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Abstract. D’Ambrosio, Lee, and Wächter (2009, 2012) introduced an
algorithmic approach for handling separable non-convexities in the con-
text of global optimization. That algorithmic framework calculates lower
bounds (on the optimal min objective value) by solving a sequence of
convex MINLPs. We propose a method for addressing the same setting,
but employing disjunctive cuts (generated via LP), and solving instead
a sequence of convex NLPs. We present computational results which
demonstrate the viability of our approach.
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Introduction

We consider non-convex global-optimization problems of the form

min f0(x) +
∑n
j=1 g0,j(xj)

subject to:

fi(x) +
∑n
j=1 gi,j(xj) ≤ 0, for i = 1, . . . ,m;

Lj ≤ xj ≤ Uj , for j = 1, . . . , n,

where the fi are convex (i = 0, . . . ,m) and the gi,j are univariate but not
necessarily convex (i = 0, . . . ,m; j = 1, . . . , n). So all of the non-convexity is
assumed to be separable. We assume that all of the functions are continuous
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and sufficiently smooth. We may have that some of the variables are restricted
to be integers, but this does not directly matter for our approach.

An algorithm for this class of problems was studied in [8,9]. A key aspect
of that algorithm is to develop and refine a convex Mixed Integer Nonlinear
Program (MINLP) relaxation. The algorithm is based on making a piecewise-
convex under-estimator for each gi,j , by identifying the concave intervals and
using secant under-estimation on them, to get a convex MINLP relaxation —
binary variables are used to manage the piecewise functions. Refinement of the
piecewise-convex under-estimator is carried out by adding further breakpoints
on the concave intervals. After each new breakpoint, a convex MINLP is solved.

Our goal is to use the same starting relaxation, but to relax its integrality,
resulting in a continuous, convex Nonlinear Program (NLP). At each iteration,
rather than using further breakpoints to tighten the relaxation, we use a Linear
Program (LP) to generate a cut, an inequality that is not in the original formu-
lation, but is valid for the formulation and tightens the relaxation. In particular,
we iteratively introduce disjunctive cuts as a much more efficient means of im-
proving the NLP relaxation. The efficiency is realized by solving an LP and a
convex NLP at each iteration, rather than an expensive convex MINLP.

In §1, we describe our piecewise-convex under-estimation model. For ease
of exposition and economy of notation, we confine our attention to a single
univariate function g on domain [L,U ]. So what we propose applies separately
to each of the gi,j defined above. In §2, we describe a method for tightening our
under-estimator using disjunctive cuts, plus some improvements to our basic
approach. In §3, we describe our successful computational results. In §4, we
make some brief conclusions and indicate some plans for future work.

1 A piecewise-convex under-estimator

Our framework is similar to that of [8,9], with our focus being on optimization
models in which all of the non-convexity is separable, with each (univariate)
summand being continuous on a finite interval and piecewise sufficiently smooth.
In our development, we focus on how to handle each such non-convex summand.

Toward that end, we consider treating a non-convex univariate function g :
[L,U ]→ R, where L < U are real. We assume that g is continuous on [L,U ] and
g is piecewise-defined over a finite set of T ≥ 1 closed subintervals of [L,U ] so
that g is twice continuously differentiable on each associated open subinterval.
To formalize our notation, we assume that g is sub-divided by points pi,

L =: p0 < p1 < p2 < . . . < pT := U,

so that g is twice continuously differentiable on (pi−1, pi), for i = 1, 2, . . . , T .
In this section, we develop a convex under-estimator for g (essentially the

same as was used in [9]). Toward this end, we assume that g is either convex
or concave on each interval Ii := [pi−1, pi], for i = 1, 2, . . . , T . We note that
g could be convex or concave on consecutive intervals. Let H := {1, 2, . . . , T}
be the set of indices of these intervals, which we partition into Ȟ := {i ∈ H :
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g is convex on Ii} and Ĥ := {i ∈ H : g is not convex on Ii}. Note that g is
concave on interval Ii, for i ∈ Ĥ; and if g is linear on interval Ii, then i ∈ Ȟ.

