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Online Sparse Coding with Bandit Feedback

We consider a novel variant of the contextual bandit problem (i.e., the multi-armed bandit with side-information, or context, available to a decision-maker) where the reward associated with each context-based decision may not always be observed ("missing rewards"). This new problem is motivated by certain on-line settings including clinical trial and ad recommendation applications. In order to address the missing-reward setting, we propose to combine the standard contextual bandit approach with an unsupervised learning mechanism, such as, for example, sparse coding. Unlike standard contextual bandit methods, we are able to learn from all contexts, even those with missing rewards, by improving the representation of a context (via dictionary learning); when the reward is available, the standard contextual bandit learning mechanism is used. Promising empirical results are obtained on several real-life datasets.

Introduction

Sequential decison making is a common problem in many practical applications where the agent must choose the best action to perform at each iteration in order to maximize the cumulative reward over some period of time. One of the key challenges is achieve a good trade-off between the exploration of new actions and the exploitation of known actions. This exploration vs exploitation trade-off in sequential decision making problems is often formulated as the multi-armed bandit (MAB) problem: given a set of bandit "arms" (actions), each associated with a fixed but unknown reward probability distribution [START_REF] Lai | Asymptotically efficient adaptive allocation rules[END_REF][START_REF] Auer | Finite-time analysis of the multiarmed bandit problem[END_REF][START_REF] Bouneffouf | Hybrid-ε-greedy for mobile context-aware recommender system[END_REF][START_REF] Bouneffouf | Following the user's interests in mobile context-aware recommender systems: The hybrid-e-greedy algorithm[END_REF][START_REF] Allesiardo | A neural networks committee for the contextual bandit problem[END_REF][START_REF] Bouneffouf | Situation-aware approach to improve context-based recommender system[END_REF][START_REF] Bouneffouf | Considering the high level critical situations in con-text-aware recommender systems[END_REF][START_REF] Bouneffouf | Exploration/exploitation trade-off in mobile context-aware recommender systems[END_REF][START_REF] Bouneffouf | Applying machine learning techniques to improve user acceptance on ubiquitous environement[END_REF][START_REF] Bouneffouf | Risk-aware recommender systems[END_REF][START_REF] Bouneffouf | DRARS, a dynamic risk-aware recommender system[END_REF][START_REF] Bouneffouf | Improving adaptation of ubiquitous recommander systems by using reinforcement learning and collaborative filtering[END_REF][START_REF] Bouneffouf | Contextual bandit for active learning: Active thompson sampling[END_REF][START_REF] Bouneffouf | Towards user profile modelling in recommender system[END_REF][START_REF] Bouneffouf | Contextual bandits for context-based information retrieval[END_REF][START_REF] Bouneffouf | The impact of situation clustering in contextual-bandit algorithm for context-aware recommender systems[END_REF][START_REF] Bouneffouf | Recommandation mobile, sensible au contexte de contenus\'evolutifs: Contextuel-e-greedy[END_REF][START_REF] Bouneffouf | Hybrid q-learning applied to ubiquitous recommender system[END_REF][START_REF] Bouneffouf | Mobile recommender systems methods: An overview[END_REF][START_REF] Bouneffouf | Exponentiated gradient exploration for active learning[END_REF][START_REF] Bouneffouf | Evolution of the user's content: An overview of the state of the art[END_REF][START_REF] Bouneffouf | Context-based information retrieval in risky environment[END_REF][START_REF] Bouneffouf | Etude des dimensions specifiques du contexte dans un systeme de filtrage d'informations[END_REF][START_REF] Bouneffouf | Freshness-aware thompson sampling[END_REF][START_REF] Allesiardo | Prise de décision contextuelle en bande organisée: Quand les bandits font un brainstorming[END_REF], an agent selects an arm to play at each iteration, and receives a reward, drawn according to the selected arm's distribution, independently from the previous actions.

