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CHAIN-REFERRAL SAMPLING ON STOCHASTIC BLOCK

MODELS∗

Thi Phuong Thuy Vo∗∗

Abstract. The discovery of the “hidden population”, whose size and membership are unknown, is
made possible by assuming that its members are connected in a social network by their relationships.
We explore these groups by a chain-referral sampling (CRS) method, where participants recommend the
people they know. This leads to the study of a Markov chain on a random graph where vertices represent
individuals and edges connecting any two nodes describe the relationships between corresponding
people. We are interested in the study of CRS process on the stochastic block model (SBM), which
extends the well-known Erdös-Rényi graphs to populations partitioned into communities. The SBM
considered here is characterized by a number of vertices N , a number of communities (blocks) m,
proportion of each community π = (π1, . . . , πm) and a pattern for connection between blocks P =
(λkl/N)(k,l)∈{1,...,m}2 . In this paper, we give a precise description of the dynamic of CRS process in
discrete time on an SBM. The difficulty lies in handling the heterogeneity of the graph. We prove that
when the population’s size is large, the normalized stochastic process of the referral chain behaves like
a deterministic curve which is the unique solution of a system of ODEs.
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1. Introduction

In sociology, some populations may be hidden because their members share common attributes that are
illegal or stigmatized. These hidden groups may be hard to approach because these individuals try to conceal
their identities due to legal authorities (e.g. drugs users) or because of the social pressure (e.g. men having
sex with men). In such populations, all the information is unknown: there is no sampling frame such as lists
of the members of the population or of the relationship between the latter. It causes many challenges for
researchers to identify these groups. The discovery of the hidden populations is made possible by assuming
that its members are connected by a social network. The population is described by a graph (network) where
each individual is represented by a vertex and any interaction or relationship (e.g. friendship, partnership)
between a couple of individuals is represented by an edge matching the corresponding vertices. Thanks to this
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important feature, we are allowed to investigate these populations by using a Chain-referral Sampling (CRS)
technique, such as snowball sampling, targeting sampling, respondent driven sampling etc. (see the review of [25]
or [16–18]). CRS consists in detecting hidden individuals in a population structured as a random graph, which
is modeled by a stochastic process that we study here. The principle of CRS is that from a group of initially
recruited individuals, we follow their connections in the social network to recruit the subsequent participants.
The exploration proceeds from node to node along the edges of the graph. The interviewees induce a sub-tree
of the underlying real graph, and the information coming from the interviews gives knowledge on other non-
interviewed individuals and edges, providing a larger sub-graph. We aim at understanding this recruitment
process from the properties of the explored random graph. The CRS showed its practicality and efficiency in
recruiting a diverse sample of drug users (see [4]).

CRS models are hard to study from a theoretical point of view without any assumption on the graph
structure. In this paper, we consider a particular model with latent community structure: the stochastic block
model (SBM) proposed by Holland et al. [19]. This model is a useful benchmark for some statistical tasks as
recovering community (also called blocks or types in the sequel) structure in network science [14, 15, 23]. By
block structure, we mean that the set of vertices in the graph is partitioned into subsets called blocks and nodes
connect to each other with probabilities that depend only on their types, i.e. the blocks to which they belong.
For example, edges may be more common within a block than between blocks (e.g. group of people having
sexual contacts). We recall here the definition of SBM (we refer the reader to the survey in [1]):

Definition 1.1. Let N be a positive integer (number of vertices), m be a positive integer (number of blocks or
types), π = (π1, . . . , πm) be a probability distribution on {1, . . .m} (the probabilities of the m types, i.e. a vector
of [0, 1]m such that

∑m
k=1 πk = 1) and P = (pkl)(k,l)∈{1,...,m}2 be a symmetric matrix with entries pkl ∈ [0, 1]

(connectivity probabilities). The pair (Γ, G) is drawn under the distribution SBM(N, π, P ) if the vector of types
Γ is an N -dimensional random vector, whose components are i.i.d., {1, . . . ,m}-valued with the law π, and G
is a simple graph of size N where vertices i and j are connected independently of other pairs of vertices with
probability pΓiΓj

. We also denote the blocks (community sets) by: [l] := {v ∈ {1, . . . , N} : Γv = l} with the size
Nl := |[l]|, l ∈ {1, . . . ,m}.

Notice that when m = 1, i.e. there is only one type. Any arbitrary pair of vertices is connected independently
to the others with the same probability p11, SBM becomes the Erdös-Rényi graph, which is studied in [10].

Here, we consider the Poisson case where the connectivity probabilities pkl depend on N and are given by
pkl = λkl/N . This means that each individual of the block k contacts in average λklπl individuals of the block l.
This implies that the network examined is sparse. In the present work, we give a rigorous description of a CRS
on such SBM and study the propagation of the referral chain on this sparse model.

The CRS relies on a random peer-recruitment process. To handle the two sources of randomness, the graph
and the exploring process on it are constructed simultaneously. In the construction, the vertices of the graph
will be in 3 different states: inactive vertices that have not being contacted for interviews, active vertices that
constitute the next interviewees and off-mode vertices that have been already interviewed. The idea to describe
the random graph as a Markov exploration process with active, explored and unexplored nodes is classical in
random graphs theory. It has been used as a convenient technique to expose the connections inside a cluster,
especially to discover the giant component in a random graph models, for example see [11, 27]. In our case,
there is a slight difference in the recruiting process: the number of nodes being switched to the active mode
is set to be bounded by a constant. This trick helps to improve the bias towards high-degree nodes in the
population (see [18]). At the beginning of the survey, all individuals in the population are hidden and are
marked as inactive vertices. We choose some people as seeds of the investigation and activate them. During the
interview these individuals name their contacts and a maximum number c of coupons are distributed to the
latter, who become active nodes. One by one, every carrier of a coupon can come to a private interview and is
asked in turn to give the names of her/his peers. Whenever a new person is named, one edge connecting the
interviewee and her/his contact is added but they remain inactive until they receive a coupon. After finishing
the interview, a maximum number of c new contacts receive one coupon each and are activated. So if the
interviewee names more than c people, a number of them are not given any coupon and can be still explored
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Figure 1. Description of how the chain-referral sampling works. In our model, the random
network and the CRS are constructed simultaneously. For example, at Step 3, an edge between
two vertices who are already known at Step 2 is revealed.

later provided another interviewee mentions them. After that, the node associated to the person who has just
been interviewed is switched to off-mode and is no longer recruited again, see Figure 1. We repeat the procedure
of interviewing, referring, distributing coupons until there is no more active vertex in the graph (no more coupon
is returned). Each person returning a coupon receives some money as a reward for her/his participation, and an
extra bonus depending on the number contacts that will later return the coupons. Notice that each individual
in the population is interviewed just once and we assume here that there is no restriction on the total number
of coupons.

