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A Logic of Explicit and Implicit Distributed Belief
Andreas Herzig1 and Emiliano Lorini2 and Elise Perrotin3

and Fabián Romero4 and François Schwarzentruber5

Abstract. We present a new logic of explicit and implicit distributed
belief with a formal semantics exploiting the notion of belief base. A
coalition’s distributed belief of explicit type corresponds to a piece
of information contained in the collective belief base of the coalition,
which is obtained by pooling together the individual belief bases of
its members. A coalition’s distributed belief of implicit type corre-
sponds to a piece of information that is derivable from the collective
belief base of the coalition. We study axiomatic aspects of our logic
as well as complexity of model checking. As distributed belief can
be inconsistent (contrary to distributed knowledge), we also study a
consistency-preserving variant of distributed belief inspired by the
literature on belief merging.

1 Introduction

Epistemic logic (in the broad sense) is the variant of modal logic at
the intersection between philosophy [15], artificial intelligence (AI)
[9, 26] and economics [19] that is devoted to the formal representa-
tion of epistemic attitudes of agents including belief and knowledge.
It has been shown to have important applications in AI ranging from
security protocols [13, 7] and blockchain protocol [13, 25] to epis-
temic planning [6] and agent communication protocols [14].

Epistemic logic supports reasoning not only about propositional
epistemic attitudes but also about higher-order epistemic attitudes,
where the order of an agent’s epistemic attitude is defined induc-
tively as follows: (i) an agent’s epistemic attitude has order 1 if and
only if its content is a propositional formula that does not mention
epistemic attitudes of others; (ii) an agent’s epistemic attitude has
order k with k > 1 if and only it is an epistemic attitude about an
agent’s epistemic attitude of order k − 1 (possibly the same agent).

Epistemic logic languages are traditionally interpreted in Kripke’s
possible worlds semantics. The type of structures used in these se-
mantics are the so-called multi-agent Kripke models, namely, multi-
relational structures equipped with valuation functions for the in-
terpretation of atomic formulas. Binary relations in a multi-agent
Kripke model are called epistemic accessibility relations.

Different types of collective attitudes have been defined in the
epistemic logic framework and the mathematical properties of their
corresponding extensions have been investigated, including axiom-
atizability and computational complexity. This includes the notions
of shared knowledge and belief [11], common knowledge and be-
lief [31, 12], distributed knowledge and belief [12, 32, 1, 28, 30] and
collective acceptance [23].
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Distributed epistemic attitudes are the results of pooling together
or aggregating the agents’ individual epistemic attitudes. For in-
stance, for a coalition G of agents to distributively believe that ϕ, ϕ
must be included in the set of facts that are “aggregatedly” believed
by the agents inG. This notion of aggregation is rendered in possible
worlds semantics by intersecting the individual epistemic accessibil-
ity relations of the coalition’s members. However this could be con-
sidered too strong as that intersection can easily be empty thereby
making distributed belief inconsistent.

The notion of belief aggregation was studied in parallel in the area
of belief merging [17, 16, 27]. Nonetheless, there are some funda-
mental differences between the notion of aggregation studied in epis-
temic logic, via the notions of distributed knowledge and belief, and
the notion of aggregation studied in belief merging. First of all, belief
merging focuses exclusively on aggregation of propositional beliefs,
while epistemic logic allows us to represent aggregation of higher-
order epistemic attitudes. Secondly, the belief merging approach is
essentially syntactical, as the aggregation operation is defined on in-
dividual belief bases, while the epistemic logic approach is essen-
tially semantical, as aggregation is made at the level of the agents’
epistemic accessibility relations.

