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Abstract

We consider a novel variant of the contextual bandit problem (i.e., the multi-armed
bandit with side-information, or context, available to a decision-maker) where the
reward associated with each context-based decision may not always be observed
(”missing rewards”). This new problem is motivated by certain on-line settings
including clinical trial and ad recommendation applications. In order to address
the missing-reward setting, we propose to combine the standard contextual bandit
approach with an unsupervised learning mechanism, such as, for example, sparse
coding. Unlike standard contextual bandit methods, we are able to learn from
all contexts, even those with missing rewards, by improving the representation
of a context (via dictionary learning); when the reward is available, the standard
contextual bandit learning mechanism is used. Promising empirical results are
obtained on several real-life datasets.

1 Introduction

Sequential decison making is a common problem in many practical applications where the agent must
choose the best action to perform at each iteration in order to maximize the cumulative reward over
some period of time. One of the key challenges is achieve a good trade-off between the exploration
of new actions and the exploitation of known actions. This exploration vs exploitation trade-off in
sequential decision making problems is often formulated as the multi-armed bandit (MAB) problem:
given a set of bandit “arms” (actions), each associated with a fixed but unknown reward probability
distribution [63, 6, 44, 43, 3, 25, 40, 42, 16, 39, 17, 22, 48, 26, 45, 21, 31, 20, 23, 33, 18, 27, 28, 29, 4],
an agent selects an arm to play at each iteration, and receives a reward, drawn according to the selected
arm’s distribution, independently from the previous actions.

A particularly useful version of MAB is the contextual multi-armed bandit (CMAB), or simply the
contextual bandit problem, where at each iteration, before choosing an arm, the agent observes an
N -dimensional context, or feature vector. Over time, the goal is to learn the relationship between
the context vectors and the rewards, in order to make better prediction which action to choose given
the context [70, 8, 80, 9, 70, 79, 67, 55, 50, 17, 85, 72, 49, 89, 68, 1, 10, 76, 73, 82, 11, 71, 86] and
anomaly detection [57].

For example, the contextual bandit approach is commonly used in various practical sequential decision
problems with side information (context), from clinical trials [87] to recommender system [75], where
the patient’s information (medical history, etc.) or an online user’s profile provide a context for making
a better decision about the treatment to propose or an ad to show, and the reward represents the
outcome of the selected action, such as, for example, success or failure of a particular treatment
option.

In this paper, we consider a new problem setting, referred to as contextual bandit with missing rewards,
where the agent may not always observe the reward, although the context is always observable. This
setting is motivated by several real-life applications where the reward associated with a selected
action can be missing (unobservable by an agent) for various reasons. For instance, in medical
decision-making settings, the doctor can decide on a specific treatment option for a patient, but
the patient may not come back for follow-up appointments; though the reward feedback regarding
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the treatment success is missing, the context (patient’s medical record) is still available and can be
potentially used to learn more about the patient’s population. A different example of missing rewards
can occur in information retrieval or online search settings, where the user enters a search request,
but, for various reasons, may not click on any of the suggested website links, and thus the reward
feedback about those choices is missing. Yet another example can be online advertisement, where
the user clicking on a proposed ad represents a positive reward, but the absence of a click can be
interpreted either as negative reward (the user did not like the ad), or can be a consequence of a a bug
or a connection loss.

The missing-reward contextual bandit framework proposed here aims to capture the situations
described above, and provide an approach to always exploiting the context information in order to
improve future decisions, even if some rewards are missing. More specifically, we will combine
unsupervised learning via sparse coding (dictionary learning) with the standard contextual bandit:
dictionary learning allows to learn good representations from all contexts, with and without the
observed rewards, while the contextual bandit on top of sparse codes makes use of the reward
information when it is available. We demonstrate on several real-life datasets that the proposed
approach consistently outperforms the standard contextual bandit approach.