A particularly useful version of MAB is the contextual multi-armed bandit (CMAB), or simply the contextual bandit problem, where at each iteration, before choosing an arm, the agent observes an N -dimensional context, or feature vector. Over time, the goal is to learn the relationship between the context vectors and the rewards, in order to make better prediction which action to choose given the context [START_REF] Lin | Adaptive representation selection in contextual bandit with unlabeled history[END_REF][START_REF] Balakrishnan | Using contextual bandits with behavioral constraints for constrained online movie recommendation[END_REF][START_REF] Riemer | Scalable recollections for continual lifelong learning[END_REF][START_REF] Balakrishnan | Incorporating behavioral constraints in online ai systems[END_REF][START_REF] Lin | Adaptive representation selection in contextual bandit with unlabeled history[END_REF][START_REF] Riemer | Generative knowledge distillation for general purpose function compression[END_REF][START_REF] Lin | Contextual bandit with adaptive feature extraction[END_REF][START_REF] Choromanska | Beyond backprop: Online alternating minimization with auxiliary variables[END_REF][START_REF] Bouneffouf | A survey on practical applications of multi-armed and contextual bandits[END_REF][START_REF] Bouneffouf | DRARS, a dynamic risk-aware recommender system[END_REF][START_REF] Upadhyay | A bandit approach to posterior dialog orchestration under a budget[END_REF][START_REF] Liu | Automated machine learning via admm[END_REF][START_REF] Bouneffouf | Optimal exploitation of clustering and history information in multi-armed bandit[END_REF][START_REF] Yurochkin | Online semi-supervised learning with bandit feedback[END_REF][START_REF] Lin | Reinforcement learning models of human behavior: Reward processing in mental disorders[END_REF][START_REF] Aggarwal | How can ai automate end-to-end data science?[END_REF][START_REF] Balakrishnan | Using multiarmed bandits to learn ethical priorities for online ai systems[END_REF][START_REF] Mehta | [END_REF][START_REF] Liu | An admm based framework for automl pipeline configuration[END_REF][START_REF] Sharma | Data augmentation for discrimination prevention and bias disambiguation[END_REF][START_REF] Balakrishnan | Constrained decision-making and explanation of a recommendation[END_REF][START_REF] Lin | A story of two streams: Reinforcement learning models from human behavior and neuropsychiatry[END_REF][START_REF] Varshney | Teaching ai agents ethical values using reinforcement learning and policy orchestration[END_REF] and anomaly detection [START_REF] Ding | Interactive anomaly detection on attributed networks[END_REF].

For example, the contextual bandit approach is commonly used in various practical sequential decision problems with side information (context), from clinical trials [START_REF] Sofía | Multi-armed bandit models for the optimal design of clinical trials: benefits and challenges[END_REF] to recommender system [START_REF] Mary | Bandits and recommender systems[END_REF], where the patient's information (medical history, etc.) or an online user's profile provide a context for making a better decision about the treatment to propose or an ad to show, and the reward represents the outcome of the selected action, such as, for example, success or failure of a particular treatment option.

In this paper, we consider a new problem setting, referred to as contextual bandit with missing rewards, where the agent may not always observe the reward, although the context is always observable. This setting is motivated by several real-life applications where the reward associated with a selected action can be missing (unobservable by an agent) for various reasons. For instance, in medical decision-making settings, the doctor can decide on a specific treatment option for a patient, but the patient may not come back for follow-up appointments; though the reward feedback regarding 31th Conference on Neural Information Processing Systems (NIPS 2017), Long Beach Convention Center. the treatment success is missing, the context (patient's medical record) is still available and can be potentially used to learn more about the patient's population. A different example of missing rewards can occur in information retrieval or online search settings, where the user enters a search request, but, for various reasons, may not click on any of the suggested website links, and thus the reward feedback about those choices is missing. Yet another example can be online advertisement, where the user clicking on a proposed ad represents a positive reward, but the absence of a click can be interpreted either as negative reward (the user did not like the ad), or can be a consequence of a a bug or a connection loss.