The process of interest counts the number of coupons present in the population. We also want to know
how many people are detected, which leads to the number of people explored but without coupons. Denote
by the discrete time n ∈ N = {0, 1, 2, . . . } the number of interviews completed, An corresponds to the number
of individuals that have received coupons but that have not been interviewed yet (number of active vertices);
Bn to the number of individuals cited in the interviews but who have not been given any coupon (number of
found but still inactive vertices) and Un to the total number of individuals having been interviewed (number of
off-mode nodes).

Because of the connectivity properties of the SBM graphs, we need to keep track of the types of the
interviewees and the coupons distributed not only to one community but also in general to each of the m
communities at every step. We then associate to the chain-referral the following stochastic vector process
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Xn := (An, Bn, Un), n ∈ N:

Xn :=

AnBn
Un

 =

A
(1)
n · · · A

(m)
n

B
(1)
n · · · B

(m)
n

U
(1)
n · · · U

(m)
n

 , n ∈ N,

where A
(l)
n (resp. B

(l)
n and u

(l)
n ) corresponds to the number of active nodes (resp. of found but inactive nodes

and of off-mode nodes) of type l at step n. In all the paper, we will use the notation (X
1,(l)
n , X

2,(l)
n , X

3,(l)
n ) =

(A
(l)
n , B

(l)
n , U

(l)
n ).

The main object of the paper is to establish an approximation result when the size N of the SBM graph
tends to infinity. In this case, the chain-referral process correctly renormalized is:

XN
t :=

1

N
XbNtc =

(
AbNtc

N
,
BbNtc

N
,
UbNtc

N

)
∈ [0, 1]3×m, t ∈ [0, 1]. (1.1)

In all the paper, we consider spaces Rd equipped with the L1-norm defined for x = (x1, . . . , xd) as ‖x‖ =∑d
k=1 |xk|. For all N , the process XN

· lives in the space of càdlàg processes D([0, 1], [0, 1]3×m) equipped with
Skorokhod topology (see [13, 20, 22]).

There exist to our knowledge a few works of studying CRS form a probabilistic point of view, for example,
Athreya and Röllin [3]. In their work, they obtained a result in a slightly different framework: they consider
random walks on the limiting graphon to construct a sequence of sub-graphs, which converges almost surely to
the graphon underlying the network in the cut-metric. Whereas we take here to the limit both the graph and its
exploring random walk simultaneously. The main result of this paper is that the process (XN

. )N converges to
a system of ordinary differential equations (ODEs). There has also been literature on random walks exploring
graphs possibly with different mechanism (see [7, 12] for instance). Here we allow the exploring Markov process
to branch. Also, our process bares similarities with epidemics spreading on graphs (see [6, 9, 21, 26]) but with
the additional constraint of a maximum number of distributed coupons here.

The CRS is constructed by the similar principle of an epidemic spread and starts with a single individual.
There are two main phases of evolution (see [6]): the initial phase is well approximated by a branching process
(which we are neglecting here) and the second phase is when the stochastic process is approximated by an
deterministic curve. In this paper, we focus on the second phase, but let us comment quickly on the first phase.
In the sequel, we will assume that:

Assumption 1.2. For each `, k ∈ {1, . . . ,m}, denote µ`k = λ`kπk. We assume that the matrix µ =
(µ`k)`,k∈{1,...,m} is irreducible and the largest eigenvalue of µ is larger than 1.

Remark 1.3. Under the Assumption 1.2, from the proof of Theorem 3.2 of Barbour and Reinert [6], the early
stages of the CRS is now can be associated approximated by a multitype branching process with the offspring
distributions determined by the matrix µ. Thanks to the Assumption 1.2 the multitype branching process
associated with the offspring matrix µ is supercritical. The analogous results for the extinction probability and
for the number of offspring at the nth generation as in the single branching process have been proved in Chapter
5 of [2]: the mean matrix of the population size at time n is proportional to µn. And follow the claim (3.11) of
Barbour and Reinert [6], we can deduce that if we start with a single individual, then after a finite steps, we
can reach a positive fraction of explored individuals in the population with a positive probability.

Assumption 1.4. Set a0, b0, u0 ∈ [0, 1]m, a0 = (a
(1)
0 , . . . , a

(m)
0 ) such that

∑m
i=1 a

(i)
0 = ‖a0‖ ∈ [0, 1], and set

b0, u0 ∈ [0, 1]m, with b0 = (0, . . . , 0) and u0 = (0, . . . , 0). We assume that the sequence XN
0 = 1

NX0 converges in
probability to the vector (a0, b0, u0), as N → +∞.
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It means that the initial number of individuals with type i at the beginning of the survey is approx-

imately ba(i)
0 Nc. A possible way to initializing the process is to draw A0 from a multinomial distribution

M(b‖a0‖Nc;π1, . . . , πm).

Theorem 1.5. Under the Assumptions 1.2 and 1.4, we have: when N tends to infinity, the process

(XN
· )N converges in distribution in D([0, 1], [0, 1]3×m) to a deterministic vectorial function x = (x

(l)
· )1≤l≤m =

(a
(l)
· , b

(l)
· , u

(l)
· )1≤l≤m in C([0, 1], [0, 1]3×m), which is the unique solution of the system of differential equations

xt = x0 +

∫ t

0

f(xs)ds, (1.2)

where f(xs) := (fil(xs)) 1≤i≤3
1≤l≤m

has an explicit formula described as follows. Denote

t0 := inf{t ∈ [0, 1] : ‖at‖ := a
(1)
t + . . .+ a

(m)
t = 0}. (1.3)

For s ∈ [0, t0],

f1l(xs) =

m∑
k=1

a
(k)
s

‖as‖
λk,ls
Λks

(
c−

c∑
h=0

(c− h)
(Λks)h

h!
e−Λk

s

)
− a

(l)
s

‖as‖
; (1.4)

f2l(xs) =

m∑
k=1

a
(k)
s

‖as‖
µk,ls −

m∑
k=1

a
(k)
s

‖as‖
λk,ls
Λks

(
c−

c∑
h=0

(c− h)
(Λks)h

h!
e−Λk

s

)
; (1.5)

f3l(xs) =
a

(l)
s

‖as‖
; (1.6)

with

λk,ls := λkl

(
πl − a(l)

s − u(l)
s

)
; Λks :=

m∑
l=1

λk,ls and µk,ls := λkl(πl − a(l)
s − b(l)s − u(l)

s ). (1.7)

For s ∈ [t0, 1], f(xs) = f(xt0).

Remark 1.6. Notice that in this model, the time corresponds to the fraction of the population interviewed.
The time t0 is the first time at which |at| reaches 0 and can be seen as the proportion of the population
interviewed when there is no more coupon to keep the CRS going. Necessarily, t0 ≤ 1. We see that ‖at‖ = 0

only if a
(1)
t = . . . = a

(m)
t = 0. It implies that f(xt) = 0,∀t ∈ [t0, 1]. Then, the solution of the system of ODEs

(1.5) becomes constant over the interval [t0, 1].