The aim of this paper is to reconcile the two approaches by pre-
senting a new epistemic logic, with a formal semantics exploiting
the notion of belief base like in belief merging, that distinguishes ex-
plicit and implicit distributed belief. A coalition’s distributed belief
of explicit type corresponds to a piece of information contained in
the collective belief base of the coalition, which is obtained by pool-
ing together the individual belief bases of its members. A coalition’s
distributed belief of implicit type corresponds to a piece of informa-
tion that is derivable from the collective belief base of the coalition.
The belief semantics for epistemic logic that we use was introduced
in [20] (see also [22, 24, 21]). In this paper, we show that it is well-
suited to model aggregation of agents’ higher-order individual be-
liefs. The latter concept is relevant for some AI applications such
as recommendation systems, e-democracy, artificial trading agents
or autonomous vehicles. For example, in an online recommendation
system, it would be interesting to merge not only the agents’ individ-
ual beliefs about the (good and bad) qualities of a given product, but
also the agents’ meta-evaluations, namely, what they believe about
the others’ beliefs about the product qualities.6 Similarly, in online
pools, it could be useful to compute what the agents think about a cer-
tain political issue (e.g., efficacy of immigration policies in Europe,
increase of the price of gasoline for contrasting climate change, etc.),
6 In the case of conformity—a well-known phenomenon studied in social

psychology [3, 10]—, the agents’ beliefs about the product qualities are
generally aligned with (and supported by) their higher-order beliefs about
the others’ beliefs about the product qualities. On the contrary, in the case
of anticonformity [33], the agents’ 1-order beliefs and their higher-order
beliefs about the others’ beliefs are generally misaligned.



as well as what they think the other agents think about the same issue.
On top of helping with compactness, making a distinction between
implicit and explicit belief allows us to separate the aggregation pro-
cess (at the level of the explicit beliefs) from the deduction process
(from explicit to implicit belief), which we believe to be interesting
from a conceptual point of view.

The paper is organized as follows. In Section 2, we present the
language of our logic of individual and distributed beliefs. Section 3
is devoted to illustrating a semantics for this language which exploits
the notion of belief base. In Section 4, we present an axiomatics for
the logic, while in Section 5 we study complexity of its model check-
ing problem. Section 6 introduces an introspective variant of the logic
in which coalitions are assumed to have introspection over their dis-
tributed beliefs. As distributed belief can be inconsistent (contrary
to distributed knowledge), in Section 7, we study a consistency-
preserving variant of distributed belief inspired by the literature on
belief merging. In Section 8, we conclude.

2 A language for distributed doxastic attitudes
This section presents a language for representing agents’ individual
beliefs and coalitions’ distributed beliefs of both explicit and implicit
type. It extends the language of individual explicit and implicit be-
lief presented in [20] with distributed belief. Assume a countably
infinite set of atomic propositions Atm = {p, q, . . .} and a finite set
of agents Agt = {1, . . . , n}. We define the language in two steps.

We first define the language L0(Atm,Agt) by the following
grammar in Backus-Naur Form (BNF):

α ::= p | ¬α | α1 ∧ α2 | 4iα,

where p ranges over Atm and i ranges over Agt . L0(Atm,Agt)
is the language for representing distributed explicit beliefs of coali-
tions. The formula4iα is read “agent i explicitly believes that α”.

The languageL1(Atm,Agt) extends the languageL0(Atm,Agt)
by modal operators of distributed implicit belief and is defined by the
following grammar:

ϕ ::= α | ¬ϕ | ϕ1 ∧ ϕ2 | 2Gϕ,

where α ranges over L0(Atm,Agt) and G ranges over 2Agt∗ =
2Agt \ {∅}. For notational convenience we write L0 instead of
L0(Atm,Agt) and L1 instead of L1(Atm,Agt), when the context
is unambiguous.

The other Boolean constructions >, ⊥, ∨,→ and↔ are defined
from α, ¬ and ∧ in the standard way.

The formula 2Gϕ is read “coalition G has the distributed implicit
belief that ϕ”. We define the dual operator 3G as follows:

3Gϕ
def
= ¬2G¬ϕ.

3Gϕ has to be read “ϕ is compatible (or consistent) with coalition
G’s explicit beliefs”.

For notational convenience, for every i ∈ Agt , we simply write
2iϕ instead of 2{i}ϕ to represent agent i’s implicit belief that ϕ.

