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Abstract. We introduce a multi-agent logic of explicit, implicit belief
and awareness with a semantics using belief bases. The novelty of our
approach is that an agent’s awareness is not a primitive but is directly
computed from the agent’s belief base. We prove soundness and com-
pleteness of the logic relative to the belief base semantics. Furthermore,
we provide a polynomial embedding of the logic of propositional aware-
ness into it.

1 Introduction

The notion of awareness was introduced in the area of epistemic logic by Fagin
& Halpern (F&H) [4] to cope with the problem of logical omniscience [10]. Their
approach is syntactic to the extent that they associate a subset of formulas to
each agent at each state, indicating the formulas the agent is aware of. Following
the idea suggested by Levesque [11], F&H make the distinction between explicit
belief and implicit belief, where explicit belief is defined to be implicit belief plus
awareness.

There is another tradition in the formalization of awareness, initiated by
Modica & Rustichini [15,16] and Heifetz et al. [8,9]. They support a semantic
approach by letting possible worlds be associated with a subset of all proposi-
tional variables being defined. Hence, an agent is aware of a formula if and only
if, every atomic proposition occurring in the formula is defined at every epistem-
ically accessible state for the agent. Such a notion of awareness is often called
propositional awareness in opposition to the notion of general awareness, accord-
ing to which an agent can be “primitively” aware not only of atomic propositions
but also of complex formulas. Halpern [5] proves an equivalence result between
the syntactic approach and the semantic approach to propositional awareness in
a single-agent setting. Moreover, Halpern & Régo [6] present an analogous equiv-
alence result for multi-agent awareness structures. van Ditmarsch et al. [3] give
a novel notion called speculative knowledge, which is also built on propositional
awareness.

The concept of explicit belief, which is central in the logic of awareness,
is closely related to the concept of belief base [17,14,7,18]. The latter plays an
important role in the AGM approach to belief revision [1] and, more generally, in
the area of knowledge representation and reasoning (KR). Recently, in [12,13] we



defined a formal semantics for multi-agent epistemic logic exploiting belief bases
which clearly distinguishes explicit from implicit belief. Specifically, according
to this semantics, an agent explicitly believes that a certain fact « is true if « is
a piece of information included in the agent’s belief base. On the contrary, the
agent implicitly believes that «, if a is derivable from the agent’s belief base.
A logic of explicit and implicit belief, called Logic of Doxastic Attitudes (LDA),
was defined on the top of this semantics.

In this paper, we extend the semantics introduced in [12] and the correspond-
ing logic LDA with propositional awareness. We call LDAA the resulting logic.
The novelty of our approach lies in the fact that the notion of awareness is not
primitive but is directly computed from the notion of belief base. In particular,
for an agent to be aware of a proposition p, p has to be included in the agent’s
vocabulary, that is to say, there should exist a formula in the agent’s belief base
which contains p. From this perspective, we offer a minimalistic logic approach
to explicit, implicit belief and awareness in which only the former concept is
primitive, while the other two concepts are defined from it.

The paper is organized as follows. In Section 2, we present the language of our
logic of explicit, implicit belief and awareness. In Section 3, we first present the
belief base semantics with respect to which the language is interpreted. Then,
we introduce two alternative semantics which are closer in spirit to the standard
semantics for epistemic logic based on multi-relational Kripke structures. We
show that the three semantics are all equivalent with respect to the language
under consideration. Section 4 is devoted to axiomatic results for our logic, while
in Section 5 we explore the connection between our logic and Halpern’s logic of
propositional awareness (LPA) [5], by providing a satisfiability-preserving em-
bedding of the latter into the former. Finally, in Section 6 we conclude.

2 Language

This section presents the language of the Logic of Doxastic Attitudes with Aware-
ness (LDAA) to represent explicit beliefs, implicit beliefs, and awareness. It ex-
tends the language in [12] by the awareness modality. Let Atm = {p,q,...} be a
countably infinite set of atomic propositions and let Agt = {1,...,n} be a finite
set of agents. The language is given by the two levels in the following definition.

Definition 1. The language Lo(Atm, Agt) is defined as follows:

az=p|oala Aa| Na| O

where p ranges over Atm and i ranges over Agt. The language L paa(Atm, Agt)
extends Lo(Atm, Agt) by implicit belief operators and is defined as follows:

pu=al-eler Apx | O | O

where © Tanges over Agt.



When it is unambiguous from the context, we write Ly instead of Lo(Atm, Agt)
and L paa instead of L paa(Atm, Agt). The other Boolean connectives V, —,
<>, T and L are defined from — and A in the standard way. The formula A;«
is read “agent i explicitly believes that « is true”. The formula (O;a is read
“agent i is aware of o”. The A;-operator can be iterated, which means that the
language contains expressions for higher-order explicit beliefs, such as A;Aja,
which is read “agent i explicitly believes that agent j explicitly believes that «
is true”. The iteration is possibly a mix of explicit belief and awareness, such as
A; Oja, which is read “agent ¢ explicitly believes that agent j is aware of a”.

