algebra Aq introduced in
[BS10, BB17]. For Aq, the original presentation [BK05a] takes the form of a reflection algebra introduced by Sklyanin
[Sk88], see [BS10]. Let us denote this presentation by AS

q . Using AS
q , it has been conjectured that Aq is a central

extension of Oq. Initial supporting evidences were based on a comparison between the ‘zig-zag’ basis of Oq [IT09]
and the one conjectured for Aq [BB17, Conjecture 1]. Other evidences are also given in [T21a]. More recently, the
conjecture is finally proved [T21b]. So, using a surjective homomorphism Aq → Oq, one gets a triplet of isomorphic
algebras Oq

∼= Aq
∼= AS

q . Independently, more recently the analog of Lusztig’s automorphism and Damiani’s root
vectors denoted Bnδ+α0 , Bnδ+α1 , Bnδ for the q-Onsager algebra have been obtained [BKo17] (see also [T17]). In terms
of the root vectors, a PBW basis has been constructed. In addition, a Drinfeld type presentation is now identified
[LW20]. However, at the moment the precise relation between the presentation of Oq given in [BKo17] or its Drinfeld
type presentation denoted ODr

q [LW20] and Aq is yet to be clarified. To prove Oq
∼= Aq

∼= AS
q provides an ‘alternating’

triplet of presentation for the q-Onsager algebra and ODr
q

∼= Aq, the analysis here presented sketches the strategy that
may be considered elsewhere.
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Clearly, alternating subalgebras for higher rank affine Lie algebras and corresponding generalizations of (1.2) may
be considered as well following a similar approach.

Notation 1.1. Recall the natural numbers N = {0, 1, 2, · · · } and integers Z = {0,±1,±2, · · · }. Let K denote an
algebraically closed field of characteristic 0. K(q) denotes the field of rational functions in an indeterminate q. The
q-commutator

[

X,Y
]

q
= qXY − q−1Y X is introduced. We denote [x] = (qx − q−x)/(q − q−1).

Notation 1.2. UDJ
q is the Drinfeld-Jimbo presentation of Uq(̂sl2). U

DJ,+
q , UDJ,0

q , UDJ,−
q are the subalgebras of UDJ

q

generated respectively by {E0, E1}, {K0,K1}, {F0, F1}. We also introduce the subalgebras UDJ,+,0
q (resp. UDJ,−,0

q )
generated by {E0, E1,K0,K1} (resp. {F0, F1,K0,K1}).

2. The algebra Āq and its specialization q → 1

In this section, the algebra Āq and its specialization q → 1 denoted Ā are introduced. The algebra Āq is nothing
but a slight modification of the algebra U+

q introduced in [T19b, Section 3]. Compared with U+
q , the modification here

considered aims to ensure that the specialization q → 1 of Āq is non-trivial. Also, the parameter ρ̄ is introduced for
normalization convenience. So, part of the material in this section is mainly adapted from [T19b]. Besides, Lemma
2.3 and Lemma 2.4 solve [T19a, Problem 13.1]. At the end of this section, we prepare the discussion for Sections 3
and 5.

2.1. Defining relations. We refer the reader to [T19b, Definition 3.1] for the definition of U+
q . We now introduce

the algebra Āq.

Definition 2.1. Let ρ̄ ∈ K(q). Āq is the associative algebra over K(q) generated by {W−k,Wk+1,Gk+1, G̃k+1|k ∈ N}
subject to the following relations:

[W0,Wk+1] = [W−k,W1] =
(G̃k+1 − Gk+1)

q + q−1
,(2.1)

[W0,Gk+1]q = [G̃k+1,W0]q = ρ̄W−k−1,(2.2)

[Gk+1,W1]q = [W1, G̃k+1]q = ρ̄Wk+2,(2.3)

[W−k,W−�] = 0, [Wk+1,W�+1] = 0,(2.4)

[W−k,W�+1] + [Wk+1,W−�] = 0,(2.5)

[W−k,G�+1] + [Gk+1,W−�] = 0,(2.6)

[W−k, G̃�+1] + [G̃k+1,W−�] = 0,(2.7)

[Wk+1,G�+1] + [Gk+1,W�+1] = 0,(2.8)

[Wk+1, G̃�+1] + [G̃k+1,W�+1] = 0,(2.9)

[Gk+1,G�+1] = 0, [G̃k+1, G̃�+1] = 0,(2.10)

[G̃k+1,G�+1] + [Gk+1, G̃�+1] = 0 .(2.11)

Remark 2.2. The defining relations of Āq coincide with the defining relations (30)-(40) in [T19b] of the algebra U+
q

for the identification:

W−k 	→ W−k , Wk+1 	→ Wk+1 ,(2.12)

Gk+1 	→ q−1(q2 − q−2)Gk+1 , G̃k+1 	→ q−1(q2 − q−2)G̃k+1 ,(2.13)

ρ̄ 	→ q−1(q2 − q−2)(q − q−1) .(2.14)
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Note that there exists an automorphism σ and an antiautomorphism S (for U+
q , see [T19b, Lemma 3.9]) such that:

σ : W−k 	→ Wk+1 , Wk+1 	→ W−k , Gk+1 	→ G̃k+1 , G̃k+1 	→ Gk+1 ,(2.15)

S : W−k 	→ W−k , Wk+1 	→ Wk+1 , Gk+1 	→ G̃k+1 , G̃k+1 	→ Gk+1 .(2.16)

For completeness (see [T19b, Note 2.6]) and the discussion in the next section, a set of additional relations can be
derived from the defining relations (2.1)-(2.11), given in Lemmas 2.3, 2.4 below.

Lemma 2.3. In Āq, the following relations hold:

[W−k,G�]q = [W−�,Gk]q, [Gk,W�+1]q = [G�,Wk+1]q,(2.17)

[G̃k,W−�]q = [G̃�,W−k]q, [W�+1, G̃k]q = [Wk+1, G̃�]q.(2.18)

Proof. Consider the first equation in (2.17). For convenience, substitute � → � + 1 and multiply by ρ̄ the equality.
From the r.h.s. of the resulting equation, using (2.2) one has:

[ ρ̄W−�−1
︸ ︷︷ ︸

=[W0,G�+1]q

,Gk]q = q2W0 G�+1Gk
︸ ︷︷ ︸

=GkG�+1

−G�+1W0Gk − GkW0G�+1 + q−2 GkG�+1
︸ ︷︷ ︸

=G�+1Gk

W0 by (2.10)

= q2W0GkG�+1
︸ ︷︷ ︸

=q[W0,Gk]qG�+1+GkW0G�+1

− G�+1W0Gk
︸ ︷︷ ︸

=q−1G�+1[W0,Gk]q+q−2G�+1GkW0

−GkW0G�+1 + q−2G�+1GkW0

= [[W0,Gk]q,G�+1]q

= ρ̄[W−k,G�+1]q ,

which coincides with the l.h.s. The three other equations are shown similarly. �

Lemma 2.4. In Āq, the following relations hold:

[Gk, G̃�+1]− [G�, G̃k+1] = ρ̄(q + q−1) ([W−�,Wk+1]q − [W−k,W�+1]q) ,(2.19)

[G̃k,G�+1]− [G̃�,Gk+1] = ρ̄(q + q−1) ([W�+1,W−k]q − [Wk+1,W−�]q) ,(2.20)

[Gk+1, G̃�+1]q − [G�+1, G̃k+1]q = ρ̄(q + q−1) ([W−�,Wk+2]− [W−k,W�+2]) ,(2.21)

[G̃k+1,G�+1]q − [G̃�+1,Gk+1]q = ρ̄(q + q−1) ([W�+1,W−k−1]− [Wk+1,W−�−1]) .(2.22)

Proof. Consider (2.19). One has:

[Gk, G̃�+1] = [Gk, G̃�+1 − G�+1] = (q + q−1)[Gk, [W0,W�+1]] by (2.1)

= (q + q−1)

⎛

⎜

⎝ GkW0
︸ ︷︷ ︸

=q2W0Gk−ρ̄qW−k

W�+1 − GkW�+1W0 −W0W�+1Gk +W�+1 W0Gk
︸ ︷︷ ︸

=q−2GkW0+ρ̄q−1W−k

⎞

⎟

⎠

= (q + q−1) ([W0, [Gk,W�+1]q]q − ρ̄[W−k,W�+1]q) .

It follows:

[Gk, G̃�+1]− [G�, G̃k+1] = ρ̄(q + q−1) ([W−�,Wk+1]q − [W−k,W�+1]q) + (q + q−1)[W0, [Gk,W�+1]q − [G�,Wk+1]q
︸ ︷︷ ︸

=0 by (2.17)

]q

which reduces to (2.19). One shows (2.20) similarly.
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Consider (2.22). One has:

ρ̄[W�+1,W−k−1] = [W�+1, [W0,Gk+1]q] = qW0[W�+1,Gk+1] + q−1[Gk+1,W�+1]W0

+
q−1

(q + q−1)
Gk+1G̃�+1 −

q

(q + q−1)
G̃�+1Gk+1 +

(q − q−1)

(q + q−1)
Gk+1G�+1 ,

where (2.2), (2.1) and (2.10) have been used successively. Using (2.8) it follows:

ρ̄ ([W�+1,W−k−1]− [Wk+1,W−�−1]) =
q−1

(q + q−1)

(

Gk+1G̃�+1 − G�+1G̃k+1

)

(2.23)

− q

(q + q−1)

(

G̃�+1Gk+1 − G̃k+1G�+1

)

.

From (2.11), note that:

G̃�+1Gk+1 − G̃k+1G�+1 = Gk+1G̃�+1 − G�+1G̃k+1

which implies:

(q − q−1)
(

G�+1G̃k+1 − Gk+1G̃�+1

)

= [G̃k+1,G�+1]q − [G̃�+1,Gk+1]q .

Using this last equality in the r.h.s. of (2.23), eq. (2.22) follows. The other relation (2.21) is shown similarly. �

Remark 2.5. The relations (41)-(46) in [T19b] follow from Lemmas 2.3, 2.4, using the identification (2.12)-(2.14).

2.2. The center Z. For the algebra U+
q , central elements denoted Z∨

n+1 are known [T19b, eq. (52) and Lemma 5.2]
(see also equivalent expressions [T19b, Corollary 8.4]). With minor modifications using the correspondence (2.12)-
(2.14), central elements in Āq are obtained in a straightforward manner. Thus, we omit the proof of the following
lemma and refer the reader to [T19b, Section 13] for details.

Lemma 2.6. For n ∈ N, the element

Yn+1 = Gn+1q
−n−1 + G̃n+1q

n+1 − (q2 − q−2)

n
∑

k=0

q−n+2kW−kWn+1−k +
(q − q−1)

ρ̄

n−1
∑

k=0

q−n+1+2kG̃k+1Gn−k(2.24)

is central in Āq.

Remark 2.7. Central elements for the algebra U+
q [T19b, Lemma 5.2, Corollary 8.4] are obtained using the identifi-

cation (2.12)-(2.14):

Yn+1 	→ q−1(q2 − q−2)Z∨
n+1 .(2.25)

Note that the central elements are fixed under the action of (anti)automorphisms of Āq. Applying σ and S according
to (2.15), (2.16), three other expressions for Yn+1 follow (for U+

q , see [T19b, Corollary 8.4]). In particular, for further
convenience, define the combination:

Δn+1 =
1

qn+1 + q−n−1
(Yn+1 + σ(Yn+1)) .(2.26)

Using (2.5), one has S(Δn+1) = Δn+1. Thus, Δn+1 is invariant under the action of σ, S.

Example 2.8.

Δ1 = G1 + G̃1 − (q − q−1)
(

W0W1 +W1W0

)

,(2.27)

Δ2 = G2 + G̃2 −
(q2 − q−2)

(q2 + q−2)
(q−1W0W2 + qW2W0 + q−1W1W−1 + qW−1W1)(2.28)

+
(q − q−1)

(q2 + q−2)

( G̃1G1 + G1G̃1

ρ̄

)

,
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Δ3 = G3 + G̃3 −
(q − q−1)

(q2 + q−2 − 1)
(q−2W0W3 + q2W3W0 + q−2W1W−2 + q2W−2W1)(2.29)

− (q − q−1)

(q2 + q−2 − 1)
(W2W−1 +W−1W2)

+
(q − q−1)

(q2 + q−2 − 1)

( G̃2G1 + G2G̃1

ρ̄

)

.

By construction, the elements Δn+1 are central in Āq. Let Z denote the subalgebra of Āq generated by {Δn+1}n∈N.
By [T19b, Proposition 6.2], Z is the center of Āq.

2.3. Generators and recursive relations. Following [T19b], combining the defining relations (2.1)-(2.3) together
with (2.26) it follows:

Lemma 2.9. In Āq, the following recursive relations hold:

Gn+1 =
(q2 − q−2)

2(qn+1 + q−n−1)

n
∑

k=0

q−n+2k (W−kWn+1−k +Wk+1Wk−n)(2.30)

− (q − q−1)

2ρ̄(qn+1 + q−n−1)

n−1
∑

k=0

q−n+1+2k
(

Gk+1G̃n−k + G̃k+1Gn−k

)

+
(q + q−1)

2

[

Wn+1,W0

]

+
1

2
Δn+1 ,

G̃n+1 = Gn+1 + (q + q−1)
[

W0,Wn+1

]

,(2.31)

W−n−1 =
1

ρ̄

[

W0,Gn+1

]

q
,(2.32)

Wn+2 =
1

ρ̄

[

Gn+1,W1

]

q
.(2.33)

Iterating the recursive formulae (2.30), (2.31), (2.32), (2.33), given n fixed, the corresponding generator is a poly-
nomial in W0,W1 and {Δk+1|k = 0, ..., n}.

Example 2.10. The first generators read:

G1 = qW1W0 − q−1W0W1 +
1

2
Δ1 ,(2.34)

W−1 =
1

ρ̄

(

(q2 + q−2)W0W1W0 −W2
0W1 −W1W

2
0

)

+
1

2

Δ1(q − q−1)

ρ̄
W0 ,(2.35)

G2 =
1

ρ̄(q2 + q−2)

(

(q−3 + q−1)W2
0W1

2 − (q3 + q)W1
2W2

0 + (q−3 − q3)(W0W1
2W0 +W1W

2
0W1)(2.36)

−(q−5 + q−3 + 2q−1)W0W1W0W1 + (q5 + q3 + 2q)W1W0W1W0

)

+
1

2

Δ1(q − q−1)

ρ̄

(

qW1W0 − q−1W0W1

)

− 1

4

Δ2
1(q − q−1)

ρ̄(q2 + q−2)
+

1

2
Δ2 .

Expressions of G̃1,W2, G̃2 are obtained using the automorphism σ.

Corollary 2.11. The algebra Āq is generated by W0,W1 and Z.
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2.4. PBW basis. Following [T19b, Lemma 3.10], the algebra Āq has an N
2-grading. Define deg : Āq → N× N. For

the alternating generators one has:

deg(W−k) = (k + 1, k) , deg(Wk+1) = (k, k + 1) ,

deg(Gk+1) = deg(G̃k+1) = (k + 1, k + 1) .

Note that the expressions in Lemma 2.9 are homogeneous with respect to the grading assigment. The dimension di,j
of the vector space spanned by linearly independent vectors of the same degree (i, j) is obtained from the formal power
series in the indeterminates λ, μ:

Φ(λ, μ) = H(λ, μ)Z(λ, μ) ,

=
∑

(i,j)∈N

di,jλ
iμj for |λ|, |μ| < 1

with

H(λ, μ) =

∞
∏

�=1

1

1− λ�μ�−1

1

1− λ�−1μ�

1

1− λ�μ�
, Z(λ, μ) =

∞
∏

�=1

1

1− λ�μ�
.

In [T19b, Section 10], a PBW basis for U+
q is obtained. The proof solely uses the defining relations corresponding

to (2.1)-(2.11). The following theorem is a straightforward adaptation of [T19b, Theorem 10.2].