3 Belief base semantics
Following [20], in this section, we present a formal semantics for the
language L1 exploiting belief bases. Unlike the standard Kripke se-
mantics for epistemic logic in which the notions of possible world (or
state) and epistemic alternative are given as primitive, in this seman-
tics they are are defined from the primitive concept of belief base.

Definition 1 (State) A state is a tupleB = (B1, . . . ,Bn,V ) where:

• for every i ∈ Agt , Bi ⊆ L0 is agent i’s belief base,
• V ⊆ Atm is the actual state.

The set of all states is denoted by S.

The sublanguage L0(Atm,Agt) is interpreted with respect to
states, as follows.

Definition 2 (Satisfaction relation) Let B = (B1, . . . ,Bn,V ) ∈
S. Then:

B |= p ⇐⇒ p ∈ V ,

B |= ¬α ⇐⇒ B 6|= α,

B |= α1 ∧ α2, ⇐⇒ B |= α1 and B |= α2,

B |= 4iα ⇐⇒ α ∈ Bi.

Observe in particular the set-theoretic interpretation of the distributed
explicit belief operator: agent i explicitly believes that α if and only
if α is included in her belief base.

It is also worth considering belief correct states, according to
which every fact that an agent explicitly believes has to be true.

Definition 3 (Belief correct state) The state B =
(B1, . . . ,Bn,V ) is said to be belief correct if and only if, for
every i ∈ Agt and for every α ∈ Bi, if α ∈ Bi then B |= α. The set
of all belief correct states is denoted by SBC .

The following definition introduces the notion of “pooling”, a sim-
ple form of belief base aggregation which consists in taking the union
of the belief bases of the agents in the coalition.

Definition 4 (Pooling) Let B = (B1, . . . ,Bn,V ) ∈ S and let G ∈
2Agt∗. Then

PoolG(B) =
⋃
i∈G

Bi.

A multi-agent belief model (MAB) is defined to be a state sup-
plemented with a set of states, called context. The latter includes
all states that are compatible with the common ground [29], i.e., the
body of information that the agents commonly believe to be the case.

Definition 5 (Multi-agent belief model) A multi-agent belief
model (MAB) is a pair (B,Cxt), where B ∈ S and Cxt ⊆ S. The
class of MABs is denoted by MAB.

Note that in this definition we do not require B ∈ Cxt . A MAB
(B,Cxt) such that Cxt = S is said to be complete, since S is con-
ceivable as the complete (or universal) context which contains all
possible states. The following definition introduces the concept of
doxastic alternative.

Definition 6 (Doxastic alternatives) Let G ∈ 2Agt∗. Then RG is
the binary relation on the set of states S such that, for all B =
(B1, . . . ,Bn,V ), B′ = (B ′1, . . . ,B

′
n,V

′) ∈ S:

BRGB′ if and only if ∀α ∈ PoolG(B) : B′ |= α.

BRGB′ means thatB′ is a doxastic alternative for coalitionG atB.
The idea of the previous definition is that B′ is a doxastic alternative
for coalition G at B if and only if, B′ satisfies all facts that are in
the database resulting from pooling together the belief bases of the
agents in the coalition.

The collective doxastic relation computed from the collective be-
lief base is equal to the intersection of the individual doxastic rela-
tions computed from the individual belief bases:



Proposition 1 Let G ∈ 2Agt∗. ThenRG =
⋂
i∈GR{i}.

The following definition extends Definition 2 to the full language
L1. Its formulas are interpreted with respect to MABs. (We omit
Boolean cases, as they are defined in the usual way.)

Definition 7 (Satisfaction relation (cont.)) Let (B,Cxt) be a
MAB. Then:

(B,Cxt) |= α ⇐⇒ B |= α,

(B,Cxt) |= 2Gϕ ⇐⇒ for all B′ ∈ Cxt : if BRGB′ then

(B′,Cxt) |= ϕ.