The rest of this paper is organized in the following manner. First, in Section 2, we give a precise description of
the chain-referral process on a SBM random graph. This relies heavily on the structure of the random graph that
we construct progressively when the exploration process spreads on it. In Section 3, we prove the limit theorem.
The proof uses limit theory of càdlàg semi-martingale vector processes equipped with Skorokhod topology (see
[13]) and Poisson approximations (see [5]). Then in Section 4, we present simulation results of the stochastic
process and the solution of the system of limiting ODEs. We conclude with some discussions on the impacts of
changing parameters of the models on the evolution of the chain-referral process.
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2. Definition of the chain-referral process

Let us describe the dynamics of X = (Xn)n∈N. Recall that ‖An‖ :=
∑m
l=1A

(l)
n is the total number of

individuals having coupons but who have not yet been interviewed. We start with A0 seeds, whose types
are chosen independently according to π. A0 is an m-dimensional random vector with multinomial dis-

tribution M(b‖a0‖Nc;π1, . . . , πm), i.e. P
(
(A

(1)
0 , . . . , A

(m)
0 ) = (k1, . . . , km)

)
= πk11 . . . πkmm , ki ∈ N such that∑m

i=1 ki = b‖a0‖Nc and Assumption 1.4 is satisfied. Also B0 = U0 = (0, . . . , 0) and we set X0 = (A0, B0, U0).
We now define Xn given the state Xn−1 previous to the nth-interview and given the number N1, . . . , Nm

of nodes of each type. At step n ≥ 1, after the nth-interview, the type of the upcoming interviewee is chosen
uniformly at random according to the number of active coupons of each type in the present time. To choose the

type of the next interviewee, we define an m-dimensional vector In := (I
(1)
n , . . . , I

(m)
n ), which takes value 1 at

coordinate l and 0 elsewhere if the nth interviewee belongs to block l. This nth-interviewee is chosen uniformly
among the ‖An−1‖ active coupons of m types i.e. In has multinomial distribution

In = (I(1)
n , . . . , I(m)

n )
(d)
= M

(
1;

A
(1)
n−1

‖An−1‖
, . . . ,

A
(m)
n−1

‖An−1‖

)
. (2.1)

If the chosen one belongs to block [l], A
(l)
n is reduced by 1 and a number of new coupons distributed are added

up, depending on how many new contacts he/she has. In the meantime, the number of interviewees of type

l is increased by 1. i.e. U
(l)
n = U

(l)
n−1 + I

(l)
n . Among the new contacts of the nth−interviewee, define H

(l)
n the

number of new contacts of type l, who have not been mentioned before; K
(l)
n the number of new contacts of

type l whose identities are already known but who are still inactive. The H
(l)
n new connections are chosen

independently among Nl −A(l)
n−1 −B

(l)
n−1 − U

(l)
n individuals in the hidden population where probability of each

successful connection is
∑m
k=1 I

(k)
n pkl. Hence, conditioning on (N1, . . . , Nm), Xn−1, the random variable H

(l)
n

follows the binomial distribution:

H(l)
n

(d)
= Bin

(
Nl −A(l)

n−1 −B
(l)
n−1 − U (l)

n ,

m∑
k=1

I(k)
n pkl

)
. (2.2)

And the K
(l)
n individuals are chosen independently of H

(l)
n from B

(l)
n−1 individuals and independently of the others

with probability
∑m
k=1 I

(k)
n pkl. In that way, conditioning on (N1, . . . , Nm), Xn−1, K

(l)
n also has the binomial

distribution:

K(l)
n

(d)
= Bin

(
B

(l)
n−1,

m∑
k=1

I(k)
n pkl

)
. (2.3)

In total, there are Zn := Hn + Kn candidates, who can possibly receive coupons at step n. Notice that,

conditioning on (N1, . . . , Nm), Xn−1, (H
(l)
n )l=1,...,m and (K

(l)
n )l=1,...,m are independent, henceforth,

Z(l)
n

(d)
= Bin

(
Nl −A(l)

n−1 − U (l)
n ,

m∑
k=1

I(k)
n pkl

)
. (2.4)

Let Cn = (C
(1)
n , . . . , C

(m)
n ) (l = 1, . . . ,m) be the numbers of coupons that are distributed at step n. By the

setting of the survey, the total coupons |Cn| must be maximum c. If the number Zn of candidates is less than or
equal to c, we deliver exactly Zn coupons. Otherwise, we choose new people to be enrolled in the study by an

m−dimensional random variable C
′(l)
n = (C

′(1)
n , . . . , C

′(m)
n ) having the multivariate hypergeometric distribution
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with parameters (m; c, (Z
(1)
n , . . . , Z

(m)
n )) and the support {(c1, . . . , cm) ∈ Nm : ∀l ≤ m, cl ≤ Z(l)

n ,
m∑
l=1

ci = c}, that

is

P
(

(C ′(1)
n , . . . , C ′(m)

n ) = (c1, . . . , cm)
)

=

m∏
l=1

(
Z(l)

n
cl

)
(∑m

l=1 Z
(l)
n

c

) .
In another words,

C(l)
n :=

{
Z

(l)
n if

∑m
l=1 Z

(l)
n ≤ c

C
′(l)
n otherwise

. (2.5)

Let define by

n0 := inf{n ∈ {1, . . . , N}, An = 0} (2.6)

the first step that |An| reaches zero. The dynamics of Xn can be described by the following recursion:
An = An−1 − In + Cn

Bn = Bn−1 +Hn − Cn
Un =

n∑
i=1

Ii

, for n ∈ {1, . . . , n0} (2.7)

and Xn = Xn−1 when n > n0.

The random network is progressively discovered when the referrals chain process explores it.

Proposition 2.1. Consider the discrete-time process (Xn)1≤n≤N defined in (2.7). For n ∈ N, we denote by
Fn := σ

(
{Xi, i ≤ n, (N1, . . . , Nm)}

)
the canonical filtration associated with (Xn)1≤n≤N . Then the process (Xn)n

is an inhomogeneous Markov chain with respect to the filtration (Fn)n.

Proof. The proposition is deduced from the recursion (2.7) of (Xn)1≤n≤N and the fact that the random variables
Cn, In, Hn are defined conditionally on Xn−1 and (N1, . . . , Nm). The fact that the Markov process is inhomo-
geneous comes from the setting of the CRS survey: there is no replacement in the recruitment procedure. For

example, when m = 1, the definition of H
(l)
n in (2.2) depends on time as U

(l)
n = n.

3. Asymptotic behavior of the chain-referral process

Let us now consider the renormalized chain-referral process given in (1.1) in the time interval [0, t0]. The
main theorem (Thm. 1.5) shows the convergence of the sequence (XN

· )N to a deterministic process. For this, we
look for an expression of the equations (2.7) as a vector of semi-martingales. We start by writing the Markov
chain (Xn)1≤n≤N as the sum of its increments in discrete time.

Xn = X0 +

n∑
i=1

(Xi −Xi−1) =

A0

B0

U0

+

n∑
i=1

Ci − Ii
Hi − Ci

Ii

 .

