
HAL Id: hal-03008697
https://hal.science/hal-03008697

Submitted on 16 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

STRONG CONVEX NONLINEAR RELAXATIONS
OF THE POOLING PROBLEM

James Luedtke, Claudia d’Ambrosio, Jeff Linderoth, Jonas Schweiger

To cite this version:
James Luedtke, Claudia d’Ambrosio, Jeff Linderoth, Jonas Schweiger. STRONG CONVEX NON-
LINEAR RELAXATIONS OF THE POOLING PROBLEM. SIAM Journal on Optimization, 2020.
�hal-03008697�

https://hal.science/hal-03008697
https://hal.archives-ouvertes.fr

ar
X

iv
:1

80
3.

02
95

5v
1

 [
m

at
h.

O
C

]
 8

 M
ar

 2
01

8

STRONG CONVEX NONLINEAR RELAXATIONS OF THE
POOLING PROBLEM

JAMES LUEDTKE∗, CLAUDIA D’AMBROSIO† , JEFF LINDEROTH∗, AND JONAS

SCHWEIGER‡

Abstract. We investigate new convex relaxations for the pooling problem, a classic nonconvex
production planning problem in which input materials are mixed in intermediate pools, with the
outputs of these pools further mixed to make output products meeting given attribute percentage
requirements. Our relaxations are derived by considering a set which arises from the formulation by
considering a single product, a single attibute, and a single pool. The convex hull of the resulting
nonconvex set is not polyhedral. We derive valid linear and convex nonlinear inequalities for the
convex hull, and demonstrate that different subsets of these inequalities define the convex hull of
the nonconvex set in three cases determined by the parameters of the set. Computational results
on literature instances and newly created larger test instances demonstrate that the inequalities can
significantly strengthen the convex relaxation of the pq-formulation of the pooling problem, which is
the relaxation known to have the strongest bound.

1. Introduction. The pooling problem is a classic nonconvex nonlinear problem
introduced by Haverly in 1978 [21]. The problem consists in routing flow through a
feed forward network from inputs through pools to output products. The material
that is introduced at inputs has known quality for certain attributes. The task is to
find a flow distribution that respects quality restrictions on the output products. As
is standard in the pooling problem, we assume linear blending, i.e., the attributes at
a node are mixed in the same proportion as the incoming flows. As the quality of
the attributes in the pools is dependent on the decisions determining amount of flow
from inputs to the pools, the resulting constraints include bilinear terms.

The aim of this work is to strengthen the relaxation of the strongest known
formulation, i.e., the so-called pq-formulation proposed in [30, 34]. By focusing on a
single output product, a single attribute, and a single pool, and aggregating variables,
we derive a structured nonconvex 5-variable set that is a relaxation of the original
feasible set. The description of this set contains one bilinear term which captures
some of the nonconvex essence of the problem. Valid convex inequalities for this set
directly translate to valid inequalities for the original pooling problem. We derive
valid linear and nonlinear convex inequalities for the set. For three cases determined
by the parameters of the set, we demonstrate that a subset of these inequalities define
the convex hull of the set. Finally, we conduct an illustrative computational study
that demonstrates that these inequalities can indeed improve the relaxation quality
over the pq-formulation, particularly on instances in which the underlying network is
sparse, which are precisely the instances in which the pq-formulation relaxation has
the largest gap to the optimal value. As part of this study, we create and test the
inequalities on new, larger test instances of the pooling problem.

The reminder of the paper is organized as follows. We briefly review relevant
literature on the pooling problem in the remainder of this section. In section 2,
we introduce the pq-formulation, and its classic relaxation based on the McCormick
relaxation. Our set of interest, that represents a relaxation of the pooling problem,

∗Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison,
WI, USA

†LIX CNRS (UMR7161), École Polytechnique, 91128 Palaiseau Cedex, France
‡Zuse Institute Berlin (ZIB), Takustrasse 7, 14195 Berlin, Germany, ORCID 0000-0002-4685-9748

1

http://arxiv.org/abs/1803.02955v1

is introduced in section 3. In the same section, we present the valid inequalities for
this set. We then prove in section 4 that certain subsets of the proposed inequalities
define the convex hull of the set of interest, for three cases based on the parameters
of the set. Computational results are presented in section 5, and concluding remarks
are made in section 6.

1.1. Literature Review. There are many applications of the pooling problem,
including petroleum refining, wastewater treatment, and general chemical engineering
process design [5, 12, 23, 31]. This is confirmed by an interesting analysis performed
by Ceccon et al. [10] whose method allows to recognize pooling problem structures in
general mixed integer nonlinear programming problems.

Although the pooling problem has been studied for decades, it was only proved to
be strongly NP-hard in 2013 by Alfaki and Haugland [3]. Further complexity results
on special cases of the pooling problem can be found in [7, 9, 20].

Haverly [21] introduced the pooling problem using what is now known as the
p-formulation. Almost 20 years later, Ben-Tal et al. [8] proposed an equivalent
formulation called q-formulation. Finally, the pq-formulation was introduced in [30,
34] and is a strengthening of the q-formulation. It has been shown to be the strongest
known formulation for the pooling problem [34]; i.e., the “natural relaxation” of this
formulation pq-formulation yields a bound on the optimal value that is at least as
good as that of any other known formulation.

Many other approaches for solving the pooling problem have been proposed, in-
cluding: recursive and successive linear programming [6, 21], decomposition methods
[14], and global optimization [15]. More recently, Dey and Gupte [13] used discretiza-
tion strategies to design an approximation algorithm and an effective heuristic. Sev-
eral variants of the standard pooling problem have been studied, see, for example,
[4, 27, 29, 32]. Some of the variants introduce binary variables to model design deci-
sions, thus yielding a mixed-integer nonlinear programming problem, see, for example,
[11, 26, 28, 35]. For more comprehensive reviews of the pooling problem the reader
is referred to [17, 18, 27, 34] and to [19] for an overview on the relaxations and dis-
cretizations for the pooling problem.

Notation. For a set T , conv(T) denotes the convex hull of T , and for a convex
set R, ext(R) denotes the set of extreme points of R.

2. Mathematical Formulation and Relaxation. There are multiple formu-
lations for the pooling problem, primarily differing in the modeling of the concentra-
tions of attributes throughout the network. We base our work on the state-of-the-art
pq-formulation.

We are given a directed graph G = (V,A) where V is the set of vertices that is
partitioned into inputs I, pools L, and outputs J, i.e., V = I ∪ L ∪ J. For a node
u ∈ V , the sets Iu ⊆ I, Lu ⊆ L, Ju ⊆ J denote the inputs, pools, and outputs,
respectively, that are directly connected to u. Arcs (i, j) ∈ A link inputs to pools,
pools to outputs, and inputs directly to outputs, i.e., A ⊆ (I×L)∪ (L × J)∪ (I× J).
In particular, pool-to-pool connections are not considered.

The pq-formulation of the pooling problem uses the following decision variables:
• xij is the flow on (i, j) ∈ A;
• qiℓ is the proportion of flow to pool ℓ ∈ L that comes from input i ∈ Iℓ;
• wiℓj is the flow from i ∈ I through pool ℓ ∈ Li to output j ∈ Jℓ.

2

With these definitions, the pq-formulation of the pooling problem is:

min
∑

(i,j)∈A

cijxij(1a)

s.t.
∑

ℓ∈Li

xiℓ +
∑

j∈Ji

xij ≤ Ci for all i ∈ I(1b)

∑

j∈Jℓ

xℓj ≤ Cℓ for all ℓ ∈ L(1c)

∑

ℓ∈Lj

xℓj +
∑

i∈Ij

xij ≤ Cj for all j ∈ J(1d)

∑

i∈Iℓ

qiℓ = 1 for all ℓ ∈ L(1e)

wiℓj = qiℓxℓj for all i ∈ Iℓ, ℓ ∈ Lj, j ∈ J(1f)

xiℓ =
∑

j∈Jℓ

wiℓj for all i ∈ Iℓ, ℓ ∈ L(1g)

∑

i∈Ij

γijkxij +
∑

ℓ∈Lj

∑

i∈Iℓ

γijkwiℓj ≤ 0 for all j ∈ J, k ∈ K(1h)

∑

i∈Iℓ

wiℓj = xℓj for all j ∈ Jℓ, ℓ ∈ L(1i)

∑

j∈Jℓ

wiℓj ≤ Cℓqiℓ for all i ∈ Iℓ, ℓ ∈ L(1j)

0 ≤ xij ≤ Cij for all (i, j) ∈ A(1k)

0 ≤ qiℓ ≤ 1 for all i ∈ Iℓ, ℓ ∈ L.(1l)

The objective (1a) is to minimize the production cost, where cij is the cost per
unit flow on arc (i, j). Inequalities (1b)–(1d) represent capacity constraints on inputs,
pools, and outputs, respectively, where here Ci, i ∈ I, Cℓ, ℓ ∈ L, and Cj , j ∈ J are
given capacity limits. Equations (1e) enforce that the proportions at each pool sum
up to one. Equations (1f) and (1g) define the auxiliary variables wiℓj and link them
to the flow variables. (1h) formulates the quality constraints for each attribute k in
the set of attributes K. The coefficients γijk represent the excess of attribute quality
k of the material from input i with respect to the upper quality bound at output j.
The upper quality bound is met when there is no excess, i.e., the total excess is not
positive. For brevity, we do not include lower bounds on attribute quality at the final
products, but these can be easily added. Inequalities (1i) and (1j) are redundant in
the formulation but are not when the nonconvex constraints (1f) are not enforced as
is done in a relaxation-based solution algorithm. These two constraints constitute the
difference between the q- and the pq-formulation and are responsible for the strong
linear relaxation of the latter. Finally, (1k) limits the flow on each arc (i, j) to a given
capacity Cij .