We employ a set of binary variables zi, i = 1, . . . , T − 1, in order to express
g as a separable function of continuous “interval variables” δi, for i = 1, . . . , T ,
using the so-called “delta method” (see [4, pp. 282–283] and [18, Chapter 3], for
example). We want to write the variable x ∈ [L,U ] as a function of the interval
variables in a certain disciplined manner. Specifically,

x = p0 +
∑T
i=1 δi , (1)

where for each i = 1, . . . , T :

0 ≤ δi ≤ pi − pi−1 , and (2)

δi > 0 =⇒ δj = pj − pj−1, for 1 ≤ j < i . (3)

Condition (3) dictates that if δi is positive, then all δj “to the left” (i.e., j < i)
should be at their upper bounds (as specified by (2)). In this way, every value
of x ∈ [L,U ] is associated with a unique solution of (1).

We accomplish this with the constraints:

z1(p1 − p0) ≤ δ1 ≤ p1 − p0 ; (4)

zi(pi − pi−1) ≤ δi ≤ zi−1(pi − pi−1), for i = 2, 3, . . . , T − 1 ; (5)

0 ≤ δT ≤ zT−1(pT − pT−1) ; (6)

zi ∈ {0, 1}, for i = 1, . . . , T − 1 , (7)

which drive the correct behavior of the δi variables. Note that for a particular
x̄ ∈ [L,U ], the values of the (ordered) binary z variables form a sequence of
1s followed by a sequence of 0s, where the index ix̄ of the first 0 indicates the
interval Iix̄ that contains x̄, so that

δi =


pi − pi−1 , for i < ix̄ ;

x̄− pi−1 , for i = ix̄ ;

0 , for i > ix̄ .

Now we can express g(x) as a separable function of the δ-variables,

g(x) =
∑T
i=1 g(pi−1 + δi)−

∑T−1
i=1 g(pi),

giving us access to g on the individual subintervals of [L,U ]. Our goal now
is to give a piecewise-convex under-estimator for g. So we use g as its own
convex under-estimator on the subintervals where g is convex, and replace g
with a secant under-estimator on the subintervals where g is not convex. Our
piecewise-convex under-estimator for g is

g(x) =
∑T
i=1 yi + g(p0), (8)
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with

yi ≥
(
g(pi)− g(pi−1)

pi − pi−1

)
δi, for i ∈ Ĥ, (secant under-estimator) (9)

and

yi ≥ g(pi−1 + δi)− g(pi−1), for i ∈ Ȟ. (under-estimation by g itself) (10)

Notice that in the secant under-estimation (9), the right-hand side is linear in
δi, and is 0 for δi = 0 and is g(pi)− g(pi−1) when δi = pi − pi−1 .

[10] uses a related approach where concave separable quadratics are extracted
from indefinite non-separable quadratics, and then under-estimated by secants.

2 Disjunctive cuts

Our under-estimator g can be quite far from g on the concave subintervals of
[L,U ]. In [9], the algorithmic strategy is to branch at points interior to Ii, for
i ∈ Ĥ, to get tighter lower bounds on the concave segments of g. In doing so, we
are faced with solving a convex MINLP at every stage of the overall algorithm.

Our strategy is to use disjunctive cuts to iteratively tighten our formulation,
with the goal of reducing the number of branching nodes that would be required
for globally optimizing. In contrast to the algorithm of [9], we solve convex NLPs
rather than convex MINLPs, thereby decreasing the computational burden as
we seek to improve the global lower bound in the overall solution process.

2.1 Disjunctive cuts in general

We take an aside now to review disjunctive cuts (see [2]). This sub-section is self
contained, and the notation is not meant to coincide with its earlier usage. For
example, here we have x ∈ Rn. Let

P := {x ∈ Rn : Ax ≤ b},
D1 := {x ∈ Rn : D1x ≤ f1},
D2 := {x ∈ Rn : D2x ≤ f2}.

In its typical usage, P would be (a subset of) the inequalities describing a
polyhedral relaxation of a non-convex model, andD1

∨
D2 would be a disjunction

(i.e., x ∈ D1 or x ∈ D2) that is valid for the non-convex model.
It is well known that we can characterize the set of all linear cuts α>x ≤ β

that are valid for X := conv ((P ∩ D1) ∪ (P ∩ D2)), via the cone

K :=

{(
α

β

)
∈ Rn+1 : ∃ π1, π2, γ1, γ2 ≥ 0, with

α> = π>1 A+ γ>1 D
1, α> = π>2 A+ γ>2 D

2, β ≥ π>1 b+ γ>1 f
1, β ≥ π>2 b+ γ>2 f

2

}
.



