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An infinite dimensional algebra denoted Āq that is isomorphic to a central extension of U + q -the positive part of U q ( sl 2 ) -has been recently proposed by Paul Terwilliger. It provides an 'alternating' Poincaré-Birkhoff-Witt (PBW) basis besides the known Damiani's PBW basis built from positive root vectors. In this paper, a presentation of Āq in terms of a Freidel-Maillet type algebra is obtained. Using this presentation: (a) finite dimensional tensor product representations for Āq are constructed; (b) explicit isomorphisms from Āq to certain Drinfeld type 'alternating' subalgebras of Uq( gl 2 ) are obtained; (c) the image in U + q of all the generators of Āq in terms of Damiani's root vectors is obtained. A new tensor product decomposition for U q ( sl 2 ) in terms of Drinfeld type 'alternating' subalgebras follows. The specialization q → 1 of Āq is also introduced and studied in details. In this case, a presentation is given as a non-standard Yang-Baxter algebra. This paper is dedicated to Paul Terwilliger for his 65th birthday.

Introduction

Quantum affine algebras are known to admit at least three presentations. For U q ( sl 2 ), the first presentation originally introduced in [J85, D86] -referred as the Drinfeld-Jimbo presentation in the literature -is given in terms of generators {E i , F i , K ±1 i |i = 0, 1} and relations, see Appendix A. The so-called Drinfeld second presentation was found later on [D88], given in terms of generators {x ± k , h , K ±1 , C ±1/2 |k ∈ Z, ∈ Z\{0}} and relations. The third one, obtained in [START_REF] Yu | Central extensions of quantum current roups[END_REF], takes the form of a Faddeev-Reshetikhin-Takhtajan (FRT) presentation [START_REF] Faddeev | Quantization of Lie groups and Lie algebras[END_REF]. In these definitions, note that the so-called derivation generator is ommited (see [START_REF] Chari | A guide to quantum groups[END_REF]Remark 2,p. 393]). In the following, we denote respectively U DJ q , U Dr q and U RS q these presentations of U q ( sl 2 ). In addition, for U q ( sl 2 ) note that a fourth presentation called 'equitable', denoted U IT q , has been introduced in [START_REF] Ito | Tridiagonal pairs and the quantum affine algebra Uq( sl 2 )[END_REF]. It is generated by {y ± i , k ± i |i = 0, 1}. For the explicit isomorphism U IT q → U DJ q , see [IT03, Theorem 2.1]. The construction of a Poincaré-Birkhoff-Witt (PBW) basis for U q ( sl 2 ) [START_REF] Damiani | A basis of type Poincaré-Birkhoff-Witt for the quantum algebra of Uq( sl 2 )[END_REF][START_REF] Beck | Braid group action and quantum affine algebras[END_REF] on one hand, and the FRT presentation of Ding-Frenkel [START_REF] Ding | Isomorphism of two realizations of quantum affine algebra Uq[END_REF] on the other hand brought major contributions to the subject, by establishing the explicit isomorphisms between U DJ q , U Dr q and U RS q (see also [START_REF] Jing | On Drinfeld realization of quantum affine algebras, Monster and Lie Algebras[END_REF][START_REF] Damiani | From the Drinfeld realization to the Drinfeld-Jimbo presentation of affine quantum algebras: the injectity[END_REF]). To motivate the goal of the present paper, as a preliminary let us briefly review the main results of [START_REF] Damiani | A basis of type Poincaré-Birkhoff-Witt for the quantum algebra of Uq( sl 2 )[END_REF][START_REF] Beck | Braid group action and quantum affine algebras[END_REF] and [START_REF] Ding | Isomorphism of two realizations of quantum affine algebra Uq[END_REF].

• To establish the isomorphism between U DJ q and U Dr q , the main ingredient is the construction of a PBW basis. In [START_REF] Damiani | A basis of type Poincaré-Birkhoff-Witt for the quantum algebra of Uq( sl 2 )[END_REF], it is shown that the so-called positive part of U q ( sl 2 ) denoted U DJ,+ q -cf. Notation 1.2 -is generated by positive (real and imaginary) root vectors [Da93, Section 3.1]. The root vectors are obtained using Lusztig's braid group action on U DJ q [L93]. Based on the structure of the commutation relations among the root vectors, a PBW basis for U DJ,+ q is first obtained [START_REF] Damiani | A basis of type Poincaré-Birkhoff-Witt for the quantum algebra of Uq( sl 2 )[END_REF]Section 4]. Then, introduce the subalgebras U DJ,- q , U DJ,0 q of U DJ q . Thanks to the tensor product decomposition U DJ q ∼ = U DJ,+ q ⊗ U DJ,0 q ⊗ U DJ,- q [L93] and some automorphism of U DJ q , the PBW basis for U DJ,+ q induces a PBW basis for U q ( sl 2 ) [Da93, Section 5]. Then, the explicit isomorphism U Dr q → U DJ q [START_REF] Beck | Braid group action and quantum affine algebras[END_REF] maps Drinfeld generators to root vectors. See [BCP98, Lemma 1.5], [START_REF] Damiani | From the Drinfeld realization to the Drinfeld-Jimbo presentation of affine quantum algebras: the injectity[END_REF].

• To establish the explicit isomorphism between U RS q and U Dr q , the main ingredient in [START_REF] Ding | Isomorphism of two realizations of quantum affine algebra Uq[END_REF] is the construction of a FRT presentation for U q ( gl 2 ), which can be interpreted as a central extension of U q ( sl 2 ) [START_REF] Frenkel | The Hopf algebra RepUq gl ∞[END_REF]. In this approach, the defining relations are written in the form of a Yang-Baxter algebra. Namely, two quantum Lax operators L ± (z) which entries are generating functions with coefficients in two different subalgebras of U Dr q are introduced. They satisfy certain functional relations (the so-called 'RTT' relations) characterized by an R-matrix. The explicit isomomorphism U RS q → U Dr q is obtained as a corollary of the FRT presentation of U q ( gl 2 ).

In these works, Damiani's root vectors (or equivalently the Drinfeld generators), associated PBW bases and the Yang-Baxter algebra play a central role. Later on, these objects found several applications. For instance, the universal R-matrix is built from elements in PBW bases of U q ( sl 2 ) subalgebras [START_REF] Damiani | La R-matrice pour les algèbres quantiques de type affine non tordu[END_REF]. Also, irreducible finite dimensional representations of U q ( sl 2 ) are classified using U Dr q [START_REF] Chari | Quantum affine alebras[END_REF]. A natural question is the following: for U q ( sl 2 ), is it possible to construct a different 'triplet' of mutually isomorphic algebras other than U DJ q (or U IT q ), U Dr q and U RS q ? Recent works by Paul Terwilliger bring a new light on this subject, and give a starting point for a precise answer. Indeed, in [T18, T19a] Terwilliger investigated the description of PBW bases of U q ( sl 2 ) from the perspective of combinatorics, using a q-shuffle algebra V introduced earlier by Rosso [R98]. Remarkably, using an injective algebra homomorphism U DJ,+ q → V a closed form for the images in V of Damiani's root vectors of U DJ,+ q -the basic building elements of Damiani's PBW basis -was obtained in terms of Catalan words [T18, Theorem 1.7]. Then, in [T19a], he introduced a set of elements {W -k , W k+1 , G k+1 , Gk+1 |k ∈ N} into the q-shuffle algebra named as 'alternating' words. It was shown that the alternating words generate an algebra denoted U [T19a, Section 5] for which a PBW basis was constructed [T19a, Theorem 10.1,10.2]. Considering the preimage in U DJ,+ q of the alternating words of U , a new PBW in basis -called alternating -for U DJ,+ q arises, besides Damiani's one [START_REF] Damiani | A basis of type Poincaré-Birkhoff-Witt for the quantum algebra of Uq( sl 2 )[END_REF]Theorem 2]. A comparison between the images in V of both PBW bases was done, see [START_REF] Terwilliger | The alternating PBW basis for the positive part of Uq( sl 2 )[END_REF]Section 11]. More recently [T19b], a central extension of the preimage of the algebra U arising from the exchange relations between alternating words, denoted U + q , has been introduced. Its generators are in bijection with 'alternating' generators recursively built in U DJ,+ q and form an 'alternating' PBW basis for the new algebra U + q [T19b, Section 10]. In this paper, we investigate further these new 'alternating' algebras motivated by the construction of a new triplet of presentations for U q ( sl 2 ). To this aim, following [T19b] we introduce the algebra Āq with generators {W -k , W k+1 , G k+1 , Gk+1 |k ∈ N} -see Definition 2.1. Note that to enable a non-trivial specialization q → 1, the definitions of Āq and U + q slightly differ. However, for q = 1 Āq and U + q are essentially the same object. Also, the center Z of Āq is introduced. Adapting the results of [T19b], the 'alternating' PBW basis of Āq is given, see Theorem 2.12. Following [T19a], similarly we introduce the algebra Āq with generators {W -k , W k+1 , G k+1 , Gk+1 |k ∈ N}. One has:

Āq ∼ = Āq ⊗ Z .

(1.1) Let W 0 , W 1 denote the subalgebra of Āq generated by W 0 , W 1 . The simplest relations satisfied by W 0 , W 1 are the q-Serre relations (2.44), (2.45), of U DJ,+ q -see (A.1). Actually, according to [T19a], Āq ∼ = U DJ,+ q ∼ = U DJ,- q . So, having in mind the isomorphic pair consisting of U DJ,+ q (or U DJ,- q ) and certain subalgebras of U Dr q [START_REF] Beck | Braid group action and quantum affine algebras[END_REF][START_REF] Beck | An algebraic characterization of the affine canonical basis Duke Math[END_REF], an 'alternating' isomorphic pair is provided by W 0 , W 1 and Āq . Furthermore, by analogy with [START_REF] Beck | Braid group action and quantum affine algebras[END_REF], the explicit isomorphism Āq → W 0 , W 1 follows from Lemma 2.9 using a map γ : Āq → Āq . Details are reviewed in Section 2. For completeness, the specialization q → 1 of Āq , denoted Ā, is also introduced.

The main result of this paper is a presentation for Āq which sits into the family of Freidel-Maillet type algebras 1 [START_REF] Freidel | Quadratic algebras and integrable systems[END_REF] for generic q, see Theorem 3.1. For the specialization Ā, a FRT type presentation is obtained. It sits into the family of non-standard Yang-Baxter algebras, see Proposition 3.6. This is done in Section 3. This Freidel-Maillet type presentation of Āq gives an efficient framework for studying in more details this algebra and clarifying its relation with U DJ q (or U IT q ), U Dr q and U RS q . The following results are obtained: (a) Tensor product realizations of Āq in U q (sl 2 ) ⊗N are explicitly constructed. They generate certains quotients of Āq , characterized by a set of linear relations satisfied by the fundamental generators. See Proposition 4.5. This is done in Section 4. 1 See also [START_REF] Nijhoff | Integrable quantum mappings and non-ultralocal Yang-Baxter structures[END_REF][START_REF] Babelon | Liouville theory on the lattice and universal exchange algebra for Bloch waves[END_REF][START_REF] Kulish | Algebraic structures related to reflection equations[END_REF].

(b) Explicit isomorphisms between Āq and certain 'alternating' subalgebras of U q ( gl 2 ), denoted U q ( gl 2 ) ,+ and U q ( gl 2 ) ,-, are obtained. See Propositions 5.18, 5.20. The main ingredient in the analysis is the use of the Ding-Frenkel isomorphism [START_REF] Ding | Isomorphism of two realizations of quantum affine algebra Uq[END_REF]. As a corollary, similar results for Āq and the 'alternating' subalgebras of U q ( sl 2 ) follow. Also, it is shown that Āq can be regarded as a left (or right) comodule of alternating subalgebras of U q ( gl 2 ). An example of coaction map is given in Lemma 5.25. See Example 5.26.

(c) The explicit isomorphism ι : W 0 , W 1 → U DJ,+ q given by (2.46) is extended to the whole set of generators of Āq : a set of functional equations that determine the explicit relation between Damiani's root vectors

{E nδ+αi , E nδ |i = 0, 1} ∈ U DJ,+ q (or {F nδ+αi , F nδ |i = 0, 1} ∈ U DJ,- q
) and the generators of Āq is derived, see Proposition 5.27.

The results (b) and (c) are given in Section 5. All together, if we denote ĀFM q as the Freidel-Maillet type presentation of Āq , we get the isomorphic 'triplet'

U DJ,+ q ∼ = Āq ∼ = ĀFM q .
In the last section, we point out a straightforward application of [T19a, T19b] combined with the results of Section 5. One has the 'alternating' tensor product decomposition of U q ( sl 2 ):

U q ( sl 2 ) ∼ = Ā q ⊗ U DJ,0 q ⊗ Ā q , (1.2) where Ā ( ) q ( ∼ = U DJ,+(-) q
) are certain alternating subalgebras of U Dr q . The corresponding 'alternating' PBW basis is given in Theorem 6.1.

Let us conclude this introduction with some additional comments. In the literature, it is known that solutions of the Yang-Baxter equation find many applications in the theory of quantum integrable systems such as vertex models, spin chains,... They can be obtained by specializing solutions of the universal Yang-Baxter equation, the so-called universal R-matrices. As already mentioned, the construction of a universal R-matrix for U q ( sl 2 ) (and similarly for higher rank cases) essentially relies on the tensor product decomposition

U q ( sl 2 ) ∼ = U DJ,+ q ⊗ U DJ,0 q ⊗ U DJ,- q , (1.3)
and the use of root vectors [KiR90, KhT91, Da98, FMu02, JLM19, JLM20]. Now, the 'alternating' tensor product decomposition (1.2) rises the question of an 'alternating' universal K-matrix built from a product of solutions to a universal Freidel-Maillet type equation. See [CG92, P94, BalKo15, RV16, AV20] for related problems. In view of the importance of the R-matrix in mathematical physics, it looks as an interesting problem that might be considered elsewhere.

It should be mentioned that the analysis here presented is also motivated by the subject of the q-Onsager algebra O q [T99, B04] and its applications to quantum integrable systems. See e.g. [BK14a, BK14b, BB16, BT17, Ts18, Ts19, BP19]. The original presentation of O q is given in terms of generators A, B satisfying a pair of q-Dolan-Grady relations. The algebra Āq studied in this paper can be viewed as a limiting case of the algebra A q introduced in [BS10, BB17]. For A q , the original presentation [START_REF] Baseilhac | A new (in)finite dimensional algebra for quantum integrable models[END_REF] takes the form of a reflection algebra introduced by Sklyanin [START_REF] Sklyanin | Boundary conditions for integrable quantum systems[END_REF], see [START_REF] Baseilhac | A new current algebra and the reflection equation[END_REF]. Let us denote this presentation by A S q . Using A S q , it has been conjectured that A q is a central extension of O q . Initial supporting evidences were based on a comparison between the 'zig-zag' basis of O q [START_REF] Ito | The augmented tridiagonal algebra[END_REF] and the one conjectured for A q [BB17, Conjecture 1]. Other evidences are also given in [T21a]. More recently, the conjecture is finally proved [T21b]. So, using a surjective homomorphism A q → O q , one gets a triplet of isomorphic algebras O q ∼ = A q ∼ = A S q . Independently, more recently the analog of Lusztig's automorphism and Damiani's root vectors denoted B nδ+α0 , B nδ+α1 , B nδ for the q-Onsager algebra have been obtained [START_REF] Baseilhac | Braid group action and root vectors for the q-Onsager algebra[END_REF] (see also [T17]). In terms of the root vectors, a PBW basis has been constructed. In addition, a Drinfeld type presentation is now identified [START_REF] Lu | A Drinfeld type presentation of affine ιquantum groups I: split ADE type[END_REF]. However, at the moment the precise relation between the presentation of O q given in [START_REF] Baseilhac | Braid group action and root vectors for the q-Onsager algebra[END_REF] or its Drinfeld type presentation denoted O Dr q [LW20] and A q is yet to be clarified. To prove O q ∼ = A q ∼ = A S q provides an 'alternating' triplet of presentation for the q-Onsager algebra and O Dr q ∼ = A q , the analysis here presented sketches the strategy that may be considered elsewhere.