We consider the subclass of MABs that guarantee correctness of
the agents’ beliefs.

Definition 8 (Belief correct MAB) The MAB (B,Cxt) is belief
correct (BC ) if and only if B ∈ Cxt and, for every i ∈ Agt and
for every B′ ∈ Cxt , B′RiB′. The class of MABs satisfying BC is
denoted by MABBC .

Saying that (B,Cxt) satisfies BC is the same thing as saying that
B ∈ Cxt and, for every i ∈ Agt , the relation Ri ∩ (Cxt × Cxt)
is reflexive. The condition B ∈ Cxt in Definition 8 is necessary to
make the agents’ implicit beliefs correct, i.e., to make the formula
2iϕ → ϕ valid. For example, for B = ({p}, {p → q}, {p, q}) we
have that both (B, {B}) and (B, {B, (∅, ∅, {p, q})}) satisfy BC .

As the following proposition highlights, belief correctness for
MABs is completely characterized by the fact that the actual world is
included in the agents’ common ground and that the agents’ explicit
beliefs are correct in the sense of Definition 3.

Proposition 2 A MAB (B,Cxt) satisfies BC if and only ifB ∈ Cxt
and Cxt ⊆ SBC .

Let ϕ ∈ L1. We say that ϕ is valid for the class MAB (resp.
MABBC ) if and only if, for every (B,Cxt) ∈ MAB (resp.
(B,Cxt) ∈ MABBC ) we have (B,Cxt) |= ϕ. We say that ϕ is
satisfiable for the class MAB (resp. MABBC ) if and only if ¬ϕ is
not valid for the class MAB (resp. MABBC ).

Before concluding this section let us illustrate the belief base se-
mantics for distributed explicit and implicit belief in a concrete ex-
ample.
Example Suppose Agt is a community of autonomous vehicles that
have to get from a point A to a point B. There are two routes from A to
B, r0 and r1. Route r0 is the shortest one so that each vehicle prefers
to take it rather than to take route r1, if it does not believe that the
others will also take it. Indeed, if all vehicles take the same route,
then traffic will be congested and every vehicle will waste a consid-
erable amount of time. The propositional variable takei,rx denotes
that agent i takes route x, for x ∈ {0, 1}. Let us assume that each
vehicle has the following pieces of information in its belief base:

• if a vehicle does not believe explicitly that the other vehicles will
take route r0, then it will take route r0,

• and if all vehicles take route r0 (resp. r1), then the traffic in r0

(resp. r1) will be congested.

Moreover, let us assume that each vehicle:

• explicitly believes that it does not believe explicitly that the other
vehicles will take route r0.

In formal terms, for every i ∈ Agt we assume:

Bi = {β, γ, δi}

where

β
def
=

∧
i∈Agt,x∈{0,1}

(
¬4itakeAgt\{i},r0 → takei,r0

)
,

γ
def
=

∧
x∈{0,1}

(takeAgt,rx → congestedrx),

δi
def
= ¬4itakeAgt\{i},r0 ,

and, for every G ∈ 2Agt∗ and for every x ∈ {0, 1}:

takeG,rx
def
=
∧
i∈G

takei,rx .

Note that the explicit belief that β is an agent’s explicit belief of or-
der 2 since it mentions the agents’ explicit beliefs of order 1. It is a
routine exercise to verify that, for every B = (B1, . . . ,Bn,V ) ∈ S
where V is an arbitrary valuation, we have:

(B,S) |=
∧
i∈Agt

¬2icongestedr0 ∧ 2Agtcongestedr0 .

This means that, while none of the vehicles has the implicit belief
that route r0 will be congested, the community of vehicles has the
distributed implicit belief that route r0 will be congested.