Theorem 2.12. (see [T19b]) A PBW basis for Āq is obtained by its alternating generators

{W−k}k∈N , {G�+1}�∈N , {G̃m+1}m∈N , {Wn+1}n∈N

in any linear order < that satisfies

W−k < G�+1 < G̃m+1 < Wn+1 , k, �,m, n ∈ N .

Note that combining σ, S given by (2.15), (2.16), other PBW bases can be obtained.

2.5. The algebra Āq. By construction [T19b], the algebra U+
q studied in [T19a] is a quotient of the algebra U+

q .
This quotient is characterized by the fact that the images of all the central elements Z∨

n of [T19b, Definition 5.1] in
U+
q are vanishing, see [T19b, Lemma 2.8]. Recall (2.25), (2.26).

Definition 2.13. The algebra Āq is defined as the quotient of the algebra Āq by the ideal generated from the relations

{Δk+1 = 0|∀k ∈ N}. The generators are {W−k,Wk+1, Gk+1, G̃k+1|k ∈ N}.

Following [T19b, Lemma 3.3], let us denote by γ : Āq → Aq the corresponding surjective homomorphism. It is such
that:

γ : W−k 	→ W−k , Wk+1 	→ Wk+1 , Gk+1 	→ Gk+1 , G̃k+1 	→ G̃n+1 .(2.37)

So, they can be obtained as polynomials in W0,W1 applying γ to the expressions given in Lemma 2.9, where γ(Δk+1) =
0 for all k.

In [T19a, T19b], the embedding of UDJ,+
q into a q−shuflle algebra leads to Āq, providing an ‘alternating’ presentation

for UDJ,+
q . Adapting this result to our conventions, it follows:

Proposition 2.14. (see ([T19a, T19b]) Āq
∼= UDJ,+

q
∼= UDJ,−

q .

In [T19a, Section 10], an alternating’ PBW basis for UDJ,+
q is obtained. We refer to [T19a, Theorem 10.1].

Theorem 2.15. (see [T19a]) A PBW basis for Āq is obtained by its alternating generators

{W−k}k∈N , {G�+1}�∈N , {Wn+1}n∈N
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in any linear order < that satisfies

W−k < G�+1 < Wn+1 , k, �, n ∈ N ;

Wk+1 < G�+1 < W−n , k, �, n ∈ N .

Using automorphisms of Āq, other PBW bases can be obtained.

2.6. The specialization q → 1 and the algebra Ā. For the specialization q → 1, according to the identification
(2.13), (2.14), the defining relations [T19b, Definition 3.1] of the algebra U+

q drastically simplify to those of a com-

mutative algebra. Instead, the specialization q → 1 of the defining relations of the algebra Āq lead to an associative
algebra called Ā, as explained below. To define properly the specialization, we follow the method described in e.g.
[K12, Section 10] (see also references therein).

Let A = K
[

q
]

q−1
(= S−1

K
[

q
]

where S = K
[

q
]

\(q − 1)). Let UA be the A-subalgebra of Āq generated by

{W−k,Wk+1,Gk+1, G̃k+1|k ∈ N}. Note that contrary to Uq(̂sl2) [CP94, page 289], according to the structure of
the defining relations (2.1)-(2.11) for the specialization q → 1 of Āq there is no need to introduce other generators.
One has the natural isomorphism of A-algebras UA ⊗A K(q) → Āq. Consider K as an A-module via evaluation at
q = 1. The algebra

U1 = UA ⊗A K

is the specialization of Āq at q = 1. Similarly, one defines ZA, and Z1 = ZA ⊗A K.

Definition 2.16. Ā is the associative algebra over K with unit and generators {w−k,wk+1, gk+1, g̃k+1|k ∈ N} satisfying
the following relations:

[

w−�,wk+1

]

=
1

2
(g̃k+�+1 − gk+�+1) ,(2.38)

[

g̃k+1,w−l

]

=
[

w−l, gk+1

]

= 16w−k−�−1 ,(2.39)
[

w�+1, g̃k+1

]

=
[

gk+1,w�+1

]

= 16w�+k+2 ,(2.40)
[

w−k,w−�

]

= 0 ,
[

wk+1,w�+1

]

= 0 ,
[

gk+1, g�+1

]

= 0 ,
[

g̃k+1, g̃�+1

]

= 0 .(2.41)

Remark 2.17. An overall parameter ρ̄c ∈ K
∗ may be introduced in the r.h.s. of (2.39), (2.40).

Proposition 2.18. There exists an algebra isomorphism U1 → Ā such that:

W−k 	→ w−k , Wk+1 	→ wk+1 , Gk+1 	→ gk+1 , G̃k+1 	→ g̃k+1 , ρ̄ 	→ 16 , q 	→ 1 .(2.42)

Proof. First, we show how to obtain the defining relations for Ā from those of Āq at q = 1 and ρ̄ = 16. From eqs.
(2.4), (2.10), one immediatly obtains the four equations in (2.41). From (2.26), one gets

δk+1 = gk+1 + g̃k+1 ,(2.43)

where {δk}k∈N are central with respect to the algebra generated by {w−k,wk+1, gk+1, g̃k+1|k ∈ N}. This implies the
first equalities in (2.39), (2.40). The second equalities in (2.39), (2.40) are obtained from elementary computation
using the Jacobi identity together with (2.5)-(2.10) and (2.1)-(2.4). For instance:

[

w−1,wk+1

]

=
1

16

[[

w0, g1
]

,wk+1

]

= − 1

16

[ [

g1,wk+1

]

︸ ︷︷ ︸

=
[

gk+1,w0

]

=16wk+2

,w0

]

− 1

16

[ [

wk+1,w0

]

︸ ︷︷ ︸

=− 1
2 (g̃k+1−gk+1)

, g1
]

=
[

w0,wk+2

]

=
1

2
(g̃k+2 − gk+2) .

By induction, it follows:

[

w−�,wk+1

]

=
[

w−�+1,wk+2

]

= · · · =
[

w0,wk+�+1

]

=
1

2
(g̃k+�+1 − gk+�+1) .
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Similarly, by induction one easily finds:
[

g̃k+1,w−�

]

=
[

g̃k+2,w−�+1

]

= · · · =
[

g̃k+�+1,w0

]

= 16w−k−�−1 ,
[

w�+1, g̃k+1

]

=
[

w�, g̃k+2

]

= · · · =
[

w1, g̃k+�+1

]

= 16w�+k+2 .

Thus, the defining relations (2.38)-(2.41) of Ā are recovered from the specialization q → 1, ρ̄ → 16 of the defining
relations (2.1)-(2.11) of Āq. The converse statement is easily checked. �

In the following, we call Ā the specialization q → 1 of Āq.

2.7. Relation with UDJ,±
q and specialization. The following comments give some motivation for Sections 3 and

5. We first describe the relation between Āq and Uq(̂sl2) with respect to the Drinfeld-Jimbo presentation, adapting
directly the results of [T19b]. On one hand, recall that the defining relations for UDJ,+

q , UDJ,−
q are respectively given

by (A.1), (A.2). On the other hand, inserting (2.35) in (2.4) for k = 0, � = 1 one finds that W0,W1 satisfy the q-Serre
relations:

[W0, [W0, [W0,W1]q]q−1 ] = 0 ,(2.44)

[W1, [W1, [W1,W0]q]q−1 ] = 0 .(2.45)

Let 〈W0,W1〉 denote the subalgebra of Āq generated by W0,W1. According to [T19b, Proposition 6.4] combined with
Remark 2.2, it follows that the map 〈W0,W1〉 → UDJ,+

q :

W0 	→ E1 , W1 	→ E0(2.46)

is an algebra isomorphism. Obviously, a similar statement holds for UDJ,−
q . Let Z+ denote the image of Z by the

map (2.46), and similarly Z− the image associated with the negative part. In both cases, it is a polynomial algebra
[T19b, Section 4]. Adapting [T19b, Proposition 6.5] and using Remark 2.2, by Corollary 2.11 one concludes:

Āq
∼= UDJ,+

q ⊗Z+ ∼= UDJ,−
q ⊗Z− .(2.47)

For this reason, Āq is called the central extension of UDJ,+
q (or UDJ,−

q ).

Let us also add the following comment. In view of the isomorphism (2.46), Āq can be equipped with a comodule
structure [CP94]. For instance, examples of left (or right) coaction maps can be considered for the subalgebra 〈W0,W1〉.
Define the ‘left’ coaction such that

Āq → UDJ,+,0
q ⊗ Āq .(2.48)

Consider its restriction to 〈W0,W1〉 ∼= UDJ,+
q . As an example of coaction, we may consider:

W0 → E0 ⊗ 1 +K0 ⊗W0 ,(2.49)

W1 → E1 ⊗ 1 +K1 ⊗W1 .(2.50)

A ‘right’ coaction could be introduced similarly, as well as a coaction Āq → UDJ,−,0
q ⊗ Āq . In Section 5, a comodule

algebra homomorphism δ is obtained, see Lemma 5.25.

The relation between Ā and the Lie algebra ̂sl2
SC

can be considered through specialization. Recall the isomorphism
UA ⊗A K(q) → Āq and similarly for 〈W0,W1〉 and Z. One has the injection 〈W0,W1〉A ⊗A ZA → UA by [K12, Lemma
10.6]. By Lemma 2.9, the latter map is also surjective. Using the fact that 〈W0,W1〉A and ZA are free A-modules, one
calculates:

U1 = UA ⊗A K = (〈W0,W1〉A ⊗A ZA)⊗A K

= (〈W0,W1〉A ⊗A K)⊗K (ZA ⊗A K) .

Let 〈w0,w1〉 denote the subalgebra of Ā. By Proposition 2.18 one has 〈w0,w1〉 ∼= 〈W0,W1〉A ⊗A K. The generators

w0,w1 satisfy the Serre relations (i.e. (2.44)-(2.45) for q = 1). Recall the Lie algebra ̂sl2
SC

in the Serre-Chevalley

presentation of ̂sl2 with defining relations reported in Appendix A. Denote ̂sl2
SC,+

(resp. ̂sl2
SC,−

) the subalgebra
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generated by {e0, e1} (resp. {f0, f1}). Combining the isomorphism (2.46) and the well-known result about the

specialization q → 1 of UDJ,+
q given by U(̂sl2

SC,+
), it follows that the map 〈w0,w1〉 → U(̂sl2

SC,+
) is an isomorphism.

Also, Z is a polynomial ring in the {Δk+1}k∈N. Z1 = ZA ⊗A K = U(z) where z is the linear span of {δk+1}k∈N, see

(2.43). Denote z± the images of z in ̂sl2
SC,±

. It follows:

Ā ∼= U
(

̂sl2
SC,+

⊕ z
+
)

∼= U
(

̂sl2
SC,−

⊕ z
−
)

.(2.51)

The structure of the isomorphisms (2.47) and (2.51) suggests a close relationship between Āq (resp. Ā) and certain

subalgebras of the quantum universal enveloping algebra Uq(̂gl2) (resp. its specialization U(̂gl2)). To clarify this
relation in Section 5, a new presentation for Āq (and Ā) is given in the next section.

3. A Freidel-Maillet type presentation for Āq and its specialization q → 1

In this section, it is shown that the algebra Āq introduced in Definition 2.1 admits a presentation in the form of a
K-matrix satisfying the defining relations of a quadratic algebra within the family introduced by Freidel and Maillet
[FM91], see Theorem 3.1. In this framework, by Theorem 3.1 and Proposition 3.3, several results obtained in [T19b]
for U+

q are derived in a straightforward manner. For the specialization q → 1, a presentation of the Lie algebra Ā -
see Definition 2.16 - is obtained in terms of a non-standard classical Yang-Baxter algebra, see Proposition 3.6.

3.1. A quadratic algebra of Freidel-Maillet type. Let R(u) be the intertwining operator (called quantum
R−matrix) between the tensor product of two fundamental representations V1 ⊗ V2 for V = C

2 associated with

the algebra Uq(̂sl2). The element R(u) depends on the deformation parameter q and is defined by [Ba82]

R(u) =

⎛

⎜

⎜

⎝

uq − u−1q−1 0 0 0
0 u− u−1 q − q−1 0
0 q − q−1 u− u−1 0
0 0 0 uq − u−1q−1

⎞

⎟

⎟

⎠

,(3.1)

where u is an indeterminate, called ‘spectral parameter’ in the literature on integrable systems. It is known that R(u)
satisfies the quantum Yang-Baxter equation in the space V1 ⊗ V2 ⊗ V3. Using the standard notation

Rij(u) ∈ End(Vi ⊗ Vj),(3.2)

the Yang-Baxter equation reads

R12(u/v)R13(u)R23(v) = R23(v)R13(u)R12(u/v) ∀u, v.(3.3)

As usual, intoduce the permutation operator P = R(1)/(q − q−1). Here, note that R12(u) = PR12(u)P = R21(u).

We now show that the algebra Āq is isomorphic to a quadratic algebra of Freidel-Maillet type [FM91], which can be
viewed as a limiting case of the standard quantum reflection equation (also called the boundary quantum Yang-Baxter
equation) introduced in the context of boundary quantum inverse scattering theory [C84, Sk88]. In addition to (3.1),
define:

R(0) = diag(1, q−1, q−1, 1) .(3.4)

Define the generating functions:

W+(u) =
∑

k∈N

W−kU
−k−1 , W−(u) =

∑

k∈N

Wk+1U
−k−1 ,(3.5)

G+(u) =
∑

k∈N

Gk+1U
−k−1 , G−(u) =

∑

k∈N

G̃k+1U
−k−1 ,(3.6)

where the shorthand notation U = qu2/(q + q−1) is used. Let k± be non-zero scalars in K(q) such that

ρ̄ = k+k−(q + q−1)2 .(3.7)
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Theorem 3.1. The algebra Āq has a presentation of Freidel-Maillet type. Let K(u) be a square matrix such that

K(u) =

(

uqW+(u)
1

k−(q+q−1)G+(u) +
k+(q+q−1)
(q−q−1)

1
k+(q+q−1)G−(u) +

k−(q+q−1)
(q−q−1) uqW−(u)

)

(3.8)

with (3.5)-(3.6). The defining relations are given by:

R(u/v) (K(u)⊗ II) R(0) (II ⊗K(v)) = (II ⊗K(v)) R(0) (K(u)⊗ II) R(u/v) .(3.9)

Proof. Inserting (3.8) into (3.9), the system of (sixteen in total) independent equations for the entries (K(u))ij coming
from the Freidel-Maillet type quadratic algebra (3.9) leads to a system of commutation relations between the generating
functions W±(u),G±(u). Using the identification (3.7), after simplifications these commutation relations read:

[

W±(u),W±(v)
]

= 0 ,(3.10)
[

W+(u),W−(v)
]

+
[

W−(u),W+(v)
]

= 0 ,(3.11)

(U − V )
[

W±(u),W∓(v)
]

=
(q − q−1)

ρ̄(q + q−1)
(G±(u)G∓(v)− G±(v)G∓(u))(3.12)

+
1

(q + q−1)

(

G±(u)− G∓(u) + G∓(v)− G±(v)
)

,

(U − V )
[

G±(u),G∓(v)
]

= ρ̄(q2 − q−2)UV
(

W±(u)W∓(v)−W±(v)W∓(u)
)

,(3.13)

U
[

G∓(v),W±(u)
]

q
− V

[

G∓(u),W±(v)
]

q
+ ρ̄

(

UW±(u)− VW±(v)
)

= 0 ,(3.14)

U
[

W∓(u),G∓(v)
]

q
− V

[

W∓(v),G∓(u)
]

q
+ ρ̄

(

UW∓(u)− VW∓(v)
)

= 0 ,(3.15)
[

Gε(u),W±(v)
]

+
[

W±(u),Gε(v)
]

= 0 , ∀ε = ± ,(3.16)
[

G±(u),G±(v)
]

= 0 ,(3.17)
[

G+(u),G−(v)
]

+
[

G−(u),G+(v)
]

= 0 .(3.18)

The commutation relations among the generators of Āq are now extracted. Inserting (3.5), (3.6) into (3.10)-(3.18),
expanding and identifying terms of same order in U−kV −l one finds equivalently the set of defining relations (2.1)-
(2.11) together with the set of relations (2.17), (2.18) and (2.19)-(2.22) as we now show in details. Precisely, inserting
(3.5) into (3.10), (3.11), one gets (2.4), (2.5), respectively. Inserting (3.5), (3.6) into (3.12), one gets (2.1), (2.21),
(2.22). Inserting (3.5), (3.6) into (3.13), one gets (2.19), (2.20). Inserting (3.5), (3.6) into (3.14) and (3.15), one gets
(2.2), (2.3) as well as (2.17), (2.18). Inserting (3.5), (3.6) into (3.16)-(3.18), one gets (2.5)-(2.11). As the relations
(2.17), (2.18) and (2.19)-(2.22) follow from the defining relations (2.1)-(2.11) by Lemmas 2.3, 2.4, it follows that the
Freidel-Maillet type algebra (3.9) is isomorphic to Āq. �

Remark 3.2. The relations (3.10)-(3.18) coincide with the relations [T19b, Lemmas 13.3,13.4] in the algebra U+
q for

the identification:

U 	→ t−1 , V 	→ s−1 ,(3.19)

W±(u) 	→ tW∓(t) , W±(v) 	→ sW∓(s) ,(3.20)

G+(u) 	→ q−1(q2 − q−2)(G(t)− 1) , G−(u) 	→ q−1(q2 − q−2)(G̃(t)− 1) ,(3.21)

G+(v) 	→ q−1(q2 − q−2)(G(s)− 1) , G−(v) 	→ q−1(q2 − q−2)(G̃(s)− 1) ,(3.22)

ρ̄ 	→ q−1(q2 − q−2)(q − q−1) .(3.23)

For completeness, let us mention that an alternative presentation of Āq can be considered instead, that involves
power series in u in the opposite direction. Indeed, consider the system of relations (3.10)-(3.18) with (3.5)-(3.6).