Clearly, alternating subalgebras for higher rank affine Lie algebras and corresponding generalizations of (1.2) may be considered as well following a similar approach. Notation 1.1. Recall the natural numbers N = {0, 1, 2, • • • } and integers Z = {0, ±1, ±2, • • • }. Let K denote an algebraically closed field of characteristic 0. K(q) denotes the field of rational functions in an indeterminate q. The q-commutator X, Y q = qXYq -1 Y X is introduced. We denote [x] = (q xq -x )/(qq -1 ). Notation 1.2. U DJ q is the Drinfeld-Jimbo presentation of U q ( sl 2 ). U DJ,+ q , U DJ,0 q , U DJ,- q are the subalgebras of U DJ q generated respectively by {E 0 , E 1 }, {K 0 , K 1 }, {F 0 , F 1 }. We also introduce the subalgebras U DJ,+,0 q (resp. U DJ,-,0 q

) generated by {E 0 , E 1 , K 0 , K 1 } (resp. {F 0 , F 1 , K 0 , K 1 }).
2. The algebra Āq and its specialization q → 1 In this section, the algebra Āq and its specialization q → 1 denoted Ā are introduced. The algebra Āq is nothing but a slight modification of the algebra U + q introduced in [T19b, Section 3]. Compared with U + q , the modification here considered aims to ensure that the specialization q → 1 of Āq is non-trivial. Also, the parameter ρ is introduced for normalization convenience. So, part of the material in this section is mainly adapted from [T19b]. Besides, Lemma 2.3 and Lemma 2.4 solve [T19a, Problem 13.1]. At the end of this section, we prepare the discussion for Sections 3 and 5.

2.1. Defining relations. We refer the reader to [T19b, Definition 3.1] for the definition of U + q . We now introduce the algebra Āq .

Definition 2.1. Let ρ ∈ K(q). Āq is the associative algebra over K(q) generated by {W -k , W k+1 , G k+1 , Gk+1 |k ∈ N} subject to the following relations:

[W 0 , W k+1 ] = [W -k , W 1 ] = ( Gk+1 -G k+1 ) q + q -1 , (2.1) [W 0 , G k+1 ] q = [ Gk+1 , W 0 ] q = ρW -k-1 , (2.2) [G k+1 , W 1 ] q = [W 1 , Gk+1 ] q = ρW k+2 , (2.3) [W -k , W -] = 0, [W k+1 , W +1 ] = 0, (2.4) [W -k , W +1 ] + [W k+1 , W -] = 0, (2.5) [W -k , G +1 ] + [G k+1 , W -] = 0, (2.6) [W -k , G +1 ] + [ Gk+1 , W -] = 0, (2.7) [W k+1 , G +1 ] + [G k+1 , W +1 ] = 0, (2.8) [W k+1 , G +1 ] + [ Gk+1 , W +1 ] = 0, (2.9) [G k+1 , G +1 ] = 0, [ Gk+1 , G +1 ] = 0, (2.10) [ Gk+1 , G +1 ] + [G k+1 , G +1 ] = 0 . (2.11)
Remark 2.2. The defining relations of Āq coincide with the defining relations (30)-( 40) in [T19b] of the algebra U + q for the identification:

W -k → W -k , W k+1 → W k+1 , (2.12) G k+1 → q -1 (q 2 -q -2 )G k+1 , Gk+1 → q -1 (q 2 -q -2 ) Gk+1 , (2.13) ρ → q -1 (q 2 -q -2 )(q -q -1 ) . (2.14)
Note that there exists an automorphism σ and an antiautomorphism S (for U + q , see [T19b, Lemma 3.9]) such that:

σ : W -k → W k+1 , W k+1 → W -k , G k+1 → Gk+1 , Gk+1 → G k+1 , (2.15) S : W -k → W -k , W k+1 → W k+1 , G k+1 → Gk+1 , Gk+1 → G k+1 . (2.16)
For completeness (see [T19b, Note 2.6]) and the discussion in the next section, a set of additional relations can be derived from the defining relations (2.1)-(2.11), given in Lemmas 2.3, 2.4 below.

Lemma 2.3. In Āq , the following relations hold:

[W -k , G ] q = [W -, G k ] q , [G k , W +1 ] q = [G , W k+1 ] q , (2.17) [ Gk , W -] q = [ G , W -k ] q , [W +1 , Gk ] q = [W k+1 , G ] q . (2.18)
Proof. Consider the first equation in (2.17). For convenience, substitute → + 1 and multiply by ρ the equality. From the r.h.s. of the resulting equation, using (2.2) one has:

[ ρW --1 =[W0,G +1 ]q , G k ] q = q 2 W 0 G +1 G k =G k G +1 -G +1 W 0 G k -G k W 0 G +1 + q -2 G k G +1 =G +1 G k W 0 by (2.10) = q 2 W 0 G k G +1 =q[W0,G k ]qG +1 +G k W0G +1 - G +1 W 0 G k =q -1 G +1 [W0,G k ]q+q -2 G +1 G k W0 -G k W 0 G +1 + q -2 G +1 G k W 0 = [[W 0 , G k ] q , G +1 ] q = ρ[W -k , G +1 ] q ,
which coincides with the l.h.s. The three other equations are shown similarly.

Lemma 2.4. In Āq , the following relations hold:

[G k , G +1 ] -[G , Gk+1 ] = ρ(q + q -1 ) ([W -, W k+1 ] q -[W -k , W +1 ] q ) , (2.19) [ Gk , G +1 ] -[ G , G k+1 ] = ρ(q + q -1 ) ([W +1 , W -k ] q -[W k+1 , W -] q ) , (2.20) [G k+1 , G +1 ] q -[G +1 , Gk+1 ] q = ρ(q + q -1 ) ([W -, W k+2 ] -[W -k , W +2 ]) , (2.21) [ Gk+1 , G +1 ] q -[ G +1 , G k+1 ] q = ρ(q + q -1 ) ([W +1 , W -k-1 ] -[W k+1 , W --1 ]) . (2.22) Proof. Consider (2.19). One has: [G k , G +1 ] = [G k , G +1 -G +1 ] = (q + q -1 )[G k , [W 0 , W +1 ]] by (2.1) = (q + q -1 ) ⎛ ⎜ ⎝ G k W 0 =q 2 W0G k -ρqW -k W +1 -G k W +1 W 0 -W 0 W +1 G k + W +1 W 0 G k =q -2 G k W0+ρq -1 W -k ⎞ ⎟ ⎠ = (q + q -1 ) ([W 0 , [G k , W +1 ] q ] q -ρ[W -k , W +1 ] q ) .
It follows:

[G k , G +1 ] -[G , Gk+1 ] = ρ(q + q -1 ) ([W -, W k+1 ] q -[W -k , W +1 ] q ) + (q + q -1 )[W 0 , [G k , W +1 ] q -[G , W k+1 ] q
=0 by (2.17) ] q which reduces to (2.19). One shows (2.20) similarly.

Consider (2.22). One has:

ρ[W +1 , W -k-1 ] = [W +1 , [W 0 , G k+1 ] q ] = qW 0 [W +1 , G k+1 ] + q -1 [G k+1 , W +1 ]W 0 + q -1 (q + q -1 ) G k+1 G +1 - q (q + q -1 ) G +1 G k+1 + (q -q -1 ) (q + q -1 ) G k+1 G +1 ,
where (2.2), (2.1) and (2.10) have been used successively. Using (2.8) it follows:

ρ ([W +1 , W -k-1 ] -[W k+1 , W --1 ]) = q -1 (q + q -1 ) G k+1 G +1 -G +1 Gk+1 (2.23) - q (q + q -1 ) G +1 G k+1 -Gk+1 G +1 .
From (2.11), note that:

G +1 G k+1 -Gk+1 G +1 = G k+1 G +1 -G +1 Gk+1
which implies:

(q -q -1 ) G +1 Gk+1 -G k+1 G +1 = [ Gk+1 , G +1 ] q -[ G +1 , G k+1 ] q .
Using this last equality in the r.h.s. of (2.23), eq. (2.22) follows. The other relation (2.21) is shown similarly.

Remark 2.5. The relations ( 41)-( 46) in [T19b] follow from Lemmas 2.3, 2.4, using the identification (2.12)-(2.14).

2.2. The center Z. For the algebra U + q , central elements denoted Z ∨ n+1 are known [T19b, eq. ( 52) and Lemma 5.2] (see also equivalent expressions [START_REF] Terwilliger | The alternating central extension for the positive part of Uq( sl 2 )[END_REF]Corollary 8.4]). With minor modifications using the correspondence (2.12)-(2.14), central elements in Āq are obtained in a straightforward manner. Thus, we omit the proof of the following lemma and refer the reader to [T19b, Section 13] for details.

Lemma 2.6. For n ∈ N, the element

Y n+1 = G n+1 q -n-1 + Gn+1 q n+1 -(q 2 -q -2 ) n k=0 q -n+2k W -k W n+1-k + (q -q -1 ) ρ n-1 k=0 q -n+1+2k Gk+1 G n-k (2.24) is central in Āq .
Remark 2.7. Central elements for the algebra U + q [T19b, Lemma 5.2, Corollary 8.4] are obtained using the identification (2.12)-(2.14):

Y n+1 → q -1 (q 2 -q -2 )Z ∨ n+1 . (2.25)
Note that the central elements are fixed under the action of (anti)automorphisms of Āq . Applying σ and S according to (2.15), (2.16), three other expressions for Y n+1 follow (for U + q , see [T19b, Corollary 8.4]). In particular, for further convenience, define the combination:

Δ n+1 = 1 q n+1 + q -n-1 (Y n+1 + σ(Y n+1 )) .
(2.26) Using (2.5), one has S(Δ n+1 ) = Δ n+1 . Thus, Δ n+1 is invariant under the action of σ, S.

Example 2.8.

Δ 1 = G 1 + G1 -(q -q -1 ) W 0 W 1 + W 1 W 0 , (2.27) Δ 2 = G 2 + G2 - (q 2 -q -2 ) (q 2 + q -2 ) (q -1 W 0 W 2 + qW 2 W 0 + q -1 W 1 W -1 + qW -1 W 1 ) (2.28) + (q -q -1 ) (q 2 + q -2 ) G1 G 1 + G 1 G1 ρ , Δ 3 = G 3 + G3 - (q -q -1 ) (q 2 + q -2 -1) (q -2 W 0 W 3 + q 2 W 3 W 0 + q -2 W 1 W -2 + q 2 W -2 W 1 ) (2.29) - (q -q -1 ) (q 2 + q -2 -1) (W 2 W -1 + W -1 W 2 ) + (q -q -1 ) (q 2 + q -2 -1) G2 G 1 + G 2 G1 ρ .
By construction, the elements Δ n+1 are central in Āq . Let Z denote the subalgebra of Āq generated by {Δ n+1 } n∈N . By [T19b, Proposition 6.2], Z is the center of Āq .

2.3. Generators and recursive relations. Following [T19b], combining the defining relations (2.1)-(2.3) together with (2.26) it follows: Lemma 2.9. In Āq , the following recursive relations hold:

G n+1 = (q 2 -q -2 ) 2(q n+1 + q -n-1 ) n k=0 q -n+2k (W -k W n+1-k + W k+1 W k-n ) (2.30) - (q -q -1 ) 2ρ(q n+1 + q -n-1 ) n-1 k=0 q -n+1+2k G k+1 Gn-k + Gk+1 G n-k + (q + q -1 ) 2 W n+1 , W 0 + 1 2 Δ n+1 , Gn+1 = G n+1 + (q + q -1 ) W 0 , W n+1 , (2.31) W -n-1 = 1 ρ W 0 , G n+1 q , (2.32) W n+2 = 1 ρ G n+1 , W 1 q . (2.33)
Iterating the recursive formulae (2.30), (2.31), (2.32), (2.33), given n fixed, the corresponding generator is a polynomial in W 0 , W 1 and {Δ k+1 |k = 0, ..., n}.

Example 2.10. The first generators read:

G 1 = qW 1 W 0 -q -1 W 0 W 1 + 1 2 Δ 1 , (2.34) W -1 = 1 ρ (q 2 + q -2 )W 0 W 1 W 0 -W 2 0 W 1 -W 1 W 2 0 + 1 2 Δ 1 (q -q -1 ) ρ W 0 , (2.35) G 2 = 1 ρ(q 2 + q -2 ) (q -3 + q -1 )W 2 0 W 1 2 -(q 3 + q)W 1 2 W 2 0 + (q -3 -q 3 )(W 0 W 1 2 W 0 + W 1 W 2 0 W 1 ) (2.36) -(q -5 + q -3 + 2q -1 )W 0 W 1 W 0 W 1 + (q 5 + q 3 + 2q)W 1 W 0 W 1 W 0 + 1 2 Δ 1 (q -q -1 ) ρ qW 1 W 0 -q -1 W 0 W 1 - 1 4 Δ 2 1 (q -q -1 ) ρ(q 2 + q -2 ) + 1 2 Δ 2 .
Expressions of G1 , W 2 , G2 are obtained using the automorphism σ.

Corollary 2.11. The algebra Āq is generated by W 0 , W 1 and Z.

2.4. PBW basis. Following [T19b, Lemma 3.10], the algebra Āq has an N 2 -grading. Define deg : Āq → N × N. For the alternating generators one has:

deg(W -k ) = (k + 1, k) , deg(W k+1 ) = (k, k + 1) , deg(G k+1 ) = deg( Gk+1 ) = (k + 1, k + 1) .
Note that the expressions in Lemma 2.9 are homogeneous with respect to the grading assigment. The dimension d i,j of the vector space spanned by linearly independent vectors of the same degree (i, j) is obtained from the formal power series in the indeterminates λ, μ:

Φ(λ, μ) = H(λ, μ)Z(λ, μ) , = (i,j)∈N d i,j λ i μ j for |λ|, |μ| < 1 with H(λ, μ) = ∞ =1 1 1 -λ μ -1 1 1 -λ -1 μ 1 1 -λ μ , Z(λ, μ) = ∞ =1 1 1 -λ μ .
In [T19b, Section 10], a PBW basis for U + q is obtained. The proof solely uses the defining relations corresponding to (2.1)-(2.11). The following theorem is a straightforward adaptation of [T19b, Theorem 10.2].

Theorem 2.12. (see [T19b]) A PBW basis for Āq is obtained by its alternating generators

{W -k } k∈N , {G +1 } ∈N , { Gm+1 } m∈N , {W n+1 } n∈N
in any linear order < that satisfies

W -k < G +1 < Gm+1 < W n+1 , k, , m, n ∈ N .
Note that combining σ, S given by (2.15), (2.16), other PBW bases can be obtained.

2.5. The algebra Āq . By construction [T19b], the algebra U + q studied in [T19a] is a quotient of the algebra U + q . This quotient is characterized by the fact that the images of all the central elements Z ∨ n of [ Following [T19b, Lemma 3.3], let us denote by γ : Āq → A q the corresponding surjective homomorphism. It is such that:

γ : W -k → W -k , W k+1 → W k+1 , G k+1 → G k+1 , Gk+1 → Gn+1 .
(2.37) So, they can be obtained as polynomials in W 0 , W 1 applying γ to the expressions given in Lemma 2.9, where γ(Δ k+1 ) = 0 for all k.

In [T19a, T19b], the embedding of U DJ,+ q into a q-shuflle algebra leads to Āq , providing an 'alternating' presentation for U DJ,+ q . Adapting this result to our conventions, it follows:

Proposition 2.14. (see ([T19a, T19b]) Āq ∼ = U DJ,+ q ∼ = U DJ,- q .
In [T19a, Section 10], an alternating' PBW basis for U DJ,+ q is obtained. We refer to [T19a, Theorem 10.1].

Theorem 2.15. (see [T19a]) A PBW basis for Āq is obtained by its alternating generators

{W -k } k∈N , {G +1 } ∈N , {W n+1 } n∈N in any linear order < that satisfies W -k < G +1 < W n+1 , k, , n ∈ N ; W k+1 < G +1 < W -n , k, , n ∈ N .
Using automorphisms of Āq , other PBW bases can be obtained.

2.6. The specialization q → 1 and the algebra Ā. For the specialization q → 1, according to the identification (2.13), (2.14), the defining relations [T19b, Definition 3.1] of the algebra U + q drastically simplify to those of a commutative algebra. Instead, the specialization q → 1 of the defining relations of the algebra Āq lead to an associative algebra called Ā, as explained below. To define properly the specialization, we follow the method described in e.g. [K12, Section 10] (see also references therein).

Let A = K q q-1 (= S -1 K q where S = K q \(q -1)). Let U A be the A-subalgebra of Āq generated by

{W -k , W k+1 , G k+1 , Gk+1 |k ∈ N}. Note that contrary to U q ( sl 2 ) [CP94, page 289],
according to the structure of the defining relations (2.1)-(2.11) for the specialization q → 1 of Āq there is no need to introduce other generators.