And the formula O;p is read “agent ¢ implicitly believes that ¢ is true”. The
dual operator <; is defined as follows:

i i= ~0ip,

where <;p is read “p is consistent with agent ¢’s explicit beliefs”.

Note that the modality (); appears at both levels of the language, but the
modality A; only appears at the first level. As a result, we can have awareness
operators in the scope of explicit belief operators, but not implicit belief oper-
ators. Moreover, both explicit belief operator and implicit belief operator are
allowed inside the awareness operator. It is for the reason that, the concept of
propositional awareness allows awareness of any formula that is constituted by
atomic propositions that the agent is aware of.

Since we represent a propositional notion of awareness, i.e., being aware of
a formula is equivalent to being aware of every atomic proposition occurring
in it, we need the following inductive definition to represent the set of atomic
propositions occurring in a formula ¢, denoted by Atm(y):

tm(p) := {p},

tm(—p) == Atm(p),

tm(p1 A pa) := Atm(p1) U Atm(p2),
tm(X,p) := Atm(p), for X € {A, O, 0}.

\
A s s s

Let Y C L paa be finite, we define Atm(Y) := U@ey Atm(p).

3 Semantics

In this section, we present three families of formal semantics for £ paa. The
first semantics exploits belief bases. An agent’s set of doxastic alternatives and
awareness set are not primitive but computed from them. The second semantics
is a Kripke-style semantics, in which we require each agent’s set of doxastic
alternatives to be equal to the set of worlds in which his explicit beliefs are true,
and the agent’s awareness set to be equal to the set of of atomic propositions
occurring in his explicit beliefs. The third semantics relaxes these requirements,
so that an agent’s set of doxastic alternatives is included in the set of worlds
in which the agent’s explicit beliefs are true, and the set of atomic propositions
occurring in an agent’s explicit beliefs is a subset of the agent’s awareness set.



3.1 Multi-agent belief-awareness base semantics
Let us start with the definition of belief-awareness base.

Definition 2. A multi-agent belief-awareness base is a tuple BA = (B, ..., By,
Ay, ..., A, V) where,

— B; C Ly is agent i’s belief base for any i € Agt,
— A; = Atm(B;) is agent i’s awareness set for any i € Agt,
— V C Atm is the actual state.

The set of all multi-agent belief-awareness bases is denoted by BA. With the
definition of multi-agent belief-awareness bases, we have the following interpre-
tations for L.

Definition 3. For any BA = (By,...,Bn, A1,..., 4,,V) € BA:

- BAEpiffpeV,

— BAE —a iff BAF a,

— BAEai ANag iff BAE a1 and BA | as,
- BA':AZOL foOZEB,L',

— BA = Os;a iff Atm(a) C A3

By the interpretation, our awareness is propositional, i.e., being aware of a
formula is equivalent to being aware of every atomic proposition occurring in
the formula. Such a notion of awareness is different with the notion of general
awareness according to which an agent can be aware of p A g without being aware
of pVgq.

The following definition introduces the concept of multi-agent belief-awareness
model.

Definition 4. A multi-agent belief-awareness model MABA) is a pair (BA, Cxt),
where BA € BA and Cxt C BA.

C'zt is the agents’ context or common ground [19]. It corresponds to the body
of information that the agents share and that they use to make inferences from
their explicit beliefs. Following [12], in the following definition we compute the
agents’ doxastically accessibility relations from their belief bases.

Definition 5. For any i € Agt, R; is the binary relation on BA such that for
any BA=(By,...,Bn, Ay,...., Ap,V),BA" = (By,..., B, A}, ..., Al,, V') € BA,

(BA,BA’") € R; if and only if Va € B;, BA' = .

With the accessibility relation defined, we have the following definition of
interpretations for formulas in £, paa. The boolean case is defined in the usual
way and omitted.

3 Note that the awareness component of Definition 2 seems unnecessary, as we could in-
terpret it equivalenty by postulating “BA = Osa iff Atm(a) C Atm(B;)”. We keep
it for the reason that it has counterparts in NDAM semantics and quasi-NDAM se-
mantics hereinafter. In quasi-NDAM semantics, an agent’s awareness set is supposed
to be a superset of the set of atomic propositions occurring in the agent’s belief set.



Definition 6. Let (BA, Cxt) be a MABA with BA = (By, ..., Bp, A1, ..., Ay, V).
Then,

- (BA,Cxt) Fa iff BAE «
— (BA,Cxt) = O,p iff VBA' € Cut, if (BA,BA") € R; then (BA',Cxt) |= o,
— (BA,Cxt) = Oup iff Atm(p) C A;.