Each element of the increment Xn+1 − Xn are binomial variables conditioned on all the events having been
occurring until step n. When we fix n and let N tend to infinity, the conditional binomial random variables can
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be approximated by some Poisson random variables. The normalization XN
t of Xn becomes:

XN
t =

1

N

A0

B0

U0

+
1

N

bNtc∑
i=1

Ci − Ii
Hi − Ci

Ii

 .

The Doob decomposition of the renormalized processes (XN
t )t∈[0,t0] given in Section 3.1 consists of a finite

variation process and an L2-martingale. We use Aldous criteria (conditionally on the past see e.g. [13, 24]) to
show the tightness of the distributions of these processes in Section 3.2. Once the tightness is established, we
identify the limiting values of this tight sequence and finally we prove that the limiting values of all converging
subsequences are the same, hence it is the limit of processes (XN

· )N . This proves Theorem 1.5.
Denote by (FNt )t∈[0,1] := (FbNtc)t∈[0,1] the canonical filtration associated to (XN

t )t∈[0,1].

3.1. Doob’s decomposition

Lemma 3.1. The process (XN
t )t∈[0,1] admits the Doob’s decomposition: XN

t = XN
0 + ∆N

t +MN
t , XN

0 = 1
NX0.

(∆N
t )t∈[0,1] is an FNt −predictable process defined by

∆N
t =

∆N,1
t

∆N,2
t

∆N,3
t

 =
1

N

bNtc∑
n=1

 E[Cn − In|Fn−1]
E[Hn − Cn|Fn−1]

E[In|Fn−1]

 ; (3.1)

(MN
t )t∈[0,1] is an FNt − square integrable centered martingale with quadratic variation process (〈MN

· 〉t)t∈[0,1]

given by: for every (l, k) ∈ {1, . . . ,m}2,

〈M (l),N
· ,M

(k),N
· 〉t =

1

N2

bNtc∑
n=1

E

[(
X(l)
n − E[X(l)

n |Fn−1]
)(

X(k)
n − E[X(k)

n |Fn−1]
)T ∣∣∣∣Fn−1

]
, t ∈ [0, 1] (3.2)

where X is a column vector and XT is its transpose.

Proof. In order to obtain the Doob’s decomposition, we write for t ∈ [0, 1],

XN
t =

X0

N
+

1

N

bNtc∑
n=1

(Xn −Xn−1)

= XN
0 +

1

N

bNtc∑
n=1

E[Xn −Xn−1|Fn−1] +
1

N

bNtc∑
n=1

(Xn −Xn−1 − E[Xn −Xn−1|Fn−1])

= XN
0 + ∆N

t +MN
t .

It is clear that the conditional expectations above are all well-defined since the components of Xn and Xn−1

are all bounded by N , that ∆N
t is FNt −predictable and that (MN

t )t∈[0,1] is an FNt −martingale. We first check
that (∆N

· )N is a sequence of finite variation processes and then we can conclude that XN
t = XN

0 + ∆N
t +MN

t

is the Doob’s decomposition.
Denote by λ := max

l,k∈{1,...,m}
λkl. Notice that

‖E[An −An−1|Fn−1‖ = ‖E[Cn − In|Fn−1‖ ≤ c, (3.3)

‖E[Bn −Bn−1|Fn−1‖ = ‖E[Hn − Cn|Fn−1‖ ≤ m( max
l,k∈{1,...,m}

λkl) + c = mλ+ c, (3.4)

‖E[Un − Un−1|Fn−1‖ ≤ 1, (3.5)
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then ‖E[Xn −Xn−1|Fn−1]‖ ≤ 2c+mλ+ 1. So the total variation of (∆N
t )t∈[0,1] is

V N (∆N
t ) =

1

N

bNtc∑
n=1

‖∆N
nt/N −∆N

(n−1)t/N‖ =
1

N

bNtc∑
n=1

‖E[Xn −Xn−1|Fn−1]‖ ≤ (2c+mλ+ 1)t,

which is finite. It follows that (∆N
t )t∈[0,1] is an FNt − predictable with finite variations.

The quadratic variation of (MN
t )t∈[0,1] is computed as follow. For every k, l = 1, . . . ,m

M
(l),N
t

(
M

(k),N
t

)T
=

1

N2

bNtc∑
n=1

(
X(l)
n −X

(l)
n−1 − E[X(l)

n −X
(l)
n−1|Fn−1]

)(
X(k)
n −X(k)

n−1 − E[X(k)
n −X(k)

n−1|Fn−1]
)T

+
1

N2

bNtc∑
n=1

bNtc∑
n′=1
n′ 6=n

(
X(l)
n −X

(l)
n−1 − E[X(l)

n −X
(l)
n−1|Fn−1]

)(
X

(k)
n′ −X

(k)
n′−1 − E[X

(k)
n′ −X

(k)
n′−1|Fn′−1]

)T
=: LNt + L′Nt .

The term L′Nt is an FNt −martingale since whenever n′ < n,
(
X

(k)
n′ −X

(k)
n′−1 − E[X

(k)
n′ −X

(k)
n′−1|Fn′−1]

)
is

Fn−1−measurable. To see that the quadratic variation of MN
t has the form (3.2), we write the term LNt

as follows:

LNt :=
1

N2

bNtc∑
n=1

E

[(
X(l)
n − E[X(l)

n |Fn−1]
)(

X(k)
n − E[X(k)

n |Fn−1]
)T ∣∣∣∣Fn−1

]

+
1

N2

bNtc∑
n=1

(
X(l)
n − E[X(l)

n |Fn−1]
)(

X(k)
n − E[X(k)

n |Fn−1]
)T

− 1

N2

bNtc∑
n=1

E

[(
X(l)
n − E[X(l)

n |Fn−1]
)(

X(k)
n − E[X(k)

n |Fn−1]
)T ∣∣∣∣Fn−1

]

=
1

N2

bNtc∑
n=1

E

[(
X(l)
n − E[X(l)

n |Fn−1]
)(

X(k)
n − E[X(k)

n |Fn−1]
)T ∣∣∣∣Fn−1

]
+ L′′Nt = 〈MN 〉t + L′′Nt .

As a result,

M
(l),N
t

(
M

(k),N
t

)T
= 〈MN 〉t + L′Nt + L′′Nt . (3.6)

Because both L′Nt and L′′Nt are FNt −martingale, L′Nt + L′′Nt is an FNt −martingale as well. The term (〈MN 〉t)t
is FNt −adapted with the variation

V N (〈MN
· 〉t) =

1

N2

bNtc∑
n=1

m∑
k,l=1

∥∥∥∥E

[(
X(l)
n − E[X(l)

n |Fn−1]
)(

X(k)
n − E[X(k)

n |Fn−1]
)T ∣∣∣∣Fn−1

]∥∥∥∥ . (3.7)

The integrand in the right hand side is the conditional covariance between X
(l)
n and X

(k)
n conditionally to Fn−1.