A linear programming relaxation of the pq-formulation is obtained by replacing
the constraints (1f) with the McCormick inequalities derived using the bounds (1k)
and (1l):

wiℓj ≤ xℓj , wiℓj ≤ Cℓjqiℓ, for all i ∈ Iℓ, ℓ ∈ Lj, j ∈ J(2a)

wiℓj ≥ 0, wiℓj ≥ Cℓjqiℓ + xℓj − Cℓj , for all i ∈ Iℓ, ℓ ∈ Lj, j ∈ J.(2b)

3

We refer to the relaxation obtained by replacing (1f) with (2) as the McCormick relax-

ation. Our goal is to derive tighter relaxations of the pooling problem by considering
more of the problem structure.

3. Strong Convex Nonlinear Relaxations. To derive a stronger relaxation of
the pooling problem, we seek to identify a relaxed set that contains the feasible region
of the pooling problem, but includes some of the key nonconvex structure. First, we
consider only one single attribute k ∈ K and relax all constraints (1h) concerning the
other attributes. Next, we consider only one output j ∈ J, and remove all nodes and
arcs which are not in a path to output j. In particular, this involves all other outputs.
Then, we focus on pool ℓ ∈ L with the intention to split flows into two categories: the
flow through pool ℓ and aggregated flow on all paths not passing through pool ℓ, also
called “by-pass” flow. Finally, we aggregate all the flow from the inputs to pool ℓ.

As a result, we are left with five decision variables:
1. the total flow through the pool, i.e., the flow xℓj from pool ℓ to output j
2. the total flow zℓj over the by-pass, i.e., the flow to output j that does not

pass through pool ℓ

zℓj :=
∑

i∈Ij

xij +
∑

ℓ′∈Lj|ℓ′ 6=ℓ

xℓ′j

3. the contribution ukℓj of the flow through pool ℓ to the excess of attribute k
at output j, i.e.,

ukℓj :=
∑

i∈Iℓ

γkijwiℓj

4. the contribution ykℓj of by-pass flow to the excess of attribute k at output j,
i.e.,

ykℓj :=
∑

i∈Ij

γkijxij +
∑

ℓ′∈Lj|ℓ′ 6=ℓ

∑

i∈Iℓ′

γkijwiℓ′j

5. the attribute quality tkℓj of the flow through pool ℓ, i.e.,

tkℓ :=
∑

i∈Iℓ

γkijqiℓ.

With these decision variables, the quality constraint associated with attribute k of
output j and the capacity constraint associated with output j from (1) can be written
as:

ykℓj + ukℓj ≤ 0, for all k ∈ K, j ∈ J(3a)

zℓj + xℓj ≤ Cj , for all j ∈ J.(3b)

A key property of these new decision variables is the relationship between the
flow and quality in the pool with the excess of the attribute contributed by the flow
through the pool

ukℓj = xℓjtkℓ for all ℓ ∈ L, j ∈ J,(4)

which is valid because using (1f) and (1i)

ukℓj =
∑

i∈Iℓ

γkijwiℓj =
∑

i∈Iℓ

γkijqiℓxℓj =
∑

i∈Iℓ

γkijqiℓ
∑

i′∈Iℓ

wi′ℓj = tkℓxℓj .

4

In order to derive bounds on the new decision variables we define the parameters
γ
kℓ

and γkℓ representing bounds on the excess of attribute k over inputs that are

connected to pool ℓ, and β
kℓj

and βkℓj representing bounds on the excess of attribute

k over inputs that are connected to output j via a by-pass flow :

γ
kℓ

= min
i∈Iℓ

γki β
kℓj

= min
{

γki : i ∈ Ij ∪
⋃

ℓ′∈L\{ℓ}

Iℓ′
}

γkℓ = max
i∈Iℓ

γki βkℓj = max
{

γki : i ∈ Ij ∪
⋃

ℓ′∈L\{ℓ}

Iℓ′
}

.

We thus have,

tkℓ ∈ [γ
kℓ
, γkℓ] for all k ∈ K, ℓ ∈ L(5a)

β
kℓj

zℓj ≤ ykℓj ≤ βkℓjzℓj, for all k ∈ K, ℓ ∈ L, j ∈ J.(5b)

Despite the many relaxations performed in deriving this set, the nonconvex rela-
tion (4), which relates the contribution of the excess from the pool to the attribute
quality of the pool and the quantity passing through the pool, still preserves a key
nonconvex structure of the problem.

With these variables and constraints we now formulate the relaxation of the pool-
ing problem that we study. To simplify notation, we drop the fixed indices ℓ, j, and
k. Gathering the constraints (3), (4), and (5), together with nonnegativity on the z
and x variable, we define the set T as those (x, u, y, z, t) ∈ R

5 that satisfy:

u = xt(6)

y + u ≤ 0(7)

z + x ≤ C(8)

y ≤ βz(9)

y ≥ βz(10)

z ≥ 0, x ∈ [0, C], t ∈ [γ, γ].

We can assume, without loss of generality, that C = 1 by scaling the variables x, u,
y, and z by C−1.

Due to the nonlinear equation u = xt, T is a nonconvex set unless x or t is fixed.
Using the bounds 0 ≤ x ≤ 1 and γ ≤ t ≤ γ, the constraint u = xt can be relaxed by
the McCormick inequalities [25]:

u− γx ≥ 0(11)

γx− u ≥ 0(12)

u− γx ≤ t− γ(13)

γx− u ≤ γ − t.(14)

Equations (11)–(14) provide the best possible convex relaxation of the feasible points
of u = xt given that x and t are in the bounds mentioned above. However, replacing
the nonconvex constraint u = xt with these inequalities is not sufficient to define
conv(T).

Note that (11)–(14) imply the bounds 0 ≤ x ≤ 1 and γ ≤ t ≤ γ. Also the bound
constraint z ≥ 0 is implied by (9) and (10). Thus, we define the standard relaxation
of the set T by

R0 := {(x, u, y, z, t) : (7)–(14)}.

5

Every convex set is described completely by its extreme points and rays. The
set T is bounded and so has no extreme rays. In [24], we have characterized the
extreme points of T , showing they are not finite. Thus, the convex hull of T is not a
polyhedron.

3.1. Valid Inequalities. We now present the new valid inequalities for conv(T),
two of them linear, and two of them convex nonlinear. Depending on the signs of γ
and γ, some of these inequalities are redundant. In the following, an inequality is said
to be valid for a set if every point in the set satisfies the inequality.

Theorem 1. If β < 0, then the following inequality is valid for T :

(15) (u− βx)(u − γx) ≤ −βx(t− γ)

Proof. Aggregating the inequalities (7) (with weight 1), (8) (with weight −β),

and (10) (with weight 1) yields the inequality u − βx ≤ −β, which is valid for R0.
Multiplying this inequality by x(t−γ) ≥ 0 on both sides yields the nonlinear inequality

(u− βx)x(t − γ) ≤ (−β)x(t− γ)

which is also valid for R0. Substituting u = xt into the left-hand-side of this yields
(15).

We observe that if γ < 0, then (15) is redundant. Indeed, γ < 0 implies t < 0
and therefore u < 0, which in turn implies u− βx < −βx. On the other hand, x ≤ 1
and t− γ > 0 imply that t− γ ≥ xt− γx = u− γx. Furthermore, 0 = u−xt ≤ u− γx
and −βx ≥ 0. Thus, we conclude that (15) is always strict if γ < 0:

(u − βx)(u − γx) < −βx(u − γx) ≤ −βx(t− γ).

We next show that (15) is second-order cone representable and thus convex. We
can rewrite (15) as:

(u− βx)(u − γx) ≤ −βx(t− γ) ⇔ (u− γx)2 + (γ − β)x(u − γx) ≤ −βx(t− γ)

⇔ (u− γx)2 ≤ x
[

(−β)(t− γ) + (β − γ)(u− γx)
]

.

This inequality has the form of a rotated second-order cone, 2x1x2 ≥ x2
3, where

x1 = x/2, x2 = (−β)(t − γ) + (β − γ)(u − γx), and x3 = u − γx. Clearly, x1 ≥ 0.
The following lemma shows the nonnegativity of x2 and therefore establishes the
second-order cone representability of (15).

Lemma 2. If β < 0, the following inequality is valid for T :

(16) (−β)(t− γ) + (β − γ)(u − γx) ≥ 0

Proof. First, as β < 0 then by y + u ≤ 0, −β(x + z) ≤ −β, βz − y ≤ 0, and
γx− u ≤ 0, we have (γ − β)x ≤ −β, and therefore, using t− γ ≥ 0,

(17) (γ − β)(t− γ)x ≤ (−β)(t− γ).

But then, using u = tx, yields

(γ − β)(t− γ)x = (γ − β)(tx − γx) = (γ − β)(u − γx).

Substituting into (17) and rearranging yields the result.

6

The second inequality we derive is valid for points in T with y > 0.

Theorem 3. If β > 0 and γ < 0, then the following inequality is valid for T
when y > 0:

(18) (γ − γ)y + β(γx− u) +
γy(u− γx)

y + u− γx
≤ β(γ − t)

Proof. First, adding (8) scaled by weight β > 0 to (9) yields the inequality

(19) y + βx ≤ β

which is valid for R0.
Next, using the substitution u = xt the left-hand-side of (18) becomes:

(γ − γ)y + β(γx− u) +
γy(u− γx)

y + u− γx

= (γ − γ)y + βx(γ − t) +
γyx(t− γ)

y + x(t− γ)

≤ (γ − γ)y + βx(γ − t) +
γyx(t− γ)

−xt+ x(t− γ)
(y ≤ −xt and γyx(t− γ) ≤ 0)

= (γ − γ)y + βx(γ − t)− y(t− γ)

= βx(γ − t) + y(γ − t)

= (βx+ y)(γ − t) ≤ β(γ − t) because γ ≥ t and by (19).

The conditional constraint (18) cannot be directly used in an algebraic formulation.
We thus derive a convex reformulation for (18) that is valid also for y ≤ 0. To this
end define the function h : R× R≥0 → R as

h(y, v) :=

{

0 if y ≤ 0

(γ − γ)y + γg(y, v) if y > 0.

where

g(y, v) :=
yv

y + v
.

We next show that h is convex, and with v = u−γx, can be used to define a constraint
equivalent to (18).

Lemma 4. If β > 0 and γ < 0, then the inequality

β(γx− u) + h(y, u− γx) ≤ β(γ − t)(20)

is valid for T , h is convex over R×R≥0, and any point (x, u, y, t) with y > 0 satisfies

(20) if and only if it satisfies (18).