THE ALTERNATING PRESENTATION OF Uq(̂gl2) 13

Applying the transformation:

W±(u) 	→ −W∓(u
−1q−1) , G±(u) 	→ −G±(u

−1q−1) ,

u 	→ u−1 , q 	→ q−1 ,

and similarly for u → v, one finds that

K ′(u) =

(

u−1q−1W−(u
−1q−1) 1

k−(q+q−1)G+(u
−1q−1) + k+(q+q−1)

(q−q−1)

1
k+(q+q−1)G−(u

−1q−1) + k−(q+q−1)
(q−q−1) u−1q−1W+(u

−1q−1)

)

(3.24)

satisfies the Freidel-Maillet type equation:

R(u/v) (K ′(u)⊗ II) (R(0))−1 (II ⊗K ′(v)) = (II ⊗K ′(v)) (R(0))−1 (K ′(u)⊗ II) R(u/v) .(3.25)

This second presentation of Āq will be used in Section 5.

3.2. Central elements. For the Freidel-Maillet type algebra (3.9), central elements can be derived from the so-called
Sklyanin determinant by analogy with [Sk88, Proposition 5]. Define P−

12 = (1 − P )/2. As usual, below ‘tr12’ stands
for the trace over V1 ⊗ V2.

Proposition 3.3. Let K(u) be a solution of (3.9). The quantum determinant

Γ(u) = tr12
(

P−
12(K(u)⊗ II) R(0)(II ⊗K(uq))

)

,(3.26)

is such that
[

Γ(u), (K(v))ij
]

= 0.

Proof. Recall the notation (3.2). Introduce the vector space V0. With respect to the tensor product V0 ⊗V1 ⊗V2, we
denote:

K0(u) = K(u)⊗ II ⊗ II , K1(u) = II ⊗K(u)⊗ II , K2(u) = II ⊗ II ⊗K(u) .(3.27)

Consider the product (a) ≡ K0(v)Γ(u):

(a) = K0(v)tr12
(

P−
12K1(u) R

(0)
12 K2(uq)

)

,

= qK0(v)tr12
(

P−
12R

(0)
01 R

(0)
02 K1(u) R

(0)
12 K2(uq)

)

(using P−
12 = qP−

12R
(0)
01 R

(0)
02 )

= qtr12
(

P−
12K0(v)R

(0)
01 R

(0)
02 K1(u) R

(0)
12 K2(uq)

)

(using [K0(v), P
−
12] = 0)

= qtr12
(

P−
12K0(v)R

(0)
01 K1(u)R

(0)
02 R

(0)
12 K2(uq)

)

(using [K1(u), R
(0)
02 ] = 0)

= qtr12
(

P−
12R

−1
01 (v/u)K1(u)R

(0)
01 K0(v)R01(v/u)R

(0)
02 R

(0)
12 K2(uq)

)

(using (3.9)) .

Then we use [K0(v), R
(0)
12 ] = 0, [K2(uq), R01(v/u)] = 0 and

R01(v/u)R
(0)
02 R

(0)
12 = R

(0)
12 R

(0)
02 R01(v/u)

to show:

K0(v)tr12
(

P−
12K1(u) R

(0)
12 K2(uq)

)

= qtr12
(

P−
12R

−1
01 (v/u)K1(u)R

(0)
01 K0(v)R

(0)
12 R

(0)
02 R01(v/u)K2(uq)

)

= qtr12
(

P−
12R

−1
01 (v/u)K1(u)R

(0)
01 R

(0)
12 K0(v)R

(0)
02 K2(uq)R01(v/u)

)

Applying again (3.9) to the combination K0(v)R
(0)
02 K2(uq) and using R02(v/uq)R

(0)
01 R

(0)
12 = R

(0)
12 R

(0)
01 R02(v/uq), it

follows:

(a) = qtr12
(

P−
12R

−1
01 (v/u)K1(u)R

(0)
01 R

(0)
12 R

−1
02 (v/uq)K2(uq)R

(0)
02 K0(v)R02(v/uq)R01(v/u)

)

= qtr12
(

P−
12R

−1
01 (v/u)K1(u)R

−1
02 (v/uq)R

(0)
12 R

(0)
01 K2(uq)R

(0)
02 K0(v)R02(v/uq)R01(v/u)

)

= qtr12
(

P−
12R

−1
01 (v/u)R

−1
02 (v/uq)K1(u)R

(0)
12 K2(uq)R

(0)
01 R

(0)
02 K0(v)R02(v/uq)R01(v/u)

)

.
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Then, using P−
12R02(x/q)R01(x) = P−

12(x
2 − q2)(x2 − q−2)/x2, qP−

12R
(0)
01 R

(0)
02 = P−

12, eq. (3.9) and the cyclicity of the
trace, the last expression simplifies to:

(a) = qtr12
(

P−
12K1(u)R

(0)
12 K2(uq)R

(0)
01 R

(0)
02 K0(v)P

−
12

)

= tr12
(

P−
12K1(u)R

(0)
12 K2(uq)

)

K0(v)

= Γ(u)K0(v) .

�
Now, define:

Γ(u) =
1

2(q − q−1)

(

Δ(u)− 2ρ̄

(q − q−1)

)

.

Using the entries of (3.8), by Proposition 3.3 it implies [Δ(u),W±(v)] = [Δ(u),G±(v)] = 0. Using (3.5), (3.6), it
follows:

Corollary 3.4.

Δ(u) = (q − q−1)u2q2
(

W+(u)W−(uq) +W−(u)W+(uq)
)

− (q − q−1)

ρ̄

(

G+(u)G−(uq) + G−(u)G+(uq)
)

(3.28)

− G+(u)− G+(uq)− G−(u)− G−(uq)

provides a generating function for central elements in Āq.

Expanding Δ(u) in power series of U = qu2/(q+ q−1), the coefficients produce the central elements of Āq given by
(2.26). Namely, by straightforward calculations one gets:

Δ(u) = −
∞
∑

n=0

U−n−1q−n−1(qn+1 + q−n−1)Δn+1 .

Remark 3.5. In [T19b, Lemma 13.8], a generating function for central elements is given. By [T19b, Corollary 8.4]
and [T19b, Definition 13.1], alternatively three other generating functions may be considered. For instance:

Z∨(t) = G(qt)G̃(q−1t)− qtW+(qt)W−(q−1t) ,

σ(Z∨(t)) = G̃(qt)G(q−1t)− qtW−(qt)W+(q−1t) .

Using the identification (3.19)-(3.23), the image of the generating function Δ(u) in the algebra U+
q follows:

Δ(u) 	→ −q−1(q2 − q−2)
(

Z∨(q−1t) + σ(Z∨(q−1t)
)

.

3.3. Specialization q → 1. Due to the presence of poles at q = 1 in the off-diagonal entries of K(u) in (3.8), the
relations (3.9) are not suitable for the specialization q → 1. However, it is possible to solve this problem within
the framework of the non-standard classical Yang-Baxter algebra [C83, S83, BabV90, Skr06] in order to obtain an
alternative presentation of Ā, besides Definition 2.16, viewed as a specialization q → 1 of the Freidel-Maillet type
algebra (3.9). Introduce the r-matrix2

r̄(u, v) =
1

(u2/v2 − 1)

⎛

⎜

⎜

⎝

1 0 0 0
0 −1 2u/v 0
0 2u/v −1 0
0 0 0 1

⎞

⎟

⎟

⎠

(3.29)

solution of the non-standard classical Yang-Baxter equation [BabV90]:

(3.30) [ r̄13(u1, u3) , r̄23(u2, u3) ] = [ r̄21(u2, u1) , r̄13(u1, u3) ] + [ r̄23(u2, u3) , r̄12(u1, u2) ] ,

2Note that this r-matrix can be obtained from a limiting case of a r-matrix considered in [BBC17].



THE ALTERNATING PRESENTATION OF Uq(̂gl2) 15

where r̄21(u, v) = P r̄12(u, v)P (= r̄12(u, v) for (3.29)). Define the generating functions:

w+(u) =
∞
∑

k=0

w−kU
−k−1 , w−(u) =

∞
∑

k=0

wk+1U
−k−1 ,(3.31)

g+(u) =

∞
∑

k=0

gk+1U
−k−1 , g−(u) =

∞
∑

k=0

g̃k+1U
−k−1 with U = u2/2 .(3.32)

Proposition 3.6. The algebra Ā admits a FRT presentation given by

(3.33) B(u) =
1

2

(

1
4 g−(u) uw−(u)
uw+(u)

1
4 g+(u)

)

that satisfies the non-standard classical Yang-Baxter algebra

(3.34) [ B1(u) , B2(v) ] = [ r̄21(v, u) , B1(u) ] + [ B2(v) , r̄12(u, v) ] .

Proof. Insert (3.33) into (3.34) with (3.29). Define the formal variables U = u2/2 and V = v2/2. One obtains
equivalently:

(U − V )
[

w±(u), w∓(v)
]

=
1

2
(g±(u)− g∓(u) + g∓(v)− g±(v)) ,

(U − V )
[

gε(u), w±(v)
]

∓ ε16
(

Uw±(u)− V w±(v)
)

= 0 , ε = ±1 ,
[

g±(u), g∓(v)
]

= 0 ,
[

w±(u), w±(v)
]

= 0 ,
[

g±(u), g±(v)
]

= 0 .

These relations are equivalent to the specialization q → 1 of (3.10)-(3.18) (ρ̄ 	→ 16). Using (3.31), the above equations
are equivalent to (2.38)-(2.41). �
Remark 3.7. For the specialization q → 1, the generating function (3.28) reduces to δ(u) = −2(g+(u) + g−(u)).

4. Quotients of Āq and tensor product representations

In this section, a class of solutions - so-called ‘dressed’ solutions - of the Freidel-Maillet type equation (3.9) are con-
structed and studied in details by adapting known technics of the so-called reflection equation [Sk88], see Proposition
4.1. By Lemma 4.3, it is shown that the entries of the dressed solutions can be written in terms of the ‘truncated’
generating functions (4.28)-(4.29), whose generators act on N−fold tensor product representations of Uq(sl2) according
to (4.16)-(4.19). Realizations of Āq in Uq(sl2)

⊗N are obtained, see Proposition 4.5.

4.1. Dressed solutions of the Freidel-Maillet type equation. The starting point of the following analysis is an
adaptation of [Sk88, Proposition 2], [FM91], to the Freidel-Maillet type equation (3.9), thus we skip the proof of the
proposition below. Let K0(u) be a solution of (3.9). Assume there exists a pair of quantum Lax operators satisfying
the exchange relations:

R(u/v) (L(u)⊗ II) (II ⊗ L(v)) = (II ⊗ L(v)) (L(u)⊗ II) R(u/v) ,(4.1)

R(u/v) (L0(u)⊗ II) (II ⊗ L0(v)) = (II ⊗ L0(v)) (L0(u)⊗ II) R(u/v) ,(4.2)

R(0) (L0(u)⊗ II) (II ⊗ L(v)) = (II ⊗ L(v)) (L0(u)⊗ II) R(0) ∀u, v .(4.3)

Using (4.1)-(4.3), it is easy to show that L0(uv1)K0(u)L(u/v1) for any v1 ∈ K
∗ is also a solution of (3.9) (similar to

[Sk88, Proposition 2]). More generally it follows3

3Here the index [j] characterizes the ‘quantum space’ V[j] on which the entries of L(u), L0(u) act. With respect to the ordering V[2]⊗V[1]

used below for (4.16)-(4.19), one has:

((T )[2](T
′)[1](T

′′)[2])ij =
2

∑

k,�=1

(T )ik(T
′′)�j ⊗ (T ′)k� .(4.4)



16 PASCAL BASEILHAC

Proposition 4.1. Let K0(u) be a solution of (3.9). Let N be a positive integer and {vi}Ni=1 ∈ K
∗. Let L(u), L0(u) be

such that (4.1)-(4.3) hold. Then

K(N)(u) = (L0(uvN ))[N] · · · (L0(uv1))[1]K0(u)(L(u/v1)))[1] · · · (L(u/vN ))[N](4.5)

satisfies (3.9).