4 Axiomatics
We define the logic LDADn axiomatized by the following principles:

Propositional calculus (PC)(
2iϕ ∧ 2i(ϕ→ ψ)

)
→ 2iψ (K2i )

4iα→ 2iα (Int4i,2i )
ϕ

2iϕ
(Nec2i )

2Gϕ→ 2G′ϕ if G ⊆ G′ (Mon2G )

where Agt = {1, . . . , n}, i ∈ Agt and G,G′ ⊆ Agt .
LDA stands for “Logic of Doxastic Attitudes”, an acronym intro-

duced in [20] (see also [22]). For the axioms we take inspiration from
that same paper as well as [9]. We also define LDAD,Tn by adding to
the above the following axiom:

2Agtϕ→ ϕ (T2Agt )

Soundness of LDADn relative to MAB and of LDAD,Tn relative
to MABBC is straightforward. To prove completeness of the first
item, we first show completeness relative to another class of models,
namely notional doxastic models with distributed beliefs (NDMDs).
The class of notional doxastic models (NDMs) was introduced for
the first time in [20].7

To do this we start from completeness relative to a weaker class
of models called quasi-NDMDs, and then we show how to apply
several transformations to a quasi-NDMD satisfying a given formula
ϕ in order to turn it into a NDMD satisfying ϕ. Completeness of
the second item follows by remarking that a reflexivity property is
preserved throughout all of these transformations. For the sake of
brevity we will omit finer details of the proofs.

7 The term ‘notional’ is borrowed from [8] (see, also, [18]). According to
Dennett, an agent’s notional world is a world at which all the agent’s ex-
plicit beliefs are true.



Definition 9 (NDMD) A notional doxastic model with distributed
beliefs is a tuple M = (W,B,R, V ) where W is a set of worlds,
B : Agt×W −→ 2L0 is a doxastic function,R : 2Agt×W −→ 2W

is a notional function and V : Atm −→ 2W is a valuation function,
and, following the semantics:

(M,w) |= p ⇐⇒ w ∈ V (p),

(M,w) |= ¬ϕ ⇐⇒ (M,w) 6|= ϕ,

(M,w) |= ϕ ∧ ψ ⇐⇒ (M,w) |= ϕ and (M,w) |= ψ,

(M,w) |= 4iα ⇐⇒ α ∈ B(i, w),

(M,w) |= 2Gα ⇐⇒ ∀v ∈ R(G,w) : (M, v) |= ϕ.

M satisfies the following conditions:

R({i}, w) =
⋂

α∈B(i,w)

‖α‖M (NDMD1)

R(G,w) =
⋂
i∈G

R({i}, w) (NDMD2)

where ‖α‖M is the truth set of α in M . If w ∈ R(Agt , w) for all
w ∈W then we say that M is reflexive.

Definition 10 (Quasi-NDMD) A quasi-NDMD is a model M =
(W,B,R, V ) following the same definition as above except condi-
tions (NDMD1) and (NDMD2) are replaced by the following:

R({i}, w) ⊆
⋂

α∈B(i,w)

‖α‖M (QNDMD1)

R(G,w) ⊆
⋂
i∈G

R({i}, w) (QNDMD2)

Proposition 3 If a given formula ϕ is consistent in LDADn (resp.
LDAD,Tn ) then it is satisfiable in a quasi-NDMD (resp. a reflexive
quasi-NDMD).

PROOF. If ϕ is consistent in LDADn then it is satisfiable in the canon-
ical model MC = (WC , BC , RC , V C), where:

• WC is the set of maximal consistent sets for LDADn ;
• for all w ∈ WC , i ∈ Agt , and α ∈ L0, α ∈ BC(i, w) iff
4iα ∈ w;

• for all w, v ∈ WC and G ⊆ Agt , v ∈ R(G,w) iff for all ϕ such
that 2Gϕ ∈ w, ϕ ∈ v;

• for all w ∈WC and p ∈ Atm , w ∈ V C(p) iff p ∈ w.

MC is a quasi-NDMD. If ϕ is consistent in LDAD,Tn then we can
define in the same manner a canonical model MC

T in which worlds
are the maximal consistent sets for LDAD,Tn .MC

T is a reflexive quasi-
NDMD. �

The next step is to recover (NDMD2). For this we first use a fil-
tration argument so that we can work with finite quasi-NDMDs.