Proof. The statement that any point with y > 0 satisfies (20) if and only if it
satisfies (18) is immediate from the definition of h.

By Theorem 3, inequality (20) is satisfied by all points in T with y > 0. If y ≤ 0
the inequality is also valid since

β(γx− u) + h(y, u, x) = β(γx− u) = xβ(γ − t) ≤ β(γ − t).

7

We next show that g is concave over R>0 × R≥0. We use the python library
Sympy [33] to compute the Hessian of g, and obtain

(

2vy
(v+y)3

− 2y
(v+y)2

2vy
(v+y)3

− v

(v+y)2
− y

(v+y)2
+ 1

v+y
2vy

(v+y)3
− v

(v+y)2
− y

(v+y)2
+ 1

v+y
2vy

(v+y)3
− 2v

(v+y)2

)

and its Eigenvalues as λ1 = 0 and λ2 = −(2v2+2y2)/(v+y)3. The second Eigenvalue
λ2 is negative because v ≥ 0, y > 0. The Hessian is therefore negative semidefinite
and g is concave.

Finally, we show that h is convex. Let pi = (yi, vi) ∈ R × R≥0 for i = 1, 2 and
λ ∈ (0, 1). We need to show that

h(λp1 + (1− λ)p2) ≤ λh(p1) + (1 − λ)h(p2).(21)

If yi > 0, i = 1, 2, then (21) holds because g is concave over R>0 × R≥0, and hence
because γ < 0, h is convex over this region. If yi ≤ 0, i = 1, 2, then then (21) holds
because h is linear over the points with y ≤ 0. Therefore, assume without loss of
generality y1 ≤ 0 and y2 > 0. First we show that h is nonnegative. For y ≤ 0 this is
clear and for y > 0 we have

h(u, v) = (γ − γ)y +
γyv

y + v
=

(γ − γ)y(y + v) + γyv

y + v
=

(γ − γ)y2 + γyv

y + v
≥ 0.

Furthermore we know h(p1) = 0 since y1 ≤ 0. If h(λp1 + (1 − λ)p2) = 0, then (21) is
always fulfilled. If h(λp1 + (1 − λ)p2) does not vanish, then denote by p3 = (y3, v3)
the point on the line between p1 and p2 with y3 = 0. If v3 = 0, then v2 = 0
since v1 ≥ 0. In this case g vanishes such that h is linear between p3 and p2 and
(21) is fulfilled. If v3 > 0, then g is also well-defined at p3 with g(p3) = 0 so that
h(p3) = (γ − γ)y3 + γg(p3) = 0 and h is convex on the line between p3 and p2.

Furthermore, there exists a λ̂ such that

λp1 + (1− λ)p2 = λ̂p3 + (1− λ̂)p2

and since p3 is closer to p2 than p1, it holds that λ ≤ λ̂. Finally, we can show that
(21) also holds in this case:

h(λp1 + (1 − λ)p2) = h(λ̂p3 + (1 − λ̂)p2)

≤ λ̂h(p3) + (1− λ̂)h(p2)

= λh(p1) + (1− λ̂)h(p2) ≤ λh(p1) + (1− λ)h(p2).

The remaining two new valid inequalities we present are linear.

Theorem 5. If β > 0, then the following inequality is valid for T :

(γ − γ)y + γ(γx− u) + β(u− γx) ≤ β(t− γ).(22)

Proof. First observe that y + u ≤ 0 and −u ≤ −γx together imply

(23) y ≤ −xγ.

Next,

(γ − γ)y = (t− γ)y + (γ − t)y

8

≤ (t− γ)βz + (γ − t)y because y ≤ βz and t− γ ≥ 0

≤ (t− γ)βz + (γ − t)(−xγ) by (23) and γ − t ≥ 0

and thus

(24) (γ − γ)y − (t− γ)βz + (γ − t)(xγ) ≤ 0.

Then, multiply the inequality z + x ≤ 1 on both sides by β(t− γ) ≥ 0 to yield:

(25) (t− γ)βz + (t− γ)βx ≤ (t− γ)β

Adding (24) and (25) yields:

(26) (γ − γ)y + (γ − t)xγ + (t− γ)βx ≤ (t− γ)β

Finally, substituting u = xt from (6) yields (22).

We next show that if γ > 0, then (22) is redundant. Assuming γ > 0, then scaling
the inequality −u + γx ≤ 0 by γ > 0 and combining that with the valid inequality
(γ − γ)y + (γ − γ)u ≤ 0 and yields

(27) (γ − γ)y − γu+ γγx ≤ 0.

But, also since u− γx ≤ t− γ, it follows that β(u− γx) ≤ β(t− γ) . Combining this
with (27) implies (22).

The next theorem presents the last valid inequality for T in this section.

Theorem 6. If β < 0, then the following inequality is valid for T :

(γ − β)(γx− u) ≤ −β(γ − t).(28)

Proof. Aggregate inequality (8) with weight −β > 0 yields

−β(z + x) ≤ −β.(29)

Furthermore, using y ≥ βz, β < 0, and (23), yields −βz + xγ ≤ 0, which combined
with (29) yields

(γ − β)x ≤ −β.

Multiplying both sides of this inequality by γ − t ≥ 0 yields

(γ − β)x(γ − t) ≤ −β(γ − t).

Substituting xt = u yields (28).

If γ < 0, then (γ−β)(γx−u) ≤ −β(γx−0) ≤ −β(γ− t) and so (28) is redundant.

4. Convex hull analysis. We next demonstrate that the set R0 combined with
certain subsets of the new valid inequalities, depending on the sign of γ and γ, are
sufficient to define the convex hull of T . Let us first restate the relevant inequalities
for convenience:

(u − βx)(u − γx) ≤ −βx(t− γ)(15)

9

Result Used in proof of Stated on

Lemma 11 Theorems 7 to 9 Page 11
Lemma 14 Theorem 7 Page 12
Lemma 15 Theorem 7 Page 15
Lemma 16 Theorem 8 Page 16
Lemma 17 Theorem 8 Page 17
Lemma 19 Theorem 9 Page 19
Lemma 20 Theorem 9 Page 20

Table 1

Overview over lemmas used in the proofs of Theorems 7 to 9

(γ − γ)y + β(γx− u) +
γy(u− γx)

y + u− γx
≤ β(γ − t) if y > 0.(18)

(γ − γ)y + γ(γx− u) + β(u− γx) ≤ β(t− γ)(22)

(γ − β)(γx− u) ≤ −β(γ − t).(28)

Next, we define the sets which include the nonredundant valid inequalities for different
signs of γ and γ:

R1 = {(x, u, y, z, t) ∈ R0 : (15) and (18)},

R2 = {(x, u, y, z, t) ∈ R0 : (18) and (22)},

R3 = {(x, u, y, z, t) ∈ R0 : (15) and (28)}.

The following theorems show that R1, R2, and R3 describe the convex hull of T in
different cases. Since all inequalities that define the sets are valid for T and convex,
Ri are convex relaxations for T and we know conv(T) ⊆ Ri for i = 1, 2, 3. To show
that a relaxation defines conv(T) in a particular case, we show that every extreme
point of the relaxation satisfies the nonconvex constraint u = xt even though this
equation is not enforced in the relaxation. The three main theorems are stated next,
and are proved using lemmas that are stated and proved thereafter. Table 1 gives an
overview of which of the lemmas is used in the proof of each theorem and on which
page the lemmas are found.

Theorem 7. Assume γ < 0 < γ and β < 0 < β. Then conv(T) = R1.

Proof. Being a bounded convex set, R1 is completely characterized by its extreme
points. We prove that every extreme point of R1 is in T , i.e., fulfills the equation
u = xt. Every point in R1 can thus be represented as a convex combination of points
in T and R1 = conv(T) is proved.

It remains to show that u = xt for all p = (x, u, y, z, t) ∈ ext(R1). Lemma 11
shows that this is the case for x or t are at its bounds, i.e., if x ∈ {0, 1} or t ∈ {γ, γ}.
Under the condition 0 < x < 1 and γ < t < γ, Lemmas 14 and 15 show that points
with u < xt and u > xt, respectively, cannot be extreme.

Theorem 8. Assume γ < γ < 0 and β < 0 < β. Then conv(T) = R2.

Proof. Based on the same argument as in the proof of Theorem 7, we show that
that u = xt for all p = (x, u, y, z, t) ∈ ext(R2). Lemma 11 shows that for x ∈ {0, 1} or
t ∈ {γ, γ}. For 0 < x < 1 and γ < t < γ and under the assumptions of this theorem

10

Lemmas 16 and 17 show that points with u < xt and u > xt, respectively, cannot be
extreme.

Theorem 9. Assume 0 < γ < γ and β < 0 < β. Then conv(T) = R3.

Proof. The proof is analogous to the proofs of Theorems 7 and 8, but in this case
Lemmas 19 and 20 show that points with u < xt and u > xt, respectively, cannot be
extreme.

4.1. Preliminary Results. In the following, for different assumptions on the
sign of γ and γ, we demonstrate that if p = (x, u, y, z, t) has either u > xt or u < xt,
then p is not an extreme point of conv(T). This is accomplished by considering differ-
ent cases and in each case, we provide two distinct points which depend on a parameter
ǫ > 0, denoted pǫi , i = 1, 2, which satisfy p = (1/2)pǫ1 + (1/2)pǫ2. Furthermore, the
points pǫi are defined such that pǫi → p as ǫ → 0. The points are then shown to be in
the given relaxation for ǫ > 0 small enough, providing a proof that p is not an extreme
point of the relaxation. To show the points are in a given relaxation for ǫ > 0 small
enough, for each inequality defining the relaxation we either directly show the points
satisfy the inequality, or else we show that the point p satisfies the inequality with
strict inequality. In the latter case, the following lemma ensures that both points pǫ1
and pǫ2 satisfy the constraint if ǫ is small enough.