This proposition provides a tool for the explicit construction of so-called ‘dressed’ solutions of (3.9). Below, we
construct explicit examples of such solutions. To this end, we first introduce some known basic material. Recall the
algebra Uq(sl2) consists of three generators denoted S±, s3. They satisfy

[s3, S±] = ±S± and [S+, S−] =
q2s3 − q−2s3

q − q−1
.(4.6)

The central element of Uq(sl2) is the so-called Casimir operator:

Ω =
q−1q2s3 + qq−2s3

(q − q−1)2
+ S+S− =

qq2s3 + q−1q−2s3

(q − q−1)2
+ S−S+.(4.7)

Let V be the spin-j irreducible finite dimensional representation of Uq(sl2) of dimension 2j + 1. The eigenvalue ωj of
Ω is such that

ωj ≡
w

(j)
0

(q − q−1)2
with w

(j)
0 = q2j+1 + q−2j−1.(4.8)

Define the so-called quantum Lax operators

L0(u) =

(

uq1/2qs3 0
0 uq1/2q−s3

)

and L(u) =

(

uq1/2qs3 − u−1q−1/2q−s3 (q − q−1)S−
(q − q−1)S+ uq1/2q−s3 − u−1q−1/2qs3

)

.(4.9)

Recall the R-matrices (3.1) and (3.4). One routinely checks that the relation (4.1) holds. The relations (4.2)-(4.3)
follow as a limiting case of (4.1). Note that the overall factor uq1/2 in the expression of L0(u) is kept for further
convenience only. Let k±, ε̄± ∈ K. Define:

K0(u) =

(

u−1ε̄+
k+

(q−q−1)
k−

(q−q−1) u−1ε̄−

)

.(4.10)

It is checked that K0(u) satisfies (3.9). As a basic example of dressed solution, consider the case N = 1 of (4.5).
Define the four operators in Uq(sl2):

W(1)
0 = k+v1q

1/2S+q
s3 + ε̄+q

2s3 ,(4.11)

W(1)
1 = k−v1q

1/2S−q
−s3 + ε̄−q

−2s3 ,(4.12)

G(1)
1 = k+k−v

2
1

(w
(j1)
0 − (q + q−1)q2s3)

(q − q−1)
+ (q2 − q−2)k−ε̄+v1q

−1/2S−q
s3 + (q − q−1)ε̄+ε̄− ,(4.13)

G̃(1)
1 = k+k−v

2
1

(w
(j1)
0 − (q + q−1)q−2s3)

(q − q−1)
+ (q2 − q−2)k+ε̄−v1q

−1/2S+q
−s3 + (q − q−1)ε̄+ε̄− .(4.14)

Computing explicitly the entries of (4.5) for N = 1, one finds that the dressed solution can be written as:

K(1)(u) =

⎛

⎝

uqW(1)
0 − u−1v21 ε̄+

G(1)
1

k−(q+q−1) +
k+qu2

(q−q−1) −
k+v2

1w
(j1)
0

(q2−q−2) − ε̄+ε̄−(q−q−1)
k−(q+q−1)

G̃(1)
1

k+(q+q−1) +
k−qu2

(q−q−1) −
k−v2

1w
(j1)
0

(q2−q−2) − ε̄+ ε̄−(q−q−1)
k+(q+q−1) uqW(1)

1 − u−1v21 ε̄−

⎞

⎠ .(4.15)
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4.2. General dressed solutions. The structure of the above solution (4.15) can be generalized to dressed solutions of
arbitrary size as we now show. According to the ordering of the ‘quantum’ vector spaces V (N) = V[N]⊗· · ·⊗V[2]⊗V[1],

let us first define recursively the four families of operators {W(N)
−k ,W(N)

k+1,G
(N)
k+1, G̃

(N)
k+1|k = 0, 1, ..., N}, where N is a

positive integer:

W(N)
−k =

(q − q−1)

k−(q + q−1)2

(

vNq1/2S+q
s3 ⊗ G(N−1)

k

)

+ q2s3 ⊗W(N−1)
−k − v2N

(q + q−1)
II ⊗W(N−1)

−k+1(4.16)

+
v2Nw

(jN )
0

(q + q−1)2
W(N)

−k+1 ,

W(N)
k+1 =

(q − q−1)

k+(q + q−1)2

(

k−vNq1/2S−q
−s3 ⊗ G̃(N−1)

k

)

+ q−2s3 ⊗W(N−1)
k+1 − v2N

(q + q−1)
II ⊗W(N−1)

k(4.17)

+
v2Nw

(jN )
0

(q + q−1)2
W(N)

k ,

G(N)
k+1 = (q2 − q−2)k−vNq−1/2S−q

s3 ⊗W(N−1)
−k − v2N

(q + q−1)
q2s3 ⊗ G(N−1)

k + II ⊗ G(N−1)
k+1(4.18)

+
v2Nw

(jN )
0

(q + q−1)2
G(N)
k ,

G̃(N)
k+1 = (q2 − q−2)k+vNq−1/2S+q

−s3 ⊗W(N−1)
k+1 − v2N

(q + q−1)
q−2s3 ⊗ G̃(N−1)

k + II ⊗ G̃(N−1)
k+1(4.19)

+
v2Nw

(jN )
0

(q + q−1)2
G̃(N)
k .

Here for the special case k = 0 we identify 4

W(N)
k |k=0 ≡ 0 , W(N)

−k+1|k=0 ≡ 0 , G(N)
k |k=0 = G̃(N)

k |k=0 ≡ k+k−(q + q−1)2

(q − q−1)
II(N)(4.20)

together with the ‘initial’ conditions for k ≥ 1 (the notation (4.27) is used)

W(0)
−k ≡

(

α1

q + q−1

)k−1 (
α1

q + q−1

)

|v1=0

W(0)
0 , W(0)

k+1 ≡
(

α1

q + q−1

)k−1 (
α1

q + q−1

)

|v1=0

W(0)
1 ,(4.21)

G(0)
k+1 = G̃(0)

k+1 ≡
(

α1

q + q−1

)k

G(0)
1 ,(4.22)

where

W(0)
0 ≡ ε̄+ , W(0)

1 ≡ ε̄− and G(0)
1 = G̃(0)

1 ≡ ε̄+ε̄−(q − q−1) .(4.23)

A crucial ingredient in the construction of dressed solutions by induction from (4.5) is the existence of a set of linear
relations satisfied by the operators (4.16)-(4.19). We proceed by strict analogy with [BK05a, Appendix B], thus we
skip most of the details of the proof. For further convenience, introduce the notation:

ε̄
(N)
± = (−1)N

(

N
∏

k=1

v2k

)

ε̄± .(4.24)

4Although the notation is ambiguous, one must keep in mind that W(N)
k |k=0 �= W(N)

−k |k=0 ,W(N)
−k+1|k=0 �= W(N)

k+1|k=0 for any N .
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Lemma 4.2. The operators (4.16)-(4.19) satisfy the linear relations:

N
∑

k=0

c
(N)
k W(N)

−k + ε̄
(N)
+ = 0 ,

N
∑

k=0

c
(N)
k W(N)

k+1 + ε̄
(N)
− = 0 ,(4.25)

N
∑

k=0

c
(N)
k G(N)

k+1 = 0 ,
N
∑

k=0

c
(N)
k G̃(N)

k+1 = 0(4.26)

with5 c
(N)
k = (−1)N−k−1(q + q−1)keN−k(α1, α2, · · · , αN ),

α1 =
v21w

(j1)
0

(q + q−1)
+

ε̄+ε̄−(q − q−1)2

k+k−(q + q−1)
, αk =

v2kw
(jk)
0

(q + q−1)
for k = 2, ..., N .(4.27)

Proof. For N = 1, 2, the four relations (4.25)-(4.26) are explicitly checked. Then we proceed by induction. �

The result below is obtained after some straightforward calculations similar to those performed in [BK05a, BK05b],
thus we just sketch the proof. Introduce the ‘truncated’ generating functions:

W(N)
+ (u) =

N−1
∑

k=0

f
(N)
k+1(u)W

(N)
−k , W(N)

− (u) =
N−1
∑

k=0

f
(N)
k+1(u)W

(N)
k+1(4.28)

G(N)
+ (u) =

N−1
∑

k=0

f
(N)
k+1(u)G

(N)
k+1 , G(N)

− (u) =

N−1
∑

k=0

f
(N)
k+1(u)G̃

(N)
k+1(4.29)

where

f
(N)
k (u) =

N
∑

p=k

(−1)N−p(q + q−1)p−1eN−p(α1, α2, ..., αN )Up−k with U = qu2/(q + q−1) .(4.30)

Lemma 4.3. Dressed solutions of the form (4.5) can be written as:

K(N)(u) =

(

uqW(N)
+ (u) + u−1ε̄

(N)
+

1
k−(q+q−1)G

(N)
+ (u) + k+(q+q−1)

(q−q−1) f
(N)
0 (u)

1
k+(q+q−1)G

(N)
− (u) + k−(q+q−1)

(q−q−1) f
(N)
0 (u) uqW(N)

− (u) + u−1ε̄
(N)
−

)

(4.31)

with (4.28)-(4.29) and (4.24).

Proof. For N = 1, one checks that (4.31) coincides with (4.15). Then, we proceed by induction. Assume K(N)(u) is of
the form (4.31) for N fixed. We compute ((L0(uvN+1))[N+1]K

(N)(u)(L(u/vN+1))[N+1])ij for i, j = 1, 2. For instance,
consider the entry (11)N+1. Explicitly, it reads:

(11)N+1 = uq

(

(q − q−1)vN+1q
1/2S+q

s3 ⊗
(

1

k−(q + q−1)
G(N)
+ (u) +

k+(q + q−1)

(q − q−1)
f
(N)
0 (u)

)

+ q2s3 ⊗ ε̄
(N)
+

+(u2qq2s3 − v2N+1)⊗W(N)
+ (u)

)

− u−1v2N+1ε̄
(N)
+ .

5For the elementary symmetric polynomials in the variables {xi|i = 1, ..., n}, we use the notation:

ek(x1, x2, ..., xn) =
∑

1≤j1<j2<···<jk≤n

xj1xj2 · · ·xjk .
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Inserting (4.28), (4.29) and using the definitions (4.16)-(4.19), (4.24) for N → N + 1, after some simple operations
and reorganizing all terms one gets :

(11)N+1 = uq

(

N−1
∑

k=0

(

(q + q−1)f
(N)
k (u)− αN+1f

(N)
k+1(u)

)

W(N+1)
−k + (q + q−1)f

(N)
N (u)W(N+1)

−N

)

+ u−1ε̄
(N+1)
+

+q2s3 ⊗

⎛

⎜

⎜

⎜

⎜

⎝

N−1
∑

k=0

(

qu2f
(N)
k+1(u)− (q + q−1)f

(N)
k (u)

)

W(N+1)
−k − (q + q−1)f

(N)
N (u)W(N+1)

−N + ε̄
(N)
+

︸ ︷︷ ︸

≡Γ(u)

⎞

⎟

⎟

⎟

⎟

⎠

.

Identifying (11)N+1 with (K(N+1)(u))11 leads to a set of constraints. They read:

(q + q−1)f
(N)
k (u)− αN+1f

(N)
k+1(u) = f

(N+1)
k+1 (u) for k = 0, ..., N − 1 ,(4.32)

(q + q−1)f
(N)
N (u) = f

(N+1)
N+1 (u)(4.33)

and Γ(u) = 0. The solution of the constraints (4.32)-(4.33) is given by (4.30). Using this expression, one finds that Γ(u)
coincides with the l.h.s of the first equation in (4.25). By Lemma 4.2, it follows Γ(u) = 0, so (11)N+1 = (K(N+1)(u))11.
By similar arguments, one shows (ij)N+1 = (K(N+1)(u))ij using (4.25), (4.26). �

4.3. Realizations of Āq in Uq(sl2)
⊗N . According to previous results, dressed solutions of the form (4.31) automat-

ically generate the finite set of operators (4.16)-(4.19). In this section, we show (4.16)-(4.19) extends to k ∈ N and
provide realizations of Āq in Uq(sl2)

⊗N . To this aim, we need a generalization of Lemma 4.2.

Lemma 4.4. For any p ∈ N, the operators (4.16)-(4.19) satisfy the linear relations:

N
∑

k=0

c
(N)
k W(N)

−k−p + δp,0ε̄
(N)
+ = 0 ,

N
∑

k=0

c
(N)
k W(N)

k+1+p + δp,0ε̄
(N)
− = 0 ,(4.34)

N
∑

k=0

c
(N)
k G(N)

k+1+p = 0 ,

N
∑

k=0

c
(N)
k G̃(N)

k+1+p = 0 .(4.35)

Proof. For p = 0 the four relations hold by Lemma 4.2. For N = 1 and any p ≥ 1, the four relations are checked using
(4.21), (4.22). Then we proceed by induction on N . �

Define Ā(N)
q as the algebra generated by {W(N)

−k ,W(N)
k+1,G

(N)
k+1, G̃

(N)
k+1|k ∈ N}. We are now in position to give the main

result of this section.

Proposition 4.5. The map Āq → Ā(N)
q given by:

W−k 	→ W(N)
−k , Wk+1 	→ W(N)

k+1 , Gk+1 	→ G(N)
k+1 , G̃k+1 	→ G̃(N)

k+1

with (4.16)-(4.19) for k ∈ N and (3.7) is a surjective homomorphism.

Proof. Consider the image of (3.8) such that the generators in (3.5), (3.6) map to (4.16)-(4.19). For instance, one has:

W+(u) 	→
∑

k∈N

W(N)
−k U−k−1 =

N−1
∑

k=0

W(N)
−k U−k−1 +

∞
∑

k=N

W(N)
−k U−k−1 .(4.36)
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Using (4.34):

∞
∑

k=N

W(N)
−k U−k−1 =

∞
∑

p=0

W(N)
−N−pU

−N−p−1 = − 1

c
(N)
N

∞
∑

p=0

N−1
∑

k=0

c
(N)
k W(N)

−k−pU
−N−p−1 −

ε̄
(N)
+

c
(N)
N

U−N−1

= − 1

c
(N)
N

(

N−1
∑

k=0

c
(N)
k Uk−N

)

W+(u) +
1

c
(N)
N

N−1
∑

k=1

k−1
∑

p=0

c
(N)
k W(N)

−p U−N−p−1+k −
ε̄
(N)
+

c
(N)
N

U−N−1

= − 1

c
(N)
N

(

N−1
∑

k=0

c
(N)
k Uk−N

)

W+(u) +
1

c
(N)
N

N−1
∑

k=0

U−k−1W(N)
−k

⎛

⎝

N−1
∑

p=k+1

c(N)
p Up−N

⎞

⎠−
ε̄
(N)
+

c
(N)
N

U−N−1 .

Replacing the last expression into (4.36) and using (4.28), (4.29) and (4.30), one gets:

f
(N)
0 (u)W+(u) 	→ W(N)

+ (u) + u−2q−1ε̄
(N)
+ .

Similarly, using (4.34), (4.35) one finds:

f
(N)
0 (u)W−(u) 	→ W(N)

− (u) + u−2q−1ε̄
(N)
− , f

(N)
0 (u)G±(u) 	→ G(N)

± (u) .

It follows f
(N)
0 (u)K(u) 	→ K(N)(u). Thus, the operators (4.16)-(4.19) for k ∈ N generate a quotient of the algebra Āq

by the relations (4.34), (4.35). �

Remark 4.6. For the specialization q → 1 in (4.16)-(4.19), realizations of Ā in U(sl2)
⊗N are obtained.

5. The algebra Āq, alternating subalgebras of Uq(̂gl2) and root vectors

Recall that the quantum affine Kac-Moody algebra Uq(̂sl2) admits a Drinfeld second presentation denoted UDr
q

with generators {x±k , h�,K
±1, C±1/2|k ∈ Z, � ∈ Z\{0}} [D88, Be94, Ji96]. For q → 1, this presentation specializes to

the universal enveloping algebra of ̂sl2 with generators {x±
k , hk, c|k ∈ Z} - called the Cartan-Weyl presentation - see

e.g. [Be94, top of page 566]. According to (2.47) (similarly (2.51)), a natural question concerns the interpretation of

Āq in terms of subalgebras of UDr
q (and similarly for Ā in terms of subalgebras of ̂sl2). Although this problem may

look complicated at first sight for q �= 1, it is solved using the framework of Freidel-Maillet algebras combined with
the results of Ding-Frenkel [DF93], as shown in this section. In this section, we fix K = C.

We start with the simplified situation q → 1, see Definition 5.3 and Proposition 5.4.

5.1. The algebra Ā and ‘alternating’ subalgebras of ̂gl2. The affine general Lie algebra ̂gl2 admits a presentation

of Serre-Chevalley type and Cartan-Weyl type, closely related with the presentations of the affine Lie algebra ̂sl2
[K85, GO86]. Consider the presentation of Cartan-Weyl type for ̂gl2. In the definition below, [., .] denotes the Lie
bracket.

Definition 5.1. (Cartan-Weyl presentation ̂gl2
CW

) The affine general Lie algebra ̂gl2 over C is generated by {x±
k , ε1,k,

ε2,k, c|k ∈ Z} subject to the relations:
[

εi,k, εj,�
]

= kcδi,jδk+�,0 ,(5.1)
[

ε1,k, x
±
�

]

= ±x±
k+� ,(5.2)

[

ε2,k, x
±
�

]

= ∓x±
k+� ,(5.3)

[

x+
k , x

−
�

]

= ε1,k+� − ε2,k+� + δk+�,0kc ,(5.4)
[

x±
k , x

±
k±1

]

= 0(5.5)

and c is central.
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Note the automorphism θ such that:

θ : x±
k 	→ x∓

k , ε1,k 	→ ε2,k , ε2,k 	→ ε1,k , c 	→ c .(5.6)

Let

hk = ε1,k − ε2,k .(5.7)

The subalgebra generated by {x±
k , hk, c|k ∈ Z}, denoted ̂sl2

CW
, is isomorphic to the affine Lie algebra ̂sl2. The

commutation relations are given by (5.4), (5.5) with (5.7) and
[

hk, h�

]

= δk+�,02kc ,(5.8)
[

hk, x
±
�

]

= ±2x±
k+� .(5.9)

Recall the Serre-Chevalley presentation ̂sl2
SC

in Appendix A.