The following two definitions specify two interesting properties of MABAs.

Definition 7. The MABA (BA, Cxt) satisfies global consistency (GC) if and
only if, for any i € Agt and for any BA' € ({BA}UCxt), there exists BA” € Cuxt
such that (BA',BA") e R

Definition 8. The MABA (BA,Cxt) satisfies belief correctness (BC) if and
only if BA € Cxt and, for anyi € Agt and for any BA' € Cxt, (BA', BA') € R;.

For X C {GC,BC}, MABAx is the class of MABAs satisfying all the con-
ditions in X. MABAj is the class of all MABAs, and we write MABA instead
of MABA,. It is easy to see that MABA qc ey = MABA (pc;-

Let ¢ € Lipaa, we say that ¢ is valid for the class MABAx if and only
if, for every (BA,Cxt) € MABAx we have (BA,Czt) = ¢. We say that ¢
is satisfiable of the class MABAx if and only if —¢ is not valid for the class
MABAx

3.2 Notional Model Semantics

In this section we introduce an alternative Kripke-style semantics for the lan-
guage L paa based on notional doxastic-awareness model which extend notional
doxastic models defined in [12,13] by awareness functions.

Definition 9. A notional dozastic-awareness model (NDAM) is a tuple M =
(W, D, A, N,V) where,

— W is a non-empty set of worlds,

— D: Agt x W — 250 s a doxastic function,

— A: Agt x W — 24 s an awareness function,
— N: Agt x W — 2W is a notional function,

V: Atm — 2V is a valuation function.

and such that, given the following inductive definition of the semantic interpre-
tation of formulas in Lipaa:

- M,w) Epiff weV(p),
- M, w) E = iff (M, w) [~ e,

= M,w) E o Ay iff ( M,w) E ¢ and (M, w) E 9,
— (M,w) E Ao iff a € D(4,w),

- M, w) | Oip iff Yu € N(i,w), (M,u) E ¢,
= (M,w) E Ougp iff Atm(p) C A(i, w).



it satisfies the following conditions (C1) and (C2), for all i € Agt and for all
w e W:

(C1) A(i,w) = Atm(D(4, w)),

(C2) N(i,w) = Naep(i,w) llellar, where |lo|[ar = {u € W[ (M, u) = a}.

The following definitions specify global consistency (GC) and belief correct-
ness (BC) for notional models.

Definition 10. The NDAM M = (W, D, A N,V) satisfies global consistency if
and only if, for any ¢ € Agt and for any w € W, N(i,w) # 0.

Definition 11. The NDAM M = (W,D,A,N,V) satisfies belief correctness if
and only if, for any i € Agt and for any w € W, w € N(i,w).

For any X C {GC,BC}, NDAMY is the class of NDAMs satisfying the con-
ditions in X. NDAMj is the class of all NDAMs, and we write NDAM instead
of NDAMj. Analogously to MABAs, we have NDAM ¢ ey = NDAMpcy.
A NDAM M = (W, D, A,N,V) is finite if and only if W, D(i, w), and V< (w) are
finite sets for any ¢ € Agt and any w € W, where V¥ (w) = {p € Atm |w € V(p)}.
As A(i,w) = Atm(D(i,w)), it follows that, if a NDAM M is finite, A(i,w) is
also a finite set for any ¢ € Agt and any w € W. We use finite-NDAMx to
denote the class of finite NDAMSs satisfying the conditions in X.

Let ¢ € Lipaa, we say that ¢ is valid for the class NDAMx if and only
if, for every M = (W,D,A,N,V) € NDAMx and for every w € W, we have
(M, w) |E ¢. We say that ¢ is satisfiable for the class NDAMy if and only if
= is not valid for the class NDAMx.

3.3 Quasi-Model Semantics

This section provides an alternative semantics for the language £ paa based on
a more general class of models, called quasi-notional doxastic-awareness models
(quasi-NDAMSs) in which the restrictions on the notional and awareness function
are weakened.

Definition 12. A quasi-notional dozastic-awareness model (quasi-NDAM) is a
tuple M = (W, D, A,N,V) where W,D,A;N and V are as in Definition 9 except
that Condition C1 and C2 are replaced by the following weaker conditions, for
all i € Agt and for all w € W:

(C1*) A(i,w) D Atm(D(i,w)),

(C2%) N(i,0) € Naep(in 1l

As for NDAMs, for any X C {GC,BC}, QNDAMY is the class of quasi-
NDAMs satisfying the conditions in X. QNDAM, is the class of all quasi-
NDAMs, and we write QNDAM instead of QNDAM,. As for MABAs and
NDAMs, we have QNDAM /¢ goy = QNDAM pcy. A quasi-NDAM M =
(W,D, A N,V) is finite if W, D(i,w), A(i,w) and V* (w) are finite sets for any
i € Agt and any w € W. We use finite-QINDAMx to denote the class of
finite quasi-NDAMs satisfying the conditions in X. Validity and satisfiability
of formulas for a class QNDAM are defined in the usual way.