One has the natural isomorphism of A-algebras U A ⊗ A K(q) → Āq . Consider K as an A-module via evaluation at q = 1. The algebra

U 1 = U A ⊗ A K
is the specialization of Āq at q = 1. Similarly, one defines Z A , and

Z 1 = Z A ⊗ A K.
Definition 2.16. Ā is the associative algebra over K with unit and generators {w -k , w k+1 , g k+1 , gk+1 |k ∈ N} satisfying the following relations:

w -, w k+1 = 1 2 (g k+ +1 -g k+ +1 ) , (2.38) gk+1 , w -l = w -l , g k+1 = 16w -k--1 , (2.39) w +1 , gk+1 = g k+1 , w +1 = 16w +k+2 , (2.40) w -k , w -= 0 , w k+1 , w +1 = 0 , g k+1 , g +1 = 0 , gk+1 , g +1 = 0 . (2.41)
Remark 2.17. An overall parameter ρc ∈ K * may be introduced in the r.h.s. of (2.39), (2.40).

Proposition 2.18.

There exists an algebra isomorphism U 1 → Ā such that:

W -k → w -k , W k+1 → w k+1 , G k+1 → g k+1 , Gk+1 → gk+1 , ρ → 16 , q → 1 . (2.42)
Proof. First, we show how to obtain the defining relations for Ā from those of Āq at q = 1 and ρ = 16. From eqs.

(2.4), (2.10), one immediatly obtains the four equations in (2.41). From (2.26), one gets

δ k+1 = g k+1 + gk+1 , (2.43)
where {δ k } k∈N are central with respect to the algebra generated by {w -k , w k+1 , g k+1 , gk+1 |k ∈ N}. This implies the first equalities in (2.39), (2.40). The second equalities in (2.39), (2.40) are obtained from elementary computation using the Jacobi identity together with (2.5)-(2.10) and (2.1)-(2.4). For instance:

w -1 , w k+1 = 1 16 w 0 , g 1 , w k+1 = - 1 16 g 1 , w k+1 = g k+1 ,w0 =16w k+2 , w 0 - 1 16 w k+1 , w 0 =-1 2 (g k+1 -g k+1 ) , g 1 = w 0 , w k+2 = 1 2 (g k+2 -g k+2 ) .
By induction, it follows:

w -, w k+1 = w -+1 , w k+2 = • • • = w 0 , w k+ +1 = 1 2 (g k+ +1 -g k+ +1 ) .
Similarly, by induction one easily finds:

gk+1 , w - = gk+2 , w -+1 = • • • = gk+ +1 , w 0 = 16w -k--1 , w +1 , gk+1 = w , gk+2 = • • • = w 1 , gk+ +1 = 16w +k+2 .
Thus, the defining relations (2.38)-(2.41) of Ā are recovered from the specialization q → 1, ρ → 16 of the defining relations (2.1)-(2.11) of Āq . The converse statement is easily checked.

In the following, we call Ā the specialization q → 1 of Āq .

2.7. Relation with U DJ,± q and specialization. The following comments give some motivation for Sections 3 and 5. We first describe the relation between Āq and U q ( sl 2 ) with respect to the Drinfeld-Jimbo presentation, adapting directly the results of [T19b]. On one hand, recall that the defining relations for U DJ,+ q , U DJ,- q are respectively given by (A.1), (A.2). On the other hand, inserting (2.35) in (2.4) for k = 0, = 1 one finds that W 0 , W 1 satisfy the q-Serre relations:

[W 0 , [W 0 , [W 0 , W 1 ] q ] q -1 ] = 0 , (2.44) [W 1 , [W 1 , [W 1 , W 0 ] q ] q -1 ] = 0 . (2.45) Let W 0 , W 1 denote the subalgebra of Āq generated by W 0 , W 1 . According to [T19b, Proposition 6.4] combined with Remark 2.2, it follows that the map W 0 , W 1 → U DJ,+ q : W 0 → E 1 , W 1 → E 0 (2.46)
is an algebra isomorphism. Obviously, a similar statement holds for U DJ,- q . Let Z + denote the image of Z by the map (2.46), and similarly Z -the image associated with the negative part. In both cases, it is a polynomial algebra [T19b, Section 4]. Adapting [T19b, Proposition 6.5] and using Remark 2.2, by Corollary 2.11 one concludes:

Āq ∼ = U DJ,+ q ⊗ Z + ∼ = U DJ,- q ⊗ Z -. (2.47) For this reason, Āq is called the central extension of U DJ,+ q (or U DJ,- q ).
Let us also add the following comment. In view of the isomorphism (2.46), Āq can be equipped with a comodule structure [START_REF] Chari | A guide to quantum groups[END_REF]. For instance, examples of left (or right) coaction maps can be considered for the subalgebra W 0 , W 1 . Define the 'left' coaction such that Āq → U DJ,+,0 q ⊗ Āq . (2.48) Consider its restriction to W 0 , W 1 ∼ = U DJ,+ q . As an example of coaction, we may consider:

W 0 → E 0 ⊗ 1 + K 0 ⊗ W 0 , (2.49) W 1 → E 1 ⊗ 1 + K 1 ⊗ W 1 . (2.50)
A 'right' coaction could be introduced similarly, as well as a coaction Āq → U DJ,-,0 q ⊗ Āq . In Section 5, a comodule algebra homomorphism δ is obtained, see Lemma 5.25.

The relation between Ā and the Lie algebra sl 2 SC can be considered through specialization. Recall the isomorphism U A ⊗ A K(q) → Āq and similarly for W 0 , W 1 and Z. One has the injection

W 0 , W 1 A ⊗ A Z A → U A by [K12, Lemma 10.6]
. By Lemma 2.9, the latter map is also surjective. Using the fact that W 0 , W 1 A and Z A are free A-modules, one calculates:

U 1 = U A ⊗ A K = ( W 0 , W 1 A ⊗ A Z A ) ⊗ A K = ( W 0 , W 1 A ⊗ A K) ⊗ K (Z A ⊗ A K) .
Let w 0 , w 1 denote the subalgebra of Ā. By Proposition 2.18 one has w 0 , ) the subalgebra generated by {e 0 , e 1 } (resp. {f 0 , f 1 }). Combining the isomorphism (2.46) and the well-known result about the specialization q → 1 of U DJ,+ q given by U ( sl 2

w 1 ∼ = W 0 , W 1 A ⊗ A K.

SC,+

), it follows that the map w 0 ,

w 1 → U ( sl 2 SC,+ ) is an isomorphism. Also, Z is a polynomial ring in the {Δ k+1 } k∈N . Z 1 = Z A ⊗ A K = U (z) where z is the linear span of {δ k+1 } k∈N , see (2.43). Denote z ± the images of z in sl 2 SC,± . It follows: Ā ∼ = U sl 2 SC,+ ⊕ z + ∼ = U sl 2 SC,- ⊕ z -. (2.51)
The structure of the isomorphisms (2.47) and (2.51) suggests a close relationship between Āq (resp. Ā) and certain subalgebras of the quantum universal enveloping algebra U q ( gl 2 ) (resp. its specialization U ( gl 2 )). To clarify this relation in Section 5, a new presentation for Āq (and Ā) is given in the next section.

3. A Freidel-Maillet type presentation for Āq and its specialization q → 1 In this section, it is shown that the algebra Āq introduced in Definition 2.1 admits a presentation in the form of a K-matrix satisfying the defining relations of a quadratic algebra within the family introduced by Freidel and Maillet [START_REF] Freidel | Quadratic algebras and integrable systems[END_REF], see Theorem 3.1. In this framework, by Theorem 3.1 and Proposition 3.3, several results obtained in [T19b] for U + q are derived in a straightforward manner. For the specialization q → 1, a presentation of the Lie algebra Āsee Definition 2.16 -is obtained in terms of a non-standard classical Yang-Baxter algebra, see Proposition 3.6.

A quadratic algebra of Freidel-Maillet type.

Let R(u) be the intertwining operator (called quantum R-matrix) between the tensor product of two fundamental representations V 1 ⊗ V 2 for V = C 2 associated with the algebra U q ( sl 2 ). The element R(u) depends on the deformation parameter q and is defined by [START_REF] Baxter | Exactly solvable models in statistical mechanics[END_REF] 

R(u) = ⎛ ⎜ ⎜ ⎝ uq -u -1 q -1 0 0 0 0 u -u -1 q -q -1 0 0 q -q -1 u -u -1 0 0 0 0 uq -u -1 q -1 ⎞ ⎟ ⎟ ⎠ , (3.1)
where u is an indeterminate, called 'spectral parameter' in the literature on integrable systems. It is known that R(u) satisfies the quantum Yang-Baxter equation in the space V 1 ⊗ V 2 ⊗ V 3 . Using the standard notation

R ij (u) ∈ End(V i ⊗ V j ), (3.2) the Yang-Baxter equation reads R 12 (u/v)R 13 (u)R 23 (v) = R 23 (v)R 13 (u)R 12 (u/v) ∀u, v. (3.3)
As usual, intoduce the permutation operator P = R(1)/(qq -1 ). Here, note that R 12 (u) = P R 12 (u)P = R 21 (u).

We now show that the algebra Āq is isomorphic to a quadratic algebra of Freidel-Maillet type [START_REF] Freidel | Quadratic algebras and integrable systems[END_REF], which can be viewed as a limiting case of the standard quantum reflection equation (also called the boundary quantum Yang-Baxter equation) introduced in the context of boundary quantum inverse scattering theory [START_REF] Cherednik | Factorizing particles on the half-line and root systems[END_REF][START_REF] Sklyanin | Boundary conditions for integrable quantum systems[END_REF]. In addition to (3.1), define:

R (0) = diag(1, q -1 , q -1 , 1) . (3.4)
Define the generating functions:

W + (u) = k∈N W -k U -k-1 , W -(u) = k∈N W k+1 U -k-1 , (3.5) G + (u) = k∈N G k+1 U -k-1 , G -(u) = k∈N Gk+1 U -k-1 , (3.6)
where the shorthand notation U = qu 2 /(q + q -1 ) is used. Let k ± be non-zero scalars in K(q) such that ρ = k + k -(q + q -1 ) 2 . (3.7) Theorem 3.1. The algebra Āq has a presentation of Freidel-Maillet type. Let K(u) be a square matrix such that

K(u) = uqW + (u) 1 k-(q+q -1 ) G + (u) + k+(q+q -1 ) (q-q -1 ) 1 k+(q+q -1 ) G -(u) + k-(q+q -1 ) (q-q -1 ) uqW -(u) (3.8)
with (3.5)-(3.6). The defining relations are given by:

R(u/v) (K(u) ⊗ II) R (0) (II ⊗ K(v)) = (II ⊗ K(v)) R (0) (K(u) ⊗ II) R(u/v) . (3.9)
Proof. Inserting (3.8) into (3.9), the system of (sixteen in total) independent equations for the entries (K(u)) ij coming from the Freidel-Maillet type quadratic algebra (3.9) leads to a system of commutation relations between the generating functions W ± (u), G ± (u). Using the identification (3.7), after simplifications these commutation relations read:

W ± (u), W ± (v) = 0 , (3.10) W + (u), W -(v) + W -(u), W + (v) = 0 , (3.11) (U -V ) W ± (u), W ∓ (v) = (q -q -1 ) ρ(q + q -1 ) (G ± (u)G ∓ (v) -G ± (v)G ∓ (u)) (3.12) + 1 (q + q -1 ) G ± (u) -G ∓ (u) + G ∓ (v) -G ± (v) , (U -V ) G ± (u), G ∓ (v) = ρ(q 2 -q -2 )UV W ± (u)W ∓ (v) -W ± (v)W ∓ (u) , (3.13) U G ∓ (v), W ± (u) q -V G ∓ (u), W ± (v) q + ρ U W ± (u) -V W ± (v) = 0 , (3.14) U W ∓ (u), G ∓ (v) q -V W ∓ (v), G ∓ (u) q + ρ U W ∓ (u) -V W ∓ (v) = 0 , (3.15) G (u), W ± (v) + W ± (u), G (v) = 0 , ∀ = ± , (3.16) G ± (u), G ± (v) = 0 , (3.17) G + (u), G -(v) + G -(u), G + (v) = 0 . (3.18)
The commutation relations among the generators of Āq are now extracted. Inserting (3.5), (3.6) into (3.10)-(3.18), expanding and identifying terms of same order in U -k V -l one finds equivalently the set of defining relations (2.1)-(2.11) together with the set of relations (2.17), (2.18) and (2.19)-(2.22) as we now show in details. Precisely, inserting (3.5) into (3.10), (3.11), one gets (2.4), (2.5), respectively. Inserting (3.5), (3.6) into (3.12), one gets (2.1), (2.21), (2.22). Inserting (3.5), (3.6) into (3.13), one gets (2.19), (2.20). Inserting (3.5), (3.6) into (3.14) and (3.15), one gets (2.2), (2.3) as well as (2.17), (2.18). Inserting (3.5), (3.6) into (3.16)-(3.18), one gets (2.5)-(2.11). As the relations (2.17), (2.18) and (2.19)-(2.22) follow from the defining relations (2.1)-(2.11) by Lemmas 2.3, 2.4, it follows that the Freidel-Maillet type algebra (3.9) is isomorphic to Āq .

Remark 3.2. The relations (3.10)-(3.18) coincide with the relations [T19b, Lemmas 13.3,13.4] in the algebra U + q for the identification:

U → t -1 , V → s -1 , (3.19) W ± (u) → tW ∓ (t) , W ± (v) → sW ∓ (s) , (3.20) G + (u) → q -1 (q 2 -q -2 )(G(t) -1) , G -(u) → q -1 (q 2 -q -2 )( G(t) -1) , (3.21) G + (v) → q -1 (q 2 -q -2 )(G(s) -1) , G -(v) → q -1 (q 2 -q -2 )( G(s) -1) , (3.22) ρ → q -1 (q 2 -q -2 )(q -q -1 ) . (3.23)
For completeness, let us mention that an alternative presentation of Āq can be considered instead, that involves power series in u in the opposite direction. Indeed, consider the system of relations (3.10)-(3.18) with (3.5)-(3.6).

Then, using P

- 12 R 02 (x/q)R 01 (x) = P - 12 (x 2 -q 2 )(x 2 -q -2 )/x 2 , qP - 12 R (0) 01 R (0)
02 = P - 12 , eq. (3.9) and the cyclicity of the trace, the last expression simplifies to:

(a) = qtr 12 P - 12 K 1 (u)R (0) 12 K 2 (uq)R (0) 01 R (0) 02 K 0 (v)P - 12 = tr 12 P - 12 K 1 (u)R (0) 12 K 2 (uq) K 0 (v) = Γ(u)K 0 (v) . Now, define: Γ(u) = 1 2(q -q -1 ) Δ(u) - 2ρ (q -q -1 )
.

Using the entries of (3.8), by Proposition 3.

3 it implies [Δ(u), W ± (v)] = [Δ(u), G ± (v)] = 0. Using (3.5), (3.6), it follows:
Corollary 3.4.

Δ(u) = (q -q -1 )u 2 q 2 W + (u)W -(uq) + W -(u)W + (uq) - (q -q -1 ) ρ G + (u)G -(uq) + G -(u)G + (uq) (3.28) -G + (u) -G + (uq) -G -(u) -G -(uq)
provides a generating function for central elements in Āq .

Expanding Δ(u) in power series of U = qu2 /(q + q -1 ), the coefficients produce the central elements of Āq given by (2.26). Namely, by straightforward calculations one gets:

Δ(u) = - ∞ n=0 U -n-1 q -n-1 (q n+1 + q -n-1 )Δ n+1 .
Remark 3.5. In [T19b, Lemma 13.8], a generating function for central elements is given. By [START_REF] Terwilliger | The alternating central extension for the positive part of Uq( sl 2 )[END_REF]Corollary 8.4] and [T19b, Definition 13.1], alternatively three other generating functions may be considered. For instance:

Z ∨ (t) = G(qt) G(q -1 t) -qtW + (qt)W -(q -1 t) , σ(Z ∨ (t)) = G(qt)G(q -1 t) -qtW -(qt)W + (q -1 t) .