The missing-reward contextual bandit framework proposed here aims to capture the situations described above, and provide an approach to always exploiting the context information in order to improve future decisions, even if some rewards are missing. More specifically, we will combine unsupervised learning via sparse coding (dictionary learning) with the standard contextual bandit: dictionary learning allows to learn good representations from all contexts, with and without the observed rewards, while the contextual bandit on top of sparse codes makes use of the reward information when it is available. We demonstrate on several real-life datasets that the proposed approach consistently outperforms the standard contextual bandit approach.

Related Work

The multi-armed bandit problem is a model of exploration versus exploitation trade-off, where a player gets to pick within a finite set of decisions the one maximizing the cumulative reward. This problem has been extensively studied. Optimal solutions have been provided using a stochastic formulation [START_REF] Bouneffouf | Hyper-parameter tuning for the contextual bandit[END_REF][START_REF] Lin | Unified models of human behavioral agents in bandits, contextual bandits and rl[END_REF][START_REF] Lin | Online learning in iterated prisoner's dilemma to mimic human behavior[END_REF][START_REF] Ram | Solving constrained cash problems with admm[END_REF][START_REF] Bouneffouf | Online learning with corrupted context: Corrupted contextual bandits[END_REF][START_REF] Bouneffouf | Contextual bandit with missing rewards[END_REF][START_REF] Bouneffouf | Location-aware approach to improve context-based recommender system[END_REF][START_REF] Toutanova | Proceedings of the 52nd annual meeting of the association for computational linguistics[END_REF][START_REF] Sing | Neural Information Processing: 19th International Conference, ICONIP 2012[END_REF][START_REF] Teoh | Neural Information Processing: 21st International Conference, ICONIP 2014[END_REF][START_REF] Bouneffouf | Computing the dirichlet-multinomial log-likelihood function[END_REF][START_REF] Gupta | ieee congress on evolutionary computation[END_REF][START_REF] Bouneffouf | contextual-bandit algorithm for context-aware recommender system[END_REF][START_REF] Bouneffouf | Bandit models of human behavior[END_REF][START_REF] Bouneffouf | Survey on automated end-to-end data science[END_REF], a Bayesian formulation [START_REF] Thompson | On the likelihood that one unknown probability exceeds another in view of the evidence of two samples[END_REF][START_REF] Kaufmann | Thompson Sampling: An Asymptotically Optimal Finite Time Analysis[END_REF][START_REF] Bouneffouf | R-ucb: a contextual bandit algorithm for risk-aware recommender systems[END_REF][START_REF] Bouneffouf | Contextual bandit algorithm for risk-aware recommender systems[END_REF][START_REF] Bouneffouf | Multi-armed bandit problem with known trend[END_REF][START_REF] Bouneffouf | Exponentiated gradient linucb for contextual multi-armed bandits[END_REF][START_REF] Bouneffouf | Theoretical analysis of the minimum sum of squared similarities sampling for nyström-based spectral clustering[END_REF][START_REF] Bouneffouf | Optimizing an utility function for exploration/exploitation trade-off in context-aware recommender system[END_REF][START_REF] Bouneffouf | Ensemble minimum sum of squared similarities sampling for nyström-based spectral clustering[END_REF][START_REF] Bouneffouf | Context attentive bandits: contextual bandit with restricted context[END_REF][START_REF] Bouneffouf | Bandit models of human behavior: Reward processing in mental disorders[END_REF][START_REF] Bouneffouf | Drars: un système de recommandation dynamique sensible au risque[END_REF], or using an adversarial formulation [START_REF] Auer | On-line learning with malicious noise and the closure algorithm[END_REF][START_REF] Auer | The nonstochastic multiarmed bandit problem[END_REF]. However, these approaches do not take into account the context which may affect to the arm's performance. In LINUCB [START_REF] Li | A contextual-bandit approach to personalized news article recommendation[END_REF][START_REF] Chu | Contextual bandits with linear payoff functions[END_REF] and in Contextual Thompson Sampling (CTS) [START_REF] Agrawal | Thompson sampling for contextual bandits with linear payoffs[END_REF], the authors assume a linear dependency between the expected reward of an action and its context; the representation space is modeled using a set of linear predictors. However, these algorithms assume that the agent can observe the reward at each iteration, which is not the case in many practical applications, including those discussed earlier in this paper.