Separable non-convexity via disjunctive cuts 5

Notice how, for π1, π2, γ1, γ2 ≥ 0, the inequality π>` (Ax ≤ b)+γ>` (D`x ≤ f `),
which we can alternatively write as (π>` A+γ>` D

`)x ≤ (π>` b+γ>` f
`) , is valid for

P∩D` , for ` = 1, 2. This implies that if α> = π>` A+γ>1 D
` and β ≥ π>` b+γ>` f ` ,

then α>x ≤ β is valid for P ∩ D` .
The so-called “cut-generating linear program” with respect to an x̄ ∈ P is

max

{
α>x̄− β :

(
α

β

)
∈ K

}
. (CGLP)

Because K is a cone, CGLP either has a maximum value of 0 or is unbounded.
If the maximum value is 0, then x̄ ∈ X. Otherwise, the LP is unbounded, and
any direction

(
α
β

)
with α>x̄− β > 0 gives a violated valid cut α>x ≤ β.

Typically, we bound K by using a so-called “normalization constraint”, so
that CGLP always has a finite optimum. See [11] for an understanding of how
to properly solve CGLP using an appropriate normalization. For an example of
the use of a CGLP that is very relevant to our setting, see [15,16,17] for treating
indefinite non-separable quadratics, and [3] for an implementation of some of
those ideas more broadly.

2.2 Our disjunction

Now we return to our setting (see §1). To improve upon the secant under-
estimators on the concave portions of g, we generate cuts based on disjunctions
of the following form. Choosing ψ ∈ (0, pk − pk−1) for some k ∈ Ĥ, we let

Dk1 :=

(yk, δk, ∗) : δk ≤ ψ︸ ︷︷ ︸
λ1

, yk ≥
(
g(pk−1 + ψ)− g(pk−1)

ψ

)
δk︸ ︷︷ ︸

ω1,k

 and

Dk2 :=

(yk, δk, ∗) : δk ≥ ψ︸ ︷︷ ︸
λ2

,

yk ≥
(
g(pk)− g(pk−1 + ψ)

pk − (pk−1 + ψ)

)
(δk − ψ) + g(pk−1 + ψ)− g(pk−1)︸ ︷︷ ︸
ω2,k

 ,

where “∗” is a place-holder for additional variables in the CGLP (the red anno-
tations define variables that will play the role of the γ-variables in the CGLP)

This disjunction corresponds to making a pair of secant under-estimators,
one on [pk−1, pk−1 + ψ] and one on [pk−1 + ψ, pk]. But note that we are not
advocating for refining the set of intervals à la [9]; rather, we want to include
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some of the lower-bounding power of such a branching refinement (which would
come at the substantial cost of solving a further convex MINLP) with a cut
(which only leads to a further convex NLP).

An important consideration is which additional variables and constraints to
include in our CGLP, playing the role of P in the previous section. We also need
to address the selection of k and ψ.

Suppose that we have a “current solution” to a relaxation, including values

δ̄1, δ̄2, . . . , δ̄T ; z̄1, z̄2, . . . , z̄T−1; ȳ1, ȳ2, . . . , ȳT . (11)

We choose k ∈ Ĥ so that the secant approximation for g on Ik is “bad” at the
current solution. This means that g(pk−1 + δ̄k)� ȳk, so we choose k ∈ Ĥ so that
the difference g(pk−1 + δ̄k) − ȳk is maximized. Then we choose ψ = pk−1 + δ̄k,
in the context of the disjunction Dk1

∨
Dk2 .

Now, we turn to the more subtle topic of describing which variable and
inequalities comprise P = {x : Ax ≤ b}. The variable-space for the CGLP
should include all δ-, z-, and y-variables corresponding to g and the following
inequalities (the red annotations define variables that will play the role of the
π-variables in the CGLP):

zi(pi − pi−1)− δi ≤ 0 , for i = 1, 2, . . . , T − 1 ; µ`,i
−δT ≤ 0 ; µ`,T
δ1 ≤ p1 − p0 ; ν`,1

−zi−1(pi − pi−1) + δi ≤ 0 , for i = 2, 3, . . . , T ; ν`,i
−z1 ≤ 0 ; ρ`,0
zT−1 ≤ 1 ; ρ`,1(

g(pi)−g(pi−1)
pi−pi−1

)
δi − yi ≤ 0 , for i ∈ Ĥ \ {k}. ω`,i

Note that we omit the secant inequality for Ik because it is implied by our
disjunctive secants.