3.4 Equivalence Results

In this section, we present equivalence results between the five different se-
mantics for £, paa we presented above (i.e., MABA, NDAM, finite-NDAM,
QNDAM, and finite-QNDAM).

Equivalence between quasi-NDAMs and finite quasi-NDAMs

First of all, we consider the relationship between QINDAM and finite-QNDAM.
Let us define a filtrated model for the proof.

Let M = (W,D,A N,V) be a (possibly infinite) quasi-NDAM and let X' C
Lipaa be an arbitrary finite set of formulas which is closed under subformulas.
The equivalence relation =5 on W is defined as follows:

== {(w,v) EW X W :Vp e X (M,w) E ¢ iff (M,v) = p}.

Let [w]y, be the equivalence class of the world w generated by the relation
=y. The model My = (Wyx,Dx,Ax,Nx,Vy) is the filtration of M under ¥
where,

= Wy = {lw]y|we W},
— for any ¢ € Agt and for any [w]y, € Wy, Dx(i, [w]x) =( () D(,w))NX,
wew] 5
— for any ¢ € Agt and for any [w]y, € Wy, Ax(i,[w]x) =( [ A,w)NX,
welw] 5
— for any ¢ € Agt and for any [w],, € Wx, No(i, [w]y) = {[u]y, € Wx|Jw €
[w]y,,Fu € [u]y, such that v € N(i,w)},
— for any p € Atm, Vx(p) = {[w]y | (M, w) = p} if p € Atm(X), Vs(p) =0
otherwise.

We have the following filtration lemma showing that the filtrated model is
semantically equivalent with the original model with respect to X.

Lemma 1. Let ¢ € X and let w € W. Then, (M,w) = ¢ if and only if
(Mg, [w]p) = e

Proof. The proof is by induction on the structure of ¢. For the cases other than
v = (i, the proof is identical with that of Lemma 4 in the appendix of [12].
So we only need to prove the case when ¢ = ();%.

(=) Suppose (M,w) | O with O;¢p € X. Thus, Atm(¢) C A(i,w).
Hence, by the definition of Ax(i,[w]y) and the fact that X is closed under
subformulas, we have Atm(y)) C Ax (i, [w]y,). It follows that (M s, [w]y,) = Q..

(<) For the other direction, suppose (M3x, [w]y) = Oip with O;9 € X.
Thus, Atm(¢) € Ax (i, [w] ). Hence, by the definition of Ax (7, [w]y,), Atm(1)) C
A(i,w). O

The following proposition highlights that My is finite and preserves the
properties of M.



Proposition 1. My = (Wx,Dx,As,Nx,Vy) is a finite quasi-NDAM. More-
over, for any X € {GC,BC}, if M satisfies X, then My also satisfies it.

Proof. By the proof of Proposition 12 in the appendix of [12], we have that, M5
is finite and satisfies Condition (C2*) in Definition 12, and that, for any X €
{GC, BC}, if M satisfies X, then M 5 also satisfies it. Here, we only need to prove
that M satisfies Condition (C1*) in Definition 12. Suppose ¢ € Dx (i, [w];), we
need to prove that Atm(yp) C Ax(i, [w]y). By the definition of Dx (i, [w]y.), we
have ¢ € D(i,w). By Condition (C1*), it follows that, Atm(y) C A(¢,w). By
the definition of Ax (4, [w]y;) and the fact that X is closed under subformulas, we
have Atm(y¢) € As (i, [w]). As a result, Ax (i, [w]y) 2 Atm(¢ € D (i, [w]y)).0

The following lemma is a straighforward consequence of Lemma 1 and Propo-
sition 1.

Lemma 2. Let X € {GC,BC} and ¢ € Lipaa. If ¢ is satisfiable for the class
QNDAMy then ¢ is satisfiable for the class finite-QNDAM.

Equivalence between finite NDAMs and finite quasi-NDAMs

Our next result concerns the equivalence between finite-INDAM and finite-
QNDAM.

Lemma 3. Let X € {GC,BC} and ¢ € Lipaa. If ¢ is satisfiable for the class
finite-QNDAM, then ¢ is satisfiable for the class finite-NDAMx.

Proof. We are going to build a finite NDAM from a finite quasi-NDAM without
changing the satisfiability of ¢. To accomplish this goal, two things are essential
in the construction. Firstly, we enlarge each agent’s belief base with an identifier
proposition to make his set of doxastic alternatives smaller and coincide with his
set of notional worlds. Secondly, we combine the identifier with some tautologies
by conjunctions, so that the set of atomic propositions occurring in his belief
base is equal to his awareness set.