Authors in [START_REF] Bartók | Partial monitoring-classification, regret bounds, and algorithms[END_REF] studies considering some kind of incomplete feedback called "Partial Monitoring (PM)", which is a general framework for sequential decision making problems with incomplete feedback that allows the learner, when it is possible, to retrieve the expected value of actions through an analysis of the feedback matrix, both of which are assumed to be known to the learner. In [START_REF] Gajane | Corrupt bandits[END_REF] authors study a variant of the stochastic multi-armed bandit (MAB) problem in which the rewards are corrupted. In this framework, motivated by privacy preserving in online recommender systems, the goal is to maximize the sum of the (unobserved) rewards, based on the observation of transformation of these rewards through a stochastic corruption process with known parameters. We can say that our setting is similare to the online semi-supervied learning [START_REF] Yver | Online semi-supervised learning: Application to dynamic learning from radar data[END_REF][START_REF] Ii Ororbia | Online semi-supervised learning with deep hybrid boltzmann machines and denoising autoencoders[END_REF], which is a field of machine learning that studies learning from both labeled and unlabeled examples in an online setting. However in the their setting they receive the true label at each iteration, and we receive a bandit feedback.

Problem Setting

Algorithm 1 presents at a high-level the contextual bandit setting, where c(t) ∈ C (we will assume here C = R N ) is a vector describing the context at time t, r i (t) ∈ [0, 1] is the reward of the action i at time t, and r(t) ∈ [0, 1] K denotes a vector of rewards for all arms at time t. Also, P c,r denotes a joint probability distribution over (c, r), A denotes a set of K actions, A = {1, ..., K}, and π : C → A denotes a policy. In order to make use of the context even in the absence of the corresponding reward, we propose to use an unsupervised learning approach; specifically, we use sparse coding as a representation learning step in contextual bandit problem and learn simultaneously, via alternating-minimization, the dictionary D, codes {α 1 , • • • , α n } and the parameters θ used to predict the expected reward for each arm. Our approach is described in Alg. 2. The main changes, as compared to the standard online dictionary learning algorithm of [START_REF] Mairal | Online dictionary learning for sparse coding[END_REF], are highlighted in Alg. 2.

At each iteration in Alg. 2, the next batch of samples is received and the corresponding codes, in the dictionary, are computed; next, we add k n new dictionary elements sampled at random from R m (i.e., k n random linear projections of the input sample). The choice of the parameter k n is important; one approach is to tune it (e.g., by cross-validation), while another is to adjust it dynamically, based on the dictionary performance: e.g., if the environment is changing, the old dictionary may not be able to represent the new input well, leading to decline in the representation accuracy, which triggers neurogenesis. Herein, we use as the performance measure the Pearson correlation between a new sample and its representation in the current dictionary r(x t , D (t-1) α t ), i.e. denoted as p c (x t , D (t-1) , α t ) (for a batch of data, the average over p c (.) is taken). If it drops below a certain pre-specified threshold γ (where 0 ≤ γ ≤ 1), the neurogenesis is triggered. The number k n of new dictionary elements is proportional to the error 1 -p c (•), so that worse performance will trigger more neurogenesis, and vice versa; the maximum number of new elements is bounded by c k .

We refer to this approach as conditional neurogenesis as it involves the conditional birth of new elements. Next, k n random elements are generated and added to the current dictionary, and the memory matrices A, B are updated, respectively, to account for larger dictionary. Finally, the sparse code is recomputed for x t (or, all the samples in the current batch) with respect to the extended dictionary.