Because X
(l)
n and X

(k)
n are vectors, this covariance is a matrix of size 3× 3 and for 1 ≤ i, j ≤ 3, the term (i, j)
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of this matrix is:

E

[(
Xi,(l)
n − E[Xi,(l)

n |Fn−1]
)(

Xj,(k)
n − E[Xj,(k)

n |Fn−1]
) ∣∣∣∣Fn−1

]
≤
(

Var(Xi,(l)
n −Xi,(l)

n−1|Fn−1)
)1/2 (

Var(Xj,(k)
n −Xj,(k)

n−1 |Fn−1)
)1/2

,

by the Cauchy-Schwarz inequality. Thus:

V N (〈MN
· 〉t) ≤

1

N2

bNtc∑
n=1

m∑
k,l=1

∣∣∣∣∣∣
3∑

i,j=1

(
Var(Xi,(l)

n −Xi,(l)
n−1|Fn−1)

)1/2 (
Var(Xj,(k)

n −Xj,(k)
n−1 |Fn−1)

)1/2

∣∣∣∣∣∣ ,
where (X

1,(l)
n , X

2,(l)
n , X

3,(l)
n ) = (A

(l)
n , B

(l)
n , U

(l)
n ). By Cauchy-Schwarz’s inequality, we have

3∑
i,j=1

(
Var(Xi,(l)

n −Xi,(l)
n−1|Fn−1)

)1/2 (
Var(Xj,(k)

n −Xj,(k)
n−1 |Fn−1)

)1/2

=

(
3∑
i=1

(
Var(Xi,(l)

n −Xi,(l)
n−1|Fn−1)

)1/2
) 3∑

j=1

(
Var(Xj,(k)

n −Xj,(k)
n−1 |Fn−1)

)1/2


≤ 3

2

3∑
i=1

(
Var(Xi,(l)

n −Xi,(l)
n−1|Fn−1) + Var(Xi,(k)

n −Xi,(k)
n−1 |Fn−1)

)
. (3.8)

From (3.3)–(3.5) and by Cauchy-Schwarz’s inequality, we obtain the following inequalities

Var(C(l)
n − I(l)

n |Fn−1) ≤ c2, Var(H(l)
n − C(l)

n |Fn−1) ≤ 2( max
l,k∈{1,...,m}

λ2
lk + c2), Var(I(l)

n |Fn−1) ≤ 1. (3.9)

As a consequence,

V N
(
〈MN
· 〉t

)
≤ 1

N2

bNtc∑
n=1

3m2(c2 + 2( max
l,k∈{1,...,m}

λ2
lk + c2) + 1) ≤ 1

N
3m2(3c2 + 2λ2 + 1) <∞.

Thus, the proof of the lemma is completed.

3.2. Tightness of the renormalized process

Lemma 3.2. The sequence of processes (XN
· )N is tight in the Skorokhod space D([0, 1], [0, 1]3×m).

Proof. To prove the tightness of (XN
· )N , we use the criteria of tightness for semi-martingales in ([24], Thm.

2.3.2 (Rebolledo)): first, we verify the marginal tightness of each sequence (XN
t )N for each t ∈ [0, 1], then we

show the tightness for each process in the Doob’s decomposition of XN , the finite variation process (∆N )N
and the quadratic variation of the martingale (MN )N . For any t ∈ [0, 1], the tightness of marginal sequence
(XN

t )N is easily deduced from the compactness of a sequence of random variables taking values in a compact set
[0, 1]3×m. Since the sequence of martigales (MN )N is proved to be convergent (to zero) in L2 as N →∞ (which
is done by Prop. 3.3), we have the tightness of (MN )N . Thus, it is sufficient to check the tightness condition
for the modulus of continuity of (∆N )N (see, e.g., [8], Thm. 13.2, p. 139).
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For all 0 < δ < 1 and for every s, t ∈ [0, 1] such that |t− s| < δ, we have that

‖∆N
t −∆N

s ‖ =

∥∥∥∥∥∥ 1

N

bNtc∑
n=bNsc+1

E[Xn −Xn−1|Fn−1]

∥∥∥∥∥∥ ≤ 1

N

bNtc∑
n=bNsc+1

‖E[Xn −Xn−1|Fn−1]‖.

By (3.3)–(3.5), we get

‖∆N
t −∆N

s ‖ ≤
bNtc − bNsc

N
(c+mλ+ c+ 1) ≤ (2c+mλ+ 1)

(
δ +

1

N

)
.

Thus, for each ε > 0, choose δ0 ≤ ε
2(2c+mλ+1) , we have that

P

 sup
|t−s|<δ

0≤s<t≤1

‖∆N
t −∆N

s ‖ > ε

 = 0, ∀δ ≤ δ0,∀N >
1

δ0
,

which allows us to conclude that the sequence (∆N
· )N is tight and finishes the proof of the lemma.

To complete the proof of Lemma 3.2, we now prove that:

Proposition 3.3. The sequence of martingale (MN
t , t ∈ [0, 1])N converges locally uniformly in t to 0 in L2, as

N goes to infinity.

Proof. Consider the quadratic variation of (MN
· )N : According to the formula (3.2), we apply the Cauchy–

Schwarz’s inequality and then use the inequality (3.8) to obtain that for every t ∈ [0, 1],

‖〈M (l),N ,M (k),N 〉t‖ =

∥∥∥∥∥∥ 1

N2

bNtc∑
n=1

E

[(
X(l)
n − E[X(l)

n |Fn−1]
)(

X(k)
n − E[X(k)

n |Fn−1]
)T ∣∣∣∣Fn−1

]∥∥∥∥∥∥
≤ 1

N2

bNtc∑
n=1

∣∣∣∣∣∣
3∑

i,j=1

(
Var(Xi,(l)

n −Xi,(l)
n−1|Fn−1)

)1/2 (
Var(Xj,(k)

n −Xj,(k)
n−1 |Fn−1)

)1/2

∣∣∣∣∣∣
≤ 1

N2

bNtc∑
n=1

3

2

3∑
i=1

(
Var(Xi,(l)

n −Xi,(l)
n−1|Fn−1) + Var(Xi,(k)

n −Xi,(k)
n−1 |Fn−1)

)
,

where (X
1,(l)
n , X

2,(l)
n , X

3,(l)
n ) = (A

(l)
n , B

(l)
n , U

(l)
n ). From (3.3)–(3.5) and (3.9), we deduce that

‖〈MN
· 〉t‖ ≤

1

N2

bNtc∑
n=1

3m2

2

(
c2 + 2( max

l,k∈{1,...,m}
λ2
lk + c2) + 1

)
≤ 1

N

3m2

2
(3c2 + 2λ2 + 1)t. (3.10)

Applying the Doob’s inequality for martingale, for every t ∈ [0, 1], we have

E

[
max

0≤s≤t
‖MN

s ‖2
]
≤ 4E

[
‖〈MN

· 〉t‖
]
≤ 1

N
6m2(3c2 + 2λ2 + 1)→ 0 as N →∞.