Remark 5.2. An isomorphism ̂sl2
SC

→ ̂sl2
CW

is given by:

k0 	→ −h0 − c , k1 	→ h0 , e1 	→ x+
0 , e0 	→ x−

1 , f1 	→ x−
0 , f0 	→ x+

−1 , c 	→ −c .

In view of (2.51), we now study the relation between Ā and ̂gl2. Isomorphisms between certain subalgebras of ̂gl2
and Ā can be identified through a direct comparison of the defining relations (5.1)-(5.5) and (2.38)-(2.41). However,
although not necessary for q = 1, to prepare the analysis for q �= 1 in the next section it is instructive to exhibit these

isomorphisms using the FRT presentation of U(̂gl2), which follows from U(̂sl2)’s one
6.

Introduce the following classical (traceless) r-matrix for an indeterminate z �= 1 associated with ̂sl2:

(5.10) r(z) =
1

z − 1

⎛

⎜

⎜

⎝

−1
2 (z + 1) 0 0 0

0 1
2 (z + 1) −2 0

0 −2z 1
2 (z + 1) 0

0 0 0 − 1
2 (z + 1)

⎞

⎟

⎟

⎠

.

Note that r12(z) = −r21(1/z) = −r12(z)
t1t2 . It satisfies the classical Yang-Baxter equation

(5.11) [ r13(z1/z3) , r23(z2/z3) ] = [ r13(z1/z3) + r23(z2/z3) , r12(z1/z2) ] .

For simplicity, we keep the same notation for the generators of U(̂sl2) and ̂sl2. Defining:

T+(z) =

(

h0/2 2x−
0

0 −h0/2

)

+
∑

k≥1

zk
(

hk 2x−
k

2x+
k −hk

)

,(5.12)

T−(z) =

(

−h0/2 0
−2x+

0 h0/2

)

+
∑

k≥1

z−k

(

−h−k −2x−
−k

−2x+
−k h−k

)

,(5.13)

one checks that the relations7

[T±(z), c] = 0 ,(5.14)

[T±
1 (z), T±

2 (w)] = [T±
1 (z) + T±

2 (w), r12(z/w)] ,(5.15)

[T+
1 (z), T−

2 (w)] = [T+
1 (z) + T−

2 (w), r12(z/w)]− 2c r′12(z/w)z/w ,(5.16)

6We expect this presentation appears in the literature, although we could not find a reference. Here it is taken from [BBC17].
7We denote r′(z) = d

d
r(z) .
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are equivalent to the relations (5.4), (5.5), (5.8), (5.9), where
[

., .
]

now denotes the usual commutator
[

., .
]

1
. The FRT

presentation for U(̂gl2) is obtained from (5.12), (5.13) as follows. Define the 2× 2 matrix

H±(z) = ±

⎛

⎝

1

2
(ε1,0 + ε2,0) +

∑

k≥1

z±k(ε1,±k + ε2,±k)

⎞

⎠ II .

The corresponding pair of Lax operators for U(̂gl2) is given by T±
̂gl2
(z) = T±(z) +H±(z), and satisfy classical Yang-

Baxter relations that follow from (5.14)-(5.16).

We now relate Ā to certain subalgebras of ̂gl2 using the FRT presentation. By straightforward computation, it is
found that

B(u) 	→ B̃−(u) = −T−
̂gl2
(u2)− t0 or B(u) 	→ B̃+(u) = T+

̂gl2
(u−2)− t0(5.17)

with t0 = diag(ε1,0, ε2,0), satisfy the non-standard classical Yang-Baxter equation (3.34) for the identification r̄(u, v) =
−r(u2/v2)−r0, where r0 = diag(1/2,−1/2,−1/2, 1/2). In particular, let us consider the first map in (5.17). Applying
a similarity transformation:

B−(u) = −M(u)B̃−(u)tM(u)−1 with M(u) =

(

0 −u
1 0

)

one finds for instance that

B−(u) =

(

0 0
2u−1x+

0 0

)

+
∑

k≥1

u−2k

(

2ε1,−k 2ux−
−k

2u−1x+
−k 2ε2,−k

)

(5.18)

satisfies (3.34) for the symmetric r-matrix (3.29). Similarly, from the second map in (5.17) one gets a second solution
of (3.34) with (3.29):

B+(u) =

(

0 2u−1x−
0

0 0

)

+
∑

k≥1

u−2k

(

2ε1,k 2u−1x−
k

2ux+
k 2ε2,k

)

.(5.19)

According to the structure of the matrices (5.18), (5.19) and the automorphism (5.6), different subalgebras that
combine half of the positive/negative root vectors, together with half of the imaginary root vectors are now introduced.

Definition 5.3.

̂gl2
�,±

= {x±
k , x

∓
k+1, ε1,k+1, ε2,k+1|k ∈ N} ,(5.20)

̂gl2
�,±

= {x±
−k, x

∓
−k−1, ε1,−k−1, ε2,−k−1|k ∈ N} .(5.21)

We call ̂gl2
�,±

and ̂gl2
�,±

the right and left alternating subalgebras of ̂gl2. The subalgebra generated by {ε1,0, ε2,0, c} is

denoted ̂gl2
�
.

Inserting (5.18) (resp. (5.19)) into (3.34), the relations satisfied by the generators {x±
±k, ε1,±�, ε2,±�} are extracted.

They are identical to the defining relations of the subalgebra ̂gl2
�,+

(resp. ̂gl2
�,−

). Thus, FRT presentations for ̂gl2
�,−

and ̂gl2
�,+

are given respectively by (5.19), (5.18) satisfying (3.34). Applying the automorphism (5.6) to (5.19), (5.18),

one gets the FRT presentations of ̂gl2
�,+

and ̂gl2
�,−

, respectively.

In particular, combining above results with those of Section 3 it follows:

Proposition 5.4. There exists an algebra isomorphism Ā → U(̂gl2
�,+

) (resp. Ā → U(̂gl2
�,−

)) such that:

w−k 	→ 21−kx−
k+1 , wk+1 	→ 21−kx+

k , gk+1 	→ 23−kε1,k+1 , g̃k+1 	→ 23−kε2,k+1

(resp. w−k 	→ 21−kx−
−k , wk+1 	→ 21−kx+

−k−1 , gk+1 	→ 23−kε1,−k−1 , g̃k+1 	→ 23−kε2,−k−1 .
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Proof. Identify θ(B±(u)) for (5.19), (5.18), to (3.33). �

Observe that the elements δ±k+1 = ε1,±(k+1) + ε2,±(k+1) are central. If we denote z
± = {δ±k+1}k∈N and introduce the

alternating subalgebras ̂sl2
�,+

= {x+
k , x

−
k+1, hk+1|k ∈ N} (resp. ̂sl2

�,−
= {x−

−k, x
+
−k−1, h−k−1|k ∈ N}), in addition to

(2.51) one has the decompositions ̂gl2
�,+

= ̂sl2
�,+

⊕ z
+ and ̂gl2

�,−
= ̂sl2

�,−
⊕ z

−. So, the images become:

gk+1 	→ 22−k(hk+1 + δ+k+1) , g̃k+1 	→ 22−k(−hk+1 + δ+k+1)(5.22)

(resp. gk+1 	→ 22−k(h−k−1 + δ−k+1) , g̃k+1 	→ 22−k(−h−k−1 + δ−k+1)) .(5.23)

In the next section, by analogy we use the Freidel-Maillet type presentation given in Section 3 to derive q-analogs
of the isomorphisms of Proposition 5.4.

5.2. The algebra Āq and ‘alternating’ subalgebras of Uq(̂gl2). The Drinfeld second presentation [GJ02, FMu02]

and FRT presentation of Uq(̂gl2) [RS90, DF93] are first reviewed, see Definition 5.5 and Theorem 5.7. Then, ‘alternat-

ing’ subalgebras of Uq(̂gl2) that can be viewed as q-analogs of (5.20), (5.21) are identified, see Definition 5.12. Using
the Ding-Frenkel isomorphism [DF93], K-matrices K±(u) (or K ′+(u)) that satisfy the Freidel-Maillet type equation
(3.9) (or (3.25)) are constructed using a dressing procedure, see Lemmas 5.15, 5.16 or 5.17. By a direct comparison of
the K-matrix (3.8) (resp. (3.24)) to the K-matrix K−(u) (resp. K ′+(u)), explicit isomorphisms from Āq to alternating

subalgebras of Uq(̂gl2) are derived, see Propositions 5.18, 5.20. For the first generators, Examples 5.19, 5.21 are given.

5.2.1. Drinfeld second presentation and FRT presentation of Uq(̂gl2). In this subsection, we review some necessary

material. For the quantum affine Kac-Moody algebra Uq(̂sl2), there are two standard presentations: the Drinfeld-
Jimbo presentation denoted UDJ

q and the Drinfeld (second) presentation denoted UDr
q , see e.g. [CP94, p. 392], [Da14].

For Uq(̂gl2), an analog of Drinfeld second presentation is known [GJ02, FMu02].

Definition 5.5. The quantum affine algebra Uq(̂gl2) is isomorphic to the associative algebra over C(q) with generators

{x±k , E1,�, E2,�,K±1|k ∈ Z, � ∈ Z\{0}}, central elements C±1/2 and the following relations:

C1/2C−1/2 = 1 , KK−1 = K−1K = 1 ,(5.24)

[

Ei,k, Ej,�
]

=

[

k
]

q

k

Ck − C−k

q − q−1
δi,jδk+�,0 , KEi,k = Ei,kK ,(5.25)

[

E1,k, x±�
]

= ±
[

k
]

q

k
C∓|k|/2q|k|/2x±k+� ,(5.26)

[

E2,k, x±�
]

= ∓
[

k
]

q

k
C∓|k|/2q−|k|/2x±k+� ,(5.27)

Kx±k K
−1 = q±2x±k ,(5.28)

x±k+1x
±
� − q±2x±� x

±
k+1 = q±2x±k x

±
�+1 − x±�+1x

±
k ,(5.29)

[

x+k , x
−
�

]

=
(C(k−�)/2ψk+� − C−(k−�)/2φk+�)

q − q−1
,(5.30)

where the ψk and φk are defined by the following equalities of formal power series in the indeterminate z:

ψ(z) =

∞
∑

k=0

ψkz
−k = K exp

(

(q − q−1)

∞
∑

k=1

hkz
−k

)

,(5.31)

φ(z) =
∞
∑

k=0

φ−kz = K−1 exp

(

−(q − q−1)
∞
∑

k=1

h−kz

)

,(5.32)
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where we denote:

hk = q|k|/2E1,k − q−|k|/2E2,k .(5.33)

Note that there exists a q-analog of the automorphism (5.6) such that:

θ : x±k 	→ x∓k , E1,k 	→ E2,k , E2,k 	→ E1,k , K 	→ K , C 	→ C−1, q 	→ q−1 .(5.34)

In addition, there exists an automorphism:

ν : x+k 	→ Kx+k , x−k 	→ x−k K
−1 , E1,k 	→ E1,k , E2,k 	→ E2,k, K 	→ K , C1/2 	→ C1/2 .(5.35)

The associative subalgebra generated by {x±k , h�,K
±1, C±1/2|k ∈ Z, � ∈ Z\{0}} is isomorphic to the quantum affine

algebra Uq(̂sl2), known in the literature as the Drinfeld second presentation UDr
q . The corresponding defining relations

are given by (5.24), (5.28)-(5.30) and

[

hk, h�
]

= δk+�,0
1

k

[

2k
]

q

Ck − C−k

q − q−1
,(5.36)

[

hk, x
±
�

]

= ±1

k

[

2k
]

q
C∓|k|/2x±k+� .(5.37)

Remark 5.6. Recall the defining relations of UDJ
q in Appendix A. An isomorphism UDJ

q → UDr
q is given by (see e.g

[CP94, p. 393]):

K0 	→ CK−1 , K1 	→ K , E1 	→ x+0 , E0 	→ x−1 K
−1 , F1 	→ x−0 , F0 	→ Kx+−1 .(5.38)

Note that it is still an open problem to find the complete Hopf algebra isomorphism between UDJ
q and UDr

q . Only
partial information is known, see e.g. [CP91, Section 4.4].

Extending previous works [FRT89, RS90], for the quantum affine Lie algebra of type A such as Uq(̂gln) a FRT
presentation has been obtained in [DF93]. For type B,C,D, see [JLM19, JLM20]. The explicit isomorphism between

the Drinfeld second presentation of Uq(̂gl2) and FRT presentation given in [DF93] is now recalled. Define:

(5.39) R̃(z) =

⎛

⎜

⎜

⎜

⎝

1 0 0 0

0 z−1
zq−q−1

z(q−q−1)
zq−q−1 0

0 (q−q−1)
zq−q−1

z−1
zq−q−1 0

0 0 0 1

⎞

⎟

⎟

⎟

⎠

which satisfies the Yang-Baxter equation (3.3). Note that R̃12(z) = R̃t1t2
21 (z). The above R-matrix is related to the

symmetric R-matrix (3.1) through the similarity transformations:

(u

v
q − v

u
q−1

)−1

R12(u/v) = M(u)1M(v)2R̃12(u
2/v2)M(v)−1

2 M(u)−1
1 ,(5.40)

= M(u)−1
1 M(v)−1

2 R̃21(u
2/v2)M(v)2M(u)1 with M(u) =

(

u−1/2 0
0 u1/2

)

.

Theorem 5.7. (see [RS90, DF93]) Uq(̂gl2) admits a FRT presentation given by a unital associative algebra with

generators {x±k , k
+
j,−�, k

−
j,�, q

±c/2|k ∈ Z, � ∈ N, j = 1, 2}. The generators q±c/2 are central and mutally inverse. Define:

L±(z) =

(

k±1 (z) k±1 (z)f
±(z)

e±(z)k±1 (z) k±2 (z) + e±(z)k±1 (z)f
±(z)

)

(5.41)
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in terms of the generating functions in the indeterminate z:

e+(z) = (q − q−1)
∞
∑

k=0

qk(c/2−1)x−−kz
k , e−(z) = −(q − q−1)

∞
∑

k=1

qk(c/2+1)x−k z
−k ,(5.42)

f+(z) = (q − q−1)

∞
∑

k=1

q−k(c/2+1)x+−kz
k , f−(z) = −(q − q−1)

∞
∑

k=0

q−k(c/2−1)x+k z
−k ,(5.43)

k+j (z) =
∞
∑

k=0

k+j,−kz
k , k−j (z) =

∞
∑

k=0

k−j,kz
−k , j = 1, 2 .(5.44)

The defining relations are the following:

k+i,0k
−
i,0 = k−i,0k

+
i,0 = 1 ,(5.45)

R̃(z/w) (L±(z)⊗ II) (II ⊗ L±(w)) = (II ⊗ L±(w)) (L±(z)⊗ II) R̃(z/w) ,(5.46)

R̃(qcz/w) (L+(z)⊗ II) (II ⊗ L−(w)) = (II ⊗ L−(w)) (L+(z)⊗ II) R̃(q−cz/w) .(5.47)

For (5.46), the expansion direction of R̃(z/w) can be chosen in z/w or w/z, but for (5.47) the expansion direction is

only in z/w. Uq(̂gl2) is a Hopf algebra. The coproduct Δ is defined by:

Δ(L±(z)) = (L±(zq±(1⊗c/2)))[1](L
±(zq∓(c/2⊗1)))[2](5.48)

and its antipode is S(L±(z)) = L±(z)−1.

Remark 5.8. The inverse quantum Lax operators (5.41) are [DF93, eq. (4.9)]:

(L±(z))−1 =

(

(k±1 (z))
−1 + f±(z)(k±2 (z))

−1e±(z) −f±(z)(k±2 (z))
−1

−(k±2 (z))
−1e±(z) (k±2 (z))

−1

)

.(5.49)

The explicit isomorphism between the FRT presentation of Theorem 5.7 and Drinfeld second presentation of Uq(̂gl2)
of Definition 5.5 is given in [GJ02, Section 4]. Introduce the generating functions [DF93]:

x±(z) =
∑

k∈Z

x±k z
−k .(5.50)

In terms of (5.42), (5.43), one has:

x+(z) = (q − q−1)−1
(

f+(qc/2+1z)− f−(q−c/2+1z)
)

,

x−(z) = (q − q−1)−1
(

e+(q−c/2+1z)− e−(qc/2+1z)
)

and

C1/2 = qc/2 .