The next step is the dictionary update, which uses, similarly to the standard online dictionary learning, the block-coordinate descent approach. However, the objective function includes additional regularization terms:

D (t) = arg min D∈C 1 t t i=1 1 2 ||x i -Dα i || 2 2 + λ g j ||d j || 2 + j λ j ||d j || 1 . (1) 
The first term is the standard reconstruction error, as before. The second term, l 1 /l 2 -regularization, promotes group sparsity over the dictionary entries, where each group corresponds to a column, i.e. a dictionary element. The group-sparsity [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF] regularizer causes some columns in D to be set to zero (i.e. the columns less useful for accurate data representation), thus effectively eliminating the corresponding dictionary elements from the dictionary ("killing" the corresponding hidden units).

As it was mentioned previously, [START_REF] Bengio | Group sparse coding[END_REF] used the l 1 /l 2 -regularizer in dictionary learning, though not in online setting, and without neurogenesis.

Finally, the third term imposes l 1 -regularization on dictionary elements thus promoting sparse dictionary, besides the sparse coding. Introducing sparsity in dictionary elements, corresponding to the sparse connectivity of hidden units in the neural net representation of a dictionary, is motivated by both their biological plausibility (neuronal connectivity tends to be rather sparse in multiple brain networks), and by the computational advantages this extra regularization can provide, as we observe later in experiments.

Algorithm 2 Contextual Bandit with Dictionary Learning (CB-DL)

Require: Data stream x 1 , x 2 , • • • , xn ∈ R m ; initial dictionary D ∈ R m×k ; l is the number of arms; number of non-zeros in a dictionary element, β d ; number of non-zeros in a code, βc; Thompson-Sampling parameter v. 

1: Initialize

: A ← , g ← % reset the "memory" B = I k , μ = 0 k , f = 0 k % Thompson

5:

for i = 1 to l do

6:

Sample w i from the N (μ i , v 2 B -1 i ) distribution.

7:

end for

8:

Play arm j = argmax i∈{1,...,l} α T t w i and obtain r i t 9: for j = 1 to k do 14:

B i = B i + αtα T t , f = f + αtr i t , μi = B -1 i f % End of
u j ← b j -k =j d k a jk a jj
% Sparsifying elements (optional):

15:

v j ← P rox λ j ||.|| 1 (u j ) = sgn(u j )(|u j | -λ j ) + , % λ j tuned to get β d non-zeros in v j
% Killing useless elements with l 1 /l 2 group sparsity 16:

w j ← v j 1 - λg ||v j || 2 +
17:

d j ← w j max(1,||w j || 2 )

18:

end for

19:

until convergence 20: end for 21: return D As in the original algorithm of [START_REF] Mairal | Online dictionary learning for sparse coding[END_REF], the above objective is optimized by the block-coordinate descent, where each block of variables corresponds to a dictionary element, i.e., a column in D; the loop in steps 12-19 of the Alg. 2 iterates until convergence, defined by the magnitude of change between the two successive versions of the dictionary falling below some threshold. For each column update, the first and the last steps (the steps 14 and 17) are the same as in the original method of [START_REF] Mairal | Online dictionary learning for sparse coding[END_REF], while the two intermediate steps (the steps 15 and 16) are implementing additional regularization. Both steps 15 and 16 (sparsity and group sparsity regularization) are implemented using the standard proximal operators as described in [START_REF] Jenatton | Proximal methods for hierarchical sparse coding[END_REF]. Note that we actually use as input the desired number of non-zeros, and determine the corresponding sparsity parameter λ c and λ j using a binary search procedure. Overall, the key features of our algorithm is the interplay of both the (conditional) birth and (group-sparsity) death of dictionary elements in an online setting. Theorem 1. With probability 1 -γ, where 0 ≤ γ ≤ 1, we have the upper bound on the expected regret R(T) for the CB-DL (Algorithm 1) in the contextual bandit problem with K arms and d features (context size) is given as follows:

E[R(T )] ≤ √ 8t log[det([A + H] t )] + dlogλ(σ log[det([A + H] t )] + dlogλ + 2log( 1 δ ) + ||θ * || √ λ )
where ∆ = µ k -µ e k and σ the distance threshold, D max a lipschitz constant and 0 ≤ z ≤ 1 a constant parameter of the TS algorithm.