We also need to include something to represent the convex pieces of g. That
is, we would like to use yi for i ∈ Ȟ in a constraint similar to (10), but it should
be linearized at the point (δ̄i, ȳi) for use in an LP:

g(pi−1 + δ̄i)− g(pi−1) + g′(pi−1 + δ̄i)(δi − δ̄i)− yi ≤ 0, for i ∈ Ȟ. ω`,i (12)

Note that we use this linearization only in the CGLP. We propose to solve the
overall model relaxation as a convex NLP, including (10), directly.

Additional possibilities for inclusion in P for forming CGLP are:

– linearizations of (10) at other points;
– the variables (δ, z, and y) and constraints corresponding to other univariate

functions in the formulation, but maybe only those univariate functions that
operate on the same x-variable as g.

The CGLP is designed to seek to separate the current solution (to our re-
laxation) using a linear inequality. In particular, we have values (11), and so we
may seek an inequality of the form∑T

i=1 aiδi +
∑T−1
i=1 bizi +

∑T
i=1 ciyi ≤ β (∗)
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that is violated by (11). We do this by solving our version of the CGLP:

max
∑T
i=1 aiδ̄i +

∑T−1
i=1 biz̄i +

∑T
i=1 ciȳi − β (13)

subject to:

ai = −µ`,i + ν`,i +

(
g(pi)− g(pi−1)

pi − pi−1

)
ω`,i , for i ∈ Ĥ \ {k}, ` = 1, 2 ; (14)

ai = −µ`,i + ν`,i + g′(pi−1 + δ̄i)ω`,i , for i ∈ Ȟ, ` = 1, 2 ; (15)

ak = −µ1,k + ν1,k +

(
g(pk−1 + ψ)− g(pk−1)

ψ

)
ω1,k + λ1 ; (16)

ak = −µ2,k + ν2,k +

(
g(pk)− g(pk−1 + ψ)

pk − pk−1 − ψ

)
ω2,k − λ2 ; (17)

b1 = (p1 − p0)µ`,1 − (p2 − p1)ν`,2 − ρ`,0 , for ` = 1, 2 ; (18)

bi = (pi − pi−1)µ`,i − (pi+1 − pi)ν`,i+1 , for i = 2, . . . , T − 2, ` = 1, 2 ; (19)

bT−1 = (pT−1 − pT−2)µ`,T−1 − (pT − pT−1)ν`,T + ρ`,1 , for ` = 1, 2 ; (20)

ci = −ω`,i , for i = 1, . . . , T, ` = 1, 2 ; (21)

β ≥ (p1 − p0)ν1,1 + ρ1,1 (22)

−
∑
i∈Ȟ

(
g(pi−1 + δ̄i)− g(pi−1)− g′(pi−1 + δ̄i)δ̄i

)
ω1,i + ψλ1 ;

β ≥ (p1 − p0)ν2,1 + ρ2,1 (23)

−
∑
i∈Ȟ

(
g(pi−1 + δ̄i)− g(pi−1)− g′(pi−1 + δ̄i)δ̄i

)
ω2,i

−
(
−ψg(pk)− g(pk−1 + ψ)

pk − (pk−1 + ψ)
+ g(pk−1 + ψ)− g(pk−1)

)
ω2,k − ψλ2 ;

µ`,i ≥ 0 , for i = 1, . . . , T , ` = 1, 2 ; (24)

ν`,i ≥ 0 , for i = 1, . . . , T , ` = 1, 2 ; (25)

ρ`,j ≥ 0 , for j = 0, 1 , ` = 1, 2 ; (26)

ω`,i ≥ 0 , for i = 1, . . . , T , ` = 1, 2 ; (27)

λ` ≥ 0 , for ` = 1, 2 . (28)

2.3 Possible improvements and another disjunction: inviting the
z-variables to the party

In this section, we describe three ideas, the first two of which we have tested,
for inviting the z-variables to the disjunctive party.