Let M = (W,D,A,N,V) be a finite quasi-NDAM that satisfies ¢, i.e., there
exists w € W such that (M, w) |= ¢. We define the set of all atomic propositions
occurring in some belief base of some agent at some world in M as follows:

T(M) = U Atm(D(i,w)) U U A(i,w).
weW, i€ Agt weW, i€ Agt
Since M is finite, 7 (M) is also finite.
We have the following injective function which assigns an identifier to each
agent and each world in W.

i Agt x W — Atm\ (T (M) U Atm(p)).

As Atm is infinite while W, T(M) and Atm(p) are finite, such an injection
exists.

We define a new model M’ = (W', D', A’, N', V') with W =W, N’ = N and
where D', V/ and A’ are defined as follows:



— A'(i,w) = A(i,w) U {f(i,w)} for every i € Agt and for every w € W,
— D'(i,w) = D, w) U {f (i, w) A (Apeaci,wn atm(dii,wy) PV 7P))} for every i €
Agt and for every w € W,
— for every p € Atm,
V'(p) = V(p) if p € T(M) U Atm(yp),
V'(p) = N(i,w) if p = f(i,w),
V/(p) = () otherwise.

It is easy to verify that M’ satisfies Condition (C1) and (C2) in Definition 9.
Thus, M’ is a finite NDAM.

The rest of the proof consists in checking that, for every X € {GC,BC},
if M satisfies X then M’ also satisfies X, which is straightforward, and that,
(M, w) E ¢ iff (M,w) = ¢. We prove the latter by induction on the structure
of .

The case ¢ = p is immediate from the definition of V’. The boolean cases are
straightforward.

Let us prove the case p = A;a.

(=) Suppose (M,w) E A;a. Then, we have o € D(i,w). Hence, by the
definition of D/, a € D’ (¢, w). Thus, (M, w) E A;a.

(<) Suppose (M, w) = A;a. Then, we have o € D'(,w). Since f(i,w) &
Atm(A;a), by the definition of D', we have that,

a# f(i,w) A ( A (pV-p))

pEA(G,w)\ Atm(D(i,w))

Thus, a € D(4,w) and, consequently, (M, w) = A;a.

Then let us prove the case ¢; = ();.

(=) Suppose (M, w) = (O;%. Then, we have Atm(y) C
the definition of A’, Atm(v)) C A’(i, w). Thus, (M’,w) E O;

(<) Suppose (M, w) = O%. Then, we have Atm(ip) C A'(i,w). The defi-
nition of A’ ensures that f(i,w) & Atm(y)). Thus, Atm(y)) C A(i,w) and, con-
sequently, (M, w) E O;.

At last, let us prove the case ¢ = 0;¢. (M, w) |= O;9 means that (M, u) = ¢
for all u € N(i,w), which is equivalent to (M’,u) =+ for all u € N'(i,w) by the
induction hypothesis and the the fact that N'(i,w) = N(¢, w). The latter means
that (M',w) = O;9.

Now we have that (M, w) = ¢ iff (M,w) = ¢. Then, if M satisfies ¢, M’
satisfies p as well. 0O

A(i,w). Hence, by
.
A

Equivalence between MABAs and NDAMs
The following lemma concerns the equivalence between MABA and NDAM.

Lemma 4. Let ¢ € Lipaa and X € {GC,BC}. Then, ¢ is satisfiable for the
class MABAx if and only if ¢ is satisfiable for the class NDAMx.

Proof. The proof is almost identical to that of Lemma 7 in the appendix of [12].
We leave it to the reader. O



MABAx <———> NDAMx > QNDAM

| |

finite — NDAMx ~ finite — QNDAMy

Fig. 1. Relations between semantics for the language Lipaa. An arrow means that
satisfiability relative to the first class of structures implies satisfiability relative to the
second class of structures. Full arrows correspond to the results stated in Lemmas 2, 3
and 4. Dotted arrows denote relations that follow straightforwardly given the inclusion
between classes of structures.

Theorem 1. Let ¢ € Lipaa and X C {GC,BC}. Then, the following five state-
ments are equivalent:

@ 1s satisfiable for the class MABAx,

—  1is satisfiable for the class NDAMy,

@ s satisfiable for the class QNDAMy,

— @ 1is satisfiable for the class finite-QNDAMy,
—  1s satisfiable for the class finite-NDAMx.