2 Related Work

The multi-armed bandit problem is a model of exploration versus exploitation trade-off, where a
player gets to pick within a finite set of decisions the one maximizing the cumulative reward. This
problem has been extensively studied. Optimal solutions have been provided using a stochastic
formulation [46, 69, 66, 78, 35, 54, 14, 84, 64, 61, 34, 59, 41, 51, 36], a Bayesian formulation
[83, 62, 30, 32, 47, 19, 38, 24, 37, 53, 52, 15], or using an adversarial formulation [5, 7]. However,
these approaches do not take into account the context which may affect to the arm’s performance. In
LINUCB [65, 56] and in Contextual Thompson Sampling (CTS) [2], the authors assume a linear
dependency between the expected reward of an action and its context; the representation space is
modeled using a set of linear predictors. However, these algorithms assume that the agent can observe
the reward at each iteration, which is not the case in many practical applications, including those
discussed earlier in this paper.

Authors in [12] studies considering some kind of incomplete feedback called "Partial Monitoring
(PM)", which is a general framework for sequential decision making problems with incomplete
feedback that allows the learner, when it is possible, to retrieve the expected value of actions through
an analysis of the feedback matrix, both of which are assumed to be known to the learner. In [58]
authors study a variant of the stochastic multi-armed bandit (MAB) problem in which the rewards are
corrupted. In this framework, motivated by privacy preserving in online recommender systems, the
goal is to maximize the sum of the (unobserved) rewards, based on the observation of transformation
of these rewards through a stochastic corruption process with known parameters. We can say that our
setting is similare to the online semi-supervied learning [90, 77], which is a field of machine learning
that studies learning from both labeled and unlabeled examples in an online setting. However in the
their setting they receive the true label at each iteration, and we receive a bandit feedback.

3 Problem Setting

Algorithm 1 presents at a high-level the contextual bandit setting, where c(t) ∈ C (we will assume
here C = RN ) is a vector describing the context at time t, ri(t) ∈ [0, 1] is the reward of the action i at
time t, and r(t) ∈ [0, 1]K denotes a vector of rewards for all arms at time t. Also, Pc,r denotes a joint
probability distribution over (c, r), A denotes a set of K actions, A = {1, ...,K}, and π : C → A
denotes a policy.
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Algorithm 1 Contextual Bandit with missing rewards
1: Repeat
2: (c(t), r(t)) is drawn according to Dc,r

3: c(t) is revealed to the player
4: The player chooses an action i = πt(c(t))
5: The reward ri(t) is revealed with some probability
6: The player updates its policy πt
7: t = t+ 1
8: Until t=T

4 Our Approach: Bandit with Sparse-Coded Context

In order to make use of the context even in the absence of the corresponding reward, we propose
to use an unsupervised learning approach; specifically, we use sparse coding as a representation
learning step in contextual bandit problem and learn simultaneously, via alternating-minimization,
the dictionaryD, codes {α1, · · · ,αn} and the parameters θ used to predict the expected reward for
each arm. Our approach is described in Alg. 2. The main changes, as compared to the standard online
dictionary learning algorithm of [74], are highlighted in Alg. 2.

At each iteration in Alg. 2, the next batch of samples is received and the corresponding codes, in the
dictionary, are computed; next, we add kn new dictionary elements sampled at random from Rm

(i.e., kn random linear projections of the input sample). The choice of the parameter kn is important;
one approach is to tune it (e.g., by cross-validation), while another is to adjust it dynamically, based
on the dictionary performance: e.g., if the environment is changing, the old dictionary may not
be able to represent the new input well, leading to decline in the representation accuracy, which
triggers neurogenesis. Herein, we use as the performance measure the Pearson correlation between
a new sample and its representation in the current dictionary r(xt,D

(t−1)αt), i.e. denoted as
pc(xt,D

(t−1),αt) (for a batch of data, the average over pc(.) is taken). If it drops below a certain
pre-specified threshold γ (where 0 ≤ γ ≤ 1), the neurogenesis is triggered. The number kn of new
dictionary elements is proportional to the error 1− pc(·), so that worse performance will trigger more
neurogenesis, and vice versa; the maximum number of new elements is bounded by ck.