Lemma 10. Let pǫ : R+ → R
n with limǫ→0 p

ǫ = p for some p ∈ R
n. Suppose

ap < b for a ∈ R
n, b ∈ R. Then there exists an ǫ̂ > 0 such that

apǫ < b for all ǫ < ǫ̂.

Proof. Follows directly from continuity of the function f(x) = ax− b.

Throughout this section, for ǫ > 0, we use the notation:

αǫ
1 = 1− ǫ, αǫ

2 = 1 + ǫ and δǫ1 = ǫ, δǫ2 = −ǫ.

Obviously, limǫ→0 α
ǫ
i = 1 and limǫ→0 δ

ǫ
i = 0 for i ∈ {1, 2}.

The series of Lemmas that prove Theorems 7 to 9 is started by Lemma 11 which
applies to all cases and tells us that points on the boundaries of the domains of x and
t fulfill u = xt.

Lemma 11. Let p = (x, u, y, z, t) ∈ R0. If x = 0, x = 1, t = γ, or t = γ, then
u = xt.

Proof. This follows since (11)–(14) are the McCormick inequalities for relaxing
the constraint u = xt over x ∈ [0, 1] and t ∈ [γ, γ], and it is known (e.g., [2]) that if
either of the variables are at its bound, then the McCormick inequalities ensure that
u = xt.

As Lemma 11 applies to all the cases we assume from now on that 0 < x < 1 and
γ < t < γ. We use the following two propositions in several places in this section.

Proposition 12. Suppose β < 0. Let p = (x, u, y, z, t) ∈ R0 with 0 < x < 1 and

γ < t < γ.
1. If u < xt, then p satisfies (12), (13), and (15) with strict inequality.

2. If u > xt, then p satisfies (11) and (14) with strict inequality.

Proof. 1. Suppose u < xt. Then, γx − u > γx − xt = x(γ − t) > 0, and so p
satisfies (12) with strict inequality. Next,

(30) u− γx < xt− γx = x(t− γ) < t− γ

11

as x < 1 and t > γ, and so (13) is satisfied by p with strict inequality. To show that
(15) is satisfied strictly, we aggregate (7) with weight 1, (8) with weight −β, and (10)
with weight 1 and get

u− βx ≤ −β.(31)

As u− γx ≥ 0,

(u− βx)(u − γx) ≤ −β(u− γx) < −βx(t − γ)

where the last inequality follows from (30) and β < 0, and thus (15) is satisfied by p
with strict inequality.

2. Now suppose u > xt. Then, u− xγ > xt− xγ = x(t− γ) > 0 and so p satisfies
(11) with strict inequality. Next,

(32) γx− u < γx− xt = x(γ − t) < γ − t

as x < 1 and t < γ, and so (14) is satisfied with strict inequality.

Proposition 13. Suppose β < 0 and γ < 0. Let p = (x, u, y, z, t) ∈ R0 with

0 < x < 1 and γ < t < γ. If u > xt and y > 0, then p satisfies (18) with strict

inequality.

Proof. Then, as γy < 0, we have

γy(u− γx) < γy(xt− γx) = γyx(t− γ).

Thus, as y + u− γx > 0,

γy(u− γx)

y + u− γx
<

γyx(t− γ)

y + u− γx
≤

γyx(t− γ)

−γx
= −y(t− γ)

where the last inequality follows from y + u ≤ 0 and γyx(t− γ) < 0. Thus,

(γ − γ)y + β(γx− u) +
γy(u− γx)

y + u− γx
< (γ − γ)y + β(γx− u)− y(t− γ)

< y(γ − t) + βx(γ − t)

= (y + βx)(γ − t) ≤ β(γ − t)

where the last inequality follows from γ− t > 0 and the fact that aggregating (8) with
weight β and (9) yields y + βx ≤ β.

4.2. Proof of Theorem 7. We now state and prove the two main lemmas that
support the proof of Theorem 7.

Lemma 14. Suppose β < 0 < β. Let p = (x, u, y, z, t) ∈ R1 with 0 < x < 1 and

γ < t < γ. If u < xt, then p is not an extreme point of R1.

Proof. We consider four cases: (a) y + u < 0, (b) z + x < 1, (c) βz − y < 0 and

y−βz < 0, and (d) z+x = 1, y+u = 0, and either βz−y = 0 or y−βz = 0. In each of
them we define a series of points pǫi = (xǫ

i , u
ǫ
i , y

ǫ
i , z

ǫ
i , t

ǫ
i) for i ∈ {1, 2} that depends on

ǫ > 0 with p = 0.5(pǫ1 + pǫ2) and which satisfy limǫ→0 p
ǫ
i = p. We then show that both

pǫi are in R1 and thus p is not an extreme point of R1. To show pǫi ∈ R1, we need to
ensure that it satisfies all inequalities defining R1. For those inequalities that satisfied

12

strictly at p, Lemma 10 ensures that this is the case. For the remaining inequalities,
we show it directly.

By Proposition 12, u < xt implies that p satisfies (12), (13), and (15) with strict
inequality. It remains to show that the points pǫi satisfy (7)–(11), (14), and (18) for
ǫ > 0 small enough. Note that z ≥ 0 is implied by (9) and (10) and does not have to
be proved explicitly.
Case (a): y + u < 0. For ǫ > 0, define pǫi = (xǫ

i , u
ǫ
i , y

ǫ
i , z

ǫ
i , t

ǫ
i) where, for i = 1, 2,

xǫ
i := (1− αǫ

i) + αǫ
ix, uǫ

i := γ(1 − αǫ
i) + αǫ

iu, yǫi := αǫ
iy,

zǫi := αǫ
iz, tǫi := (1− αǫ

i)γ + αǫ
it.

Since αǫ
i converge to 1, it is clear that pǫi converges to p and Lemma 10 can be applied.

In the following we check that pǫi satisfies the remaining inequalities.
(7): Satisfied strictly by p by the assumption of this case.
(8)–(10): Easily checked directly.
(11): Follows from

uǫ
i − γxǫ

i = γ(1− αǫ
i) + αǫ

iu− γ((1− αǫ
i) + αǫ

ix) = αǫ
i(u− γx) ≥ 0.

(14): Follows from

γxǫ
i − uǫ

i = γ((1 − αǫ
i) + αǫ

ix)− γ(1− αǫ
i)− αǫ

iu

= (1− αǫ
i)(γ − γ) + αǫ

i(γx− u)

≤ (1− αǫ
i)(γ − γ) + αǫ

i(γ − t) = γ − (1− αǫ
i)γ − αǫ

it = γ − tǫi .

(18): If y > 0, then also yǫi > 0, and using uǫ
i − γxǫ

i = αǫ
i(u − γx) and γxǫ

i − uǫ
i =

(1− αǫ
i)(γ − γ) + αǫ

i(γx− u), the left-hand-side of (18) evaluated at pǫi equals:

αǫ
i

(

(γ − γ)y + β(γx− u) +
γy(u− γx)

y + u+ γx

)

+ β(1− αǫ
i)(γ − γ)

≤ αǫ
iβ(γ − t) + β(1− αǫ

i)(γ − γ) = β(γ − αǫ
i t− (1− αǫ

i)γ) = β(γ − tǫi)

and hence (18) is satisfied by pǫi for i = 1, 2 and any ǫ ∈ (0, 1) when y > 0. On
the other hand, if y ≤ 0, then yǫi ≤ 0, and pǫi is not required to satisfy (18) for
i = 1, 2.

Case (b): z + x < 1. For ǫ > 0, define pǫi = (xǫ
i , u

ǫ
i , y

ǫ
i , z

ǫ
i , t

ǫ
i) where, for i = 1, 2,

xǫ
i := αǫ

ix, uǫ
i := αǫ

iu, yǫi := αǫ
iy, zǫi := αǫ

iz, tǫi := αǫ
it+ (1 − αǫ

i)γ.

(7): Easily checked directly.
(8): Satisfied strictly by p by the assumption of this case.
(9)–(11): Easily checked directly.
(14): Follows from

γxǫ
i − uǫ

i = αǫ
i(γx− u) ≤ αǫ

i(γ − t) = αǫ
iγ −αǫ

i t = αǫ
iγ − (1−αǫ

i)γ − tǫi = γ − tǫi .

(18): If y > 0, then also yǫi > 0, and the left-hand-side of (18) evaluated at pǫi equals:

αǫ
i

(

(γ − γ)y + β(γx− u) +
γy(u− γx)

y + u+ γx

)

≤ αǫ
iβ(γ − t)

13

= β(αǫ
iγ − tǫi + (1 − αǫ

i)γ) = β(γ − tǫi)

and hence (18) is satisfied by pǫi for i = 1, 2 and any ǫ ∈ (0, 1) when y > 0. On
the other hand, if y ≤ 0, then yǫi ≤ 0, and pǫi is not required to satisfy (18) for
i = 1, 2.

Case (c): βz− y < 0 and y− βz < 0. For ǫ > 0, define pǫi = (xǫ
i , u

ǫ
i , y

ǫ
i , z

ǫ
i , t

ǫ
i) where

xǫ
i := αǫ

ix, uǫ
i := αǫ

iu, yǫi := αǫ
iy, zǫi := (1− αǫ

i) + αǫ
iz, tǫi := αǫ

it+ (1− αǫ
i)γ,

for i = 1, 2.
(7): Easily checked directly.
(8): Follows from

zǫi + xǫ
i = (1 − αǫ

i) + αǫ
iz + αǫ

ix = (1− αǫ
i) + αǫ

i(z + x) ≤ 1.

(9), (10): Satisfied strictly by p by the assumption of this case.
(11): Easily checked directly.
(14), (18): As the definitions of tǫi , y

ǫ
i , x

ǫ
i , and uǫ

i are the same as in Case (b), it follows
from the arguments in that case that pǫi satisfies (14) and (18) for i = 1, 2 and
any ǫ ∈ (0, 1).

Case (d): z + x = 1, y + u = 0, and either βz − y = 0 or y − βz = 0. For ǫ > 0,
define pǫi = (xǫ

i , u
ǫ
i , y

ǫ
i , z

ǫ
i , t

ǫ
i) where, for i = 1, 2,

xǫ
i := x− δǫi , uǫ

i := u− βδǫi , yǫi := y + βδǫi , zǫi := z + δǫi , tǫi := t+ δǫi (γ − β).