Proof. The theorem is a direct consequence of Lemmas 2, 3 and 4. O

4 Axiomatization

In this section, we define some variants of the LDAA logics and prove their
soundness and completeness for their corresponding model classes.
We define the base logic LDAA to be the extension of classical propositional
logic given by the following axioms and rule of inference:
Ko. (Qip ADi(p = ) — O
IntA}D. N — D
Inta 0. Do = O
AGPP. Olga < /\peAtm(ga) Olp
Necg. From ¢ infer O;¢

For X C {Dg, Tn}, let LDAAx be the extension of logic LDAA by every axiom
in X, where:

DEI~ ﬁ(Dng /\ Diﬁgp)
To. O;0 =

We first prove completeness relative to the quasi-notional model semantics
by using a canonical model argument. As usual, we have the following property
for maximally consistent sets (MCSs).

Proposition 2. Let I' be a MCS for LDAAx. Then:
—ifp,o—=>vel theny €I,



—pel or—pel,
—eVyeliffpel orpel.

The following is the Lindenbaum’s lemma for our logics. The proof is stan-
dard, so we omit it.

Lemma 5. Let I' be a consistent set of formulas for LDAAx, then there exists
a MCS I'" for LDAAx such that I' C I".

To prove completeness with respect to the class QNDAM y, we construct a
canonical model as follows.

Definition 13. Let X C {Dg,Tng}. Then, the canonical model for LDAAx is
the tuple M° = (W€, D¢ A, N V°) such that:

— W€ is the set of mazimally consistent sets (MCSs) for LDAAx,

— Yw € W€, Vi € Agt, and Va € Ly, a € D(w, 1) iff N € w,

— Yw € W€, Vi € Agt, and Vp € Atm, p € A%(w, 1) iff Oip € w,

— Yw,u € W€ and Vi € Agt, u € N°(i,w) iff Vo € Lipana, if O;p € w then
Y Eu,

— Yw € W€ and Vp € Atm, w € V¢(p) iff p € w.

The following existence lemma is necessary for the proof of completeness. We
omit its proof since it is completely standard.

Lemma 6. Let p € Lipaa and let w € WE. Then, if O;p € w then there exists
u € N°(i,w) such that ¢ € u.

The following is the truth lemma for our logic.

Lemma 7. Let ¢ € Lipaa and let w € WE. Then, (M w) = ¢ iff ¢ € w.

Proof. The proof is by induction on the structure of the formula . For the cases
that ¢ is atomic, Boolean, or of the form O;v, the proof is standard by means
of Proposition 2 and Lemma 6. The proof for the case p = A;a goes as follows:
N e w iff o € DO, w) iff (MCw) = Ao

For the case ¢ = (O;¢, by the axiom AGPP, O;¢ € w iff Vp € Atm(v),
Oip € w. By the definition of the canonical model, the latter is equivalent to
that, Vp € Atm(¢), p € A°(w, 7). The latter is equivalent to Atm(ip) C A¢(w, 1),
which means (M w) = ;% by our semantics. O

We have to show that the canonical model satisfies the corresponding seman-
tic properties if each axiom in X C {Dg, Tp} is valid in the model. Let us define
the following correspondence function between axioms and semantic properties:

- Cf(DD) = GC
— ¢f(Ta) = BC

Proposition 3. Let X C {Dg, Tn}. If M¢ is the canonical model for LDAAx,
then 1t belongs to the class QNDAM ¢(4y | zexy -



Proof. Firstly, we need to prove that M¢ satisfies Condition (C1*) and (C2*) in
Definition 12. For Condition (C1*), we have to prove that if & € D¢(4,w) then
Atm(a) C A°(i,w). Suppose o € D¢(4, w). Thus, A;a € w. Hence, by the axiom
Inta, o, Oia € w. By the axiom AGPP, it follows that, Vp € Atm(a), Qip €
w. Then, by the definition of M Vp € Atm(a), p € A°(4,w), which means
Atm(a) C A°(i,w). For Condition (C2*), we have to prove that if o € D°(4, w)
then N°(i,w) C ||a||me. Suppose o € D(i,w). Thus, A;a € w. Hence, by the
axiom Inta o, O;a € w. By the definition of M€, if follows that, Vu € N°(i, w),
a € u. Thus, by Lemma 7, we have that, Vu € N°(i, w), (M, u) E «. The latter
means that N°(i,w) C ||a||pme.

It is easy to verify that M has the corresponding properties in {cf(x) |z €
X} using the standard proof. O

By Lemma 7 and Proposition 3, we are able to prove the following soundness
and completeness theorem. Proving soundness is just a routine exercise.