This concludes the proof of Proposition 3.3 and hence of Lemma 3.2.
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3.3. Identify the limiting value

Since the sequence (XN
· )N is tight, for any limiting value x = (a, b, u) of the sequence (XN )N , there exists an

increasing sequence (ϕN )N in N such that (XϕN
· )N converges in distribution to x in D([0, 1], [0, 1]3×m). Because

the sizes of the jumps converge to zero with N , the limit is in fact in C([0, 1], [0, 1]3×m). We want to identify that
limit. In order to simplify the notations, we also write the subsequence (XϕN

· )N as (XN
· )N = (AN· , B

N
· , U

N
· )N .

We consider separately the martingale and finite variation parts. Proposition 3.3 implies that the sequence
martingale (MN

· )N converges to 0 in distribution and hence (MN )N converges to zero in probability. It remains
to find the limit of the finite variation process (∆N

· )N given in equation (3.1) and prove that the limit found
is the same (which is done later in the proof for the uniqueness of the system of the ODEs (1.5)) for every
convergent subsequence extracted from the tight sequence (XN )N .

Proposition 3.4. When N goes to infinity, we have the following convergences in distribution in
D([0, 1], [0, 1]3×m):

1

N

bNtc∑
n=1

E[C(l)
n |Fn−1]

(d)→
∫ t

0

{
m∑
k=1

a
(k)
s

‖as‖
λk,ls
Λks

(
c−

c∑
h=0

(c− h)
(Λks)h

h!
e−Λk

s

)}
ds, (3.11)

1

N

bNtc∑
n=1

E[H(l)
n |Fn−1]

(d)−→
∫ t

0

m∑
k=1

a
(k)
s

‖as‖
µk,ls ds, (3.12)

1

N

bNtc∑
n=1

E[I(l)
n |Fn−1] =

1

N

bNtc∑
n=1

(
A

(l)
n−1

N

)/(
‖An−1‖
N

)
(d)−→

t∫
0

a
(l)
s

‖as‖
ds, (3.13)

where λk,ls ,Λks , µ
k,l
s are defined as in Theorem 1.5. This provides the convergence of (∆N

· )N to a solution x. of
(1.2).

Since the limits are deterministic, the convergences hold in probability. Moreover the uniqueness of the
solution of (1.2) will be proved later, which will imply the convergence of the whole sequence (XN

· )N to this
solution.

Proof. Recall that since the sequence (XN
. )N is tight, we have extracted a converging subsequence also denoted

by (XN
. )N of which we study the limit.

The proof of the Proposition 3.4 is separated into three steps.
Step 1: We consider the most complicated term E[Cn|Fn−1]. We prove that: for each l ∈ {0, . . . ,m},

∣∣∣∣∣E[C(l)
n |Fn−1]− λ

(l)
n

Λn

(
c−

c∑
h=0

(c− h)
(Λn)h

h!
e−Λn

)∣∣∣∣∣ ≤ m(c+ 1)λ

N
, (3.14)

where

λ(l)
n :=

(
m∑
k=1

I(k)
n λkl

)(
Nl
N
−
A

(l)
n−1

N
− U

(l)
n

N

)
and Λn :=

m∑
j=1

λ(j)
n . (3.15)

Notice that Λn = 0 only if for each l ∈ {1, . . . ,m}, λ(l)
n = 0. It happens when A

(l)
n−1 + U

(l)
n = Nl, meaning

that all the nodes of type l have been discovered. In this case, C
(l)
n = 0 and (3.14) is satisfied.
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Let us write

E[C(l)
n |Fn−1] = E

[
Z(l)
n 1∑m

j=1 Z
(j)
n ≤c

∣∣Fn−1

]
+ E

[
cZ

(l)
n∑m

j=1 Z
(j)
n

1∑m
j=1 Z

(j)
n >c

∣∣∣∣Fn−1

]
. (3.16)

For every l = 1, . . . ,m and every fixed n, when all the parameters are positive, we have that (Nl − A(l)
n−1 −

U
(l)
n )

N→∞−→
a.s.

+∞. Then we work conditionally on Nl, A
(l)
n−1, U

(l)
n and I

(l)
n and use the Poisson approximation (e.g.

see Eq. (1.23) and Thm. 2.A, 2.B by Barbour, Holst and Janson in [5]) for the approximation: the binomial

random variable Z
(l)
n may be approximated by a Poisson random variable Z̃

(l)
n

(d)
= P

(
(
∑m
k=1 I

(k)
n λkl)(

Nl

N −
A

(l)
n−1

N −
U(l)

n

N )
)

such that

dTV(Z(l)
n , Z̃(l)

n ) ≤ 2

(Nl −A(l)
n − U (l)

n )

(∑m
k=1 I

(k)
n λkl

N

) Nl−A(l)
n −U

(l)
n∑

i=1

(∑m
k=1 I

(k)
n λkl

N

)2

≤
2 max

k,l
λkl

N
=

2λ

N
.

As a consequence, the first term in the right hand side of (3.16) can be approximated as∣∣∣∣E [Z(l)
n 1∑m

j=1 Z
(j)
n ≤c

∣∣∣∣Fn−1

]
− E

[
Z̃(l)
n 1∑m

j=1 Z̃
(j)
n ≤c

∣∣∣∣Fn−1

]∣∣∣∣ ≤ 2mcλ

N
, (3.17)

and ∣∣∣∣∣E
[

Z
(l)
n∑m

j=1 Z
(j)
n

1∑m
j=1 Z

(j)
n >c

∣∣∣∣Fn−1

]
− E

[
Z̃

(l)
n∑m

j=1 Z̃
(j)
n

1∑m
j=1 Z̃

(j)
n >c

∣∣∣∣Fn−1

]∣∣∣∣∣ ≤ 2mλ

N
. (3.18)

It follows that we need to deal with the Poisson random variables Z̃
(l)
n (l ∈ {1, . . . ,m}). Because of the result

that the sum of two independent Poisson random variables is a Poisson random variable whose parameter is

the sum of the two parameters, we have that
∑
j 6=l Z̃

(j)
n =: Ẑ

(l)
n has a Poisson distribution with parameter

λ̂
(l)
n :=

∑
j 6=l λ

(j)
n . And hence,

E

[
Z̃(l)
n 1∑m

j=1 Z̃
(j)
n ≤c

∣∣Fn−1

]
=

c∑
h=1

h∑
h1=1

h1
(λ

(l)
n )h1(λ̂

(l)
n )h−h1

h1!(h− h1)!
e−Λn

= λ(l)
n

c∑
h=1

(Λn)h−1

(h− 1)!
e−Λn = λ(l)

n

c∑
h=0

h

Λn

(Λn)h

h!
e−Λn

and

E

[
Z̃

(l)
n∑m

j=1 Z̃
(j)
n

1∑m
j=1 Z̃

(j)
n >c

∣∣∣∣Fn−1

]
=

∞∑
h=c+1

h∑
k=0

k

h

(λ
(l)
n )k

k!

(λ̂
(l)
n )h−k

(h− k)!
e−λ

(l)
n e−λ̂

(l)
n

= λ(l)
n

∞∑
h=c+1

h−1∑
k=0

1

h

(λ
(l)
n )k

k!