(7), (8): Easily checked directly.
(9): We show that when z + x = 1 and y + u = 0, then y − βz < 0. Indeed, if

y − βz = 0, then as z + x = 1, it follows that

(33) y + βx = β

Then, using y = βz > 0, and evaluating p in the left-hand-side of (18) yields

(γ − γ)y + β(γx− u) +
γy(u− γx)

y + u− γx

= (γ − γ)y + β(γx− u) +
γy(u− γx)

−γx
since y + u = 0

= γ(y + βx)− u(β + y/x)

> γ(y + βx)− xt(β + y/x) since u < xt and β + y/x > 0

= (γ − t)(y + βx) = (γ − t)β by (33).

Thus, p violates (18) and hence p fulfills (9) with strict inequality. Furthermore,
due to the assumptions of this case, we can assume βz − y = 0.

(10): Easily checked directly.
(11): As βz − y = 0, z > 0 and x > 0, p satisfies (11) with strict inequality:

u− γx = −y − γx = −βz − γx > 0.

(14): Follows from

γxǫ
i − uǫ

i = γx− γδǫi − u+ βδǫi ≤ γ − t+ δǫi (β − γ) = γ − tǫi .

14

(18): Because z > 0 and y = βz < 0, it follows that yǫi < 0 and pǫi is not subject to
(18).

Lemma 15. Suppose γ > 0 and β < 0 < β. Let p = (x, u, y, z, t) ∈ R1 with

0 < x < 1 and γ < t < γ. If u > xt and either y ≤ 0 or p satisfies (18) with strict

inequality, then p is not an extreme point of R1.

We first comment that the assumption that either y ≤ 0 or p satisfies (18) with
strict inequality follows from the assumption u > xt and Proposition 13 when γ < 0.
However, we state the assumption in this way in order to make the applicability of
this proposition clear for a later case when γ > 0.

Proof. This proof has the same structure as the proof of Lemma 14. By Propo-
sition 12, u > xt implies that p satisfies (11) and (14) with strict inequality. Also,
by assumption, if y > 0, then p satisfies (18) with strict inequality. It remains to
show that the points pǫi satisfy (7)–(10), (12), (13), and (15) for ǫ small enough. We
consider four cases.
Case (a): y + u < 0 and z + x = 1. Note that z + x = 1 and x < 1 implies
that z > 0. Thus, either (9) or (10) is satisfied strictly by p. If y − βz < 0, define
yǫi := (1 − αǫ

i)β + αǫ
iy, and otherwise, if βz − y < 0, define yǫi := (1 − αǫ

i)β + αiy for
ǫ > 0. Then, for ǫ > 0, define pǫi = (xǫ

i , u
ǫ
i , y

ǫ
i , z

ǫ
i , t

ǫ
i) where, for i = 1, 2,

xǫ
i = αǫ

ix, uǫ
i = αǫ

iu, zǫi = (1− αǫ
i) + αǫ

iz, tǫi = (1 − αǫ
i)γ + αǫ

it.

(7): Satisfied strictly by p by the assumption of this case.
(8): Easily checked directly.
(9), (10): Recall that either (9) or (10) is satisfied strictly by p. In the case y−βz < 0,

i.e., (9) is satisfied strictly, we only need to check pǫi satisfies (10):

βzǫi − yǫi = β((1− αǫ
i) + αǫ

iz)− ((1− αǫ
i)β + αǫ

iy) = αǫ
i(βz − y) ≤ 0.

On the other hand, if βz − y < 0, i.e., (10) is satisfied strictly, then

yǫi − βzǫi = β(1− αǫ
i) + αǫ

iy − β((1 − αǫ
i) + αǫ

iz) = αǫ
i(y − βz) ≤ 0.

(12): Easily checked directly.
(13): Shown directly by

uǫ
i − γxǫ

i = αǫ
i(u − γx) ≤ αǫ

i(t− γ) = tǫi − (1 − αǫ
i)γ − αǫ

iγ = tǫi − γ.

(15): Shown directly by

(uǫ
i − βxǫ

i)(u
ǫ
i − γxǫ

i) = (αǫ
i)

2(u− βx)(u − γx)

≤ (αǫ
i)

2(−β)x(t− γ) = −β(xǫ
iα

ǫ
i(t− γ)) = −βxǫ

i(t
ǫ
i − γ).

Case (b): z + x < 1. For ǫ > 0, define pǫi = (xǫ
i , u

ǫ
i , y

ǫ
i , z

ǫ
i , t

ǫ
i) where, for i = 1, 2,

xǫ
i := αǫ

ix, uǫ
i := αǫ

iu, yǫi := αǫ
iy, zǫi := αǫ

iz, tǫi := (1− αǫ
i)γ + αǫ

it.

It is clear that (7) and (9)–(12) are satisfied by pǫi for i = 1, 2. By the assumption of
this case (8) is strictly satisfied by p. The remaining inequalities (13) and (15) depend
only on the variables x, u, and t, and the definitions of uǫ

i ,x
ǫ
i , and tǫi are the same as

in Case (a).
Case (c): y+u = 0, z+x = 1, and y−βz < 0. For ǫ > 0, define pǫi = (xǫ

i , u
ǫ
i , y

ǫ
i , z

ǫ
i , t

ǫ
i)

where, for i = 1, 2,

xǫ
i := αǫ

ix, uǫ
i := αǫ

iu, yǫi := αǫ
iy, zǫi := (1− αǫ

i) + αǫ
iz, tǫi := (1− αǫ

i)γ + αǫ
it.

15

(7), (8): Easily checked directly.
(9): Satisfied strictly by p by the assumption of this case.
(10): We show that (10) is satisfied strictly by p. Indeed, if βz − y = 0, then the

other equations for this case imply that u − βx = −β. Then, evaluating p in
the left-hand-side of (15) yields:

(u− βx)(u − γx) = −β(u − γx) > −β(xt− γx) = −βx(t− γ)

and so p violates (15).
(12): Easily checked directly.
(13), (15): As the definitions of xǫ

i , u
ǫ
i , and tǫi are the same as in Case (a), the argu-

ments in that case imply pǫi satisfies (13) and (15) for ǫ ∈ (0, 1).
Case (d): y + u = 0, z + x = 1, and y − βz = 0. For ǫ > 0, define pǫi =
(xǫ

i , u
ǫ
i , y

ǫ
i , z

ǫ
i , t

ǫ
i) where, for i = 1, 2,

xǫ
i := x− δi, uǫ

i := u− δiβ, yǫi := y + δiβ, zǫi := z + δi, tǫi := t− δi(β − γ).

(7), (8), (9): Easily checked directly.
(10): (10) is satisfied strictly by p by the same argument as in the previous case.
(12): We show that γx − u > 0, i.e., (12) is satisfied strictly by p. Indeed, the three

equations in this case imply that βx− u = β. Thus,

γx− u = γx− βx+ β = γx+ (1− x)β > 0.

(13): Shown directly by

uǫ
i − γxǫ

i = u− δǫiβ − γ(x− δǫi) = u− γx− δi(β − γ)

≤ t− γ − δi(β − γ) = ti − γ.(34)

(15): As y = βz and z > 0, this implies y > 0 and in turn u < 0. Thus, u−βx < −βx
and so, for ǫ > 0 small enough, also uǫ

i −βxǫ
i < −βxǫ

i . Combining this with (34)
yields

(uǫ
i − βxǫ

i)(u
ǫ
i − γxǫ

i) ≤ −βxǫ
i(ti − γ).

4.3. Proof of Theorem 8. We now state and prove the two main lemmas that
support the proof of Theorem 8.

Lemma 16. Suppose γ < γ < 0 and β < 0 < β. Let p = (x, u, y, z, t) ∈ R2 with

0 < x < 1 and γ < t < γ. If u < xt, then p is not an extreme point of R2.

Proof. First, we show that p satisfies (22) with strict inequality. Observe that the
inequality (26) is valid for any point in R2. Thus,

(γ − γ)y + γ(γx− u) + β(u− γx) < (γ − γ)y + γ(γx− xt) + β(xt − γx)

= (γ − γ)y + (γ − t)xγ + (t− γ)βx ≤ (t− γ)β.

When u < xt, the inequality (22) is satisfied with strict inequality, just as (15) is
satisfied by strict inequality when u < xt and γ > 0. As the substitution of (22) for
(15) is the only difference between the sets R2 and R1, the arguments of Lemma 14
apply directly to this case, and we can conclude that if u < xt, 0 < x < 1, and
γ < t < γ, then p is not an extreme point of R2.

16

Lemma 17. Suppose γ < γ < 0 and β < 0 < β. Let p = (x, u, y, z, t) ∈ R2 with

0 < x < 1 and γ < t < γ. If u > xt, then p is not an extreme point of R2.

Proof. This proof has the same structure as the proof of Lemma 14. First, by
Proposition 12, u > xt implies that p satisfies (11) and (14) with strict inequality,
and by Proposition 13 if also y > 0, then p satisfies (18) with strict inequality. Also,
as γ < 0, it follows from u ≤ γx and x > 0 that u < 0. It remains to show that the
points pǫi are feasible for the inequalities (7)–(10), (12), (13), and (22). We consider
four cases.
Case (a): y + u < 0. For ǫ > 0, define pǫi = (xǫ

i , u
ǫ
i , y

ǫ
i , z

ǫ
i , t

ǫ
i) where, for i = 1, 2,

xǫ
i := (1− αǫ

i) + αǫ
ix, uǫ

i := γ(1− αǫ
i) + αǫ

iu, yǫi := αǫ
iy,

zǫi := αǫ
iz, tǫi := (1− αǫ

i)γ + αǫ
i t.

(7): Satisfied strictly by p by the assumption of this case.
(8)–(10): Easily checked directly.
(12): Shown directly by

(35) γxǫ
i − uǫ

i = γ(1− αǫ
i) + γαǫ

ix− (1− αǫ
i)γ − αǫ

iu = αǫ
i(γx− u) ≥ 0.