Theorem 2. Let X C {Dg, Ta}. Then, the logic LDAAx is sound and complete
Jor the class QNDAMY ;)| zex) -

The following is a corollary of Theorem 1 and Theorem 2.
Corollary 1. Let X C {Dg, Ta}. Then,

— LDAAx is sound and complete for the class NDAMy ()| zex}, and
— LDAAx is sound and complete for the class MABA .f(2)|zex)-

5 Relationship with Logic of Propositional Awareness

In this section, we build a connection between LDAA and the logic of propo-
sitional awareness (LPA), where the latter, first introduced in [5], is a special
case of the logic of general awareness (LGA) by Fagin & Halpern [4]. Specifically,
we provide a polynomial, satisfiability preserving translation of LPA into LDAA.
The language of LPA, denoted by L pa, is defined by the following grammar:

pu=ploplpr A2 | Bip| Aip| Xip

where p ranges over Atm and i ranges over Agt. At the semantics level, the logic
of propositional awareness exploits awareness structures in which the awareness
function is assumed to be propositional.

Definition 14. A propositional awareness model (PAM) is a tuple M = (S,R, p, )
where:

— S is a non-empty set of states,

— R: Agt xS — 25 is a dozastic accessibility function,

— p:Agt x S — 24" s q propositional awareness function,
— 7 Atm — 2° is a valuation function.

The class of propositional awareness models is denoted by PAM.



We have the following semantic interpretation of formulas in £ pa relative to
pointed models.

Definition 15. Given a PAM M and state s in M, formulas in Ly pp are in-
terpreted relative to (M, s) as follows:

- (M, s) Epiff s € m(p),

- M, s) =~ iff (M, s) [~ o,

- (M,s) Eo AP iff (M, s) | ¢ and (M, s) E 1,
- (M,s)

- (M,s)

- (M,s)

» »

): Ai(p if Atm(ap) < p(Ls),
,8) |E Xip iff (M, s) = Bip and (M, s) = Aip.

We translate formulas of £ pa into formulas of £ paa via the following trans-
lation function tr : Lipa — Lipaa which is defined as follows:

— tr(p) = p for p € Atm

= tr(=p) = tr(p)

— tr(p1 A p2) = tr(p1) Atr(ps)
— tr(Aip) = Oitr(p)

— tr(Bip) = Oitr(p)

— tr(X;p) = Qutr(p) A Ditr(p)

The interesting aspect of the previous translation is that the LPA notion of
explicit belief is mapped into the combination of implicit belief plus awareness
in our logic LDAA, and not directly into the LDAA notion of explicit belief. This
highlights that the two notions of explicit belief do not capture the same type
of epistemic attitude. While the LDAA notion represents an agent’s actual belief
which is active and accessible in his working memory (we assume an agent’s
belief base to be a rough approximation of his working memory), the LPA notion
is aimed at capturing the agent’s beliefs that are built from his vocabulary and
therefore understandable by him.*

As the following theorem highlights, the translation is satisfiability preserv-
ing.

Theorem 3. Let ¢ € Lipa. Then, ¢ is satisfiable for the class PAM if and
only if tr(p) is satisfiable for the class NDAM.

Proof. We first prove a weaker result of the left-to-right direction, i.e., if ¢ is
satisfiable for the class PAM, then t¢r(p) is satisfiable for the class QNDAM.
Let M = (S,R, p,m) be a PAM and let s € S such that (M, s) = ¢. We build
the corresponding M’ = (W, D, A, N, V) as follows:

~W=Ss,

4 Note that if we defined the translation sending explicit beliefs of LPA into explicit
beliefs of LDAA, satisfiability would be preserved only in the direction from LDAA
to LPA. For the other direction, a formula of the form X;B;p in Lipa cannot be
translated into £ paa with this alternative translation.



— Vi€ Agt and Vs € S, D(i, s)
— Vi e Agt and Vs € S, A(i, s)
— Vi€ Agt and Vs € S, N(i, s)
— Vp € Atm, V(p) = n(p).

{pV-pl(M,s) = Aip},
p(i7s)7
R(i, s),

We prove that M’ is a quasi-NDAM by showing that it satisfies Condition
(C1*) and (C2*) in Definition 12.

For Condition (C1%*), by the semantics of PAM and the definitions of D(3, )
and A(i, s), it is easy to show that, Atm(D(i,s)) = A(4,s), which implies that,
Atm(D(i,s)) C A(4, s).

For Condition (C2*), by the definition of D(4, s), there are only tautologies in
%t. So.we have that (), y l[tr(@)l[mr = W. Then, clearly, Condition (C2*)
is satisfied.

It is easy to verify that, for every x € {GC,BC}, if M satisfies = then M’
satisfies it as well.

By induction on the structure of ¢, we prove that, Vs € S, (M, s) = ¢ iff
(M',5) = tr().

For the case ¢ = p and the boolean cases ¢ = =) and ¢ = Y1 A P9, it is
straightforward.

Now we consider the case ¢ = A;9. Suppose (M, s) = A;1. By the semantics
of PAM, it is equivalent to Atm(v) C p(i, s). By the definition of A(%, s) and the
function ¢r, the latter is equivalent to Atm(tr(y)) C A(4,s). And in turn the
latter means (M, s) = O;tr(y). Then, by the definition of the function tr, the
latter is equivalent to (M, s) = tr(A;v).