We refer to this approach as conditional neurogenesis as it involves the conditional birth of new
elements. Next, kn random elements are generated and added to the current dictionary, and the
memory matricesA,B are updated, respectively, to account for larger dictionary. Finally, the sparse
code is recomputed for xt (or, all the samples in the current batch) with respect to the extended
dictionary.

The next step is the dictionary update, which uses, similarly to the standard online dictionary
learning, the block-coordinate descent approach. However, the objective function includes additional
regularization terms:

D(t) =arg min
D∈C

1

t

t∑
i=1

1

2
||xi −Dαi||22 + λg

∑
j

||dj ||2 +
∑
j

λj ||dj ||1. (1)

The first term is the standard reconstruction error, as before. The second term, l1/l2-regularization,
promotes group sparsity over the dictionary entries, where each group corresponds to a column, i.e.
a dictionary element. The group-sparsity [88] regularizer causes some columns in D to be set to
zero (i.e. the columns less useful for accurate data representation), thus effectively eliminating the
corresponding dictionary elements from the dictionary (“killing” the corresponding hidden units).
As it was mentioned previously, [13] used the l1/l2-regularizer in dictionary learning, though not in
online setting, and without neurogenesis.

Finally, the third term imposes l1-regularization on dictionary elements thus promoting sparse
dictionary, besides the sparse coding. Introducing sparsity in dictionary elements, corresponding to
the sparse connectivity of hidden units in the neural net representation of a dictionary, is motivated by
both their biological plausibility (neuronal connectivity tends to be rather sparse in multiple brain
networks), and by the computational advantages this extra regularization can provide, as we observe
later in experiments.
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Algorithm 2 Contextual Bandit with Dictionary Learning (CB-DL)
Require: Data streamx1,x2, · · · ,xn ∈ Rm; initial dictionaryD ∈ Rm×k; l is the number of arms; number of non-zeros

in a dictionary element, βd; number of non-zeros in a code, βc; Thompson-Sampling parameter v.

1: Initialize:A← ε, g ← ε % reset the “memory”
B = Ik , µ̂ = 0k, f = 0k % Thompson Sampling parameters

2: for t = 1 to n do
3: Input xt

% Sparse coding:
4: αt = argα∈Rk min 1

2
||xt −Dα||22 + λc||α||1 % λc tuned to have βc non-zeros in αt

% Contextual bandit with α code as context
5: for i = 1 to l do
6: Samplewi from the N(µ̂i, v

2B−1
i ) distribution.

7: end for
8: Play arm j = argmax

i∈{1,...,l}
αTt wi and obtain rit

9: Bi = Bi +αtα
T
t , f = f +αtrit, µ̂i = B−1

i f % End of Contextual Bandit

% Dictionary update through code
10: αt = argα∈Rk min 1

2
||xt − Dα||22 + λc||α||1 % Supervised re-optimization of code in the

dictionary (with αt initialization)
% End of supervision

% “Memory” update:
11: A← A+αtαTt , B ← B + xtαTt

% Dictionary update by block-coordinate descent with l1/l2 group sparsity
12: repeat
13: for j = 1 to k do
14: uj ←

bj−
∑

k 6=j dkajk
ajj

% Sparsifying elements (optional):
15: vj ← Proxλj ||.||1 (uj) = sgn(uj)(|uj | − λj)+, % λj tuned to get βd non-zeros in vj