The generating functions {k±i (z)}i=1,2 are related with the generators {Ei,k}i=1,2 as follows [GJ02, Section 4] (see also
[FMu02]):

k±i (z) = k±i,0 exp

(

±(q − q−1)
∞
∑

n=1

ai,∓nz
±n

)

(5.51)

where the new generators

a1,m = qm
(

q|m|/2E1,m − q−|m|/2E2,m
)

+ a2,m ,(5.52)

a2,m = q2m+|m|/2
(

|m|
m

E1,m + q|m|E2,m
(1 + q2|m|)1/2

+ E2,m
)

,(5.53)
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are introduced. The generators k±i,0 are such that
[

k±i,0, aj,m
]

=
[

kεi,0, k
ε′

j,0

]

= 0 for any i, j and

k−2,0(k
−
1,0)

−1 = K , k+2,0(k
+
1,0)

−1 = K−1 .(5.54)

The commutation relations of Uq(̂gl2) presented in terms of the generators {ai,m|i = 1, 2} are given in [GJ02,
Section 4]. Although not reported here, for further analysis some of those are displayed in Appendix B.

In the context of the FRT presentation of Uq(̂gl2) [DF93], the explicit exchange relations between the generating
functions (5.42)-(5.44) are extracted from (5.46), (5.47) inserting (5.41). We refer the reader to [DF93, p. 288-292]
for details. In particular, for the following analysis, we will need the asymptotics of some of the exchange relations
displayed in [DF93]. Considering the limits k+j (0) and k−j (∞) of (5.44), from [DF93, eqs. (4.24), (4.25), (4.40), (4.41)]
one gets for instance:

k±1,0e
±(w)(k±1,0)

−1 = q∓1e±(w) , k±1,0f
±(w)(k±1,0)

−1 = q±1f±(w) ,(5.55)

(k±2,0)
−1e±(w)k±2,0 = q∓1e±(w) , (k±2,0)

−1f±(w)k±2,0 = q±1f±(w) ,(5.56)

and from [DF93, eqs. (4.13), (4.14), (4.17)] one gets:

k±i,0k
±
j (w) = k±j (w)k

±
i,0 , k±i,0k

±
i (w) = k±i (w)k

±
i,0 , i �= j = 1, 2 .(5.57)

To prepare the discussion in further sections, the description of the known embedding Uq(̂sl2) ↪→ Uq(̂gl2) is now

recalled. First, central elements of Uq(̂gl2) are constructed using the FRT presentation. Following [FMu02, Section
2.6], define the generating functions:

y±(z) = k∓1 (q
−1z)k∓2 (qz) .(5.58)

By [DF93, eq. (4.17)], note that the ordering of the factors in (5.58) is irrelevant. Using the other exchange relations
in [DF93], one finds

[

y±(z), eε(w)
]

=
[

y±(z), fε(w)
]

=
[

y±(z), kε1(w)
]

=
[

y±(z), kε2(w)
]

= 0 for ε = ± and any z, w.

Proposition 5.9. (see [FMu02]) The coefficients of the generating function y±(z) are central elements of Uq(̂gl2).

Corollary 5.10. The elements

k∓1,0k
∓
2,0 and γm = qma1,m + q−ma2,m for m ∈ Z

∗(5.59)

are central in Uq(̂gl2).

Proof. Insert (5.51) into (5.58). Identify the coefficients of the resulting power series y±(z). �

Note that
[

Uq(̂gl2), y
]

= 0 for y = k±1,0k
±
2,0, γm can be independently checked using (5.52), (5.53) and the commu-

tation relations (B.1)-(B.4).

Remark 5.11. In terms of the generators hm (5.33) and central elements γm (5.59), the new generators a1,m, a2,m
entering in (5.51) decompose as:

a1,m =
qm

1 + q2m
(hm + γm) , a2,m =

qm

1 + q−2m
(−hm + q−2mγm) .(5.60)

It is known that the elements (5.59) and C±1/2 generate8 the center of Uq(̂gl2). The following arguments are
described in [FMu02] (see also [JLM19]). Denote C the subalgebra generated by (5.59). One has the embedding

UDr
q ⊗ C ↪→ Uq(̂gl2) . Furthermore, define U ′Dr

q as the extension of UDr
q by q±1/2,K±1/2, and define C′ as the

extension of C by (k±1,0k
±
2,0)

1/2. Then, one has the inverse embedding Uq(̂gl2) ↪→ U ′Dr
q ⊗C′. It follows that Uq(̂gl2) and

U ′Dr
q ⊗ C are “almost” isomorphic. So, one has the tensor product decomposition:

Uq(̂gl2) ∼= UDr
q ⊗ C .(5.61)

8I thank N. Jing for communications on this point. Note that the analogs of y±(z) are known for higher rank affine Lie algebras of type

A,B,C,D [FMu02, JLM19, JLM20].
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For more details, see e.g. [JLM19, Proposition 2.3, Corollary 2.4]. The explicit isomorphism ϕD : Uq(̂gl2) → UDr
q ⊗ C

is constructed along these lines. In view of these comments, UDr
q can be considered as the quotient of the Drinfeld

type presentation of Uq(̂gl2) by the relations

y±(z) = 1 ⇐⇒ k±1,0k
±
2,0 = 1 and γm = 0 ∀m ∈ Z

∗ .(5.62)

Below, we will use the surjective homomorphism γD : Uq(̂gl2) → UDr
q using the presentation of Theorem 5.7. Recall

(5.50) and (5.51). Using (5.60) and setting (5.62), for instance one has:

γD(qc/2) 	→ C1/2 , γD(x±(z)) 	→ x±(z) ,(5.63)

γD(a1,m) 	→ 1

qm + q−m
hm , γD(a2,m) 	→ − q2m

qm + q−m
hm ,(5.64)

γD(k∓2,0(k
∓
1,0)

−1) 	→ K±1 .(5.65)

Thus, the FRT presentation of Uq(̂sl2) is obtained as a corollary of [DF93, Main Theorem]. It is given by the image
of (5.46), (5.47) with (5.41) via γD.

5.2.2. Alternating subalgebras Uq(̂gl2)
�,± and Uq(̂gl2)

�,± and K-matrices. By analogy with the analysis of previous
section, we need to identify q-deformed analogs of the “classical” alternating subalgebras (5.20), (5.21). For instance,
consider the elements:

C−k/2K−1x+k , C(k+1)/2x−k+1 , E1,k+1 , E2,k+1 for k ∈ N .(5.66)

Using the defining relations of Uq(̂gl2), for k, � ∈ N one finds:
[

Ei,k, Ej,�
]

= 0 ,

[

E1,k, C−�/2K−1x+�
]

=

[

k
]

q

k
qk/2C−(k+�)/2K−1x+k+� ,

[

E2,k, C−�/2K−1x+�
]

= −
[

k
]

q

k
q−k/2C−(k+�)/2K−1x+k+� ,

[

E1,k, C(�+1)/2x−�+1

]

= −
[

k
]

q

k
qk/2C(k+�+1)/2x−k+�+1 ,

[

E2,k, C(�+1)/2x−�+1

]

=

[

k
]

q

k
q−k/2C(k+�+1)/2x−k+�+1 .

Furthermore, the relations (5.29) are left invariant by the action of C−(k+�+1)/2K−2 for (++) or the action of C(k+�+1)/2

for (−−). Also, using (5.28), (5.30) one finds:

[

C−k/2K−1x+k , C(�+1)/2x−�+1

]

=
1

q − q−1
K−1ψk+�+1 + (q2 − 1)

(

C−k/2K−1x+k

)(

C(�+1)/2x−�+1

)

.

According to (5.31), K−1ψk only depends on hk so it is a combination of E1,k, E2,k. Thus, we conclude that the

elements (5.66) form a subalgebra of Uq(̂gl2). Other subsets of elements are similarly considered, which form different
subalgebras. It follows:

Definition 5.12.

Uq(̂gl2)
�,± = {C∓k/2K−1x±k , C

±(k+1)/2x∓k+1, E1,k+1, E2,k+1|k ∈ N} ,

Uq(̂gl2)
�,± = {C∓k/2x±−k, C

±(k+1)/2x∓−k−1K, E1,−k−1, E2,−k−1|k ∈ N} .

We call Uq(̂gl2)
�,± and Uq(̂gl2)

�,± the right and left alternating subalgebras of Uq(̂gl2). The subalgebra generated by

{K±1, C±1/2} is denoted Uq(̂gl2)
�.

In each alternating subalgebra introduced above, the center is characterized as follows. Consider for instance

Uq(̂gl2)
�,±. Its center is the subalgebra of C generated by some of the coefficients of the generating function y+(z) as

defined in (5.58).
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Remark 5.13. The center C� (resp. C� ) of Uq(̂gl2)
�,± (resp. Uq(̂gl2)

�,±) is generated by γm (resp. γ−m) with
m ∈ N

∗.

For Uq(̂sl2), it is known that given a certain ordering the elements {x±k , h�,K
±1, C±1/2|k ∈ Z, � ∈ Z\{0}} generate

a PBW basis, see [Be94, Proposition 6.1] with [BCP98, Lemma 1.5]. According to (5.33), with a minor modification

in the Cartan sector associated with the decomposition of hk into E1,k, E2,k, a PBW basis for Uq(̂gl2) is obtained. If

one considers the subalgebra Uq(̂gl2)
�,+, let us choose the ordering:

C1/2x−1 < Cx−2 < · · · < E1,1 < E1,2 < · · · < E2,1 < E2,2 < · · · < C−1/2K−1x+1 < K−1x+0 ,

whereas for the subalgebra Uq(̂gl2)
�,− we choose the ordering:

x−0 < C1/2x−−1 < · · · < E1,1 < E1,2 < · · · < E2,1 < E2,2 < · · · < C−1x+−2K < C−1/2x+−1K .

It follows:

Proposition 5.14. The vector space Uq(̂gl2)
�,+ (resp. Uq(̂gl2)

�,−) has a linear basis consisting of the products

x1x2 · · ·xn (n ∈ N) with xi ∈ Uq(̂gl2)
�,+ (resp. xi ∈ Uq(̂gl2)

�,−) such that x1 ≤ x2 ≤ · · · ≤ xn.

Using the automorphism (5.34), PBW bases for Uq(̂gl2)
�,− and Uq(̂gl2)

�,+ are similarly obtained.

We now turn to the construction of K-matrices satisfying the Freidel-Maillet type equations (3.9) or (3.25), whose

entries are formal power series in the elements of alternating subalgebras. Assume there exists a matrix K̃0 with scalar
entries and two quantum Lax operators L(z), L0 such that the following relations hold (R̃21(z) = PR̃12(z)P ):

R̃12(z/w) K̃
0
1 R(0) K̃0

2 = K̃0
2 R(0) K̃0

1 R̃21(z/w) ,(5.67)

R̃12(z/w)L1(z)L2(w) = L2(w)L1(z)R̃12(z/w) ,(5.68)

R̃21(z/w)(L
0)1(L

0)2 = (L0)2(L
0)1R̃21(z/w) ,(5.69)

(L0)1R
(0)L2(w) = L2(w)R

(0)(L0)1 ,(5.70)

L1(z)R
(0)(L0)2 = (L0)2R

(0)L1(z) .(5.71)

Adapting [Sk88, Proposition 2], using the above relations one finds that :

K̃(z) 	→ L(z)K̃0L0(5.72)

satisfies the following Freidel-Maillet type equation (for a non-symmetric R-matrix)

R̃12(z/w) (K̃(z)⊗ II) R(0) (II ⊗ K̃(w)) = (II ⊗ K̃(w)) R(0) (K̃(z)⊗ II) R̃21(z/w) .(5.73)

An example built from the FRT presentation for Uq(̂gl2) of Theorem 5.7 is obtained as follows. For the choices

L(z) 	→ L−(z) and L0 	→ L−,0 = diag((k−2,0)
−1, (k−1,0)

−1) ,(5.74)

eq. (5.68) holds and using the exchange relations (5.55)-(5.57) it is checked that eqs. (5.69)-(5.71) hold. Also, for the
choice

K̃0 =

(

0 k+(q+q−1)
(q−q−1)

k−(q+q−1)
(q−q−1) 0

)

(5.75)

it is checked that eq. (5.67) holds. It follows

K̃(z) 	→ K̃−(z) = L−(z)K̃0L−,0(5.76)

satisfies (5.73). Note that eq. (5.73) is left invariant under the transformation (z, w) 	→ (λz, λw) for any λ ∈ C
∗.

A solution of (3.9) associated with the symmetric R-matrix (3.1) is readily obtained using the similarity transfor-
mation (5.40).
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Lemma 5.15. The dressed K-matrix

K−(u) =

⎛

⎝

u−1
(

k−(q+q−1)
q−q−1 k−1 (qu

2)f−(qu2)(k−2,0)
−1

)

k+(q+q−1)
q−q−1 k−1 (qu

2)(k−1,0)
−1

k−(q+q−1)
q−q−1

(

k−2 (qu
2) + e−(qu2)k−1 (qu

2)f−(qu2)
)

(k−2,0)
−1 u

(

k+(q+q−1)
q−q−1 e−(qu2)k−1 (qu

2)(k−1,0)
−1

)

⎞

⎠

satisfies the Freidel-Maillet type equation (3.9).

Proof. The K-matrix K̃−(z) defined by (5.76) satisfies (5.73). Applying the transformation (5.40) to (5.73) and
defining

K−(u) = M(u)K̃−(qu2)M(u) ,

the claim follows. �

Another solution of (3.9) is obtained as follows. Assume there exists two quantum Lax operators L(z), L0 such that
the relations (5.70), (5.71) and

R̃21(z/w)L1(z)L2(w) = L2(w)L1(z)R̃21(z/w) ,

R̃12(z/w)(L
0)1(L

0)2 = (L0)2(L
0)1R̃12(z/w)

are satisfied. It is straightforward to check that

L(z) 	→ (L+(z−1))−1 and L0 	→ L+,0 = diag(k+2,0, k
+
1,0)(5.77)

obey the above set of relations. Then

K̃(z) 	→ K̃+(z) = L+,0K̃0(L+(z−1)−1)(5.78)

satisfies (5.73). Using this result combined with the similarity transformation (5.40), it follows:

Lemma 5.16. The dressed K-matrix

K+(u) =

⎛

⎝

u−1
(

−k+(q+q−1)
q−q−1 k+2,0k

+
2 (1/qu

2)−1e+(1/qu2)
)

k+(q+q−1)
q−q−1 k+2,0k

+
2 (1/qu

2)−1

k−(q+q−1)
q−q−1 k+1,0

(

k+1 (1/qu
2)−1 + f+(1/qu2)k+2 (1/qu

2)−1e+(1/qu2)
)

u
(

−k−(q+q−1)
q−q−1 k+1,0f

+(1/qu2)k+2 (1/qu
2)−1

)

⎞

⎠

satisfies the Freidel-Maillet type equation (3.9).