Let us consider the case ¢ = B;1. Suppose (M, s) = B;1. By the induction
hypothesis, we have |[¢||pm = [[tr(¥)]|ame. (M, s) E Bjtp means that R(i,s) C
[|t)||m. By the definition of N(i,s) and the fact that ||[¢)||pm = ||tr(¥)||amr, the
latter it equivalent to N(i,s) C ||tr(¢))||mr, which is equivalent to (M’,s) |=
O;tr (). The latter means (M, s) |= tr(B;y) by the definition of the function
tr.

Finally, let us consider the case ¢ = X;¥. Suppose (M,s) = X;v. Given
the fact that X;v is equivalent to B;i) A A;1), by the previous cases, it means
that, (M',s) = O;tr(¢) A Outr(¢). By the function ¢r, the latter is equivalent
to (M, s) = trX;2.

Thus, we conclude that (M, s) = ¢ iff (M',s) = tr(p) for all s € S. Then we
have that, if ¢ is satisfiable for the class PAM, then tr(y) is satisfiable for the
class QNDAM. By Theorem 1, it follows that, if ¢ is satisfiable for the class
PAM, then tr(yp) is satisfiable for the class NDAM.

Then we prove the right-to-left direction. Let M = (W,D,;A;N,V) be a
NDAM. We build the model M’ = (S,R, p, 7) as follows:

eD(i,w

-S=W,

— Vi € Agt and Yw € W, R(i,w) = N(4, w),
— Vi€ Agt and Yw € W, p(i,w) = A(%, w),
— Vp € Atm, w(p) = V(p).



It is easy to show that M’ is a PAM.

The next step is to prove that for all w € W, (M, w) |= tr(p) iff (M, w) E ¢.

The case ¢ = p and the boolean cases are straightforward.

Let us consider the case ¢ = A;1p. Suppose (M,w) [= tr(A4;¢). By the
semantics of NDAM and the function ¢r, it is equivalent to Atm(v) C A(i, w).
By the definition of p(¢,w), the latter is equivalent to Atm(y)) C ( w). Then
by the semantics of PAM, the latter is equivalent to (M’ ,w) = A

Let us consider the case ¢ = B;t. Suppose (M, w) E tr(Biw). By the in-
duction hypothesis, we have ||||am0 = ||tr(¥)]| am- By the function tr, (M, w) E
tr(B;y) means (M,w) = O;tr(¢). By the semantics of NDAM, the latter is
equivalent to N(i,w) C |[tr(¢)||am. By the definition of R(i,w) and the fact
[l |mr = [[tr(w)]|m, the latter is equivalent to R(i,w) C [|¢||pmr, which is
equivalent to (M', w) = By

Finally, let us consider the case ¢ = X;1). Suppose (M, w) |= tr(X;¢). Given
the the fact that X;1 is equivalent to B;® A A;1, by the previous cases, it is
equivalent to (M',w) |= B;yp A A;4p, which in turn is equivalent to (M’ w) |=
X;1).

Thus, we conclude that (M, w) E tr(p) iff (M’,w) | ¢ for all w € W. Then
we have that, if ¢tr(p) is satisfiable for the class NDAM, then ¢ is satisfiable
for the class PAM. O

Theorem 3 shows that the translation of any satisfiable LPA-formula is sat-
isfiable relative to NDAM models. This highlights that £, paa is at least as
expressive as the translated version L pa with repect to the class NDAM. We
do not know whether the the other direction works as well. What we can affirm
is that the formula =A;(p Ap) AO;pAQ;p is satisfiable in the class NDAM, but
it cannot be satisfied in the class PAM, if we translated A;, O;, and (); into X;,
B;, and A;, respectively. Again this shows that the LPA notion of explicit belief
and the LDAA notion of explicit belief capture epistemic attitudes of different
nature.

6 Conclusion

We have provided a novel investigation of propositional awareness and of its
relationship with explicit and implicit belief. In our approach, explicit belief
is the only primitive concept, and awareness and implicit belief are grounded
on it. Specifically, an agent’s awareness set and set of doxastic alternatives are
directly computed from the agent’s belief base. The main results of the paper
are an axiomatics for our logic of awareness, explicit and implicit belief as well
as a polynomial embedding of Halpern’s logic of propositional awareness into
our logic. Future work will be devoted to explore more properties of awareness
typically discussed in the literature, such as beliefs of awareness and unawareness
(also known as awareness/unawareness introspection), and the dynamic aspects
of awareness and beliefs. We expect our approach to offer a new foundation
for the dynamics of awareness, alternative to [2], in which awareness change is
anchored in belief base change.
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