Lemma 1 If a formula ϕ is satisfiable in a (reflexive) quasi-NDMD
then it is satisfiable in a finite (reflexive) quasi-NDMD.

SKETCH OF PROOF. If M = (W,B,R, V ) is a quasi-NDMD and
Σ is a finite set of formulas closed under subformulas, define MΣ =
(WΣ, BΣ, RΣ, VΣ) such that:

• WΣ = {[w]Σ : w ∈W}, where [w]Σ =
{v ∈W : ∀ϕ ∈ Σ, (M,w) |= ϕ iff (M, v) |= ϕ};

• for all i ∈ Agt and [w]Σ ∈ WΣ, BΣ(i, [w]Σ) = Σ ∩⋂
w′∈[w]Σ

B(i, w′);
• for all G ⊆ Agt and [w]Σ ∈ WΣ, RΣ(G, [w]Σ) =
{[v]Σ : ∃w′ ∈ [w]Σ, ∃v′ ∈ [v]Σ, v

′ ∈ R(G,w′)};
• for all p ∈ Atm , VΣ(p) = {[w]Σ : (M,w) |= p} if p ∈ Atm(Σ)

and V ′(p) = ∅ otherwise.

Then MΣ is a finite quasi-NDMD such that for any w ∈ W and any
formula ψ ∈ Σ, (M,w) |= ψ iff (MΣ, [w]Σ) |= ψ. By taking Σ =
sub(ϕ), where sub(ϕ) is the set of subformulas of ϕ, we obtain the
desired model. Moreover if M is reflexive then MΣ is also reflexive.

�

Lemma 2 For any quasi-NDMD M = (W,B,R, V ) there is an
equivalent model M ′ = (W,B,R′, V ) such that for all w ∈W and
G,G′ ⊆ Agt , ifG ⊆ G′ thenR′(G′, w) ⊆ R′(G,w). Our meaning
of equivalent is: for any formula ϕ and w ∈ W , (M,w) |= ϕ iff
(M ′, w) |= ϕ, and ifM is reflexive thenM ′ is also reflexive. We call
models satisfying this property of R downwards-closed.

If M = (W,B,R, V ) is a finite downwards-closed quasi-NDMD
where W = {w1, . . . , wn}, define the expansion M ′ of M as fol-
lows: M ′ = (W ′, B′, R′, V ′) where

• W ′ =
⋃
i6nWi, where for all i 6 n, Wi =

{zσ : σ ∈ S1,i × · · · × Sn,i}, and for all i, k 6 n, Sk,i =
{G ⊆ Agt : wi ∈ R(G,wk) and ∀G′ ⊆ Agt}, if G ( G′ then
wi 6∈ R(G′, wk);

• for all i 6 n, w ∈Wi and j ∈ Agt , B′(j, w) = B(j, wi);
• for all i, j 6 n, w ∈ Wi, v = zσ ∈ Wj and G ⊆ Agt , v ∈
R′(G,w) iff G ⊆ σ[i];

• for all p ∈ Atm , i 6 n and w ∈Wi, w ∈ V ′(p) iff wi ∈ V (p).

Lemma 3 M ′ is a finite quasi-NDMD verifying (NDMD2). More-
over for any formula ϕ, i 6 n and w ∈ Wi, (M ′, w) |= ϕ iff
(M,wi) |= ϕ, and if M is reflexive then M ′ is also reflexive.

Proposition 4 If ϕ is satisfiable in a (reflexive) quasi-NDMD then
there exists a finite (reflexive) quasi-NDMD M = (W,B,R, V ) sat-
isfying ϕ and verifying (NDMD2).

SKETCH OF PROOF. If ϕ is satisfiable in a (reflexive) quasi-NDMD
then ϕ is also satisfiable in a finite (reflexive) quasi-NDMD, and in a
finite (reflexive) downwards-closed quasi-NDMD. By expanding this
last model in the manner described above we get a model satisfyingϕ
which verifies the desired properties. �

We can now recover (NDMD1) by expanding belief bases in order
to contract

⋂
α∈B(i,w) ‖α‖M for a given i andw in a given modelM .