For completeness, a K-matrix satisfying (3.25) is now constructed along the same lines. To this aim, we consider
the set of relations (5.67)-(5.71) with the substitution:

R(0) → (R(0))−1 .(5.79)

For the choices

L(z) 	→ L+(z) and L0 	→ L′+,0 = diag((k+2,0)
−1, (k+1,0)

−1) ,(5.80)

one finds that

K̃(z) 	→ K̃ ′+(z) = L+(z)K̃0L′+,0(5.81)

satisfies (for the non-symmetric R-matrix)

R̃12(z/w) (K̃(z)⊗ II) (R(0))−1 (II ⊗ K̃(w)) = (II ⊗ K̃(w)) (R(0))−1 (K̃(z)⊗ II) R̃21(z/w) .(5.82)

Using (5.40), it follows:

Lemma 5.17. The dressed K-matrix

K ′+(u) =

⎛

⎝

u−1
(

k−(q+q−1)
q−q−1 k+1 (qu

2)f+(qu2)(k+2,0)
−1

)

k+(q+q−1)
q−q−1 k+1 (qu

2)(k+1,0)
−1

k−(q+q−1)
q−q−1

(

k+2 (qu
2) + e+(qu2)k+1 (qu

2)f+(qu2)
)

(k+2,0)
−1 u

(

k+(q+q−1)
q−q−1 e+(qu2)k+1 (qu

2)(k+1,0)
−1

)

⎞

⎠

satisfies the Freidel-Maillet type equation (3.25).
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The entries of the K-matrices are formal power series in the elements of the alternating subalgebras. Consider for
instance the entry (K−(u))11. One has:

(K−(u))11 = u−1q

⎛

⎜

⎜

⎝

k−(q + q−1)

q2 − 1
k−1 (qu

2) f−(qu2)(k−2,0)
−1

︸ ︷︷ ︸

=q(k−2,0)
−1f−(qu2)

⎞

⎟

⎟

⎠

by (5.56)

= u−1q

⎛

⎜

⎜

⎝

k−(q + q−1)

q − q−1
k−1 (qu

2)(k−2,0)
−1

︸ ︷︷ ︸

=K−1 exp(−(q−q−1)
∑∞

n=1 a1,n(qu2)−n)

f−(qu2)

⎞

⎟

⎟

⎠

by (5.51) .

Inserting (5.43), one gets:

(K−(u))11 = uq

(

−k−(q
2 + 1) exp

(

−(q − q−1)
∞
∑

n=1

a1,n(qu
2)−n

) ∞
∑

k=0

qkC−k/2K−1x+k (qu
2)−k−1

)

.

According to Definition 5.12 and (5.52), (5.53), we conclude (K−(u))11 ∈ Uq(̂gl2)
�,+ ⊗C[[u2]]. Studying similarly the

other entries and repeating the same analysis for K+(u) and K ′+(u), one finds:

(K−(u))ij ∈ Uq(̂gl2)
�,+ ⊗ C[[u2]] , (K+(u))ij ∈ Uq(̂gl2)

�,− ⊗ C[[u2]] ,(5.83)

and (K ′+(u))ij ∈ Uq(̂gl2)
�,− ⊗ C[[u2]] .

5.2.3. Isomorphisms relating Āq and the alternating subalgebras Uq(̂gl2)
�,± and Uq(̂gl2)

�,±. Recall the Freidel-Maillet
type presentation for Āq of Theorem 3.1. A direct comparison between the K-matrix (3.8) and the K-matrices K±(u)

previously derived provides explicit maps from Āq to the alternating subalgebras of Uq(̂gl2). Recall the generating
functions (3.5), (3.6) of the algebra Āq.

Proposition 5.18. There exists an isomorphism from Āq to Uq(̂gl2)
�,+ such that:

W+(u) 	→ −k−(q
2 + 1) exp

(

−(q − q−1)

∞
∑

n=1

a1,n(qu
2)−n

) ∞
∑

k=0

qkC−k/2K−1x+k (qu
2)−k−1 ,(5.84)

W−(u) 	→ −k+(q
−2 + 1)

( ∞
∑

k=0

qk+1C(k+1)/2x−k+1(qu
2)−k−1

)

exp

(

−(q − q−1)
∞
∑

n=1

a1,n(qu
2)−n

)

,(5.85)

G+(u) 	→
ρ̄

q − q−1

(

exp

(

−(q − q−1)

∞
∑

n=1

a1,n(qu
2)−n

)

− 1

)

,(5.86)

G−(u) 	→
ρ̄

q − q−1

(

exp

(

−(q − q−1)

∞
∑

n=1

a2,n(qu
2)−n

)

− 1

)

(5.87)

+ ρ̄(q − q−1)

∞
∑

k,�=0

qk+�+2C(k−�+1)/2x−k+1K
−1 exp

(

−(q − q−1)

∞
∑

n=1

a1,n(qu
2)−n

)

x+� (qu
2)−k−�−1 .

Proof. As previously discussed, using (5.42), (5.43) and (5.51), the entries of K−(u) are power series in qu2. Identifying

(3.8) with K−(u), one gets the above homomorphism Āq → Uq(̂gl2)
�,+ through identifying the generating functions.

It remains to show that it is an isomorphism. Firstly, by analogy with Uq(̂sl2) [CP94, page 289], U(̂gl2) with defining

relations (5.1)-(5.5) is known as the specialization q → 1 of Uq(̂gl2). So, the subalgebra Uq(̂gl2)
�,+ specializes to

U(̂gl2)
�,+ with (5.20). Secondly, by Proposition 5.4 A ∼= U(̂gl2)

�,+. Thirdly, by Proposition 2.18 A is the specialization
of Āq at q → 1, ρ̄ → 16. All together, we conclude that the map above is an isomorphism. �
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Identifying the leading terms of the power series, one finds for instance:

Example 5.19. The image in Uq(̂gl2)
�,+ of the first generators of Āq is such that:

W0 	→ −k−qK
−1x+0 , W1 	→ −k+C

1/2x−1 ,

G1 	→ − ρ̄

q + q−1
a1,1 , G̃1 	→ − ρ̄

q + q−1
a2,1 +

ρ̄(q − q−1)

(q + q−1)
q2C1/2x−1 K

−1x+0 .

As a second example, recall the Freidel-Maillet type presentation (3.25) for Āq with (3.24). In this case, the
K-matrix (3.24) is compared with the K-matrix K ′+(u) of Lemma 5.17. It follows

Proposition 5.20. There exists an isomorphism from Āq to Uq(̂gl2)
�,− such that:

W+(u
−1q−1) 	→ k+(q + q−1)

∞
∑

k=0

q−kCk/2x−−k(qu
2)k+1 exp

(

(q − q−1)
∞
∑

n=1

a1,−n(qu
2)n

)

,

W−(u
−1q−1) 	→ k−(q + q−1) exp

(

(q − q−1)

∞
∑

n=1

a1,−n(qu
2)n

)( ∞
∑

k=0

q−k+1C−(k+1)/2x+−k−1K(qu
2)k+1

)

,

G+(u
−1q−1) 	→ ρ̄

q − q−1

(

exp

(

(q − q−1)
∞
∑

n=1

a1,−n(qu
2)n

)

− 1

)

,

G−(u
−1q−1) 	→ ρ̄

q − q−1

(

exp

(

(q − q−1)
∞
∑

n=1

a2,−n(qu
2)n

)

− 1

)

+ ρ̄(q − q−1)
∞
∑

k,�=0

q−k−�C(k−�−1)/2x−−k exp

(

(q − q−1)
∞
∑

n=1

a1,−n(qu
2)n

)

x+−�−1K(qu
2)k+�+1 .

Example 5.21. The image in Uq(̂gl2)
�,− of the first generators of Āq is such that:

W0 	→ k+x
−
0 , W1 	→ k−qC

−1/2x+−1K ,

G1 	→ ρ̄

q + q−1
a1,−1 , G̃1 	→ ρ̄

q + q−1
a2,−1 +

ρ̄(q − q−1)

(q + q−1)
C−1/2x−0 x

+
−1K .

So, the alternating subalgebra Uq(̂gl2)
�,+ (resp. Uq(̂gl2)

�,−) admits a Freidel-Maillet type presentation given by the
K-matrix K−(u) (resp. K ′+(u)) satisfying eq. (3.9) (resp. eq. (3.25)). Using the automorphism (5.34), a presentation

for Uq(̂gl2)
�,− (resp. Uq(̂gl2)

�,+) can be obtained as well.

Finally, let us introduce the alternating subalgebras of UDr
q .

Definition 5.22.

UDr,�,±
q = {C∓k/2K−1x±k , C

±(k+1)/2x∓k+1, hk|k ∈ N} ,

UDr,�,±
q = {C∓k/2x±−k, C

±(k+1)/2x∓−k−1K, hk|k ∈ N} .

We call UDr,�,±
q and UDr,�,±

q the right and left alternating subalgebras of UDr
q . The subalgebra generated by {K±1, C±1/2}

is denoted UDr,�
q .

As a corollary of (5.61) and Remark 5.13, one has the tensor product decompositions:

Uq(̂gl2)
�,± ∼= UDr,�,±

q ⊗ C� , Uq(̂gl2)
�,± ∼= UDr,�,±

q ⊗ C� .

Recall (5.59).
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Remark 5.23. The alternating subalgebra UDr,�,±
q (resp. UDr,�,±

q ) is the quotient of Uq(̂gl2)
�,± (resp. Uq(̂gl2)

�,±) by
the ideal generated from the relations {γm+1 = 0| ∀m ∈ N} (resp. {γ−m−1 = 0| ∀m ∈ N}).

We conclude this section with some comments. Using the isomorphism of Propositions 5.18, the image of the
generating function Δ(u) ∈ Z ⊗C

[[

u2
]]

defined by (3.28) gives a generating function in C� ⊗C
[[

u2
]]

that looks more
complicated than (5.58). In the context of FRT/Sklyanin/Freidel-Maillet type presentations, this is not surprising
as Δ(u) and y±(qu2) are built from different quantum determinants (see e.g. [Sk88] for details). However, as a
consistency check one can compare the leading orders of both power series. For instance, let us compute the image in

Uq(̂gl2)
�,+ of Δ1 given by (2.27) using the expressions of Example 5.19. After simplifications using (5.28), (5.30), it

reduces to:

Δ1 = − 2

(q + q−1)2
(qa1,1 + q−1a2,1) ,

which produces γ1 (see (5.59) for m = 1).

5.3. The comodule algebra homomorphism δ : Āq → Uq(̂gl2)
�,+,0⊗Āq. At the end of Section 2, a coaction map

〈W0,W1〉 → UDJ,+,0
q ⊗ 〈W0,W1〉 has been given. In this subsection, we study further the comodule algebra structure

of Āq using the FRT presentation of Theorem 5.7. A coaction formula for all the generators of Āq is derived as follows.
Recall the coproduct formulae for the quantum Lax operators (5.48). Take the K-matrix (5.76) and define the new
K-matrix:

Δ(L−(z))K̃0Δ′(L−,0) = (L−(zq−(1⊗ c
2 )))[1]

⎛

⎜

⎜

⎝

(L−(zq(
c
2⊗1)))[2]K̃

0(L−,0)[2]
︸ ︷︷ ︸

=(K̃−(zq(
c
2
⊗1)))[2]

⎞

⎟

⎟

⎠

(L−,0))[1] .(5.88)

By construction, it satisfies (5.73) for the non-symmetric R-matrix (5.39). Using the invariance of (5.73) under shifts
in the ratio z/w, it follows that

δ(K̃−(z)) = (L−(z))[1](K̃
−(z))[2](L

−,0)[1]

solves (5.73). More generally, starting from any K-matrix satisfying (5.73) and following standard arguments [Sk88]
different types of coactions can be constructed from the FRT presentation. Using (5.40), for a symmetric R-matrix
for instance it yields to:

Proposition 5.24. The Freidel-Maillet type presentation (3.9) of Āq associated with R-matrix (3.1) and K-matrix
(3.8) admits a comodule algebra structure. The left coaction is given by:

δ(K−(u)) =
(

M(u)L−(qu2)M(u)−1
)

[1]
(K−(u))[2](L

−,0)[1] .(5.89)

A right coaction map is similarly obtained by analogy with (5.78). Now, recall the generating functions (3.5), (3.6).

Also, define Uq(̂gl2)
�,+,0 as the alternating subalgebra Uq(̂gl2)

�,+ extended by K,K−1.

Lemma 5.25. There exists a left comodule algebra homomorphism δ : Āq → Uq(̂gl2)
�,+,0 ⊗ Āq such that:

δ(W+(u)) 	→ (qu2)−1qk−1 (qu
2)(k−2,0)

−1f−(qu2)⊗
(

1

k+(q + q−1)
G−(u) +

k−(q + q−1)

(q − q−1)
II

)

+ k−1 (qu
2)(k−2,0)

−1 ⊗W+(u) ,

δ(W−(u)) 	→ q−1e−(qu2)k−1 (qu
2)(k−1,0)

−1 ⊗
(

1

k−(q + q−1)
G+(u) +

k+(q + q−1)

(q − q−1)
II

)

+
(

k−2 (qu
2)(k−1,0)

−1 + q−1e−(qu2)k−1 (qu
2)(k−1,0)

−1f−(qu2)
)

⊗W−(u) ,



THE ALTERNATING PRESENTATION OF Uq(̂gl2) 33

δ(G+(u)) 	→ k−1 (qu
2)(k−1,0)

−1 ⊗ G+(u) +
ρ̄

q − q−1

(

k−1 (qu
2)(k−1,0)

−1 − 1
)

⊗ II

+ k−(q + q−1)k−1 (qu
2)(k−1,0)

−1f−(qu2)⊗W−(u) ,

δ(G−(u)) 	→
(

k−2 (qu
2)(k−2,0)

−1 + qe−(qu2)k−1 (qu
2)(k−2,0)

−1f−(qu2)
)

⊗ G−(u)

+
ρ̄

q − q−1

(

k−2 (qu
2)(k−2,0)

−1 + qe−(qu2)k−1 (qu
2)(k−2,0)

−1f−(qu2)− 1
)

⊗ II

+ k+qu
2(q + q−1)e−(qu2)k−1 (qu

2)(k−2,0)
−1 ⊗W+(u) .

Proof. Compute (5.89) using (5.41), (5.40) and (3.8) . Compare the entries of the resulting matrix to δ(K(u)) with
(3.8). �

Expanding the power series on both sides of the above equations using (3.5), (3.6), (5.42)-(5.44) with (5.51), (5.54),
one gets the image by δ of the generators of Āq. This generalizes example (2.48).

Example 5.26.

δ(W0) = −k−qK
−1x+0 ⊗ II + K−1 ⊗W0 ,

δ(W1) = −k+C
1/2x−1 ⊗ II + K⊗W1 .

If we define similarly Uq(̂gl2)
�,−,0, note that a right coaction map Āq → Āq ⊗Uq(̂gl2)

�,−,0 can be derived along the
same lines.

5.4. Relation between the generators of Āq and root vectors of Uq(̂sl2). Let α0, α1 denote the simple roots

of ̂sl2 and δ = α0 + α1 be the minimal positive imaginary root. Let R = {nδ + α0, nδ + α1,mδ|n ∈ Z,m ∈ Z\{0}} be

the root system of ̂sl2 and R+ = {nδ + α0, nδ + α1,mδ|n ∈ N,m ∈ N\{0}} denote the positive root system. Recall
UDJ,+
q denote the subalgebra generated by

Eα1 ≡ E1 , Eα0 ≡ E0 .

Using Lusztig’s braid group action with generators T0, T1 such that Ti : Uq(̂sl2) → Uq(̂sl2), root vectors Eβ ∈ UDJ,+
q

for every β ∈ R+ are defined [Da93, Be94]. Namely, for real root vectors nδ + α0, nδ + α1 with n ∈ N one chooses

Enδ+α0 = (T0Φ)
n(E0) and Enδ+α1 = (T0Φ)

−n(E1) .

Here Φ : Uq(̂sl2) → Uq(̂sl2) denotes the automorphism defined by:

Φ(X0) = X1 , Φ(X1) = X0 for X = E,F,K±1 .

For the imaginary root vectors, following [Be94, BCP98] they are defined through the functional equation (note that
[

Enδ, Emδ

]

= 0 for any n,m):

exp

(

(q − q−1)
∞
∑

k=1

Ekδz
k

)

= 1 + (q − q−1)
∞
∑

k=0

ψ̃kz
k with ψ̃k = Ekδ−α1Eα1 − q−2Eα1Ekδ−α1 .