Improvement to P. Model relaxations similar to ours can be solved much
faster when the convex constraints (10) are linearized (and thus weakened, un-
fortunately) so that we are in the realm of LP rather than NLP. [6,7] suggests
that these constraints can be tightened via a “perspective reformulation” (see
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[12]) and then linearized and thus weakened, but hopefully for a net benefit. In
particular, (10) becomes:

yi ≥ zi−1 g(pi−1 + δi/zi−1)− zi−1 g(pi−1), for i ∈ Ȟ, (29)

(where z0 := 1 if 1 ∈ Ȟ). Inequalities (29) are convex by the perspective-
reformulation definition and can be linearized with standard techniques. One
could carry this out directly, but we proceed as follows: we linearize (10) as (12)
only for the conceptual purpose of using within P to set up our CGLP; that is,
we strengthen (12) via the perspective reformulation, and then linearize only to
strengthen our CGLP.

Improvement to Dk
1

∨
Dk

2 . We can attempt to improve (i.e., tighten) the
representation of our disjunction that was based on secant inequalities. We can
see that δk ≤ ψ =⇒ zk = 0, and δk ≥ ψ =⇒ zk−1 = 1. So we could include zk = 0
in Dk1 and zk−1 = 1 in Dk2 , which implies a slightly different and potentially
stronger CGLP.

Another disjunction. Related to the last idea, we can make a direct disjunc-
tion on a zk that we could use to generate disjunctive cuts. That is, we could
use the disjunction

Zk0 := {(zk, ∗) : zk = 0}
∨
Zk1 := {(zk, ∗) : zk = 1},

choosing k based on z̄k being fractional. It is well known that a diversity of cuts
can be quite effective, so we propose to use disjunctive cuts based on Z0

∨
Z1

as well as ones based on D1

∨
D2 . Note that in forming the CGLP based on the

disjunction Z0

∨
Z1 , we should include in P the secant inequality for Ik (i.e.,

(9) for i = k).

3 Computational experiments

As a proof of concept, we tested our ideas on challenging non-linear continuous
knapsack-type problems of the form:

min f(x1, . . . , xn) + g(x0)

subject to:

CL ≤
∑n
j=0 rjxj ≤ CU ;

0 ≤ xj ≤ 1, j = 0, 1, . . . , n ,

where CL, CU , rj ∈ R+ for j = 0, 1, . . . , n, f : Rn 7→ R is convex, and the
single univariate g is a highly non-convex function. In particular, we defined
f(x1, . . . , xn) as a convex quadratic, namely

∑n
i=1

∑n
j=1Qijxixj , where Q :=

Q̃>Q̃ and Q̃ is randomly generated. Note that f is convex by the definition of Q.
The convexity of f and the minimization objective drive (x1, . . . , xn) toward 0
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at optimality. By choosing 0 < CL < CU appropriately, we can drive the solution
into a range where x0 is in a concave portion of g, thus stressing our relaxation.

We generated ten test instances. For g, we used two types of functions, de-
signed to be difficult (see Figure 1):

1. g(x0) := s · x0 − 2 cos(hπx0)
hπ − x0 sin(hπx0), and

2. g(x0) := d(sin((hπx0)+2eπ+sin−1(md )))+m((hπx0)+2eπ+sin−1((md ))2 +

v((hπx0) + 2eπ + sin−1(md )),

where s is randomly generated (with a uniform distribution) on [−4,+4], h on
[7, 15], d on {100, 200, 300}, e on {−3,−2}, m on {−2,−1}, v on {10, 15, 20}.
Entries in the vector r are uniformly randomly generated on [1, 200]. CL and
CU are chosen so that the value of x0, when (x1, . . . , xn) = 0, is in a centrally-
located concave interval of g. The first type of example only puts local stress on
the relaxation; the second type of example puts global stress on the relaxation, as
interpolating across the full domain of x0 can result in a very poor underestimate
of g in the range where x0 is feasible (when (x1, . . . , xn) = 0).

Fig. 1. Example of the function of type 1 (left) and type 2 (right).