Proof. We consider the high probability event θ * ∈ C t for all t > 0.

r t = π t,a -x t,at µ * r t = π t,a -z t,at µ * + z t,at µ * -x t,at µ * r t ≤ ||π t,a -z t,at µ * + z t,at µ * -x t,at µ * || 2 r t ≤ ||π t,a -z t,at µ * || 2 + ||z t,at µ * -x t,at µ * || 2
where we adopt the cauchy-Schwarz inequality. Now we investigate ||π t,a -z t,at µ * || 2 and ||z t,at µ * -x t,at µ * || 2 separately.

Since µ t z is optimistic base. π t,a -z t,at µ * z ≤ z t,at μt z -z t,at μ * z ≤ z t,at μt z -μ * z ≤ z t,at μt z -μt z -z t,at -z t,at μ * z r t = x * t , θ * -x t -θ * ≤ x t , θ -x t -θ * θ * ∈ C * = x t , θ -θ * = x t , θ -θ * x t , θ -θ using Cauchy-Schwarz ≤ ||x t || (A+H) -1 || θ -θ * || (A+H) + ||x t || (A+H) -1 || θ -θ|| (A+H) ≤ 2c t ||x t || (A+H) -1 θ * , θ ∈ C t = {θ : ||θ -θt || (A+H) ≤ c t } Since x θ * ∈ [-1, 1]
for all x ∈ X t then we have r t ≤ 2. Therefore,

r t ≤ min2c t ||x t || (A+H) -1 , 2 ≤ 2c t minc t ||x t || (A+H) -1 , 1 r 2 t ≤ 4c 2 t minc t ||x t || 2 (A+H) -1 , 1
with R T = T t=1 r t and using equation ( 1) we have,

T T t=1 r 2 t ≤ T T t=1 4c 2 t min{||x t || 2 (A+H) -1 , 1} ≤ 2 √ T c t T t=1 min{||x t || 2 (A+H) -1 , 1} since x ≤ 2log(1 + x) for x ∈ [0, 1], we have T t=1 min{||x t || 2 (A+H) -1 , 1} ≤ 2 T t=1 log(1 + ||x t || 2 (A+H) -1 ) = 2(logdet(A + H) t + dlogλ)

Experiments

In this section we compare baseline method Thompson sampling which ignores the data with missing rewards to CB-DL-algorithm proposed in this paper. We consider Warfarin Problem [START_REF] Sharabiani | Revisiting warfarin dosing using machine learning techniques[END_REF]. Warfarin is an anticoagulant agent (Wysowski et al. 2007). Correctly dosing warfarin remains a significant challenge as the appropriate dosage is highly variable among individuals due to patient clinical, demographic and genetic factors. Physicians currently follow a fixed-dose strategy: they start patients on 5mg/day (the appropriate dose for the majority of patients) and slowly adjust the dose over the course of a few weeks by tracking the patient's anticoagulation levels. However, an incorrect initial dosage can result in highly adverse consequences such as stroke (if the initial dose is too low) or internal bleeding (if the initial dose is too high). Every year, nearly 43,000 emergency department visits in the United States are due to adverse events associated with inappropriate warfarin dosing (Budnitz et al. 2006). Thus, we tackle the problem of learning and assigning an appropriate initial dosage to patients by leveraging patient-specific factors.

So, in-order to evaluate our proposed algorithm, we take the dataset and remove the reword for some percentage of it. Which means that we allow the paper to see the bandit reward only in 1, 5 and 20 percent of the dataset. What we observe here is that, CTS with Dictionary update, is performing better than the baseline algorithm.