(13): Shown directly by

uǫ
i − γxǫ

i = γ(1− αǫ
i) + αǫ

iu− γ(1− αǫ
i)− γαǫ

ix

= (γ − γ)(1 − αǫ
i) + αǫ

i(u− γx)(36)

≤ (γ − γ)(1 − αǫ
i) + αǫ

i(t− γ)

= (γ − γ)(1 − αǫ
i) + tǫi − (1− αǫ

i)γ − αǫ
iγ = tǫi − γ.(37)

(22): Using (35) and (36), we get

(γ − γ)yǫi + γ(γxǫ
i − uǫ

i) + β(uǫ
i − γxǫ

i)

= αǫ
i

(

(γ − γ)y + γ(γx− u) + β(u− γx)
)

+ β(γ − γ)(1 − αǫ
i)

≤ αǫ
iβ(t− γ) + (1− αǫ

i)β(γ − γ) = β(tǫi − γ)

where the last equation follows from (37).
Case (b): z + x < 1. For ǫ > 0, define pǫi = (xǫ

i , u
ǫ
i , y

ǫ
i , z

ǫ
i , t

ǫ
i) where, for i = 1, 2,

xǫ
i := αǫ

ix, uǫ
i := αǫ

iu, yǫi := αǫ
iy, zǫi := αǫ

iz, tǫi := αǫ
it+ (1 − αǫ

i)γ.

(7): Easily checked directly.
(8): Satisfied strictly by p by the assumption of this case.
(9), (10), (12): Easily checked directly.
(13): Shown directly by

uǫ
i − γxǫ

i = αǫ
iu− γαǫ

ix ≤ αǫ
i(t− γ) = tǫi − (1− αǫ

i)γ − αǫ
iγ

= tǫi − γ.(38)

(22): Shown directly by

(γ − γ)yǫi + γ(γxǫ
i − uǫ

i) + β(uǫ
i − γxǫ

i)

= αǫ
i

(

(γ − γ)y + γ(γx− u) + β(u− γx)
)

≤ αǫ
iβ(t− γ) = β(tǫi − γ)

where the last equation follows as in (38).

17

Case (c): y−βz < 0 and βz− y < 0. For ǫ > 0, define pǫi = (xǫ
i , u

ǫ
i , y

ǫ
i , z

ǫ
i , t

ǫ
i) where,

for i = 1, 2,

xǫ
i := αǫ

ix, uǫ
i := αǫ

iu, yǫi := αǫ
iy, zǫi := (1− αǫ

i) + αǫ
iz, tǫi := αǫ

it+ (1− αǫ
i)γ.

Then, it is easily seen by construction that pǫi satisfies (8) for any ǫ ∈ (0, 1), i = 1, 2.
As the definitions of xǫ

i , u
ǫ
i , y

ǫ
i , and tǫi are the same as in Case (b), the arguments of

Case (b) apply for all inequalities that do not contain the variable z. This just leaves
and (9) and (10), which by assumption are satisfied strictly by p, and so the proof for
this case is complete.
Case (d): y + u = 0, z + x = 1, and either y − βz = 0 or βz − y = 0. For ǫ > 0,
define pǫi = (xǫ

i , u
ǫ
i , y

ǫ
i , z

ǫ
i , t

ǫ
i) where, for i = 1, 2,

xǫ
i := (1− αǫ

i) + αǫ
ix, uǫ

i := αǫ
iu, yǫi := αǫ

iy, zǫi := αǫ
iz, tǫi := (1− αǫ

i)
γγ

β
+ αǫ

i t.

(7)–(10): Easily checked directly.
(12): We show that p satisfies (12) strictly. Suppose for purpose of contradiction that

γx− u = 0. Then,

(γ − γ)y + γ(γx− u) + β(u− γx) = (γ − γ)y + β(γx− γx)

= (γ − γ)(y + βx) = (γ − γ)β > β(t− γ)

where we have used y + βx = βz + βx = β. Thus, when γx − u = 0 then (22)
is violated, and hence we conclude that (12) is satisfied strictly by p.

(13): We show that p satisfies (13) strictly. Indeed, as y = −u, we find that

(γ − γ)y + γ(γx− u) = (γ − γ)(−u) + γ(γx− u) = γ(γx− u) > 0

since γ < 0 and γx− u < 0. Thus, rearranging inequality (22) yields

u− γx ≤ t− γ −
1

β

(

(γ − γ)y + γ(γx− u)
)

< t− γ

which shows (13) is satisfied strictly by p.
(22): Shown directly by

(γ − γ)yǫi + γ(γxǫ
i − ui

ǫ) + β(uǫ
i − γxǫ

i)

= αǫ
i

(

(γ − γ)y + γ(γx− u) + β(u − γx)
)

+ γγ(1− αǫ
i)− βγ(1− αǫ

i)

≤ αǫ
iβ(t− γ)− (1 − αǫ

i)γ(β − γ)

= β
(

tǫi − (1− αǫ
i)
γγ

β
− γαǫ

i

)

− (1− αǫ
i)γ(β − γ)

= β(tǫi − γ)− (1− αǫ
i)(γγ) + (1− αǫ

i)(γγ) = β(tǫi − γ).

4.4. Proof of Theorem 9. We now state and prove the two main lemmas that
support the proof of Theorem 9. We prepare the proofs with the following proposition.

Proposition 18. Let β < 0. If p ∈ R3, then p satisfies the following inequality:

(γ − β)x ≤ −β(39)

In addition, if p satisfies (7), (8), (10), and (11) at equality, then it satisfies (39) at
equality.

18

Proof. First, aggregating (7) with weight 1, (8) with weight −β, (10) with weight
1, and (11) with weight −1, yields (39). If (7), (8), (10), and (11) are all satisfied at
equality, then p satisfies (39) at equality.

Lemma 19. Suppose 0 < γ < γ and β < 0 < β. Let p = (x, u, y, z, t) ∈ R3 with

0 < x < 1 and γ < t < γ. If u < xt, then p is not an extreme point of R3.

Proof. This proof has the same structure as the proof of Lemma 14. By Proposi-
tion 12, p satisfies (12), (13), and (15) with strict inequality. Also, as u ≥ γx > 0, (7)

implies that y < 0 ≤ βz, and hence p satisfies (9) with strict inequality. In addition,
by (28),

γx− u ≤
−β

γ − β
(γ − t) < γ − t

as γ − t > 0 and γ − β > −β because γ > 0, and so p satisfies (14) with strict
inequality. It remains to show that the points pǫi satisfy (7), (8), (10), (11), and (28)
for ǫ small enough. We consider four cases.
Case (a): y + u < 0. For ǫ > 0, define pǫi = (xǫ

i , u
ǫ
i , y

ǫ
i , z

ǫ
i , t

ǫ
i) where, for i = 1, 2,

xǫ
i := αǫ

ix, uǫ
i := αǫ

iu, yǫi := (1− αǫ
i)β + αǫ

iy,

zǫi := (1− αǫ
i) + αǫ

iz, tǫi := (1− αǫ
i)γ + αǫ

it.

(7): Satisfied strictly by p by the assumption of this case.
(8), (10), (11): Easily checked directly.
(28): Shown directly by

(γ − β)(γxǫ
i − uǫ

i) = αǫ
i(γ − β)(γx− u)

≤ αǫ
i(−β)(γ − t) = −β(αǫ

iγ − tǫi + (1 − αǫ
i)γ) = −β(γ − tǫi).

Case (b): z + x < 1. For ǫ > 0, define pǫi = (xǫ
i , u

ǫ
i , y

ǫ
i , z

ǫ
i , t

ǫ
i) where, for i = 1, 2,

xǫ
i := αǫ

ix, uǫ
i := αǫ

iu, yǫi := αǫ
iy, zǫi := αǫ

iz, tǫi := (1− αǫ
i)γ + αǫ

it.

Then, pǫi is easily seen to satisfy (7), (10), and (11) for any ǫ ∈ (0, 1). (8) is satisfied
strictly by the assumption of this case. In addition, as the definitions of uǫ

i , x
ǫ
i , and

tǫi are the same as in Case (a), (28) is satisfied by pǫi for i = 1, 2 and any ǫ ∈ (0, 1).
Case (c): y > βz. For ǫ > 0, define pǫi = (xǫ

i , u
ǫ
i , y

ǫ
i , z

ǫ
i , t

ǫ
i) where, for i = 1, 2,

xǫ
i := αǫ

ix, uǫ
i := αǫ

iu, yǫi := αǫ
iy, zǫi := (1− αǫ

i) + αǫ
iz, tǫi := (1− αǫ

i)γ + αǫ
it.

Then, pǫi is easily seen to satisfy (7), (8), and (11) for any ǫ ∈ (0, 1). (10) is satisfied
strictly by the assumption of this case. In addition, as the definitions of uǫ

i , x
ǫ
i , and

tǫi are the same as in Case (a), (28) is satisfied by pǫi for i = 1, 2 and any ǫ ∈ (0, 1).
Case (d): y+u = 0, z+x = 1, and y = βz. For ǫ > 0, define pǫi = (xǫ

i , u
ǫ
i , y

ǫ
i , z

ǫ
i , t

ǫ
i)

where, for i = 1, 2,

xǫ
i := x− δǫi , uǫ

i := u− βδi, yǫi := y + βδi, zǫi := z + δi, tǫi := t+ δi
(γ − β)(γ − β)

(−β)
.

(7), (8), (10): Easily checked directly.
(11): We show that (11) is satisfied strictly by p. Indeed, suppose to the contrary

that γx− u = 0. Then, by Proposition 18, (γ − β)x = −β. Thus, using u < xt,
γ > 0 and −β > 0,

(γ − β)(γx− u) > (γ − β)(γx− xt) = −β(γ − t)

and hence (28) is violated. Thus, (11) is satisfied strictly by p.

19

(28): Since u > xt and Proposition 18 we show the validity of (28) by

(γ − β)(γxǫ
i − uǫ

i) = (γ − β)
(

γ(x− δi)− (u− βδi)
)

= (γ − β)(γx− u)− δi(γ − β)(γ − β)

< (γ − β)x(γ − t)− δi(γ − β)(γ − β)

≤ −β(γ − t)− δi(γ − β)(γ − β)

= −β
(

γ − ti + δi
(γ − β)(γ − β)

(−β)

)

− δi(γ − β)(γ − β)

= −β(γ − ti).