Using the identification (3.19)-(3.23), the image of the generating function Δ(u) in the algebra

U + q follows: Δ(u) → -q -1 (q 2 -q -2 ) Z ∨ (q -1 t) + σ(Z ∨ (q -1 t) .
3.3. Specialization q → 1. Due to the presence of poles at q = 1 in the off-diagonal entries of K(u) in (3.8), the relations (3.9) are not suitable for the specialization q → 1. However, it is possible to solve this problem within the framework of the non-standard classical Yang-Baxter algebra [C83, S83, BabV90, Skr06] in order to obtain an alternative presentation of Ā, besides Definition 2.16, viewed as a specialization q → 1 of the Freidel-Maillet type algebra (3.9). Introduce the r-matrix 2

r(u, v) = 1 (u 2 /v 2 -1) ⎛ ⎜ ⎜ ⎝ 1 0 0 0 0 -1 2u/v 0 0 2u/v -1 0 0 0 0 1 ⎞ ⎟ ⎟ ⎠ (3.29) solution of the non-standard classical Yang-Baxter equation [BabV90]: (3.30) [ r13 (u 1 , u 3 ) , r23 (u 2 , u 3 ) ] = [ r21 (u 2 , u 1 ) , r13 (u 1 , u 3 ) ] + [ r23 (u 2 , u 3 ) , r12 (u 1 , u 2 ) ] ,
where r21 (u, v) = P r12 (u, v)P (= r12 (u, v) for (3.29)). Define the generating functions:

w + (u) = ∞ k=0 w -k U -k-1 , w -(u) = ∞ k=0 w k+1 U -k-1 , (3.31) g + (u) = ∞ k=0 g k+1 U -k-1 , g -(u) = ∞ k=0 gk+1 U -k-1 with U = u 2 /2 . (3.32)
Proposition 3.6. The algebra Ā admits a FRT presentation given by

(3.33) B(u) = 1 2 1 4 g -(u) uw -(u) uw + (u) 1 4 g + (u) that satisfies the non-standard classical Yang-Baxter algebra (3.34) [ B 1 (u) , B 2 (v) ] = [ r21 (v, u) , B 1 (u) ] + [ B 2 (v) , r12 (u, v) ] .
Proof. Insert (3.33) into (3.34) with (3.29). Define the formal variables U = u 2 /2 and V = v 2 /2. One obtains equivalently:

(U -V ) w ± (u), w ∓ (v) = 1 2 (g ± (u) -g ∓ (u) + g ∓ (v) -g ± (v)) , (U -V ) g (u), w ± (v) ∓ 16 Uw ± (u) -V w ± (v) = 0 , = ±1 , g ± (u), g ∓ (v) = 0 , w ± (u), w ± (v) = 0 , g ± (u), g ± (v) = 0 .
These relations are equivalent to the specialization q → 1 of (3.10)-(3.18) (ρ → 16). Using (3.31), the above equations are equivalent to (2.38)-(2.41).

Remark 3.7. For the specialization q → 1, the generating function (3.28) reduces to δ(u) = -2(g + (u) + g -(u)).

Quotients of Āq and tensor product representations

In this section, a class of solutions -so-called 'dressed' solutions -of the Freidel-Maillet type equation (3.9) are constructed and studied in details by adapting known technics of the so-called reflection equation [START_REF] Sklyanin | Boundary conditions for integrable quantum systems[END_REF], see Proposition 4.1. By Lemma 4.3, it is shown that the entries of the dressed solutions can be written in terms of the 'truncated' generating functions (4.28)-(4.29), whose generators act on N -fold tensor product representations of U q (sl 2 ) according to (4.16)-(4.19). Realizations of Āq in U q (sl 2 ) ⊗N are obtained, see Proposition 4.5. 4.1. Dressed solutions of the Freidel-Maillet type equation. The starting point of the following analysis is an adaptation of [Sk88, Proposition 2], [START_REF] Freidel | Quadratic algebras and integrable systems[END_REF], to the Freidel-Maillet type equation (3.9), thus we skip the proof of the proposition below. Let K 0 (u) be a solution of (3.9). Assume there exists a pair of quantum Lax operators satisfying the exchange relations:

R(u/v) (L(u) ⊗ II) (II ⊗ L(v)) = (II ⊗ L(v)) (L(u) ⊗ II) R(u/v) , (4.1) R(u/v) (L 0 (u) ⊗ II) (II ⊗ L 0 (v)) = (II ⊗ L 0 (v)) (L 0 (u) ⊗ II) R(u/v) , (4.2) R (0) (L 0 (u) ⊗ II) (II ⊗ L(v)) = (II ⊗ L(v)) (L 0 (u) ⊗ II) R (0) ∀u, v . (4.3)
Using (4.1)-(4.3), it is easy to show that L 0 (uv 1 )K 0 (u)L(u/v 1 ) for any v 1 ∈ K * is also a solution of (3.9) (similar to [Sk88, Proposition 2]). More generally it follows 3 3 Here the index [j] characterizes the 'quantum space' V [j] on which the entries of L(u), L 0 (u) act. With respect to the ordering

V [2] ⊗V [1]
used below for (4.16)-(4.19), one has:

((T ) [2] (T ) [1] (T ) [2] ) ij = 2 k, =1 (T ) ik (T ) j ⊗ (T ) k . (4.4)
Proposition 4.1. Let K 0 (u) be a solution of (3.9). Let N be a positive integer and {v i } N i=1 ∈ K * . Let L(u), L 0 (u) be such that (4.1)-(4.3) hold. Then

K (N ) (u) = (L 0 (uv N )) [N] • • • (L 0 (uv 1 )) [1] K 0 (u)(L(u/v 1 ))) [1] • • • (L(u/v N )) [N] (4.5) satisfies (3.9).
This proposition provides a tool for the explicit construction of so-called 'dressed' solutions of (3.9). Below, we construct explicit examples of such solutions. To this end, we first introduce some known basic material. Recall the algebra U q (sl 2 ) consists of three generators denoted S ± , s 3 . They satisfy

[s 3 , S ± ] = ±S ± and [S + , S -] = q 2s3 -q -2s3 q -q -1 . (4.6)
The central element of U q (sl 2 ) is the so-called Casimir operator:

Ω = q -1 q 2s3 + qq -2s3 (q -q -1 ) 2 + S + S -= qq 2s3 + q -1 q -2s3 (q -q -1 ) 2 + S -S + . (4.7)
Let V be the spin-j irreducible finite dimensional representation of U q (sl 2 ) of dimension 2j + 1. The eigenvalue ω j of Ω is such that

ω j ≡ w (j) 0 (q -q -1 ) 2 with w (j) 0 = q 2j+1 + q -2j-1 . (4.8)
Define the so-called quantum Lax operators L 0 (u) = uq 1/2 q s3 0 0 uq 1/2 q -s3 and L(u) = uq 1/2 q s3u -1 q -1/2 q -s3 (qq -1 )S - (qq -1 )S + uq 1/2 q -s3u -1 q -1/2 q s3 . (4.9) Recall the R-matrices (3.1) and (3.4). One routinely checks that the relation (4.1) holds. The relations (4.2)-(4.3) follow as a limiting case of (4.1). Note that the overall factor uq 1/2 in the expression of L 0 (u) is kept for further convenience only. Let k ± , ¯ ± ∈ K. Define:

K 0 (u) = u -1 ¯ + k+ (q-q -1 ) k- (q-q -1 ) u -1 ¯ - . (4.10)
It is checked that K 0 (u) satisfies (3.9). As a basic example of dressed solution, consider the case N = 1 of (4.5). Define the four operators in U q (sl 2 ):

W (1) 0 = k + v 1 q 1/2 S + q s3 + ¯ + q 2s3 , (4.11) W (1) 1 = k -v 1 q 1/2 S -q -s3 + ¯ -q -2s3 , (4.12) G (1) 1 = k + k -v 2 1 (w (j1) 0 -(q + q -1 )q 2s3 ) (q -q -1 ) + (q 2 -q -2 )k -¯ + v 1 q -1/2 S -q s3 + (q -q -1 )¯ + ¯ -, (4.13) G(1) 1 = k + k -v 2 1 (w (j1) 0 -(q + q -1 )q -2s3 ) (q -q -1 ) + (q 2 -q -2 )k + ¯ -v 1 q -1/2 S + q -s3 + (q -q -1 )¯ + ¯ -. (4.14)
Computing explicitly the entries of (4.5) for N = 1, one finds that the dressed solution can be written as:

K (1) (u) = ⎛ ⎝ uqW (1) 0 -u -1 v 2 1 ¯ + G (1) 1 k-(q+q -1 ) + k+qu 2 (q-q -1 ) - k+v 2 1 w (j 1 ) 0 (q 2 -q -2 ) -¯ + ¯ -(q-q -1 ) k-(q+q -1 ) G(1) 1 k+(q+q -1 ) + k-qu 2 (q-q -1 ) - k-v 2 1 w (j 1 ) 0 (q 2 -q -2 ) -¯ + ¯ -(q-q -1 ) k+(q+q -1 ) uqW (1) 1 -u -1 v 2 1 ¯ - ⎞ ⎠ . (4.15)
4.2. General dressed solutions. The structure of the above solution (4.15) can be generalized to dressed solutions of arbitrary size as we now show. According to the ordering of the 'quantum' vector spaces

V (N ) = V [N] ⊗ • • • ⊗ V [2] ⊗ V [1] ,
let us first define recursively the four families of operators {W

(N ) -k , W (N ) k+1 , G (N ) k+1 , G(N) k+1 |k = 0, 1, ..., N },
where N is a positive integer:

W (N ) -k = (q -q -1 ) k -(q + q -1 ) 2 v N q 1/2 S + q s3 ⊗ G (N -1) k + q 2s3 ⊗ W (N -1) -k - v 2 N (q + q -1 ) II ⊗ W (N -1) -k+1 (4.16) + v 2 N w (j N ) 0 (q + q -1 ) 2 W (N ) -k+1 , W (N ) k+1 = (q -q -1 ) k + (q + q -1 ) 2 k -v N q 1/2 S -q -s3 ⊗ G(N-1) k + q -2s3 ⊗ W (N -1) k+1 - v 2 N (q + q -1 ) II ⊗ W (N -1) k (4.17) + v 2 N w (j N ) 0 (q + q -1 ) 2 W (N ) k , G (N ) k+1 = (q 2 -q -2 )k -v N q -1/2 S -q s3 ⊗ W (N -1) -k - v 2 N (q + q -1 ) q 2s3 ⊗ G (N -1) k + II ⊗ G (N -1) k+1 (4.18) + v 2 N w (j N ) 0 (q + q -1 ) 2 G (N ) k , G(N) k+1 = (q 2 -q -2 )k + v N q -1/2 S + q -s3 ⊗ W (N -1) k+1 - v 2 N (q + q -1 ) q -2s3 ⊗ G(N-1) k + II ⊗ G(N-1) k+1 (4.19) + v 2 N w (j N ) 0 (q + q -1 ) 2 G(N) k .
Here for the special case k = 0 we identify 4

W (N ) k | k=0 ≡ 0 , W (N ) -k+1 | k=0 ≡ 0 , G (N ) k | k=0 = G(N) k | k=0 ≡ k + k -(q + q -1 ) 2 (q -q -1 ) II (N ) (4.20)
together with the 'initial' conditions for k ≥ 1 (the notation (4.27) is used)

W (0) -k ≡ α 1 q + q -1 k-1 α 1 q + q -1 |v 1 =0 W (0) 0 , W (0) k+1 ≡ α 1 q + q -1 k-1 α 1 q + q -1 |v 1 =0 W (0) 1 , (4.21) G (0) k+1 = G(0) k+1 ≡ α 1 q + q -1 k G (0) 1 , (4.22)
where

W (0) 0 ≡ ¯ + , W (0) 1 ≡ ¯ - and G (0) 1 = G(0) 1 ≡ ¯ + ¯ -(q -q -1 ) . (4.23)
A crucial ingredient in the construction of dressed solutions by induction from (4.5) is the existence of a set of linear relations satisfied by the operators (4.16)-(4.19). We proceed by strict analogy with [BK05a, Appendix B], thus we skip most of the details of the proof. For further convenience, introduce the notation:

¯ (N ) ± = (-1) N N k=1 v 2 k ¯ ± . (4.24)
4 Although the notation is ambiguous, one must keep in mind that W

(N ) k | k=0 = W (N ) -k | k=0 ,W (N ) -k+1 | k=0 = W (N )
k+1 | k=0 for any N .

Lemma 4.2. The operators (4.16)-(4.19) satisfy the linear relations:

N k=0 c (N ) k W (N ) -k + ¯ (N ) + = 0 , N k=0 c (N ) k W (N ) k+1 + ¯ (N ) -= 0 , (4.25) N k=0 c (N ) k G (N ) k+1 = 0 , N k=0 c (N ) k G(N) k+1 = 0 (4.26) with 5 c (N ) k = (-1) N -k-1 (q + q -1 ) k e N -k (α 1 , α 2 , • • • , α N ), α 1 = v 2 1 w (j1) 0 (q + q -1 ) + ¯ + ¯ -(q -q -1 ) 2 k + k -(q + q -1 ) , α k = v 2 k w (j k ) 0
(q + q -1 ) for k = 2, ..., N . (4.27) Proof. For N = 1, 2, the four relations (4.25)-(4.26) are explicitly checked. Then we proceed by induction.

The result below is obtained after some straightforward calculations similar to those performed in [START_REF] Baseilhac | A new (in)finite dimensional algebra for quantum integrable models[END_REF][START_REF] Baseilhac | A deformed analogue of Onsager's symmetry in the XXZ open spin chain[END_REF], thus we just sketch the proof. Introduce the 'truncated' generating functions:

W (N ) + (u) = N -1 k=0 f (N ) k+1 (u)W (N ) -k , W (N ) -(u) = N -1 k=0 f (N ) k+1 (u)W (N ) k+1 (4.28) G (N ) + (u) = N -1 k=0 f (N ) k+1 (u)G (N ) k+1 , G (N ) -(u) = N -1 k=0 f (N ) k+1 (u) G(N) k+1 (4.29)
where

f (N ) k (u) = N p=k
(-1) N -p (q + q -1 ) p-1 e N -p (α 1 , α 2 , ..., α N )U p-k with U = qu 2 /(q + q -1 ) . (4.30) Lemma 4.3. Dressed solutions of the form (4.5) can be written as:

K (N ) (u) = uqW (N ) + (u) + u -1 ¯ (N ) + 1 k-(q+q -1 ) G (N ) + (u) + k+(q+q -1 ) (q-q -1 ) f (N ) 0 (u) 1 k+(q+q -1 ) G (N ) -(u) + k-(q+q -1 ) (q-q -1 ) f (N ) 0 (u) uqW (N ) -(u) + u -1 ¯ (N ) - (4.31)
with (4.28)-(4.29) and (4.24).

Proof. For N = 1, one checks that (4.31) coincides with (4.15). Then, we proceed by induction. Assume K (N ) (u) is of the form (4.31) for N fixed. We compute ((L 0 (uv

N +1 )) [N+1] K (N ) (u)(L(u/v N +1 )) [N+1]
) ij for i, j = 1, 2. For instance, consider the entry (11) N +1 . Explicitly, it reads:

(11) N +1 = uq (q -q -1 )v N +1 q 1/2 S + q s3 ⊗ 1 k -(q + q -1 ) G (N ) + (u) + k + (q + q -1 ) (q -q -1 ) f (N ) 0 (u) + q 2s3 ⊗ ¯ (N ) + +(u 2 qq 2s3 -v 2 N +1 ) ⊗ W (N ) + (u) -u -1 v 2 N +1 ¯ (N ) +
. 5 For the elementary symmetric polynomials in the variables {x i |i = 1, ..., n}, we use the notation:

e k (x 1 , x 2 , ..., xn) = 1≤j 1 <j 2 <•••<j k ≤n x j 1 x j 2 • • • x j k .
Inserting (4.28), (4.29) and using the definitions (4.16)-(4.19), (4.24) for N → N + 1, after some simple operations and reorganizing all terms one gets :

(11

) N +1 = uq N -1 k=0 (q + q -1 )f (N ) k (u) -α N +1 f (N ) k+1 (u) W (N +1) -k + (q + q -1 )f (N ) N (u)W (N +1) -N + u -1 ¯ (N +1) + +q 2s3 ⊗ ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ N -1 k=0 qu 2 f (N ) k+1 (u) -(q + q -1 )f (N ) k (u) W (N +1) -k -(q + q -1 )f (N ) N (u)W (N +1) -N + ¯ (N ) + ≡Γ(u) ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ .
Identifying (11) N +1 with (K (N +1) (u)) 11 leads to a set of constraints. They read:

(q + q -1 )f

(N ) k (u) -α N +1 f (N ) k+1 (u) = f (N +1) k+1 (u) for k = 0, ..., N -1 , (4.32) (q + q -1 )f (N ) N (u) = f (N +1) N +1 (u) (4.33)
and Γ(u) = 0. The solution of the constraints (4.32)-(4.33) is given by (4.30). Using this expression, one finds that Γ(u) coincides with the l.h.s of the first equation in (4.25). By Lemma 4.2, it follows Γ(u) = 0, so (11) N +1 = (K (N +1) (u)) 11 . By similar arguments, one shows (ij) N +1 = (K (N +1) (u)) ij using (4.25), (4.26). 