% Killing useless elements with l1/l2 group sparsity

16: wj ← vj

(
1− λg

||vj ||2

)
+

17: dj ←
wj

max(1,||wj ||2)
18: end for
19: until convergence
20: end for
21: return D

As in the original algorithm of [74], the above objective is optimized by the block-coordinate descent,
where each block of variables corresponds to a dictionary element, i.e., a column inD; the loop in
steps 12-19 of the Alg. 2 iterates until convergence, defined by the magnitude of change between the
two successive versions of the dictionary falling below some threshold. For each column update, the
first and the last steps (the steps 14 and 17) are the same as in the original method of [74], while the
two intermediate steps (the steps 15 and 16) are implementing additional regularization. Both steps
15 and 16 (sparsity and group sparsity regularization) are implemented using the standard proximal
operators as described in [60]. Note that we actually use as input the desired number of non-zeros, and
determine the corresponding sparsity parameter λc and λj using a binary search procedure. Overall,
the key features of our algorithm is the interplay of both the (conditional) birth and (group-sparsity)
death of dictionary elements in an online setting.
Theorem 1. With probability 1 − γ, where 0 ≤ γ ≤ 1, we have the upper bound on the expected
regret R(T) for the CB-DL (Algorithm 1) in the contextual bandit problem with K arms and d features
(context size) is given as follows:

E[R(T )] ≤
√

8t
√
log[det([A+H]t)] + dlogλ(σ

√
log[det([A+H]t)] + dlogλ+ 2log(

1

δ
) +
||θ∗||√
λ

)

where ∆ = µk − µe
k and σ the distance threshold, Dmax a lipschitz constant and 0 ≤ z ≤ 1 a

constant parameter of the TS algorithm.

Proof. We consider the high probability event θ∗ ∈ Ct for all t > 0.

rt = πt,a − x>t,at
µ∗

rt = πt,a − z>t,at
µ∗ + z>t,at

µ∗ − x>t,at
µ∗
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rt ≤ ||πt,a − z>t,at
µ∗ + z>t,at

µ∗ − x>t,at
µ∗||2

rt ≤ ||πt,a − z>t,at
µ∗||2 + ||z>t,at

µ∗ − x>t,at
µ∗||2

where we adopt the cauchy-Schwarz inequality.

Now we investigate ||πt,a − z>t,at
µ∗||2 and ||z>t,at

µ∗ − x>t,at
µ∗||2 separately.

Since µt
z is optimistic base.

πt,a − z>t,at
µ∗z ≤ 〈z>t,at

µ̃t
z〉 − 〈z>t,at

µ̃∗z〉 ≤ 〈z>t,at
µ̃t
z − µ̃∗z〉 ≤ 〈z>t,at

µ̃t
z − µ̂t

z〉 − 〈z>t,at
− z>t,at

µ̃∗z〉

rt = 〈x∗t , θ∗〉 − 〈xt − θ∗〉 ≤ 〈xt, θ̃〉 − 〈xt − θ∗〉 θ∗ ∈ C∗

= 〈xt, θ̃ − θ∗〉 = 〈xt, θ̂ − θ∗〉 〈xt, θ̂ − θ̂〉 using Cauchy-Schwarz

≤ ||xt||(A+H)−1 ||θ̂ − θ∗||(A+H) + ||xt||(A+H)−1 ||θ̃ − θ̂||(A+H)

≤ 2ct||xt||(A+H)−1 θ∗, θ̃ ∈ Ct = {θ : ||θ − θ̂t||(A+H) ≤ ct}

Since x>θ∗ ∈ [−1, 1] for all x ∈ Xt then we have rt ≤ 2. Therefore,

rt ≤ min2ct||xt||(A+H)−1 , 2 ≤ 2ctminct||xt||(A+H)−1 , 1

r2t ≤ 4c2tminct||xt||2(A+H)−1 , 1

with RT =
∑T

t=1 rt and using equation (1) we have,√
T
∑T

t=1 r
2
t ≤

√
T
∑T

t=1 4c2tmin{||xt||2(A+H)−1 , 1}

≤ 2
√
Tct

√∑T
t=1min{||xt||2(A+H)−1 , 1}

since x ≤ 2log(1 + x) for x ∈ [0, 1], we have∑T
t=1min{||xt||2(A+H)−1 , 1} ≤ 2

∑T
t=1 log(1 + ||xt||2(A+H)−1) = 2(logdet(A+H)t + dlogλ)