Lemma 20. Suppose 0 < γ < γ and β < 0 < β. Let p = (x, u, y, z, t) ∈ R3 with

0 < x < 1 and γ < t < γ. If u > xt, then p is not an extreme point of R3.

Proof. Using γ − β > 0, we have

(γ − β)(xγ − u) < (γ − β)x(γ − t) ≤ −β(γ − t)

by (39) in Proposition 18.
When u > xt, the inequality (28) is satisfied with strict inequality, just as (18) is

satisfied by strict inequality when u > xt and γ < 0 as in Case 1. As the substitution

of (28) for (18) is the only difference between the sets R3 and R1, Lemma 15 applies
directly to this case, and we can conclude that if u > xt, 0 < x < 1, and γ < t < γ,

then p is not an extreme point of R3.

5. Computational Results. In this section, we present results from computa-
tional experiments conducted on instances from the literature and on larger randomly
generated instances derived from the instances in the literature. We show that the
proposed inequalities indeed strengthen the relaxation of the pq-formulation and are
able to speed up the global solution process, especially on sparse instances.

5.1. Computational setup. The experiments were conducted on a cluster with
64bit Intel Xeon X5672 CPUs at 3.2GHz with 12MB cache and 48MB main memory.
To limit the impact of variability in machine performance, e.g., by cache misses, we
run only one job on each node at a time.

The model is implemented in the GAMS language and processed with GAMS
version 24.7.1. The pq-formulation is solved to global optimality with SCIP version
3.2 which used CPLEX 12.6.3 as LP solver and Ipopt 3.12 as local NLP solver. The
relaxations, which are LPs or SOCPs, are solved with CPLEX 12.6.3. We used the
predefined timelimit of 1000 seconds and use a relative gap of 10−6 as termination
criterion (GAMS options OPTCA = 0.0 and OPTCR = 10−6).

5.2. Adding the inequalities. Recall that the initial step to construct the
5-variable relaxation was to focus on a (Attribute, Pool, Output) tuple and extend
the model by the aggregated variables u, x, z, y, t for each such pair. We follow this
approach in the implementation. We extend the model by the aggregated variables
and rely on the solver to replace or disaggregate the variables in the constraints if it
is considered advantageous. We add the linear inequalities whenever they are valid
(specifically (22) is added whenever β > 0 and (28) is added whenever β < 0).
Inequality (15) is second-order cone (SOC) representable and could in principle be
added directly as SOC constraint. However, we are not able to directly formulate

20

(18) using a linear or second-order cone representation and we thus resort to a cutting
plane algorithm. Namely, whenever the relaxation solution has y > 0 for a specific
(Attribute, Pool, Output), a gradient inequality at this point is separated and the
relaxation is solved again. Note that the gradient inequality is also valid for y ≤ 0
due to Lemma 4. Since the gradient inequalities towards the end of the separation
loop become almost parallel, the interior point SOCP solver frequently runs into
numerical trouble. To circumvent this, (15) is not added directly to the model, but
linear gradient inequalities are also separated from all conic inequalities in the same
separation loop. The major advantage is that all relaxations are then LPs and thus
solved very efficiently. This approach in our experience provides much better running
times than solving SOCP relaxations in the separation loop.

We separate the inequalities only at the root node of the spatial branch-and-
bound algorithm. More precisely, we set up the separation loop for both inequalities
and separate until the absolute violation of the conic inequality and inequality (18)
are below 10−4 and 10−5, respectively. Then we pass the pq-formulation and all
inequalities that have been separated to SCIP and solve the problem globally. The
separation therefore does not make use of any model changes or strengthening that
SCIP performs during preprocessing or from propagations during its own cutting plane
loop.

In the following we use pq-relaxation to refer to the McCormick relaxation of the
pq-formulation. The relaxation that arises by strengthening the pq-relaxation with
our valid inequalities is called pq+-relaxation.

5.3. Instances. We perform experiments on two sets of instances: The pooling
instances from the GAMSLIB [16] and new instances that we randomly generated
based on structures from the GAMSLIB instances. The GAMSLIB instances are
encoded in the pool model as different cases yielding 14 instances. All of them were
first presented in scientific publications about the pooling problem. It comprises three
instances on the original network from Haverly [21, 22]. Furthermore, it contains
instances from the publications [15, 8, 1, 4].

The random instances are generated in the following way. The basis are copies of
the Haverly instances. The resulting disconnected graphs are then supplemented by
randomly adding a specific number of admissible edges in a pooling network. As the
resulting network might still be disconnected, the first edges are chosen as to connect
two disconnected components until the graph is connected. As the GAMSLIB includes
three instances of the Haverly network with different parameters, the distribution
among the three Haverly instances is sampled randomly. Next, for each copy a factor
φ ∈ [0.5, 2] is sampled uniformly and all concentration parameters, i.e., λik and µjk of
that copy are scaled by φ. Lower bounds on the concentration are not used in these
instances but could be sampled and handled in the separation in a similar way.

We generated instances with 10, 15, and 20 copies of the Haverly network. The
number of edges to be added are multiples of the number of copies of the Haverly
network. For each such pair of number of copies and number of additional edges, we
sample 10 instances. In total 180 instances are generated.

The new instances and the scripts to create them are available online1.

5.4. Results. First, we consider the 14 GAMSLIB instances. For six instances
the pq-relaxation provides the optimal bound and hence these instances are not con-
sidered anymore. Table 2 shows results on the remaining eight GAMSLIB instances.

1https://github.com/poolinginstances/poolinginstances, commit e50a2c31ceed

21

https://github.com/poolinginstances/poolinginstances

Instance Graph pq pq+ Opt

Nodes Arcs Absolute Gap Absolute Gap Closed

adhya1 11 13 -766.3 39.4 % -697.0 26.8 % 32.0 % -549.8
adhya2 11 13 -570.8 3.8 % -568.3 3.4 % 11.8 % -549.8
adhya3 15 20 -571.3 1.8 % -570.7 1.7 % 6.3 % -561.0
adhya4 15 18 -961.2 9.5 % -955.4 8.9 % 7.0 % -877.6
bental4 7 4 -550.0 22.2 % -450.0 0.0 % 100.0 % -450.0
haverly1 6 6 -500.0 25.0 % -400.0 0.0 % 100.0 % -400.0
haverly2 6 6 -1000.0 66.7 % -600.0 0.0 % 100.0 % -600.0
haverly3 6 6 -800.0 6.7 % -791.7 5.6 % 16.7 % -750.0

Table 2

Results on GAMSLIB instances where the pq-formulation does not provide the optimum

Cop. Graph Gap [%] Global pq Global pq+

|V | |A| |A+| pq pq+ TL Time Nodes TL Time Nodes

10 60 70 10 13.0 3.2 0 5.0 7098.1 0 1.8 213.9
60 80 20 8.3 3.8 0 3.4 3011.6 0 3.4 727.0
60 90 30 4.7 2.9 0 3.1 1397.2 0 3.2 371.4
60 100 40 3.0 1.9 0 2.3 993.2 0 4.1 530.4
60 110 50 2.6 2.1 0 3.3 1034.4 0 6.0 665.9
60 120 60 3.3 2.4 0 6.3 2320.4 0 9.3 1511.6

15 90 105 15 10.6 3.2 0 63.0 106880.6 0 7.0 2023.2
90 120 30 7.2 3.3 1 53.2 40031.5 1 20.0 3480.5
90 135 45 4.9 3.4 1 36.6 24087.1 0 31.0 8202.0
90 150 60 4.1 3.0 1 33.4 19234.3 0 24.0 5043.2
90 165 75 3.3 2.5 0 21.2 13919.3 0 37.1 10576.1
90 180 90 3.8 3.0 1 47.4 21998.2 1 51.8 8300.6

20 120 140 20 13.4 4.3 9 993.9 1655439.0 1 44.3 7327.0
120 160 40 6.0 2.9 4 296.9 175642.9 3 116.8 18319.4
120 180 60 4.5 2.8 5 287.6 84123.7 4 213.3 29497.7
120 200 80 4.1 2.8 2 84.3 40476.0 2 68.5 12186.5
120 220 100 3.1 2.3 3 159.1 44945.7 3 142.3 20325.7
120 240 120 2.5 2.0 2 187.5 69610.8 3 224.1 36090.3

Total – – – 5.7 2.9 29 37.1 12685.7 18 25.0 3108.0

Table 3

Results on randomly generated instances

Along with the size of the graph in terms of number of nodes and arcs, Table 2 presents
the value of the different relaxations and their gaps. The column “Opt” shows the
global optimum computed by solving the nonconvex pq-formulation. The instances
are small, but the results are encouraging. Our relaxation gives a stronger dual bound
on all instances compared to the pq-relaxation and on three instances the gap is closed
completely.

Table 3 presents results on the larger randomly generated networks. The instances
are grouped by the number of copies of the Haverly network (first column) and by
the number of edges that have been added to the network (column |A+|). Each row
thus provides aggregated results over 10 instances. The last row represents the total

22

over all instances. The group of columns labeled with “Graph” shows statistics about
the graphs. Besides the number of random arcs added |A+|, the number of nodes
|V | and arcs |A| is shown. The numbers are identical within each group of instances.
Next, the average gap for the pq-relaxation and the pq+-relaxation is shown. For both
approaches the gap is computed w.r.t. the best known primal bound for the problem
and thus reflects only differences in the dual bound. Finally, the last two groups of
columns show statistics about the global solution process using the pq-formulation
and pq+-relaxation at the root. We report number of instances that were terminated
due to the time limit (column “TL”), time, and number of nodes. For time and nodes,
the shifted geometric mean with shift 2 and 100, respectively, is used to aggregate
the results. Furthermore, only instances where both approaches finished within the
time limit are considered in the computation of the number of nodes. For pq+, the
separation time for the nonlinear inequalities is taken into account by adding it to the
time SCIP needed to solve the problem.