For the negative root system denoted R−, similarly one defines the root vectors Fβ ∈ UDJ,−
q for every β ∈ R−

[Da93]. The root vectors of UDJ,+
q and UDJ,−

q are related as follows (see [Da93, Theorem 2]):

Fβ = Ω(Eβ) ∀β ∈ R+ ,(5.90)

where Ω is an antiautomorphism of Uq(̂sl2) such that

Ω(Ei) = Fi , Ω(Fi) = Ei , Ω(Ki) = K−1
i for i = 1, 2 , Ω(C) = C−1 and Ω(q) = q−1 .
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The explicit relation between Drinfeld generators and root vectors has been given in [Be94, Section 4] (see also

[BCP98, Lemma 1.5]). For Uq(̂sl2), according to above definitions one has the correspondence:

x+k = Ekδ+α1 , x−k+1 = −C−k−1KEkδ+α0 , hk+1 = C−(k+1)/2E(k+1)δ ,(5.91)

x−−k = Fkδ+α1 , x+−k−1 = −Fkδ+α0K
−1Ck+1 , h−k−1 = C(k+1)/2F(k+1)δ(5.92)

for k ∈ N. From (5.37), one gets the following relations in terms of the root vectors [Da93, Section 3]:
[

Eδ, Ekδ+α1

]

= (q + q−1)E(k+1)δ+α1
,

[

Ekδ+α0 , Eδ

]

= (q + q−1)E(k+1)δ+α0
.(5.93)

By induction, root vectors can be written as polynomials in E1, E0. For instance:

Eδ = E0E1 − q−2E1E0 ,

Eδ+α0 =
1

q + q−1

(

E2
0E1 − (1 + q−2)E0E1E0 + q−2E1E

2
0

)

,

Eδ+α1 =
1

q + q−1

(

E0E
2
1 − (1 + q−2)E1E0E1 + q−2E2

1E0

)

.

We now relate the root vectors to the generators of alternating subalgebras. For convenience, compute the image
of UDr,�,+

q (see Definition 5.22) by the automorphism ν (5.35) using (5.33). This alternating subalgebra is denoted

(UDr,�,+
q )ν . Using (5.91), in terms of root vectors the generators of (UDr,�,+

q )ν read:

C−k/2K−1x+k
ν	→ C−k/2x+k = C−k/2Ekδ+α1 ,(5.94)

C(k+1)/2x−k+1
ν	→ C(k+1)/2x−k+1K

−1 = −q−2C−(k+1)/2Ekδ+α0 ,(5.95)

hk+1
ν	→ hk+1 = C−(k+1)/2E(k+1)δ .(5.96)

As an application of Proposition 5.18, a set of functional relations relating the generators of Āq to the root vectors
of UDJ,+

q (or similarly for UDJ,−
q ) is easily derived. Recall the surjective homomorphism γ : Āq → Āq

∼= UDJ,+
q , see

(2.37). Consider the image of the generating functions (3.5), (3.6) via γ.

Proposition 5.27. The isomorphism ι : Āq → UDJ,+
q is such that:

γ(W+(u)) 	→ −k−q(q + q−1) exp

(

−(q − q−1)
∞
∑

n=1

1

(qn + q−n)
Enδ(qu

2)−n

) ∞
∑

k=0

qkEkδ+α1(qu
2)−k−1 ,

γ(W−(u)) 	→ k+q
−1(q + q−1)

( ∞
∑

k=0

qk−1Ekδ+α0(qu
2)−k−1

)

exp

(

−(q − q−1)

∞
∑

n=1

1

(qn + q−n)
Enδ(qu

2)−n

)

,

γ(G+(u)) 	→ ρ̄

(q − q−1)

(

exp

(

−(q − q−1)
∞
∑

n=1

1

(qn + q−n)
Enδ(qu

2)−n

)

− 1

)

,

γ(G−(u)) 	→ ρ̄

(q − q−1)

(

exp

(

(q − q−1)
∞
∑

n=1

q2n

(qn + q−n)
Enδ(qu

2)−n

)

− 1

)

+ ρ̄(q − q−1)
∞
∑

k,�=0

qk+�Ekδ+α0 exp

(

−(q − q−1)
∞
∑

n=1

1

(qn + q−n)
Enδ(qu

2)−n

)

E�δ+α1(qu
2)−k−�−1 .

Proof. Recall the surjective homomorphism γD which acts as (5.63)-(5.65). Consider its restriction to Uq(̂gl2)
�,+,

applied to the r.h.s. of (5.84)-(5.87). The resulting expressions are now in UDr,�,+
q ⊗ C[[u2]]. Then, studying the

relations satisfied by {C−k/2K−1x+k , C
(k+1)/2x−k+1, hk+1} one finds that they are equivalent to the defining relations of

the quotient of UDr,�,+
q by C = 1. Apply ν and use the identification given in the r.h.s of (5.94)-(5.96) for C = 1. �
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Expanding the above power series, for instance set k+ → q2, k− → −q−1 (which gives ρ̄ = −q(q + q−1)2) in these
expressions. It follows:

W0 	→ E1 , W1 	→ E0 , G1 	→ qEδ , (note that G̃1 	→ −q3Eδ + (q3 − q−1)E0E1) ,(5.97)

W−1 	→ 1

(q + q−1)2
(

−(q − q−1)EδE1 + (q2 + 1)Eδ+α1

)

,(5.98)

W2 	→ 1

(q + q−1)2
(

−(q − q−1)E0Eδ + (q2 + 1)Eδ+α0

)

.(5.99)

By construction, (UDr,�,+
q )ν/C=1

∼= UDJ,+
q . Using (5.90), an isomorphism Āq → UDr,�,−

q /C=1
∼= UDJ,−

q is obtained
from the above expressions.

The inverse of the map ι is now considered. We want to solve the positive root vectors Enδ+α1 , Enδ+α0 , Enδ in terms
of the generators W−k,Wk+1, Gk+1. Although we do not have the explicit inverse map between generating functions,
the images of the root vectors in Āq can be obtained recursively from Proposition 5.27. For instance,

E1 	→ W0 , E0 	→ W1 , Eδ 	→ q−1G1W0 , ,(5.100)

Eδ+α1 	→ (q − q−1)

(q + q−1)
q−2G1W0 + (1 + q−2)W−1 ,(5.101)

Eδ+α0 	→ (q − q−1)

(q + q−1)
q−2W1G1 + (1 + q−2)W2 .(5.102)

Of course, these expressions could be given in a different ordering (see Theorem 2.15) using (2.3) for k = 0.

Finally, let us point that several relations mixing both sets of generators can be readily obtained using (3.9) combined
with Proposition 5.27. Namely, define the image of the K-matrix (3.8) by ι as:

Kι(u) = ι(K(u)) .(5.103)

Consider the pair of K-matrices {K(u),Kι(v)}. They satisfy:

R(u/v) (K(u)⊗ II) R(0) (II ⊗Kι(v)) = (II ⊗Kι(v)) R(0) (K(u)⊗ II) R(u/v)(5.104)

with (3.1). If we define the generating functions W±(v)
ι,γ = ι ◦ γ(W±(v)), G±(v)

ι,γ = ι ◦ γ(G±(v)), from (3.10)-(3.18)
one extracts the set of functional relations associated with (5.104).

Remark 5.28. In [T19a, Section 11], the relation between Damiani’s PBW basis and the alternating PBW basis for
Āq has been studied in details within the framework of the q-shuffle algebra. In particular, various relations mixing
both sets of generators have been obtained.

6. The alternating presentation of Uq(̂sl2) from UDJ
q

Define the alternating subalgebra Ā�
q
∼= (UDr,�,+

q )ν/C=1 (resp. Ā�
q
∼= UDr,�,−

q /C=1) as the image of Āq by ι (resp.

Ω ◦ ι) (see Proposition 5.27) for k+ → q2, k− → −q−1. For convenience, let us denote the generators of Ā�
q (resp. Ā�

q)

by {W �
−k,W

�
k+1, G

�
k+1, G̃

�
k+1|k ∈ N} (resp. {W �

−k,W
�
k+1, G

�
k+1, G̃

�
k+1|k ∈ N}) . According to (5.97):

W �
0 = E1 , W �

1 = E0 , W �
0 = F1 , W �

1 = F0 .(6.1)

Recall Proposition 2.14 and UDJ,0
q = {K0,K1}. By construction, one gets the tensor product decomposition:

Uq(̂sl2) ∼= Ā�
q ⊗ UDJ,0

q ⊗ Ā�
q .(6.2)

Moreover, by Theorem 2.15 an ‘alternating’ PBW basis for Uq(̂sl2) readily follows from the results of [T19a, T19b].
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Theorem 6.1. A PBW basis for Uq(̂sl2) is obtained by its alternating right and left generators

{W �
−k}k∈N , {G�

�+1}�∈N , {W �
n+1}n∈N , {W �

−r}r∈N , {G�
s+1}s∈N , {W �

t+1}t∈N

and K0,K1 in any linear order < that satisfies

W �
−k < G�

�+1 < W �
n+1 < K0 < K1 < W �

r+1 < G�
s+1 < W �

−t , k, �, n, r, s, t ∈ N .

The transition matrix from the alternating PBW basis of Theorem 6.1 to Damiani’s PBW basis for Uq(̂sl2) [Da93,
Theorem 2] is determined by Proposition 5.27 and using the antiautomorphism Ω (5.90).

Acknowledgments: I am very grateful to Naihuan Jing, Stefan Kolb and Paul Terwilliger for discussions. In
particular, some results were obtained motivated by questions from Paul Terwilliger. I also thank Nicolas Crampé for
gratefully sharing a MAPLE code and discussions. P.B. is supported by C.N.R.S.

Appendix A. Drinfeld-Jimbo presentation of Uq(̂sl2)

A.1. Drinfeld-Jimbo presentation UDJ
q . Define the extended Cartan matrix {aij} (aii = 2, aij = −2 for i �= j).

The quantum affine algebra Uq(̂sl2) over C(q) is generated by {Ej , Fj ,K
±1
j }, j ∈ {0, 1} which satisfy the defining

relations

KiKj = KjKi , KiK
−1
i = K−1

i Ki = 1 , KiEjK
−1
i = qaijEj , KiFjK

−1
i = q−aijFj , [Ei, Fj ] = δij

Ki −K−1
i

q − q−1

together with the q−Serre relations (i �= j)

[

Ei,
[

Ei,
[

Ei, Ej

]

q

]

q−1

]

= 0 ,(A.1)
[

Fi,
[

Fi,
[

Fi, Fj

]

q

]

q−1

]

= 0 .(A.2)

The product C = K0K1 is the central element of the algebra. The Hopf algebra structure is ensured by the existence
of a comultiplication Δ , antipode S and a counit E with

Δ(Ei) = 1⊗ Ei + Ei ⊗Ki ,(A.3)

Δ(Fi) = Fi ⊗ 1 +K−1
i ⊗ Fi ,

Δ(Ki) = Ki ⊗Ki ,

S(Ei) = −EiK
−1
i , S(Fi) = −KiFi , S(Ki) = K−1

i S(1) = 1

and

E(Ei) = E(Fi) = 0 , E(Ki) = 1 , E(1) = 1 .

More generally, one defines the N−coproduct Δ(N) : Uq(̂sl2) −→ Uq(̂sl2)⊗ · · · ⊗ Uq(̂sl2) as

Δ(N) ≡ (id× · · · × id×Δ) ◦Δ(N−1)(A.4)

for N ≥ 3 with Δ(2) ≡ Δ, Δ(1) ≡ id. Note that the opposite coproduct Δ′ can be similarly defined with Δ′ ≡ σ ◦Δ
where the permutation map σ(x⊗ y) = y ⊗ x for all x, y ∈ Uq(̂sl2) is used.
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A.2. Serre-Chevalley presentation ̂sl2
SC

. In the definition below, [., .] denotes the Lie bracket. The affine algebra
̂sl2 over C is generated by {ej , fj , kj}, j ∈ {0, 1} which satisfy the defining relations

[

ki, kj
]

= 0 ,
[

ki, ej
]

= aijej ,
[

ki, fj
]

= −aijfj ,
[

ei, fj
]

= δi,jki

together with the Serre relations (i �= j)
[

ei,
[

ei,
[

ei, ej
]]]

= 0 ,(A.5)
[

fi,
[

fi,
[

fi, fj
]]]

= 0 .(A.6)

The sum c = k0 + k1 is the central element of the algebra.

For U(̂sl2
SC

), as usual [x, y] → xy − yx.

Appendix B. Some defining relations of Gao-Jing presentation of Uq(̂gl2)

We refer the reader to [GJ02, Theorem 4.16]. From Definition 5.5 and (5.52), (5.53), the following commutation
relations are derived:

[

ai,m, ai,n
]

= 0 , i = 1, 2 ,(B.1)

[

a2,m, a1,n
]

= −
[

m
]

m
[mc]q−mδm+n,0 ,(B.2)

[

a1,m, x±
n

]

= ±
[

m
]

m
q∓|m|c/2x±

m+n ,(B.3)

[

a2,m, x±
n

]

= ∓
[

m
]

m
q2m∓|m|c/2x±

m+n .(B.4)
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[BBC17] P. Baseilhac, S. Belliard and N. Crampé, FRT presentation of the Onsager algebras, Lett. Math. Phys. (2018) 1-24,
arXiv:1709.08555.

[BK05a] P. Baseilhac and K. Koizumi, A new (in)finite dimensional algebra for quantum integrable models, Nucl. Phys. B 720 (2005)

325-347, arXiv:math-ph/0503036.
[BK05b] P. Baseilhac and K. Koizumi, A deformed analogue of Onsager’s symmetry in the XXZ open spin chain, J. Stat. Mech. 0510

(2005) P005, arXiv:hep-th/0507053.

[BK14a] P. Baseilhac and T. Kojima, Correlation functions of the half-infinite XXZ spin chain with a triangular boundary, J. Stat.
Mech.(2014) P09004, arXiv:1309.7785.

[BK14b] P. Baseilhac and T. Kojima, Form factors of the half-infinite XXZ spin chain with a triangular boundary, Nucl. Phys. B 880

(2014) 378-413, arXiv:1404.0491.
[BKo17] P. Baseilhac and S. Kolb, Braid group action and root vectors for the q-Onsager algebra, Transf. Groups 25 (2020) 363-389,

arXiv:1706.08747.
[BP19] P. Baseilhac and R.A. Pimenta, Diagonalization of the Heun-Askey-Wilson operator, Leonard pairs and the algebraic Bethe ansatz,

Nucl. Phys. B 949 (2019) 114824, arXiv:1909.02464.

[BS10] P. Baseilhac and K. Shigechi, A new current algebra and the reflection equation, Lett. Math. Phys. 92 (2010) 47-65,
arXiv:0906.1482.

[BT17] P. Baseilhac and Z. Tsuboi, Asymptotic representations of augmented q-Onsager algebra and boundary K-operators related to

Baxter Q-operators, Nucl. Phys. B 929 (2018) 397-437, arXiv:1707.04574.



38 PASCAL BASEILHAC

[BalKo15] M. Balagovic and S. Kolb, Universal K-matrix for quantum symmetric pairs, Journal für die reine und angewandte Mathematik
2019 (2016) 747, arXiv:1507.06276.

[Ba82] R. Baxter, Exactly solvable models in statistical mechanics, New York, Academic Press (1982).

[Be94] J. Beck, Braid group action and quantum affine algebras, Commun. Math. Phys. 165 555-568.
[BCP98] J. Beck, V. Chari and A. Pressley, An algebraic characterization of the affine canonical basis Duke Math. J. 99 (1999) 3, 455-487,

arXiv:math/9808060.

[C83] I. Cherednik, Funct. Anal. Appl. 17 (3) (1983) 93.
[CP91] V. Chari and A. Pressley, Quantum affine alebras, Commun. Math. Phys. 142 261-283.
[CP94] V. Chari and A. Pressley, A guide to quantum groups, (1994) Cambridge University Press.

[C84] I.V. Cherednik, Factorizing particles on the half-line and root systems, Teor. Mat. Fiz. 61 (1984) 35-44.
[CG92] E. Cremmer and J.-L. Gervais, The quantum strip: Liouville theory for open strings, Commun. Math. Phys. 144 (1992) 279-301.
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