We generated 5 instances with n = 3 for each of the two types of functions g.
All experiments were performed on a single machine equipped with an Intel

Xeon E5649 processor clocked at 2.53 GHz and 50 GB RAM. We used open-
source solvers like IPOPT 3.12.8, Bonmin 1.8.6, and Couenne 0.5 to solve con-
vex NLPs, convex MINLPs, and non-convex (MI)NLPs, respectively. As for the
MILPs (solved within Bonmin and Couenne), we used IBM CPLEX 12.6.

We tested and compared three strategies: the basic approach we have outlined
(called “Alg” in the tables), the improvement of the relaxation with the Per-
spective Reformulation (29) (“Alg+PC”), and the improvement using Dk1

∨
Dk2

(“Alg+IDC”). We have not yet tested the modifications in tandem.
Table 1 summarizes the performance of the algorithm when employing each of

the three cut-generating strategies, and applied to each of our ten test instances.
In particular, the algorithm iteratively adds violated cuts to the convex NLP
relaxation, then solves the strengthened convex MINLP. For each instance and
strategy, we present the objective-function value of the convex MINLP, along
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with the number of iterations of cut generation (an iteration limit of 300 was
set). The strategy Alg+PC most frequently requires the fewest iterations among
the three strategies, making it the fastest. Among the five instances for which
the Alg+PC strategy reaches the iteration limit, the final solution obtained with
this strategy is better (i.e., greater lower bound) in three cases, and equivalent
in one of the two remaining instances. Strategy Alg+IDC sometimes finds the
best solution, but often requires the most iterations.

inst. strategy CMINLP #iter.

1 Alg 1.07 18
1 Alg+PC 1.07 12
1 Alg+IDC 1.11 69

2 Alg 2.09 36
2 Alg+PC 2.15 22
2 Alg+IDC 2.09 38

3 Alg 2.56 221
3 Alg+PC 2.57 60
3 Alg+IDC 2.66 300

4 Alg -2.10 300
4 Alg+PC -2.10 29
4 Alg+IDC -2.13 26

5 Alg 2.70 73
5 Alg+PC 2.72 63
5 Alg+IDC 2.70 300

inst. strategy CMINLP #iter.

6 Alg 502.44 300
6 Alg+PC 506.85 300
6 Alg+IDC 502.44 300

7 Alg 502.48 300
7 Alg+PC 505.81 300
7 Alg+IDC 502.92 300

8 Alg 246.46 300
8 Alg+PC 252.14 300
8 Alg+IDC 246.46 300

9 Alg 504.40 300
9 Alg+PC 504.40 300
9 Alg+IDC 504.40 300

10 Alg 587.70 300
10 Alg+PC 587.70 300
10 Alg+IDC 589.60 300

Table 1. Results on the solution of the convex MINLP obtained after strengthening the
convex NLP relaxation by adding iteratively the cuts based on the different strategies

In Table 2 we compare the strategies by defining a measure of the im-
pact of disjunctive cuts. In particular, for each instance (one per row) and
each strategy (one per block of 3 columns), we display the values of GAP1 :=
100 · GO−CMINLP

GO−NLP , GAP2 := 100 · GO−MINLP
GO−NLP , and GAP3 := 100 · GO−CNLP

GO−NLP ,
where GO is the global optimum value of the non-convex MINLP problem, NLP
is the optimal value of the convex NLP relaxation, MINLP is the optimal value
of the convex MINLP relaxation, CNLP is the optimal value of the convex NLP
relaxation after applying the disjunctive cuts, and CMINLP is the optimal value
of the convex MINLP relaxation after applying disjunctive cuts.

Most importantly, GAP3 measures the effectiveness of disjunctive cuts on
closing the gap in the convex NLP relaxation (initial gap is 100). We can see that
with all three strategies substantial gap is often closed using the disjunctive cuts.
Comparing across the approaches, Alg+IDC usually gives the greatest effect from
the disjunctive cuts.