Conclusion

We consider a variant of the contextual bandit problem where the reward associated with each contextbased decision may not always be observed. This problem is motivated by certain on-line settings including clinical trial and ad recommendation applications. We propose to combine the standard contextual bandit approach with sparse coding. Unlike standard contextual bandit methods, we are able to learn from all contexts, even those with missing rewards, by improving the representation of a context (via dictionary learning); when the reward is available, the standard contextual bandit learning mechanism is used. Promising empirical results are obtained on real-life datasets.

  Algorithm 1 Contextual Bandit with missing rewards 1: Repeat 2: (c(t), r(t)) is drawn according to D c,r 3: c(t) is revealed to the player 4: The player chooses an action i = π t (c(t))

	5: The reward r i (t) is revealed with some probability
	6: The player updates its policy π t
	7: t = t + 1
	8: Until t=T
	4 Our Approach: Bandit with Sparse-Coded Context

  Sampling parameters 2: for t = 1 to n do 3: Dα|| 2 2 + λc||α|| 1 % λc tuned to have βc non-zeros in αt % Contextual bandit with α code as context

		Input xt
		% Sparse coding:
	4:	αt = arg α∈R k min 1 2 ||xt -

Table 1 :

 1 1% data used for pre-training of dictionary in advance. 5 trials for all in poker, and 25 trials for all 5%. Batch size for dictionary is 200.

	Data	Supervision	Eval. Function	CTS	CTS with dictionary updates
	Warfarin Dose				
	5000DS	5%	Regret	0.6637 ± 0.0340	(0.5890 ± 0.0339)
	3000DS	20%	Regret	0.6652 ± 0.0127	(0.5400 ± 0.0113)
	3000DS	5%	Regret	0.6637 ± 0.0340	(0.5640 ± 0.0286)
	3000DS	1%	Regret	0.6750 ± 0.0565	(0.6300 ± 0.0587)
	2000DS	20%	Regret	0.6652 ± 0.0127	(0.6089 ± 0.0316)
	2000DS	5%	Regret	0.6637 ± 0.0340	(0.6367 ± 0.0393)
	2000DS	1%	Regret	0.6750 ± 0.0565	(0.6736 ± 0.0696)
	1500DS	20%	Regret	0.6652 ± 0.0127	(0.5354 ± 0.0379)
	1500DS	5%	Regret	0.6637 ± 0.0340	(0.5466 ± 0.0559)
	1500DS	1%	Regret	0.6750 ± 0.0565	(0.6393 ± 0.0614)
	1000DS	20%	Regret	0.6652 ± 0.0127	(0.5924 ± 0.0197)
	1000DS	5%	Regret	0.6637 ± 0.0340	0.5905 ± 0.0376 (0.6062 ± 0.0467)
	1000DS	1%	Regret	0.6750 ± 0.0565	(0.6136 ± 0.0610)
	500DS	20%	Regret	0.6652 ± 0.0127	(0.5897 ± 0.0131)
	500DS	5%	Regret	0.6637 ± 0.0340	(0.6013 ± 0.0309)
	500DS	1%	Regret	0.6750 ± 0.0565	(0.6450 ± 0.0632)
	300DS	20%	Regret	0.6652 ± 0.0127	(0.5988 ± 0.0162)
	300DS	5%	Regret	0.6637 ± 0.0340	0.6443 ± 0.0286 (0.6208 ± 0.0260)
	300DS	1%	Regret	0.6750 ± 0.0565	(0.6614 ± 0.0607)
	200DS	5%	Regret	0.6637 ± 0.0340	(0.6585 ± 0.0214)
	100DS	20%	Regret	0.6652 ± 0.0127	(0.6571 ± 0.0137)
	100DS	5%	Regret	0.6637 ± 0.0340	(0.6552 ± 0.0240)
	100DS	1%	Regret	0.6637 ± 0.0340	(0.6285 ± 0.0232)
	30DS	5%	Regret	0.6637 ± 0.0340	(0.6342 ± 0.0364)
	10DS	5%	Regret	0.6637 ± 0.0340	(0.4670 ± 0.0234)