Realizations of

N k=0 c (N ) k W (N ) -k-p + δ p,0 ¯ (N ) + = 0 , N k=0 c (N ) k W (N ) k+1+p + δ p,0 ¯ (N ) -= 0 , (4.34) N k=0 c (N ) k G (N ) k+1+p = 0 , N k=0 c (N ) k G(N) k+1+p = 0 . (4.35)
Proof. For p = 0 the four relations hold by Lemma 4.2. For N = 1 and any p ≥ 1, the four relations are checked using (4.21), (4.22). Then we proceed by induction on N .

Define Ā(N)

q as the algebra generated by {W

(N ) -k , W (N ) k+1 , G (N ) k+1 , G(N) k+1 |k ∈ N}.
We are now in position to give the main result of this section. given by: 

W -k → W (N ) -k , W k+1 → W (N ) k+1 , G k+1 → G (N ) k+1 , Gk+1 → G(
W + (u) → k∈N W (N ) -k U -k-1 = N -1 k=0 W (N ) -k U -k-1 + ∞ k=N W (N ) -k U -k-1 . (4.36) Using (4.34): ∞ k=N W (N ) -k U -k-1 = ∞ p=0 W (N ) -N -p U -N -p-1 = - 1 c (N ) N ∞ p=0 N -1 k=0 c (N ) k W (N ) -k-p U -N -p-1 - ¯ (N ) + c (N ) N U -N -1 = - 1 c (N ) N N -1 k=0 c (N ) k U k-N W + (u) + 1 c (N ) N N -1 k=1 k-1 p=0 c (N ) k W (N ) -p U -N -p-1+k - ¯ (N ) + c (N ) N U -N -1 = - 1 c (N ) N N -1 k=0 c (N ) k U k-N W + (u) + 1 c (N ) N N -1 k=0 U -k-1 W (N ) -k ⎛ ⎝ N -1 p=k+1 c (N ) p U p-N ⎞ ⎠ - ¯ (N ) + c (N ) N U -N -1 .
Replacing the last expression into (4.36) and using (4.28), (4.29) and (4.30), one gets:

f (N ) 0 (u)W + (u) → W (N ) + (u) + u -2 q -1 ¯ (N ) + .
Similarly, using (4.34), (4.35) one finds: 5. The algebra Āq , alternating subalgebras of U q ( gl 2 ) and root vectors Recall that the quantum affine Kac-Moody algebra U q ( sl 2 ) admits a Drinfeld second presentation denoted U Dr q with generators {x ± k , h , K ±1 , C ±1/2 |k ∈ Z, ∈ Z\{0}} [D88, Be94, Ji96]. For q → 1, this presentation specializes to the universal enveloping algebra of sl 2 with generators {x ± k , h k , c|k ∈ Z} -called the Cartan-Weyl presentation -see e.g. [Be94, top of page 566]. According to (2.47) (similarly (2.51)), a natural question concerns the interpretation of Āq in terms of subalgebras of U Dr q (and similarly for Ā in terms of subalgebras of sl 2 ). Although this problem may look complicated at first sight for q = 1, it is solved using the framework of Freidel-Maillet algebras combined with the results of Ding-Frenkel [START_REF] Ding | Isomorphism of two realizations of quantum affine algebra Uq[END_REF], as shown in this section. In this section, we fix K = C.

f (N ) 0 (u)W -(u) → W (N ) -(u) + u -2 q -1 ¯ (N ) - , f (N ) 0 (u)G ± (u) → G (N ) ± (u) . It follows f (N ) 0 (u)K(u) → K (N ) (u).
We start with the simplified situation q → 1, see Definition 5.3 and Proposition 5.4. 

The algebra

± k , 1,k , 2,k , c|k ∈ Z} subject to the relations: i,k , j, = kcδ i,j δ k+ ,0 , (5.1) 1,k , x ± = ±x ± k+ , (5.2) 2,k , x ± = ∓x ± k+ , (5.3) x + k , x -= 1,k+ -2,k+ + δ k+ ,0 kc , (5.4) x ± k , x ± k±1 = 0 (5.5)
and c is central.

Note the automorphism θ such that:

θ : x ± k → x ∓ k , 1,k → 2,k , 2,k → 1,k , c → c . (5.6) Let h k = 1,k -2,k . (5.7)
The subalgebra generated by {x ± k , h k , c|k ∈ Z}, denoted sl 2

CW

, is isomorphic to the affine Lie algebra sl 2 . The commutation relations are given by (5.4), (5.5) with (5.7) and 

h k , h = δ k+ ,0 2kc , (5.8) h k , x ± = ±2x ± k+ . (5.9)
k 0 → -h 0 -c , k 1 → h 0 , e 1 → x + 0 , e 0 → x - 1 , f 1 → x - 0 , f 0 → x + -1 , c → -c .
In view of (2.51), we now study the relation between Ā and gl 2 . Isomorphisms between certain subalgebras of gl 2 and Ā can be identified through a direct comparison of the defining relations (5.1)-(5.5) and (2.38)-(2.41). However, although not necessary for q = 1, to prepare the analysis for q = 1 in the next section it is instructive to exhibit these isomorphisms using the FRT presentation of U ( gl 2 ), which follows from U ( sl 2 )'s one6 .

Introduce the following classical (traceless) r-matrix for an indeterminate z = 1 associated with sl 2 :

(5.10)

r(z) = 1 z -1 ⎛ ⎜ ⎜ ⎝ -1 2 (z + 1) 0 0 0 0 1 2 (z + 1) -2 0 0 -2z 1 2 (z + 1) 0 0 0 0 -1 2 (z + 1) ⎞ ⎟ ⎟ ⎠ .
Note that r 12 (z) = -r 21 (1/z) = -r 12 (z) t1t2 . It satisfies the classical Yang-Baxter equation

(5.11) [ r 13 (z 1 /z 3 ) , r 23 (z 2 /z 3 ) ] = [ r 13 (z 1 /z 3 ) + r 23 (z 2 /z 3 ) , r 12 (z 1 /z 2 ) ] .
For simplicity, we keep the same notation for the generators of U ( sl 2 ) and sl 2 . Defining:

T + (z) = h 0 /2 2x - 0 0 -h 0 /2 + k≥1 z k h k 2x - k 2x + k -h k , (5.12) T -(z) = -h 0 /2 0 -2x + 0 h 0 /2 + k≥1 z -k -h -k -2x - -k -2x + -k h -k , (5.13) one checks that the relations 7 [T ± (z), c] = 0 , (5.14) [T ± 1 (z), T ± 2 (w)] = [T ± 1 (z) + T ± 2 (w), r 12 (z/w)] , (5.15) [T + 1 (z), T - 2 (w)] = [T + 1 (z) + T - 2 ( 
w), r 12 (z/w)] -2c r 12 (z/w)z/w , (5.16) are equivalent to the relations (5.4), (5.5), (5.8), (5.9), where ., . now denotes the usual commutator ., . 1 . The FRT presentation for U ( gl 2 ) is obtained from (5.12), (5.13) as follows. Define the 2 × 2 matrix

H ± (z) = ± ⎛ ⎝ 1 2 ( 1,0 + 2,0 ) + k≥1 z ±k ( 1,±k + 2,±k ) ⎞ ⎠ II .
The corresponding pair of Lax operators for U ( gl 2 ) is given by T ± gl2 (z) = T ± (z) + H ± (z), and satisfy classical Yang-Baxter relations that follow from (5.14)-(5.16).

We now relate Ā to certain subalgebras of gl 2 using the FRT presentation. By straightforward computation, it is found that

B(u) → B-(u) = -T - gl2 (u 2 ) -t 0 or B(u) → B+ (u) = T + gl2 (u -2 ) -t 0
(5.17) with t 0 = diag( 1,0 , 2,0 ), satisfy the non-standard classical Yang-Baxter equation (3.34) for the identification r(u, v) = -r(u 2 /v 2 )r 0 , where r 0 = diag(1/2, -1/2, -1/2, 1/2). In particular, let us consider the first map in (5.17). Applying a similarity transformation:

B -(u) = -M (u) B-(u) t M (u) -1 with M (u) = 0 -u 1 0
one finds for instance that

B -(u) = 0 0 2u -1 x + 0 0 + k≥1 u -2k 2 1,-k 2ux - -k 2u -1 x + -k
2 2,-k (5.18) satisfies (3.34) for the symmetric r-matrix (3.29). Similarly, from the second map in (5.17) one gets a second solution of (3.34) with (3.29):

B + (u) = 0 2u -1 x - 0 0 0 + k≥1 u -2k 2 1,k 2u -1 x - k 2ux + k 2 2,k . (5.19)
According to the structure of the matrices (5.18), (5.19) and the automorphism (5.6), different subalgebras that combine half of the positive/negative root vectors, together with half of the imaginary root vectors are now introduced. Definition 5.3. , respectively. In particular, combining above results with those of Section 3 it follows:

gl 2 ,± = {x ± k , x ∓ k+1 , 1,k+1 , 2,k+1 |k ∈ N} , (5.20) gl 2 ,± = {x ± -k , x ∓ -k-1 , 1,-k-1 , 2,-k-1 |k ∈ N} . (5.

Proposition 5.4. There exists an algebra isomorphism

Ā → U ( gl 2 ,+ ) (resp. Ā → U ( gl 2 ,-
)) such that:

w -k → 2 1-k x - k+1 , w k+1 → 2 1-k x + k , g k+1 → 2 3-k 1,k+1 , gk+1 → 2 3-k 2,k+1 (resp. w -k → 2 1-k x - -k , w k+1 → 2 1-k x + -k-1 , g k+1 → 2 3-k 1,-k-1 , gk+1 → 2 3-k 2,-k-1 .
Proof. Identify θ(B ± (u)) for (5.19), (5.18), to (3.33).

Observe that the elements δ ± k+1 = 1,±(k+1) + 2,±(k+1) are central. If we denote z ± = {δ ± k+1 } k∈N and introduce the alternating subalgebras sl 2 

,+ = {x + k , x - k+1 , h k+1 |k ∈ N} (resp. sl 2 ,- = {x - -k , x + -k-1 , h -k-1 |k ∈ N}),
g k+1 → 2 2-k (h k+1 + δ + k+1 ) , gk+1 → 2 2-k (-h k+1 + δ + k+1 ) (5.22) (resp. g k+1 → 2 2-k (h -k-1 + δ - k+1 ) , gk+1 → 2 2-k (-h -k-1 + δ - k+1 )) . (5.23)
In the next section, by analogy we use the Freidel-Maillet type presentation given in Section 3 to derive q-analogs of the isomorphisms of Proposition 5.4. 5.2. The algebra Āq and 'alternating' subalgebras of U q ( gl 2 ). The Drinfeld second presentation [START_REF] Gao | Uq( gl N ) action on gl N -modules and quantum toroidal algebras[END_REF][START_REF] Frenkel | The Hopf algebra RepUq gl ∞[END_REF] and FRT presentation of U q ( gl 2 ) [RS90, DF93] are first reviewed, see Definition 5.5 and Theorem 5.7. Then, 'alternating' subalgebras of U q ( gl 2 ) that can be viewed as q-analogs of (5.20), (5.21) are identified, see Definition 5.12. Using the Ding-Frenkel isomorphism [DF93], K-matrices K ± (u) (or K + (u)) that satisfy the Freidel-Maillet type equation (3.9) (or (3.25)) are constructed using a dressing procedure, see Lemmas 5.15, 5.16 or 5.17. By a direct comparison of the K-matrix (3.8) (resp. (3.24)) to the K-matrix K -(u) (resp. K + (u)), explicit isomorphisms from Āq to alternating subalgebras of U q ( gl 2 ) are derived, see Propositions 5.18, 5.20. For the first generators, Examples 5.19, 5.21 are given. 5.2.1. Drinfeld second presentation and FRT presentation of U q ( gl 2 ). In this subsection, we review some necessary material. For the quantum affine Kac-Moody algebra U q ( sl 2 ), there are two standard presentations: the Drinfeld-Jimbo presentation denoted U DJ q and the Drinfeld (second) presentation denoted U Dr q , see e.g. [CP94, p. 392], [START_REF] Damiani | From the Drinfeld realization to the Drinfeld-Jimbo presentation of affine quantum algebras: the injectity[END_REF]. For U q ( gl 2 ), an analog of Drinfeld second presentation is known [START_REF] Gao | Uq( gl N ) action on gl N -modules and quantum toroidal algebras[END_REF][START_REF] Frenkel | The Hopf algebra RepUq gl ∞[END_REF].

Definition 5.5. The quantum affine algebra U q ( gl 2 ) is isomorphic to the associative algebra over C(q) with generators {x ± k , E 1, , E 2, , K ±1 |k ∈ Z, ∈ Z\{0}}, central elements C ±1/2 and the following relations:

C 1/2 C -1/2 = 1 , KK -1 = K -1 K = 1 , (5.24) E i,k , E j, = k q k C k -C -k q -q -1 δ i,j δ k+ ,0 , KE i,k = E i,k K , (5.25) E 1,k , x ± = ± k q k C ∓|k|/2 q |k|/2 x ± k+ , (5.26) E 2,k , x ± = ∓ k q k C ∓|k|/2 q -|k|/2 x ± k+ , (5.27) Kx ± k K -1 = q ±2 x ± k , (5.28) x ± k+1 x ± -q ±2 x ± x ± k+1 = q ±2 x ± k x ± +1 -x ± +1 x ± k , (5.29) x + k , x -= (C (k-)/2 ψ k+ -C -(k-)/2 φ k+ ) q -q -1 , (5.30)
where the ψ k and φ k are defined by the following equalities of formal power series in the indeterminate z:

ψ(z) = ∞ k=0 ψ k z -k = K exp (q -q -1 ) ∞ k=1 h k z -k , (5.31) φ(z) = ∞ k=0 φ -k z = K -1 exp -(q -q -1 ) ∞ k=1 h -k z , (5.32)
where we denote:

h k = q |k|/2 E 1,k -q -|k|/2 E 2,k .
(5.33) Note that there exists a q-analog of the automorphism (5.6) such that:

θ : x ± k → x ∓ k , E 1,k → E 2,k , E 2,k → E 1,k , K → K , C → C -1 , q → q -1 . (5.34)
In addition, there exists an automorphism:

ν : x + k → Kx + k , x - k → x - k K -1 , E 1,k → E 1,k , E 2,k → E 2,k , K → K , C 1/2 → C 1/2 . (5.35)
The associative subalgebra generated by {x ± k , h , K ±1 , C ±1/2 |k ∈ Z, ∈ Z\{0}} is isomorphic to the quantum affine algebra U q ( sl 2 ), known in the literature as the Drinfeld second presentation U Dr q . The corresponding defining relations are given by (5.24), (5.28)-(5.30) and

h k , h = δ k+ ,0 1 k 2k q C k -C -k q -q -1 , (5.36) h k , x ± = ± 1 k 2k q C ∓|k|/2 x ± k+ .
(5.37) Remark 5.6. Recall the defining relations of U DJ q in Appendix A. An isomorphism U DJ q → U Dr q is given by (see e.g [CP94, p. 393]):

K 0 → CK -1 , K 1 → K , E 1 → x + 0 , E 0 → x - 1 K -1 , F 1 → x - 0 , F 0 → Kx + -1 . (5.38)
Note that it is still an open problem to find the complete Hopf algebra isomorphism between U DJ q and U Dr q . Only partial information is known, see e.g. [CP91, Section 4.4].