By imposing integrality and solving a single convex MINLP, we can com-
pare gaps obtained via convex MINLP versus convex NLP: GAP2 vs 100 (no
disjunctive cuts) and GAP1 vs GAP3 (with disjunctive cuts). Generally, we ob-
tain much smaller gaps in the first of each pair, but at the cost of solving a
convex MINLP. Note that GAP2 is the same for Alg and Alg+IDC, because
they use the same NLP relaxation; while Alg+PC uses a different relaxation, so
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Alg Alg+PC Alg+IDC

inst. GAP1 GAP2 GAP3 GAP1 GAP2 GAP3 GAP1 GAP2 GAP3
1 4.25 4.25 81.43 8.38 8.38 79.01 2.42 4.25 29.67
2 15.62 15.62 80.78 22.70 27.06 79.72 15.62 15.62 79.54
3 4.57 4.57 98.28 8.27 8.88 79.39 0.83 4.57 18.82
4 0.34 1.96 80.37 0.69 3.96 74.37 1.66 1.96 76.91
5 88.34 88.34 99.38 94.36 94.47 99.21 88.34 88.34 93.10
6 7.34 7.34 93.26 12.33 13.63 92.24 7.34 7.34 41.12
7 8.20 8.20 89.62 14.31 14.88 92.74 8.16 8.20 42.62
8 9.77 9.77 93.16 17.02 17.61 90.73 9.77 9.77 50.65
9 7.32 7.32 92.70 15.19 15.19 86.48 7.32 7.32 74.71
10 4.08 4.08 93.85 8.31 8.31 88.87 3.93 4.08 47.93

Table 2. Results per instance using the basic algorithm (Alg), the algorithm with per-
spective cuts (Alg+PC), and the algorithm with improved disjunctive cuts (Alg+IDC).

GAP2 is different. Comparing GAP1 vs GAP2, we see several instances where
the disjunctive cuts close much of the remaining gap when included in the single
convex MINLP; e.g., instance 4 using Alg or Alg+PC, and instances 1 and 3,
using Alg+IDC. Again, comparing across the approaches, Alg+IDC is usually
the most effective strategy of the three.

To conclude, strategy Alg+PC seems to be the most promising both on the
speed of convergence and on the strengthening of the convex MINLP problem,
while strategy Alg+IDC gives the strongest disjunctive cuts.

As a future direction, we plan to explore a hybrid Alg+PC+IDC strategy, and
to experiment with including a diversity of disjunctive cuts (e.g., those produced
from the disjunction described at the end of §2). Finally, we have concentrated
on lower bounds, but we plan to experiment with incorporating branching to get
a complete algorithm for reaching global optimality.

4 Conclusions and outlook

We have introduced a technique for using disjunctive cuts so as to improve
a framework for handling mathematical-optimization models where the non-
convexities are separable. The efficiency is realized by solving an LP and a
convex NLP at each iteration, rather than an expensive convex MINLP. We
have presented preliminary computational work to demonstrate the promise of
our methodology. Further work will center on enhancing and tuning the method
to efficiently handle models coming from real-world applications as the mini-
mization of the ripple effect (see, e.g., [13]) or the optimization of the design
of bandpass and low-pass filters (see, e.g., [14]). Optimization models with non-
convexities are indeed typical of electromagnetic problems where the outputs
are often characterized by a strongly sinusoidal or generally periodic trend (see
[1,5]).



12 C. D’Ambrosio, J. Lee, D. Skipper, D. Thomopulos

References

1. C. K. Alexander and M. N. Sadiku. Fundamentals of electric circuits. McGraw-Hill
Education, 2000.

2. E. Balas. Disjunctive programming. Springer, Cham, 2018.
3. P. Belotti. Disjunctive cuts for nonconvex MINLP. In J. Lee and S. Leyffer, editors,

Mixed Integer Nonlinear Programming, pages 117–144. Springer, New York, 2012.
4. S.P. Bradley, A.C. Hax, and T.L. Magnanti. Applied Mathematical Programming.

Addison-Wesley, 1977.
5. M. Ceraolo and D. Poli. Fundamentals of electric power engineering: from electro-

magnetics to power systems. John Wiley & Sons, 2014.
6. C. D’Ambrosio, A. Frangioni, and C. Gentile. Strengthening convex relaxations of

mixed integer non linear programming problems with separable non convexities.
In A. Rocha, M. Costa, and E. Fernandes, editors, Proceedings of the XIII Global
Optimization Workshop (GOW’16), pages 49–52, 2016.

7. C. D’Ambrosio, A. Frangioni, and C. Gentile. Strengthening the sequential convex
MINLP technique by perspective reformulations. Optimization Letters, 13(4):673–
684, 2019.
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