The pq+-relaxation is effective in reducing the root gap, leaving an average gap
of 2.9% compared to the 5.7% of the pq-relaxation. The pq+-relaxation performs es-
pecially well on instances with sparse networks. This is expected, since the relaxation
provides the optimal dual bound on two of the three Haverly instances (see Table 2)
that we used to construct the random instances. All but one instance of the testset
experience an improvement of the dual bounds due to the additional inequalities. The
most notable effect of the stronger root bound is on the number of branch&bound
nodes needed to solve an instances to global optimality. The shifted geometric mean
of the nodes is reduced from 12685 to 3108, a reduction of 75% over the full set of in-
stances. While reductions are stronger on sparse instances, significant reductions are
observed among all classes of instances. In terms of time to optimality, the stronger
relaxation pays off only for sparse instances. As the instances become denser, the
pq-formulation achieves better running times in the shifted geometric mean. Over all
instances, however, the shifted geometric mean is reduced from 37.1 to 25.0 seconds.
A significant portion of this improvement comes from instances with 20 Haverly net-
works and only 20 additional edges. From the 10 instances of this class, only one
instance is solved within the time limit (in 940 seconds) by the pq-formulation while
all but one are solved using the pq+-relaxation. The dual bound is exactly the prob-
lem for the pq-formulation on these instances. The approach with the pq-formulation
found an optimal solution always within the first 184 seconds of the optimization and
then used a massive amount of branching nodes to close the gap. Overall, pq+ solves
11 instances more within the timelimit than the pq-formulation.

6. Conclusions. We have derived new valid inequalities for the pooling problem
by studying a set defined by a single product, a single pool, and a single attribute,
and performing a variable aggregation. Since we have also shown these inequalities
define the convex hull in many cases, further improvements to the relaxation of the
pooling problem will need to consider more aspects of the problem. For example,
still with a fixed attribute k, output j, and pool ℓ, one may consider studying valid
inequalities for a set in which the variables xij , wiℓj , and qiℓ, for i ∈ I are included,
rather than being summarized in the variables ziℓ, tkℓ and ukℓj . Alternatively, one
may still use these summary variables, but study a set that includes multiple pools.
The latter approach may yield further improved relaxations, since it avoids the need
to treat all flows to the fixed product that pass through pools other than the fixed
pool as by-pass flows.

23

Acknowledgements. The authors thank Stefan Vigerske for his help and sug-
gestions on the implementation of the separation procedure in the GAMS environ-
ment. Jonas Schweiger thanks the DFG for their support within Projects B06 and Z01
in CRC TRR 154 and the Research Campus MODAL funded by the German Federal
Ministry of Education and Research (BMBF) (fund number 05M14ZAM). The work
of Linderoth and Luedtke was supported by the U.S. Department of Energy, Office
of Science, Office of Advanced Scientific Computing Research, Applied Mathematics
program under Contract Number DE-AC02-06CH11357.

REFERENCES

[1] N. Adhya, M. Tawarmalani, and N. V. Sahinidis, A lagrangian approach to the pooling
problem, Industrial & Engineering Chemistry Research, 38 (1999), pp. 1956–1972.

[2] F. A. Al-Khayyal and J. E. Falk, Jointly constrained biconvex programming, Mathematics
of Operations Research, 8 (1983), pp. 273–286.

[3] M. Alfaki and D. Haugland, Strong formulation for the pooling problem, Journal of Global
Optimization, 56 (2013), pp. 897–916.

[4] C. Audet, J. Brimberg, P. Hansen, S. L. Digabel, and N. Mladenovic, Pooling problem:
Alternate formulations and solution methods, Management Science, 50 (2004), pp. 761–
776.

[5] M. Bagajewicz, A review of recent design procedures for water networks in refineries and
process plants, Computers & Chemical Engineering, 24 (2000), pp. 2093 – 2113.

[6] T. E. Baker and L. S. Lasdon, Successive linear programming at Exxon, Management Science,
31 (1985), pp. 264–274.

[7] R. Baltean-Lugojan and R. Misener, Piecewise parametric structure in the pooling problem:
from sparse strongly-polynomial solutions to NP-hardness, Journal of Global Optimization,
(2017), https://doi.org/10.1007/s10898-017-0577-y.

[8] A. Ben-Tal, G. Eiger, and V. Gershovitz, Global minimization by reducing the duality gap,
Mathematical Programming, 63 (1994), pp. 193–212.

[9] N. Boland, T. Kalinowski, and F. Rigterink, A polynomially solvable case of the pooling
problem, Journal of Global Optimization, 67 (2017), pp. 621–630.

[10] F. Ceccon, G. Kouyialis, and R. Misener, Using functional programming to recognize named
structure in an optimization problem: Application to pooling, AIChE Journal, (2016).

[11] C. D’Ambrosio, J. T. Linderoth, and J. Luedtke, Valid inequalities for the pooling prob-
lem with binary variables, in Integer Programming and Combinatorial Optimization, 15th
International IPCO Conference Proceedings, Springer, 2011, pp. 117–129.

[12] C. W. DeWitt, L. S. Lasdon, A. D. Waren, D. A. Brenner, and S. A. Melhem, OMEGA:
An Improved Gasoline Blending System for Texaco, Interfaces, 19 (1989), pp. 85–101.

[13] S. S. Dey and A. Gupte, Analysis of MILP techniques for the pooling problem, Operations
Research, 63 (2015), pp. 412–427.

[14] C. A. Floudas and A. Aggarwal, A decomposition strategy for global optimum search in the
pooling problem, ORSA Journal on Computing, 2 (1990), pp. 225–235.

[15] L. Foulds, D. Haugland, and K. Jornsten, A bilinear approach to the pooling problem,
Optimization, 24 (1992), pp. 165–180.

[16] GAMS Model Library, http://www.gams.com/modlib/modlib.htm.
[17] A. Gupte, Mixed Integer Bilinear Programming with Applications to the Pooling Problem,

PhD thesis, Georgia Institute of Technology, 2012.
[18] A. Gupte, S. Ahmed, S. Dey, and M. Cheon, Pooling problems: an overview, Optimization

and Analytics in the Oil and Gas Industry, accepter (2015).
[19] A. Gupte, S. Ahmed, S. S. Dey, and M. S. Cheon, Relaxations and discretizations for the

pooling problem, Journal of Global Optimization, 67 (2017), pp. 631–669.
[20] D. Haugland, The computational complexity of the pooling problem, Journal of Global Opti-

mization, 64 (2015), pp. 199–215.
[21] C. A. Haverly, Studies of the behavior of the recursion for the pooling problem, SIGMAP

Bulletin, 25 (1978), pp. 19–28.
[22] C. A. Haverly, Behaviour of the recursion model - more studies, SIGMAP Bulletin, 26 (1979),

pp. 12–28.
[23] J. Kallarath, Mixed integer optimization in the chemical process industry: Experience, po-

tential and future perspectives, Chemical Engineering Research and Design, 78 (2000),
pp. 809–822.

24

https://doi.org/10.1007/s10898-017-0577-y
http://www.gams.com/modlib/modlib.htm

[24] J. Luedtke, C. D’Ambrosio, J. Linderoth, and J. Schweiger, Strong convex nonlinear
relaxations of the pooling problem: Extreme points, Tech. Report ZIB-Report 18-13, Zuse
Institute Berlin, Takustr. 7, 14195 Berlin, March 2018.

[25] G. P. McCormick, Computability of global solutions to factorable nonconvex programs: Part
I—Convex underestimating problems, Mathematical Programming, 10 (1976), pp. 147–175.

[26] C. A. Meyer and C. A. Floudas, Global optimization of a combinatorially complex generalized
pooling problem, AIChE Journal, 52 (2006), pp. 1027–1037.

[27] R. Misener and C. Floudas, Advances for the pooling problem: Modeling, global optimization,
& computational studies, Applied and Computational Mathematics, 8 (2009), pp. 3–22.

[28] R. Misener and C. A. Floudas, Global optimization of large-scale generalized pooling prob-
lems: Quadratically constrained minlp models, Industrial & Engineering Chemistry Re-
search, 49 (2010), pp. 5424–5438.

[29] R. Misener, C. E. Gounaris, and C. A. Floudas, Mathematical modeling and global opti-
mization of large-scale extended pooling problems with the (EPA) complex emissions con-
straints, Computers & Chemical Engineering, 34 (2010), pp. 1432 – 1456.

[30] I. Quesada and I. Grossmann, Global optimization of bilinear process networks with multi-
component flows, Computers & Chemical Engineering, 19 (1995), pp. 1219 – 1242. An
International Journal of Computer Application in Chemical Engineering.

[31] B. Rigby, L. Lasdon, and A. Waren, The Evolution of Texacos Blending Systems: From
OMEGA to StarBlend, Interfaces, 25 (1995), pp. 64–83.

[32] M. Ruiz, O. Briant, J.-M. Clochard, and B. Penz, Large-scale standard pooling problems
with constrained pools and fixed demands, Journal of Global Optimization, 56 (2012),
pp. 939–956.

[33] SymPy Development Team, SymPy: Python library for symbolic mathematics, 2016. http://
www.sympy.org (accessed October 20, 2016).

[34] M. Tawarmalani and N. V. Sahinidis, Convexification and Global Optimization in Con-
tinuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and
Applications, Kluwer Academic Publishers, Boston MA, 2002.

[35] V. Visweswaran, MINLP: applications in blending and pooling problems, in Encyclopedia of
Optimization, C. A. Floudas and P. M. Pardalos, eds., Springer US, Boston, MA, 2001,
pp. 1399–1405.

25

http://www.sympy.org
http://www.sympy.org

	1 Introduction
	1.1 Literature Review

	2 Mathematical Formulation and Relaxation
	3 Strong Convex Nonlinear Relaxations
	3.1 Valid Inequalities

	4 Convex hull analysis
	4.1 Preliminary Results
	4.2 Proof of thm:case1
	4.3 Proof of thm:case2
	4.4 Proof of thm:case3

	5 Computational Results
	5.1 Computational setup
	5.2 Adding the inequalities
	5.3 Instances
	5.4 Results

	6 Conclusions
	References