Extending previous works [START_REF] Faddeev | Quantization of Lie groups and Lie algebras[END_REF][START_REF] Yu | Central extensions of quantum current roups[END_REF], for the quantum affine Lie algebra of type A such as U q ( gl n ) a FRT presentation has been obtained in [START_REF] Ding | Isomorphism of two realizations of quantum affine algebra Uq[END_REF]. For type B, C, D, see [START_REF] Jing | Isomorphism between the R-matrix and Drinfeld presentations of quantum affine algebra: type C[END_REF][START_REF] Jing | Isomorphism between the R-Matrix and Drinfeld presentations of quantum affine algebra: Types B and D[END_REF]. The explicit isomorphism between the Drinfeld second presentation of U q ( gl 2 ) and FRT presentation given in [START_REF] Ding | Isomorphism of two realizations of quantum affine algebra Uq[END_REF] is now recalled. Define:

(5.39) R(z) = ⎛ ⎜ ⎜ ⎜ ⎝ 1 0 0 0 0 z-1 zq-q -1 z(q-q -1 ) zq-q -1 0 0 (q-q -1 ) zq-q -1 z-1 zq-q -1 0 0 0 0 1 ⎞ ⎟ ⎟ ⎟ ⎠
which satisfies the Yang-Baxter equation (3.3). Note that R12 (z) = Rt1t2 21 (z). The above R-matrix is related to the symmetric R-matrix (3.1) through the similarity transformations:

u v q - v u q -1 -1 R 12 (u/v) = M(u) 1 M(v) 2 R12 (u 2 /v 2 )M(v) -1 2 M(u) -1 1 , (5.40) = M(u) -1 1 M(v) -1 2 R21 (u 2 /v 2 )M(v) 2 M(u) 1 with M(u) = u -1/2 0 0 u 1/2 .
Theorem 5.7. (see [START_REF] Yu | Central extensions of quantum current roups[END_REF][START_REF] Ding | Isomorphism of two realizations of quantum affine algebra Uq[END_REF]) U q ( gl 2 ) admits a FRT presentation given by a unital associative algebra with generators {x ± k , k + j,-, k - j, , q ±c/2 |k ∈ Z, ∈ N, j = 1, 2}. The generators q ±c/2 are central and mutally inverse. Define:

L ± (z) = k ± 1 (z) k ± 1 (z)f ± (z) e ± (z)k ± 1 (z) k ± 2 (z) + e ± (z)k ± 1 (z)f ± (z) (5.41)
in terms of the generating functions in the indeterminate z:

e + (z) = (q -q -1 ) ∞ k=0 q k(c/2-1) x - -k z k , e -(z) = -(q -q -1 ) ∞ k=1 q k(c/2+1) x - k z -k , (5.42) f + (z) = (q -q -1 ) ∞ k=1 q -k(c/2+1) x + -k z k , f -(z) = -(q -q -1 ) ∞ k=0 q -k(c/2-1) x + k z -k , (5.43) k + j (z) = ∞ k=0 k + j,-k z k , k - j (z) = ∞ k=0 k - j,k z -k , j = 1, 2 . (5.44)
The defining relations are the following:

k + i,0 k - i,0 = k - i,0 k + i,0 = 1 , (5.45) R(z/w) (L ± (z) ⊗ II) (II ⊗ L ± (w)) = (II ⊗ L ± (w)) (L ± (z) ⊗ II) R(z/w) , (5.46) R(q c z/w) (L + (z) ⊗ II) (II ⊗ L -(w)) = (II ⊗ L -(w)) (L + (z) ⊗ II) R(q -c z/w) . (5.47)
For (5.46), the expansion direction of R(z/w) can be chosen in z/w or w/z, but for (5.47) the expansion direction is only in z/w. U q ( gl 2 ) is a Hopf algebra. The coproduct Δ is defined by:

Δ(L ± (z)) = (L ± (zq ±(1⊗c/2) )) [1] (L ± (zq ∓(c/2⊗1) )) [2]
(5.48)

and its antipode is S(L ± (z)) = L ± (z) -1 .
Remark 5.8. The inverse quantum Lax operators (5.41) are [DF93, eq. (4.9)]:

(L ± (z)) -1 = (k ± 1 (z)) -1 + f ± (z)(k ± 2 (z)) -1 e ± (z) -f ± (z)(k ± 2 (z)) -1 -(k ± 2 (z)) -1 e ± (z) ( k ± 2 (z)) -1 . (5.49)
The explicit isomorphism between the FRT presentation of Theorem 5.7 and Drinfeld second presentation of U q ( gl 2 ) of Definition 5.5 is given in [GJ02, Section 4]. Introduce the generating functions [DF93]:

x ± (z) = k∈Z x ± k z -k . (5.50)
In terms of (5.42), (5.43), one has:

x + (z) = (q -q -1 ) -1 f + (q c/2+1 z) -f -(q -c/2+1 z) , x -(z) = (q -q -1 ) -1 e + (q -c/2+1 z) -e -(q c/2+1 z) and C 1/2 = q c/2 .
The generating functions {k ± i (z)} i=1,2 are related with the generators {E i,k } i=1,2 as follows [GJ02, Section 4] (see also [START_REF] Frenkel | The Hopf algebra RepUq gl ∞[END_REF]):

k ± i (z) = k ± i,0 exp ±(q -q -1 ) ∞ n=1 a i,∓n z ±n (5.51)
where the new generators

a 1,m = q m q |m|/2 E 1,m -q -|m|/2 E 2,m + a 2,m , (5.52) a 2,m = q 2m+|m|/2 |m| m E 1,m + q |m| E 2,m (1 + q 2|m| ) 1/2 + E 2,m , (5.53) are introduced. The generators k ± i,0 are such that k ± i,0 , a j,m = k i,0 , k j,0 = 0 for any i, j and k - 2,0 (k - 1,0 ) -1 = K , k + 2,0 (k + 1,0 ) -1 = K -1 . (5.54)
The commutation relations of U q ( gl 2 ) presented in terms of the generators {a i,m |i = 1, 2} are given in [GJ02, Section 4]. Although not reported here, for further analysis some of those are displayed in Appendix B.

In the context of the FRT presentation of U q ( gl 2 ) [START_REF] Ding | Isomorphism of two realizations of quantum affine algebra Uq[END_REF], the explicit exchange relations between the generating functions (5.42)-(5.44) are extracted from (5.46), (5.47) inserting (5.41). We refer the reader to [DF93, p. 288-292] for details. In particular, for the following analysis, we will need the asymptotics of some of the exchange relations displayed in [START_REF] Ding | Isomorphism of two realizations of quantum affine algebra Uq[END_REF]. Considering the limits k + j (0) and k - j (∞) of (5.44), from [DF93, eqs. (4.24), (4.25), (4.40), (4.41)] one gets for instance:

k ± 1,0 e ± (w)(k ± 1,0 ) -1 = q ∓1 e ± (w) , k ± 1,0 f ± (w)(k ± 1,0 ) -1 = q ±1 f ± (w) , (5.55) (k ± 2,0 ) -1 e ± (w)k ± 2,0 = q ∓1 e ± (w) , (k ± 2,0 ) -1 f ± (w)k ± 2,0 = q ±1 f ± (w) , (5.56)
and from [DF93, eqs. (4.13), (4.14), (4.17)] one gets:

k ± i,0 k ± j (w) = k ± j (w)k ± i,0 , k ± i,0 k ± i (w) = k ± i (w)k ± i,0 , i = j = 1, 2 . (5.57)
To prepare the discussion in further sections, the description of the known embedding U q ( sl 2 ) → U q ( gl 2 ) is now recalled. First, central elements of U q ( gl 2 ) are constructed using the FRT presentation. Following [FMu02, Section 2.6], define the generating functions:

y ± (z) = k ∓ 1 (q -1 z)k ∓ 2 (qz) . (5.58)
By [DF93, eq. (4.17)], note that the ordering of the factors in (5.58) is irrelevant. Using the other exchange relations in [START_REF] Ding | Isomorphism of two realizations of quantum affine algebra Uq[END_REF], one finds y ± (z), e (w) = y ± (z), f (w) = y ± (z), k 1 (w) = y ± (z), k 2 (w) = 0 for = ± and any z, w. Proposition 5.9. (see [START_REF] Frenkel | The Hopf algebra RepUq gl ∞[END_REF]) The coefficients of the generating function y ± (z) are central elements of U q ( gl 2 ).

Corollary 5.10. The elements

k ∓ 1,0 k ∓ 2,0
and γ m = q m a 1,m + q -m a 2,m for m ∈ Z * (5.59)

are central in U q ( gl 2 ).
Proof. Insert (5.51) into (5.58). Identify the coefficients of the resulting power series y ± (z).

Note that U q ( gl 2 ), y = 0 for y = k ± 1,0 k ± 2,0 , γ m can be independently checked using (5.52), (5.53) and the commutation relations (B.1)-(B.4).

Remark 5.11. In terms of the generators h m (5.33) and central elements γ m (5.59), the new generators a 1,m , a 2,m entering in (5.51) decompose as:

a 1,m = q m 1 + q 2m (h m + γ m ) , a 2,m = q m 1 + q -2m (-h m + q -2m γ m ) . (5.60)
It is known that the elements (5.59) and C ±1/2 generate 8 the center of U q ( gl 2 ). The following arguments are described in [START_REF] Frenkel | The Hopf algebra RepUq gl ∞[END_REF] (see also [START_REF] Jing | Isomorphism between the R-matrix and Drinfeld presentations of quantum affine algebra: type C[END_REF]). Denote C the subalgebra generated by (5.59). One has the embedding U Dr q ⊗ C → U q ( gl 2 ) . Furthermore, define U Dr q as the extension of U Dr q by q ±1/2 , K ±1/2 , and define C as the extension of C by (k ± 1,0 k ± 2,0 ) 1/2 . Then, one has the inverse embedding U q ( gl 2 ) → U Dr q ⊗ C . It follows that U q ( gl 2 ) and U Dr q ⊗ C are "almost" isomorphic. So, one has the tensor product decomposition: For more details, see e.g. [JLM19, Proposition 2.3, Corollary 2.4]. The explicit isomorphism ϕ D : U q ( gl 2 ) → U Dr q ⊗ C is constructed along these lines. In view of these comments, U Dr q can be considered as the quotient of the Drinfeld type presentation of U q ( gl 2 ) by the relations

U q ( gl 2 ) ∼ = U Dr q ⊗ C .
y ± (z) = 1 ⇐⇒ k ± 1,0 k ± 2,0 = 1 and γ m = 0 ∀m ∈ Z * . (5.62)
Below, we will use the surjective homomorphism γ D : U q ( gl 2 ) → U Dr q using the presentation of Theorem 5.7. Recall (5.50) and (5.51). Using (5.60) and setting (5.62), for instance one has:

γ D (q c/2 ) → C 1/2 , γ D (x ± (z)) → x ± (z) , (5.63) γ D (a 1,m ) → 1 q m + q -m h m , γ D (a 2,m ) → - q 2m q m + q -m h m , (5.64) γ D (k ∓ 2,0 (k ∓ 1,0 ) -1 ) → K ±1 . (5.65)
Thus, the FRT presentation of U q ( sl 2 ) is obtained as a corollary of [START_REF] Ding | Isomorphism of two realizations of quantum affine algebra Uq[END_REF]Main Theorem]. It is given by the image of (5.46), (5.47) with (5.41) via γ D . 5.2.2. Alternating subalgebras U q ( gl 2 ) ,± and U q ( gl 2 ) ,± and K-matrices. By analogy with the analysis of previous section, we need to identify q-deformed analogs of the "classical" alternating subalgebras (5.20), (5.21). For instance, consider the elements:

C -k/2 K -1 x + k , C (k+1)/2 x - k+1 , E 1,k+1 , E 2,k+1 for k ∈ N . (5.66)
Using the defining relations of U q ( gl 2 ), for k, ∈ N one finds:

E i,k , E j, = 0 , E 1,k , C -/2 K -1 x + = k q k q k/2 C -(k+ )/2 K -1 x + k+ , E 2,k , C -/2 K -1 x + = - k q k q -k/2 C -(k+ )/2 K -1 x + k+ , E 1,k , C ( +1)/2 x - +1 = - k q k q k/2 C (k+ +1)/2 x - k+ +1 , E 2,k , C ( +1)/2 x - +1 = k q k q -k/2 C (k+ +1)/2 x - k+ +1 .
Furthermore, the relations (5.29) are left invariant by the action of C -(k+ +1)/2 K -2 for (++) or the action of C (k+ +1)/2 for (--). Also, using (5.28), (5.30) one finds:

C -k/2 K -1 x + k , C ( +1)/2 x - +1 = 1 q -q -1 K -1 ψ k+ +1 + (q 2 -1) C -k/2 K -1 x + k C ( +1)/2 x - +1 .
According to (5.31), K -1 ψ k only depends on h k so it is a combination of E 1,k , E 2,k . Thus, we conclude that the elements (5.66) form a subalgebra of U q ( gl 2 ). Other subsets of elements are similarly considered, which form different subalgebras. It follows: Definition 5.12.

U q ( gl 2 ) ,± = {C ∓k/2 K -1 x ± k , C ±(k+1)/2 x ∓ k+1 , E 1,k+1 , E 2,k+1 |k ∈ N} , U q ( gl 2 ) ,± = {C ∓k/2 x ± -k , C ±(k+1)/2 x ∓ -k-1 K, E 1,-k-1 , E 2,-k-1 |k ∈ N} .
We call U q ( gl 2 ) ,± and U q ( gl 2 ) ,± the right and left alternating subalgebras of U q ( gl 2 ). The subalgebra generated by {K ±1 , C ±1/2 } is denoted U q ( gl 2 ) .

In each alternating subalgebra introduced above, the center is characterized as follows. Consider for instance U q ( gl 2 ) ,± . Its center is the subalgebra of C generated by some of the coefficients of the generating function y + (z) as defined in (5.58).

Remark 5.13. The center C (resp. C ) of U q ( gl 2 ) ,± (resp. U q ( gl 2 ) ,± ) is generated by γ m (resp. γ -m ) with m ∈ N * .

For U q ( sl 2 ), it is known that given a certain ordering the elements {x ± k , h , K ±1 , C ±1/2 |k ∈ Z, ∈ Z\{0}} generate a PBW basis, see [Be94, Proposition 6.1] with [BCP98, Lemma 1.5]. According to (5.33), with a minor modification in the Cartan sector associated with the decomposition of h k into E 1,k , E 2,k , a PBW basis for U q ( gl 2 ) is obtained. If one considers the subalgebra U q ( gl 2 ) ,+ , let us choose the ordering:

C 1/2 x - 1 < Cx - 2 < • • • < E 1,1 < E 1,2 < • • • < E 2,1 < E 2,2 < • • • < C -1/2 K -1 x + 1 < K -1
x + 0 , whereas for the subalgebra U q ( gl 2 ) ,-we choose the ordering:

x - 0 < C 1/2 x - -1 < • • • < E 1,1 < E 1,2 < • • • < E 2,1 < E 2,2 < • • • < C -1 x + -2 K < C -1/2 x + -1 K . It follows:
Proposition 5.14. The vector space U q ( gl 2 ) ,+ (resp. U q ( gl 2 ) ,-) has a linear basis consisting of the products

x 1 x 2 • • • x n (n ∈ N) with x i ∈ U q ( gl 2 ) ,+ (resp. x i ∈ U q ( gl 2 ) ,-) such that x 1 ≤ x 2 ≤ • • • ≤ x n .
Using the automorphism (5.34), PBW bases for U q ( gl 2 ) ,-and U q ( gl 2 ) ,+ are similarly obtained. We now turn to the construction of K-matrices satisfying the Freidel-Maillet type equations (3.9) or (3.25), whose entries are formal power series in the elements of alternating subalgebras. Assume there exists a matrix K0 with scalar entries and two quantum Lax operators L(z), L 0 such that the following relations hold ( R21 (z) = P R12 (z)P ):

R12 (z/w) K0 1 R (0) K0 2 = K0 2 R (0) K0 1 R21 (z/w) , (5.67) R12 (z/w)L 1 (z)L 2 (w) = L 2 (w)L 1 (z) R12 (z/w) , (5.68) R21 (z/w)(L 0 ) 1 (L 0 ) 2 = (L 0 ) 2 (L 0 ) 1 R21 (z/w) , (5.69) (L 0 ) 1 R (0) L 2 (w) = L 2 (w)R (0) (L 0 ) 1 , (5.70) L 1 (z)R (0) (L 0 ) 2 = (L 0 ) 2 R (0) L 1 (z) .
(5.71) Adapting [Sk88, Proposition 2], using the above relations one finds that : K(z) → L(z) K0 L 0 (5.72) satisfies the following Freidel-Maillet type equation (for a non-symmetric R-matrix)

R12 (z/w) ( K(z) ⊗ II) R (0) (II ⊗ K(w)) = (II ⊗ K(w)) R (0) ( K(z) ⊗ II) R21 (z/w) .
(5.73) An example built from the FRT presentation for U q ( gl 2 ) of Theorem 5.7 is obtained as follows. For the choices

L(z) → L -(z) and L 0 → L -,0 = diag((k - 2,0 ) -1 , (k - 1,0 ) -1
) , (5.74) eq. (5.68) holds and using the exchange relations (5.55)-(5.57) it is checked that eqs. (5.69)-(5.71) hold. Also, for the choice K0 = 0 k+(q+q -1 ) (q-q -1 ) k-(q+q -1 ) (q-q -1 ) 0

(5.75) it is checked that eq. (5.67) holds. It follows

K(z) → K-(z) = L -(z) K0 L -,0
(5.76) satisfies (5.73). Note that eq. (5.73) is left invariant under the transformation (z, w) → (λz, λw) for any λ ∈ C * .