(λ̂
(l)
n )h−1−k

(h− 1− k)!
e−λ

(l)
n e−λ̂

(l)
n



CHAIN-REFERRAL SAMPLING ON STOCHASTIC BLOCK MODELS 731

= λ(l)
n

∞∑
h=c+1

1

h

(λ
(l)
n + λ̂

(l)
n )h−1

(h− 1)!
e−(λ(l)

n +λ̂(l)
n ) =

λ
(l)
n

Λn

∞∑
h=c+1

(Λn)h

h!
e−Λn

=
λ

(l)
n

Λn
(1−

c∑
h=0

(Λn)h

h!
e−Λn). (3.19)

Using (3.16), we obtain:

E[C(l)
n |Fn−1] = E

[
Z̃(l)
n 1∑m

j=1 Z̃
(j)
n ≤c

+
Z̃

(l)
n∑m

j=1 Z̃
(j)
n

1∑m
j=1 Z̃

(j)
n >c

∣∣∣∣Fn−1

]
=
λ

(l)
n

Λn

(
c−

c∑
h=0

(c− h)
(Λn)h

h!
e−Λn

)
,

which finishes Step 1.
Step 2: We decompose the second term in the left hand side of (3.14) as follows:

λ
(l)
n

Λn

(
c−

c∑
h=0

(c− h)
(Λn)h

h!
e−Λn

)
= α(l)

n + ξ(l)
n , l = 1, . . . ,m. (3.20)

with

α(l)
n := E

[
λ

(l)
n

Λn

(
c−

c∑
h=0

(c− h)
(Λn)h

h!
e−Λn

)∣∣∣∣Fn−1

]

ξ(l)
n :=

λ
(l)
n

Λn

(
c−

c∑
h=0

(c− h)
(Λn)h

h!
e−Λn

)
− E

[
λ

(l)
n

Λn

(
c−

c∑
h=0

(c− h)
(Λn)h

h!
e−Λn

)∣∣∣∣Fn−1

]
.

By writing

α(l)
n =

m∑
k=1

P(I(k)
n = 1)

λk,ln
Λkn

(
c−

c∑
h=0

(c− h)
(Λkn)h

h!
e−Λk

n

)
,

where

λk,ln := λkl

(
Nl
N
−
A

(l)
n−1

N
−
U

(l)
n−1

N
−

1{k=l}

N

)
and Λkn :=

m∑
j=1

λk,jn (l = 1, . . . ,m), (3.21)

we obtain that for every t ∈ [0, 1],

1

N

bNtc∑
n=1

α(l)
n =

1

N

bNtc∑
n=1

{
m∑
k=1

A
(k)
n−1

|An−1|
λk,ln
Λkn

(
c−

c∑
h=0

(c− h)
(Λkn)h

h!
e−Λk

n

)}
. (3.22)

It is obvious that 1
N

∑bNtc
n=1 ξn is an FNt −martigale with the quadratic variation,

〈 1

N

bN ·c∑
n=1

ξn〉t =
1

N2

bNtc∑
n=1

E
[
ξ2
n|Fn−1

]
≤ 1

N2

bNtc∑
n=1

m(c+ 1)2 ≤ m(c+ 1)2

N
.
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By the Doob’s inequality, we have

E

max
0≤s≤t

‖ 1

N

bNtc∑
n=1

ξn‖2
 ≤ 4E

‖〈 1

N

bN ·c∑
n=1

ξn〉t‖

 ≤ 4m(c+ 1)2

N

N→∞−→ 0,

which deduces that as N tends to infinity, we have that

1

N

bNtc∑
n=1

ξn
(L2)→ 0 (3.23)

uniformly in t ∈ [0, 1]. Together with the points given in (3.14), (3.20) and (3.23), take the limit as N →∞ in
the right hand side of (3.22), we obtain the right hand side of (3.11).
Step 3: We use similar arguments as in Step 2 to obtain the limit in right hand side of (3.12). Denote by

µ(l)
n :=

(
m∑
k=1

I(k)
n λkl

)(
Nl
N
−
A

(l)
n−1

N
−
B

(l)
n−1

N
− U

(l)
n

N

)
.

Recall from (2.2) that conditioning on Fn−1, H
(l)
n

(d)
= Bin

(
Nl −A(l)

n−1 −B
(l)
n−1 − U

(l)
n ,

∑m
k=1 I

(k)
n λkl

N

)
, then

1

N

bNtc∑
n=1

E[H(l)
n |Fn−1] =

1

N

bNtc∑
n=1

µ(l)
n . (3.24)

We write

1

N

bNtc∑
n=1

µ(l)
n =

1

N

bNtc∑
n=1

(β(l)
n + ζ(l)

n ) (3.25)

with

β(l)
n := E

[(
m∑
k=1

I(k)
n λkl

)(
Nl
N
−
A

(l)
n−1

N
−
B

(l)
n−1

N
− U

(l)
n

N

)∣∣∣∣Fn−1

]
;

ζ(l)
n :=

(
m∑
k=1

I(k)
n λkl

)(
Nl
N
−
A

(l)
n−1

N
−
B

(l)
n−1

N
− U

(l)
n

N

)
− E

[(
m∑
k=1

I(k)
n λkl

)(
Nl
N
−
A

(l)
n−1

N
−
B

(l)
n−1

N
− U

(l)
n

N

)∣∣∣∣Fn−1

]
.

Using a similar argument as in Step 2, we have

1

N

bNtc∑
n=1

β(l)
n =

1

N

bNtc∑
n=1

m∑
k=1

P(I(k)
n = 1)λkl

(
Nl
N
−
A

(l)
n−1

N
−
B

(l)
n−1

N
−
U

(l)
n−1

N
−

1{k 6=l}
N

)

=
1

N

bNtc∑
n=1

m∑
k=1

A
(k)
n−1

‖An−1‖
µk,ln −

1

N

bNtc∑
n=1

m∑
k=1

AN,kn−1

‖ANn−1‖
λkl

1{k 6=l}
N

,
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with µk,ln := λkl

(
Nl

N −
A

(l)
n−1

N − B
(l)
n−1

N − U
(l)
n−1

N

)
. Then,

∣∣∣∣∣∣ 1

N

bNtc∑
n=1

(
β(l)
n −

m∑
k=1

A
(k)
n−1

‖An−1‖
µk,ln

)∣∣∣∣∣∣ ≤ 1

N

bNtc∑
n=1

m∑
k=1

AN,kn−1

‖ANn−1‖
λkl

1{k 6=l}
N

≤ λ

N
. (3.26)

Take the limit as N → +∞, we have that

lim
N→+∞

1

N

bNtc∑
n=1

m∑
k=1

A
(k)
n−1

‖An−1‖
µk,ln =

∫ t

0

m∑
k=1

a
(k)
s

‖as‖
µk,ls ds.

Further, the FNt −martingale
1

N

bN ·c∑
n=1

ζ(l)
n converges in L2 to 0 uniformly in t ∈ [0, 1]. Thus, (3.12) is proved.