5 Experiments

In this section we compare baseline method Thompson sampling which ignores the data with missing
rewards to CB-DL- algorithm proposed in this paper. We consider Warfarin Problem [81]. Warfarin
is an anticoagulant agent (Wysowski et al. 2007). Correctly dosing warfarin remains a significant
challenge as the appropriate dosage is highly variable among individuals due to patient clinical,
demographic and genetic factors. Physicians currently follow a fixed-dose strategy: they start patients
on 5mg/day (the appropriate dose for the majority of patients) and slowly adjust the dose over the
course of a few weeks by tracking the patient’s anticoagulation levels. However, an incorrect initial
dosage can result in highly adverse consequences such as stroke (if the initial dose is too low) or
internal bleeding (if the initial dose is too high). Every year, nearly 43,000 emergency department
visits in the United States are due to adverse events associated with inappropriate warfarin dosing
(Budnitz et al. 2006). Thus, we tackle the problem of learning and assigning an appropriate initial
dosage to patients by leveraging patient-specific factors.

So, in-order to evaluate our proposed algorithm, we take the dataset and remove the reword for some
percentage of it. Which means that we allow the paper to see the bandit reward only in 1, 5 and 20
percent of the dataset. What we observe here is that, CTS with Dictionary update, is performing better
than the baseline algorithm.

6 Conclusion

We consider a variant of the contextual bandit problem where the reward associated with each context-
based decision may not always be observed. This problem is motivated by certain on-line settings
including clinical trial and ad recommendation applications. We propose to combine the standard

5



Data Supervision Eval. Function CTS CTS with dictionary updates

Warfarin Dose

5000DS 5% Regret 0.6637± 0.0340 (0.5890± 0.0339)

3000DS 20% Regret 0.6652± 0.0127 (0.5400± 0.0113)
3000DS 5% Regret 0.6637± 0.0340 (0.5640± 0.0286)
3000DS 1% Regret 0.6750± 0.0565 (0.6300± 0.0587)

2000DS 20% Regret 0.6652± 0.0127 (0.6089± 0.0316)
2000DS 5% Regret 0.6637± 0.0340 (0.6367± 0.0393)
2000DS 1% Regret 0.6750± 0.0565 (0.6736± 0.0696)

1500DS 20% Regret 0.6652± 0.0127 (0.5354± 0.0379)
1500DS 5% Regret 0.6637± 0.0340 (0.5466± 0.0559)
1500DS 1% Regret 0.6750± 0.0565 (0.6393± 0.0614)

1000DS 20% Regret 0.6652± 0.0127 (0.5924± 0.0197)
1000DS 5% Regret 0.6637± 0.0340 0.5905± 0.0376 (0.6062± 0.0467)
1000DS 1% Regret 0.6750± 0.0565 (0.6136± 0.0610)

500DS 20% Regret 0.6652± 0.0127 (0.5897± 0.0131)
500DS 5% Regret 0.6637± 0.0340 (0.6013± 0.0309)
500DS 1% Regret 0.6750± 0.0565 (0.6450± 0.0632)

300DS 20% Regret 0.6652± 0.0127 (0.5988± 0.0162)
300DS 5% Regret 0.6637± 0.0340 0.6443± 0.0286 (0.6208± 0.0260)
300DS 1% Regret 0.6750± 0.0565 (0.6614± 0.0607)

200DS 5% Regret 0.6637± 0.0340 (0.6585± 0.0214)

100DS 20% Regret 0.6652± 0.0127 (0.6571± 0.0137)
100DS 5% Regret 0.6637± 0.0340 (0.6552± 0.0240)
100DS 1% Regret 0.6637± 0.0340 (0.6285± 0.0232)

30DS 5% Regret 0.6637± 0.0340 (0.6342± 0.0364)

10DS 5% Regret 0.6637± 0.0340 (0.4670± 0.0234)

Table 1: 1% data used for pre-training of dictionary in advance. 5 trials for all in poker, and 25 trials
for all 5%. Batch size for dictionary is 200.

contextual bandit approach with sparse coding. Unlike standard contextual bandit methods, we are
able to learn from all contexts, even those with missing rewards, by improving the representation
of a context (via dictionary learning); when the reward is available, the standard contextual bandit
learning mechanism is used. Promising empirical results are obtained on real-life datasets.
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