A solution of (3.9) associated with the symmetric R-matrix (3.1) is readily obtained using the similarity transformation (5.40).

Lemma 5.15. The dressed K-matrix

K -(u) = ⎛ ⎝ u -1 k-(q+q -1 ) q-q -1 k - 1 (qu 2 )f -(qu 2 )(k - 2,0 ) -1 k+(q+q -1 ) q-q -1 k - 1 (qu 2 )(k - 1,0 ) -1 k -(q+q -1 ) q-q -1 k - 2 (qu 2 ) + e -(qu 2 )k - 1 (qu 2 )f -(qu 2 ) (k - 2,0 ) -1 u k+(q+q -1 ) q-q -1 e -(qu 2 )k - 1 (qu 2 )(k - 1,0 ) -1 ⎞ ⎠
satisfies the Freidel-Maillet type equation (3.9).

Proof. The K-matrix K-(z) defined by (5.76) satisfies (5.73). Applying the transformation (5.40) to (5.73) and defining

K -(u) = M(u) K-(qu 2 )M(u) ,
the claim follows.

Another solution of (3.9) is obtained as follows. Assume there exists two quantum Lax operators L(z), L 0 such that the relations (5.70), (5.71) and

R21 (z/w)L 1 (z)L 2 (w) = L 2 (w)L 1 (z) R21 (z/w) , R12 (z/w)(L 0 ) 1 (L 0 ) 2 = (L 0 ) 2 (L 0 ) 1 R12 (z/w) are satisfied. It is straightforward to check that L(z) → (L + (z -1 )) -1 and L 0 → L +,0 = diag(k + 2,0 , k + 1,0 ) (5.77)
obey the above set of relations. Then K(z) → K+ (z) = L +,0 K0 (L + (z -1 ) -1 ) (5.78) satisfies (5.73). Using this result combined with the similarity transformation (5.40), it follows: Lemma 5.16. The dressed K-matrix

K + (u) = ⎛ ⎝ u -1 -k+(q+q -1 ) q-q -1 k + 2,0 k + 2 (1/qu 2 ) -1 e + (1/qu 2 ) k+(q+q -1 ) q-q -1 k + 2,0 k + 2 (1/qu 2 ) -1 k-(q+q -1 ) q-q -1 k + 1,0 k + 1 (1/qu 2 ) -1 + f + (1/qu 2 )k + 2 (1/qu 2 ) -1 e + (1/qu 2 ) u -k-(q+q -1 ) q-q -1 k + 1,0 f + (1/qu 2 )k + 2 (1/qu 2 ) -1 ⎞ ⎠
satisfies the Freidel-Maillet type equation (3.9).

For completeness, a K-matrix satisfying (3.25) is now constructed along the same lines. To this aim, we consider the set of relations (5.67)-(5.71) with the substitution:

R (0) → (R (0) ) -1 . (5.79) For the choices L(z) → L + (z) and L 0 → L +,0 = diag((k + 2,0 ) -1 , (k + 1,0 ) -1 ) , (5.80) one finds that K(z) → K + (z) = L + (z) K0 L +,0 (5.81) satisfies (for the non-symmetric R-matrix) R12 (z/w) ( K(z) ⊗ II) (R (0) ) -1 (II ⊗ K(w)) = (II ⊗ K(w)) (R (0) ) -1 ( K(z) ⊗ II) R21 (z/w) . (5.82)
Using (5.40), it follows:

Lemma 5.17. The dressed K-matrix

K + (u) = ⎛ ⎝ u -1 k-(q+q -1 ) q-q -1 k + 1 (qu 2 )f + (qu 2 )(k + 2,0 ) -1 k+(q+q -1 ) q-q -1 k + 1 (qu 2 )(k + 1,0 ) -1 k-(q+q -1 ) q-q -1 k + 2 (qu 2 ) + e + (qu 2 )k + 1 (qu 2 )f + (qu 2 ) (k + 2,0 ) -1 u k+(q+q -1 ) q-q -1 e + (qu 2 )k + 1 (qu 2 )(k + 1,0 ) -1 ⎞ ⎠ satisfies the Freidel-Maillet type equation (3.25).
The entries of the K-matrices are formal power series in the elements of the alternating subalgebras. Consider for instance the entry (K -(u)) 11 . One has:

(K -(u)) 11 = u -1 q ⎛ ⎜ ⎜ ⎝ k -(q + q -1 ) q 2 -1 k - 1 (qu 2 ) f -(qu 2 )(k - 2,0 ) -1 =q(k - 2,0 ) -1 f -(qu 2 ) ⎞ ⎟ ⎟ ⎠ by (5.56) = u -1 q ⎛ ⎜ ⎜ ⎝ k -(q + q -1 ) q -q -1 k - 1 (qu 2 )(k - 2,0 ) -1 =K -1 exp(-(q-q -1 ) ∞ n=1 a1,n(qu 2 ) -n ) f -(qu 2 ) ⎞ ⎟ ⎟ ⎠ by (5.51) .
Inserting (5.43), one gets:

(K -(u)) 11 = uq -k -(q 2 + 1) exp -(q -q -1 ) ∞ n=1 a 1,n (qu 2 ) -n ∞ k=0 q k C -k/2 K -1 x + k (qu 2 ) -k-1 .
According to Definition 5.12 and (5.52), (5.53), we conclude (K

-(u)) 11 ∈ U q ( gl 2 ) ,+ ⊗ C[[u 2 ]].
Studying similarly the other entries and repeating the same analysis for K + (u) and K + (u), one finds:

(K -(u)) ij ∈ U q ( gl 2 ) ,+ ⊗ C[[u 2 ]] , (K + (u)) ij ∈ U q ( gl 2 ) ,-⊗ C[[u 2 ]] , (5.83) and (K + (u)) ij ∈ U q ( gl 2 ) ,-⊗ C[[u 2 ]] .

Isomorphisms relating

Āq and the alternating subalgebras U q ( gl 2 ) ,± and U q ( gl 2 ) ,± . Recall the Freidel-Maillet type presentation for Āq of Theorem 3.1. A direct comparison between the K-matrix (3.8) and the K-matrices K ± (u) previously derived provides explicit maps from Āq to the alternating subalgebras of U q ( gl 2 ). Recall the generating functions (3.5), (3.6) of the algebra Āq .

Proposition 5.18. There exists an isomorphism from Āq to U q ( gl 2 ) ,+ such that:

W + (u) → -k -(q 2 + 1) exp -(q -q -1 ) ∞ n=1 a 1,n (qu 2 ) -n ∞ k=0 q k C -k/2 K -1 x + k (qu 2 ) -k-1 , (5.84) W -(u) → -k + (q -2 + 1) ∞ k=0 q k+1 C (k+1)/2 x - k+1 (qu 2 ) -k-1 exp -(q -q -1 ) ∞ n=1 a 1,n (qu 2 ) -n , (5.85) G + (u) → ρ q -q -1 exp -(q -q -1 ) ∞ n=1 a 1,n (qu 2 ) -n -1 , (5.86) G -(u) → ρ q -q -1 exp -(q -q -1 ) ∞ n=1 a 2,n (qu 2 ) -n -1 (5.87) + ρ(q -q -1 ) ∞ k, =0 q k+ +2 C (k-+1)/2 x - k+1 K -1 exp -(q -q -1 ) ∞ n=1 a 1,n (qu 2 ) -n x + (qu 2 ) -k--1 .
Proof. As previously discussed, using (5.42), (5.43) and (5.51), the entries of K -(u) are power series in qu 2 . Identifying (3.8) with K -(u), one gets the above homomorphism Āq → U q ( gl 2 ) ,+ through identifying the generating functions. It remains to show that it is an isomorphism. Firstly, by analogy with U q ( sl 2 ) [CP94, page 289], U ( gl 2 ) with defining relations (5.1)-(5.5) is known as the specialization q → 1 of U q ( gl 2 ). So, the subalgebra U q ( gl 2 ) ,+ specializes to U ( gl 2 ) ,+ with (5.20). Secondly, by Proposition 5.4 A ∼ = U ( gl 2 ) ,+ . Thirdly, by Proposition 2.18 A is the specialization of Āq at q → 1, ρ → 16. All together, we conclude that the map above is an isomorphism.

Identifying the leading terms of the power series, one finds for instance:

Example 5.19. The image in U q ( gl 2 ) ,+ of the first generators of Āq is such that:

W 0 → -k -qK -1 x + 0 , W 1 → -k + C 1/2 x - 1 , G 1 → - ρ q + q -1 a 1,1 , G1 → - ρ q + q -1 a 2,1 + ρ(q -q -1 ) (q + q -1 ) q 2 C 1/2 x - 1 K -1 x + 0 .
As a second example, recall the Freidel-Maillet type presentation (3.25) for Āq with (3.24). In this case, the K-matrix (3.24) is compared with the K-matrix K + (u) of Lemma 5.17. It follows Proposition 5.20. There exists an isomorphism from Āq to U q ( gl 2 ) ,-such that:

W + (u -1 q -1 ) → k + (q + q -1 ) ∞ k=0 q -k C k/2 x - -k (qu 2 ) k+1 exp (q -q -1 ) ∞ n=1 a 1,-n (qu 2 ) n , W -(u -1 q -1 ) → k -(q + q -1 ) exp (q -q -1 ) ∞ n=1 a 1,-n (qu 2 ) n ∞ k=0 q -k+1 C -(k+1)/2 x + -k-1 K(qu 2 ) k+1 , G + (u -1 q -1 ) → ρ q -q -1 exp (q -q -1 ) ∞ n=1 a 1,-n (qu 2 ) n -1 , G -(u -1 q -1 ) → ρ q -q -1 exp (q -q -1 ) ∞ n=1 a 2,-n (qu 2 ) n -1 + ρ(q -q -1 ) ∞ k, =0 q -k-C (k--1)/2 x - -k exp (q -q -1 ) ∞ n=1 a 1,-n (qu 2 ) n x + --1 K(qu 2 ) k+ +1 .
Example 5.21. The image in U q ( gl 2 ) ,-of the first generators of Āq is such that:

W 0 → k + x - 0 , W 1 → k -qC -1/2 x + -1 K , G 1 → ρ q + q -1 a 1,-1 , G1 → ρ q + q -1 a 2,-1 + ρ(q -q -1 ) (q + q -1 ) C -1/2 x - 0 x + -1 K .
So, the alternating subalgebra U q ( gl 2 ) ,+ (resp. U q ( gl 2 ) ,-) admits a Freidel-Maillet type presentation given by the K-matrix K -(u) (resp. K + (u)) satisfying eq. (3.9) (resp. eq. (3.25)). Using the automorphism (5.34), a presentation for U q ( gl 2 ) ,-(resp. U q ( gl 2 ) ,+ ) can be obtained as well.

Finally, let us introduce the alternating subalgebras of U Dr q . Definition 5.22.

U Dr, ,± q = {C ∓k/2 K -1 x ± k , C ±(k+1)/2 x ∓ k+1 , h k |k ∈ N} , U Dr, ,± q = {C ∓k/2 x ± -k , C ±(k+1)/2 x ∓ -k-1 K, h k |k ∈ N} .
We call U Dr, ,± q and U Dr, ,± q the right and left alternating subalgebras of U Dr q . The subalgebra generated by {K ±1 , C ±1/2 } is denoted U Dr, q .

As a corollary of (5.61) and Remark 5.13, one has the tensor product decompositions:

U q ( gl 2 ) ,± ∼ = U Dr, ,± q ⊗ C , U q ( gl 2 ) ,± ∼ = U Dr, ,± q ⊗ C . Recall (5.59). δ(G + (u)) → k - 1 (qu 2 )(k - 1,0 ) -1 ⊗ G + (u) + ρ q -q -1 k - 1 (qu 2 )(k - 1,0 ) -1 -1 ⊗ II + k -(q + q -1 )k - 1 (qu 2 )(k - 1,0 ) -1 f -(qu 2 ) ⊗ W -(u) , δ(G -(u)) → k - 2 (qu 2 )(k - 2,0 ) -1 + qe -(qu 2 )k - 1 (qu 2 )(k - 2,0 ) -1 f -(qu 2 ) ⊗ G -(u) + ρ q -q -1 k - 2 (qu 2 )(k - 2,0 ) -1 + qe -(qu 2 )k - 1 (qu 2 )(k - 2,0 ) -1 f -(qu 2 ) -1 ⊗ II + k + qu 2 (q + q -1 )e -(qu 2 )k - 1 (qu 2 )(k - 2,0 ) -1 ⊗ W + (u) .
Proof. Compute (5.89) using (5.41), (5.40) and (3.8) . Compare the entries of the resulting matrix to δ(K(u)) with (3.8).

Expanding the power series on both sides of the above equations using (3.5), (3.6), (5.42)-(5.44) with (5.51), (5.54), one gets the image by δ of the generators of Āq . This generalizes example (2.48).

Example 5.26.

δ(W 0 ) = -k -qK -1 x + 0 ⊗ II + K -1 ⊗ W 0 , δ(W 1 ) = -k + C 1/2 x - 1 ⊗ II + K ⊗ W 1 .
If we define similarly U q ( gl 2 ) ,-,0 , note that a right coaction map Āq → Āq ⊗ U q ( gl 2 ) ,-,0 can be derived along the same lines. 5.4. Relation between the generators of Āq and root vectors of U q ( sl 2 ). Let α 0 , α 1 denote the simple roots of sl 2 and δ = α 0 + α 1 be the minimal positive imaginary root. Let R = {nδ + α 0 , nδ + α 1 , mδ|n ∈ Z, m ∈ Z\{0}} be the root system of sl 2 and R + = {nδ + α 0 , nδ + α 1 , mδ|n ∈ N, m ∈ N\{0}} denote the positive root system. Recall U DJ,+ q denote the subalgebra generated by

E α1 ≡ E 1 , E α0 ≡ E 0 .
Using Lusztig's braid group action with generators T 0 , T 1 such that T i : U q ( sl 2 ) → U q ( sl 2 ), root vectors E β ∈ U DJ,+ q for every β ∈ R + are defined [START_REF] Damiani | A basis of type Poincaré-Birkhoff-Witt for the quantum algebra of Uq( sl 2 )[END_REF][START_REF] Beck | Braid group action and quantum affine algebras[END_REF]. Namely, for real root vectors nδ + α 0 , nδ + α 1 with n ∈ N one chooses E nδ+α0 = (T 0 Φ) n (E 0 ) and E nδ+α1 = (T 0 Φ) -n (E 1 ) .

Here Φ : U q ( sl 2 ) → U q ( sl 2 ) denotes the automorphism defined by: Φ(X 0 ) = X 1 , Φ(X 1 ) = X 0 for X = E, F, K ±1 .

For the imaginary root vectors, following [START_REF] Beck | Braid group action and quantum affine algebras[END_REF][START_REF] Beck | An algebraic characterization of the affine canonical basis Duke Math[END_REF] they are defined through the functional equation (note that E nδ , E mδ = 0 for any n, m):

exp (q -q -1 ) ∞ k=1 E kδ z k = 1 + (q -q -1 ) ∞ k=0
ψk z k with ψk = E kδ-α1 E α1q -2 E α1 E kδ-α1 .

For the negative root system denoted R -, similarly one defines the root vectors F β ∈ U DJ,- q for every β ∈ R - [START_REF] Damiani | A basis of type Poincaré-Birkhoff-Witt for the quantum algebra of Uq( sl 2 )[END_REF]. The root vectors of U DJ,+ q and U DJ,- q are related as follows (see [Da93, Theorem 2]):

F β = Ω(E β ) ∀β ∈ R + , (5.90)
where Ω is an antiautomorphism of U q ( sl 2 ) such that Ω(E i ) = F i , Ω(F i ) = E i , Ω(K i ) = K -1 i for i = 1, 2 , Ω(C) = C -1 and Ω(q) = q -1 .