For the proof of (3.13), by the definition of In as in (2.1), we have

1

N

bNtc∑
n=1

E[I(l)
n |Fn−1] =

1

N

bNtc∑
n=1

A
(l)
n−1

‖An−1‖
=

1

N

bNtc∑
n=1

A
(l)
n−1/N

‖An−1‖/N
.

Take the limit as N → +∞, we obtain the limit in the right hand side of (3.13).
The preceding steps allow to conclude the proof of Proposition 3.4.

3.4. The uniqueness

It remains to prove that the limiting value x = (a, b, u) we have found is unique solution of the system of he
ODEs (1.2). If it is the case, then the process (XN )N admits a unique limiting value and thus converges to x.

Assume that there exist two solutions x1 and x2 to ODEs (1.2) on the interval [0, t′0], where

t′0 = inf{t ∈ [0, 1] : a1
t′0

= 0 or a2
t′0

= 0}.

Then using the intermediate value theorem, there exist ξij(s) ∈ [x1
ij(s), x

2
ij(s)] such that

‖x1
t − x2

t‖ =

∥∥∥∥∫ t

0

(f(x1
s)− f(x2

s))ds

∥∥∥∥ ≤ ∫ t

0

3∑
i=1

m∑
j=1

∣∣∣∣ ∂f∂xij (ξij(s))

∣∣∣∣ ∣∣x1
ij(s)− x2

ij(s)
∣∣ds

≤
∫ t

0

L(s)‖x1
s − x2

s‖ds,

where xks = (xij(s)) 1≤i≤3
1≤j≤m

(k ∈ {1, 2}) and L(s) =

3∑
i=1

m∑
j=1

max

∣∣∣∣ ∂f∂xij (xs)

∣∣∣∣, of which the maximum is over x(s) =

(xij(s))ij ∈ [0, 1]3m such that ∀i, j : xij ∈ [x1
ij , x

2
ij ], where by an abuse of notation, the bounds of interval [x1

ij , x
2
ij ]

can be switched depending on the minimum or maximum of the bounds.
By the Grönwall’s inequality, we get

‖x1
t − x2

t‖ ≤ ‖x1
0 − x2

0‖ exp(

∫ t

0

L(s)ds) = 0.
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Figure 2. Plots of the proportions of classes in the population of size N = 10000 when c varies
from 1 to 6 and all the others parameters are fixed: ‖A0‖ = 100 the parameters π = (1/3, 2/3),
λ11 = 2, λ12 = 3, λ22 = 4.
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Figure 3. Scatter plot of ln d1(XN , x) along with the smoothing line suggesting the linear
relationship between ln d1(XN , x) and N . The plot is done for the case c = 3, the number of
initial individuals are 1% of the population and the size N varies from 500 to 10000. All other
parameters are fixed: π = (1/3, 2/3), λ11 = 2, λ12 = 3, λ22 = 4.

This shows that x1
t ≡ x2

t for all t ∈ [0, t′0]. It also follows t′0 = t0.

4. Simulation

The simulations show that the deterministic solution of the system of ODEs (1.2) fits well with our stochastic
process, see Figure 2. The sequence of stochastic process (XN

· )N that we have constructed describes how the
chain-referral process works on a network. When we consider the population with a very large number of people,
the process (XN

· )N is asymptotically a deterministic function, which is a solution of a system of (1.2). To see
numerically the convergence, we do a simulation: for c = 3, we vary N from 500 to 50000 and plot as a function
of N the log of the quantity:

∫ 1

0

(‖ANt − at‖+ ‖BNt − bt‖+ ‖UNt − ut‖)dt,

Figure 3. The speed of convergence has been studied in the case of Erdös-Rényi graphs in the Ph.D. thesis, by
establishing a central limit theorem [28].

By studying the solution of (1.2), we can obtain an approximation of the fraction of the population that has
been interviewed when the CRS process stops. The proportion of the population discovered is then approximated
by t0.

The number of maximum coupon c plays an important role in how many people we could explore before
there is no distributed coupons any more (when ‖at‖ = 0). By keeping all other parameters fixed and changing
c, in the simulations of Figure 2, we see that the time t0 are different. For example, with m = 2, π = (1/3, 2/3),
λ11 = 2, λ22 = 4, λ12 = 3, we obtain the Table 1.
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Figure 4. Plot the function ‖a‖ for 6 cases: c takes values from 1 to 6. All other parameters
are fixed: ‖a0‖ = 0.05, π = (1/3, 2/3), λ11 = 2, λ12 = 3, λ22 = 4. The values ‖at‖ represents the
proportion of individuals having coupons at time t.

Figure 5. Plot the proportion of classes in the case c = 3, N = 1000, A0 = 10, π = (1/3, 2/3)
and the graph is bipartite λ11 = λ22 = 0, λ12 = 4.
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Table 1. Numerical computation of t0 for varying parameters c.

c 1 2 3 4 5 6 . . .

t0 0.18 0.91 0.94 0.95 0.95 0.95 . . .

Table 2. Numerical computation of ‖ANt ‖ + ‖BNt ‖ for varying parameters c ∈ {1, . . . , 6} at
time t = 0.2 and N = 1000, A0 = 10, π = (1/3, 2/3), λ11 = 2, λ22 = 4, λ12 = 3.

c 1 2 3 4 5 6

‖A1000
0.2 ‖+ ‖B1000

0.2 ‖ 0.213 0.308 0.268 0.308 0.310 0.260

If c = 1, even though the average number of neighbors are bigger than 1, the simple random walk describing
the survey reaches only a very small number of people, see Figure 2a. The random walk stops when it encounters
a node of degree 1 and cannot propagate any more.

Furthermore, the parameter c also impacts the peaks (time and size) the curves corresponding to the number
of distributed coupons. In case of a limited budget with a fixed number of interviews, a higher value of c can
imply that we discover a larger fraction of the population since it allows more flexibility in the interviewees.
From the Figure 4, we observe that the proportion of people receiving coupons gets bigger as c increases. If c = 1,
the fraction of discovered population is small, which means that the survey is not so efficient. When c takes
values from 4 to 6, the corresponding curves of ‖at‖ are “close” and so are the times t0. However, in these cases,
the number of coupons spent during the CRS survey is large. We can also be interested in seeing how c impacts
the part of population discovered when the survey stops after a fixed number of interviewed individuals. For
example, consider the case when N = 1000 and assume that we start with A0 = 10. The parameters of the SBM
are π = (1/3, 2/3), λ11 = 2, λ22 = 4, λ12 = 3. Then when there have been approximately b0.2Nc individuals
interviewed, the proportion of the explored individuals: ‖AN0.2‖+ ‖BN0.2‖ for each c varying from 1 to 6 is given
in Table 2.

Changing the parameters λkl impacts the discovered proportion of types. For instant, let us take a bipartite
random model π = (1/3, 2/3), c = 3 and λ11 = λ22 = 0, λ12 = 4, which means that the people between commu-
nities are highly connected and there is no connection within community. In this case, the number of explored
people without coupon of type 1 is quite small compared to the one of type 2, see Figure 5.
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