The explicit relation between Drinfeld generators and root vectors has been given in [Be94, Section 4] (see also [BCP98, Lemma 1.5]). For U q ( sl 2 ), according to above definitions one has the correspondence:

x + k = E kδ+α1 ,
x - k+1 = -C -k-1 KE kδ+α0 , h k+1 = C -(k+1)/2 E (k+1)δ , (5.91)

x - -k = F kδ+α1 , x + -k-1 = -F kδ+α0 K -1 C k+1 , h -k-1 = C (k+1
)/2 F (k+1)δ (5.92) for k ∈ N. From (5.37), one gets the following relations in terms of the root vectors [Da93, Section 3]: E δ , E kδ+α1 = (q + q -1 )E (k+1)δ+α1 , E kδ+α0 , E δ = (q + q -1 )E (k+1)δ+α0 . (5.93) By induction, root vectors can be written as polynomials in E 1 , E 0 . For instance:

E δ = E 0 E 1 -q -2 E 1 E 0 , E δ+α0 = 1 q + q -1 E 2 0 E 1 -(1 + q -2 )E 0 E 1 E 0 + q -2 E 1 E 2 0 , E δ+α1 = 1 q + q -1 E 0 E 2 1 -(1 + q -2 )E 1 E 0 E 1 + q -2 E 2 1 E 0 .
We now relate the root vectors to the generators of alternating subalgebras. For convenience, compute the image of U Dr, ,+ q (see Definition 5.22) by the automorphism ν (5.35) using (5.33). This alternating subalgebra is denoted (U Dr, ,+ q ) ν . Using (5.91), in terms of root vectors the generators of (U Dr, ,+ q ) ν read:

C -k/2 K -1 x + k ν → C -k/2 x + k = C -k/2 E kδ+α1 , (5.94) C (k+1)/2 x - k+1 ν → C (k+1)/2 x - k+1 K -1 = -q -2 C -(k+1)
/2 E kδ+α0 , (5.95)

h k+1 ν → h k+1 = C -(k+1)/2 E (k+1)δ . (5.96)
As an application of Proposition 5.18, a set of functional relations relating the generators of Āq to the root vectors of U DJ,+ q (or similarly for U DJ,- q ) is easily derived. Recall the surjective homomorphism γ : Āq → Āq ∼ = U DJ,+ q , see (2.37). Consider the image of the generating functions (3.5), (3.6) via γ.

Proposition 5.27. The isomorphism ι : Āq → U DJ,+ q is such that: γ(W + (u)) → -k -q(q + q -1 ) exp -(qq -1 )

∞ n=1 1 (q n + q -n ) E nδ (qu 2 ) -n ∞ k=0
q k E kδ+α1 (qu 2 ) -k-1 , γ(W -(u)) → k + q -1 (q + q -1 ) ∞ k=0 q k-1 E kδ+α0 (qu 2 ) -k-1 exp -(qq -1 ) ∞ n=1 1 (q n + q -n ) E nδ (qu 2 ) -n , γ(G + (u)) → ρ (qq -1 ) exp -(qq -1 )

∞ n=1 1 (q n + q -n ) E nδ (qu 2 ) -n -1 , γ(G -(u)) → ρ (q -q -1 ) exp (q -q -1 ) ∞ n=1 q 2n (q n + q -n ) E nδ (qu 2 ) -n -1 + ρ(q -q -1 ) ∞ k, =0
q k+ E kδ+α0 exp -(qq -1 ) ∞ n=1 1 (q n + q -n ) E nδ (qu 2 ) -n E δ+α1 (qu 2 ) -k--1 .

Proof. Recall the surjective homomorphism γ D which acts as (5.63)-(5.65). Consider its restriction to U q ( gl 2 ) ,+ , applied to the r.h.s. of (5.84)-(5.87). The resulting expressions are now in U Dr, ,+ q ⊗ C[[u 2 ]]. Then, studying the relations satisfied by {C -k/2 K -1 x + k , C (k+1)/2 x - k+1 , h k+1 } one finds that they are equivalent to the defining relations of the quotient of U Dr, ,+ q by C = 1. Apply ν and use the identification given in the r.h.s of (5.94)-(5.96) for C = 1.

Expanding the above power series, for instance set k + → q 2 , k -→ -q -1 (which gives ρ = -q(q + q -1 ) 2 ) in these expressions. It follows:

W 0 → E 1 , W 1 → E 0 , G 1 → qE δ ,
(note that G1 → -q 3 E δ + (q 3q -1 )E 0 E 1 ) , (5.97) W -1 → 1 (q + q -1 ) 2 -(qq -1 )E δ E 1 + (q 2 + 1)E δ+α1 , (5.98) W 2 → 1 (q + q -1 ) 2 -(qq -1 )E 0 E δ + (q 2 + 1)E δ+α0 .

(5.99) By construction, (U Dr, ,+ q ) ν / C=1 ∼ = U DJ,+ q . Using (5.90), an isomorphism Āq → U Dr, ,- q / C=1 ∼ = U DJ,- q is obtained from the above expressions.

The inverse of the map ι is now considered. We want to solve the positive root vectors E nδ+α1 , E nδ+α0 , E nδ in terms of the generators W -k , W k+1 , G k+1 . Although we do not have the explicit inverse map between generating functions, the images of the root vectors in Āq can be obtained recursively from Proposition 5.27. For instance,

E 1 → W 0 , E 0 → W 1 , E δ → q -1 G 1 W 0 , , (5.100) E δ+α1 →
(qq -1 ) (q + q -1 ) q -2 G 1 W 0 + (1 + q -2 )W -1 , (5.101) E δ+α0 → (qq -1 ) (q + q -1 ) q -2 W 1 G 1 + (1 + q -2 )W 2 . (5.102) Of course, these expressions could be given in a different ordering (see Theorem 2.15) using (2.3) for k = 0.

Finally, let us point that several relations mixing both sets of generators can be readily obtained using (3.9) combined with Proposition 5.27. Namely, define the image of the K-matrix (3.8) by ι as: Remark 5.28. In [T19a, Section 11], the relation between Damiani's PBW basis and the alternating PBW basis for Āq has been studied in details within the framework of the q-shuffle algebra. In particular, various relations mixing both sets of generators have been obtained.

6. The alternating presentation of U q ( sl 2 ) from U DJ q Define the alternating subalgebra Ā q ∼ = (U Dr, ,+ q ) ν / C=1 (resp. Ā q ∼ = U Dr, ,- q / C=1 ) as the image of Āq by ι (resp. Ω • ι) (see Proposition 5.27) for k + → q 2 , k -→ -q -1 . For convenience, let us denote the generators of Ā q (resp. Ā q ) by {W -k , W k+1 , G k+1 , G k+1 |k ∈ N} (resp. {W -k , W k+1 , G k+1 , G k+1 |k ∈ N}) . According to (5.97):

W 0 = E 1 , W 1 = E 0 , W 0 = F 1 , W 1 = F 0 . (6.1)
Recall Proposition 2.14 and U DJ,0 q = {K 0 , K 1 }. By construction, one gets the tensor product decomposition: U q ( sl 2 ) ∼ = Ā q ⊗ U DJ,0 q ⊗ Ā q . (6.2) Moreover, by Theorem 2.15 an 'alternating' PBW basis for U q ( sl 2 ) readily follows from the results of [T19a, T19b].

  The generators w 0 , w 1 satisfy the Serre relations (i.e. (2.44)-(2.45) for q = 1). Recall the Lie algebra sl 2 SC in the Serre-Chevalley presentation of sl 2 with defining relations reported in Appendix A. Denote sl 2 SC,+ (resp. sl 2 SC,-

Proposition 4. 5 .

 5 The map Āq → Ā(N) q

  in addition to (2.51) one has the decompositions gl 2 z -. So, the images become:

  (5.61) 8 I thank N. Jing for communications on this point. Note that the analogs of y ± (z) are known for higher rank affine Lie algebras of type A,B,C,D [FMu02, JLM19, JLM20].

K

  ι (u) = ι(K(u)) .(5.103) Consider the pair of K-matrices {K(u), K ι (v)}. They satisfy:R(u/v) (K(u) ⊗ II) R (0) (II ⊗ K ι (v)) = (II ⊗ K ι (v)) R (0) (K(u) ⊗ II) R(u/v) (5.104)with (3.1). If we define the generating functions W± (v) ι,γ = ι • γ(W ± (v)), G ± (v) ι,γ = ι • γ(G ± (v)),from (3.10)-(3.18) one extracts the set of functional relations associated with (5.104).

Definition 2.13. The algebra Āq is defined as the quotient of the algebra Āq by the ideal generated from the relations {Δ k+1 = 0|∀k ∈ N}. The generators are {W -k , W k+1 , G k+1 , Gk+1 |k ∈ N}.

  

	T19b, Definition 5.1] in
	U + q are vanishing, see [T19b, Lemma 2.8]. Recall (2.25), (2.26).

  Āq in U q (sl 2 ) ⊗N . According to previous results, dressed solutions of the form (4.31) automatically generate the finite set of operators (4.16)-(4.19). In this section, we show (4.16)-(4.19) extends to k ∈ N and provide realizations of Āq in U q (sl 2 ) ⊗N . To this aim, we need a generalization of Lemma 4.2.

	Lemma 4.4. For any p ∈ N, the operators (4.16)-(4.19) satisfy the linear relations:

Ā and 'alternating' subalgebras of gl

  2 . The affine general Lie algebra gl 2 admits a presentation of Serre-Chevalley type and Cartan-Weyl type, closely related with the presentations of the affine Lie algebra sl 2 [K85, GO86]. Consider the presentation of Cartan-Weyl type for gl 2 . In the definition below, [., .] denotes the Lie bracket.

	Definition 5.1. (Cartan-Weyl presentation gl 2

CW

) The affine general Lie algebra gl 2 over C is generated by {x

  21)the right and left alternating subalgebras of gl 2 . The subalgebra generated by { 1,0 , 2,0 , c} is denoted gl 2 .Inserting (5.18) (resp. (5.19)) into (3.34), the relations satisfied by the generators {x ± ±k , 1,± , 2,± } are extracted. They are identical to the defining relations of the subalgebra gl 2

	We call gl 2	,±	and gl 2	,±
						,+	(resp. gl 2	,-	). Thus, FRT presentations for gl 2	,-
	and gl 2	,+	are given respectively by (5.19), (5.18) satisfying (3.34). Applying the automorphism (5.6) to (5.19), (5.18),
	one gets the FRT presentations of gl 2	,+	and gl 2	,-

Note that this r-matrix can be obtained from a limiting case of a r-matrix considered in[START_REF] Baseilhac | FRT presentation of the Onsager algebras[END_REF].

We expect this presentation appears in the literature, although we could not find a reference. Here it is taken from[START_REF] Baseilhac | FRT presentation of the Onsager algebras[END_REF].

We denote r (z) = d d r(z) .

Applying the transformation:

and similarly for u → v, one finds that

1 k-(q+q -1 ) G + (u -1 q -1 ) + k+(q+q -1 ) (q-q -1 ) 1 k+(q+q -1 ) G -(u -1 q -1 ) + k-(q+q -1 ) (q-q -1 ) u -1 q -1 W + (u -1 q -1 ) (3.24) satisfies the Freidel-Maillet type equation:

This second presentation of Āq will be used in Section 5.

Central elements.

For the Freidel-Maillet type algebra (3.9), central elements can be derived from the so-called Sklyanin determinant by analogy with [Sk88, Proposition 5]. Define P - 12 = (1 -P )/2. As usual, below 'tr 12 ' stands for the trace over V 1 ⊗ V 2 . Proposition 3.3. Let K(u) be a solution of (3.9). The quantum determinant

Proof. Recall the notation (3.2). Introduce the vector space V 0 . With respect to the tensor product

12 K 2 (uq) (using

12 K 2 (uq) (using (3.9)) .

Applying again (3.9) to the combination

Remark 5.23. The alternating subalgebra U Dr, ,± q (resp. U Dr, ,± q ) is the quotient of U q ( gl 2 ) ,± (resp. U q ( gl 2 ) ,± ) by the ideal generated from the relations {γ m+1 = 0| ∀m ∈ N} (resp. {γ -m-1 = 0| ∀m ∈ N}).

We conclude this section with some comments. Using the isomorphism of Propositions 5.18, the image of the generating function Δ(u) ∈ Z ⊗ C u 2 defined by (3.28) gives a generating function in C ⊗ C u 2 that looks more complicated than (5.58). In the context of FRT/Sklyanin/Freidel-Maillet type presentations, this is not surprising as Δ(u) and y ± (qu 2 ) are built from different quantum determinants (see e.g. [START_REF] Sklyanin | Boundary conditions for integrable quantum systems[END_REF] for details). However, as a consistency check one can compare the leading orders of both power series. For instance, let us compute the image in U q ( gl 2 ) ,+ of Δ 1 given by (2.27) using the expressions of Example 5.19. After simplifications using (5.28), (5.30), it reduces to:

which produces γ 1 (see (5.59) for m = 1). 5.3. The comodule algebra homomorphism δ : Āq → U q ( gl 2 ) ,+,0 ⊗ Āq . At the end of Section 2, a coaction map W 0 , W 1 → U DJ,+,0 q ⊗ W 0 , W 1 has been given. In this subsection, we study further the comodule algebra structure of Āq using the FRT presentation of Theorem 5.7. A coaction formula for all the generators of Āq is derived as follows.

Recall the coproduct formulae for the quantum Lax operators (5.48). Take the K-matrix (5.76) and define the new K-matrix:

By construction, it satisfies (5.73) for the non-symmetric R-matrix (5.39). Using the invariance of (5.73) under shifts in the ratio z/w, it follows that

solves (5.73). More generally, starting from any K-matrix satisfying (5.73) and following standard arguments [START_REF] Sklyanin | Boundary conditions for integrable quantum systems[END_REF] different types of coactions can be constructed from the FRT presentation. Using (5.40), for a symmetric R-matrix for instance it yields to: Proposition 5.24. The Freidel-Maillet type presentation (3.9) of Āq associated with R-matrix (3.1) and K-matrix (3.8) admits a comodule algebra structure. The left coaction is given by:

A right coaction map is similarly obtained by analogy with (5.78). Now, recall the generating functions (3.5), (3.6). Also, define U q ( gl 2 ) ,+,0 as the alternating subalgebra U q ( gl 2 ) ,+ extended by K, K -1 . Lemma 5.25. There exists a left comodule algebra homomorphism δ : Āq → U q ( gl 2 ) ,+,0 ⊗ Āq such that:

Theorem 6.1. A PBW basis for U q ( sl 2 ) is obtained by its alternating right and left generators

and K 0 , K 1 in any linear order < that satisfies

The transition matrix from the alternating PBW basis of Theorem 6.1 to Damiani's PBW basis for U q ( sl 2 ) [Da93, Theorem 2] is determined by Proposition 5.27 and using the antiautomorphism Ω (5.90).
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Appendix A. Drinfeld-Jimbo presentation of U q ( sl 2 ) A.1. Drinfeld-Jimbo presentation U DJ q . Define the extended Cartan matrix {a ij } (a ii = 2, a ij = -2 for i = j). The quantum affine algebra U q ( sl 2 ) over C(q) is generated by {E j , F j , K ±1 j }, j ∈ {0, 1} which satisfy the defining relations

together with the q-Serre relations (i = j) E i , E i , E i , E j q q -1 = 0 , (A.1)

The product C = K 0 K 1 is the central element of the algebra. The Hopf algebra structure is ensured by the existence of a comultiplication Δ , antipode S and a counit E with

More generally, one defines the N -coproduct

for N ≥ 3 with Δ (2) ≡ Δ, Δ (1) ≡ id. Note that the opposite coproduct Δ can be similarly defined with Δ ≡ σ • Δ where the permutation map σ(x ⊗ y) = y ⊗ x for all x, y ∈ U q ( sl 2 ) is used.

A.2. Serre-Chevalley presentation sl 2 SC . In the definition below, [., .] denotes the Lie bracket. The affine algebra sl 2 over C is generated by {e j , f j , k j }, j ∈ {0, 1} which satisfy the defining relations k i , k j = 0 , k i , e j = a ij e j , k i , f j = -a ij f j , e i , f j = δ i,j k i together with the Serre relations (i = j) e i , e i , e i , e j = 0 , (A.5)

The sum c = k 0 + k 1 is the central element of the algebra.