Proposition 5 If ϕ is satisfiable in a finite (reflexive) quasi-NDMD
M = (W,B,R, V ) verifying (NDMD2), then ϕ is satisfiable in a
finite (reflexive) NDMD.

SKETCH OF PROOF. Let T (M) =
⋃
w∈W
i∈Agt

Atm(B(i, w)) be the (fi-

nite) terminology of M and let f : Agt ×W −→ Atm \ (T (M) ∪
Atm(ϕ) be an injective function (such a function exists because
Atm is infinite). Define M ′ = (W,B′, R, V ′) such that for all
i ∈ Agt and w ∈W , B′(i, w) = B(i, w) ∪ {f(i, w)} and

V ′(p) =


V (p) if p ∈ T (M) ∪Atm(ϕ)

R({i}, w) if p = f(i, w)

∅ otherwise.



We can show by induction on the structure of ψ that for all ψ ∈
sub(ϕ) and for all w ∈ W , (M,w) |= ψ iff (M ′, w) |= ψ. In
particular (M ′, w) |= ϕ. Moreover M ′ is a finite NDMD, and if M
is reflexive then M ′ is still reflexive. �

Proposition 6 If ϕ is satisfiable in a finite NDMD (resp. a finite re-
flexive NDMD) then ϕ is satisfiable in MAB (resp. MABBC ).

SKETCH OF PROOF. If Agt = {1, . . . , n}, let M = (W,B,R, V )
be a finite NDMD satisfying ϕ. Define for each w ∈ W , Bw =
(Bw1 , . . . , B

w
n , V

w) where V w = {p ∈ Atm : w ∈ V (p)} and for
all i ∈ Agt , Bwi = B(i, w). Define Cxt = {Bw : w ∈W}.
Then for any formula ψ and any w ∈ W , (M,w) |= ψ iff
(Bw, Cxt) |= ψ, and in particular if (M,w) |= ϕ for some w ∈ W
then (Bw, Cxt) |= ϕ. Moreover if M is reflexive then (T2Agt ) is
valid in M and therefore in Cxt, hence (Bw, Cxt) satisfies BC . �

Corollary 1 If a formula ϕ is consistent in LDADn (resp. LDAD,Tn )
then it is satisfiable in MAB (resp. MABBC ).

5 Model checking
The following is a compact formulation of the model checking prob-
lem for the language L1.

Model checking
Given: ϕ ∈ L1 and a finite B ∈ S.
Question: Do we have (B,S) |= ϕ?

Belief correct model checking
Given: ϕ ∈ L1 and a finite B ∈ SBC .
Question: Do we have (B,SBC) |= ϕ?

where the state B = (B1, . . . ,Bn,V ) is said to be finite if V and
every Bi are finite.

Note that, thanks to Proposition 2, the MAB (B,SBC) in the be-
lief correct variant of model checking belongs to the model class
MABBC , as expected.

In [21], it is proved that the previous two problems are PSPACE-
hard, when considering the fragment of L1 with only singleton coali-
tion operators of type 2{i}. We are going to prove that the two prob-
lems are in PSPACE.

Figure 1 shows a generic algorithm for model checking of a for-
mula ϕ in a given finite state B with an abstract function rel. With
the logic defined in this section, the call rel(B,B′, G) checks that
BRGB′. Since α in checking that B′ |= α (see Definition 6) does
not contain any implicit belief operator, it is reducible to the propo-
sitional problem by stating any explicit belief as a fresh proposition,
hence, checking BRGB′ can be performed in polynomial time and
space.

The following theorem establishes PSPACE membership of the
model checking problem.

Theorem 1 If rel is evaluated in polynomial space, then the generic
model checking algorithm of Figure 1 runs in polynomial space.

SKETCH OF PROOF. The depth of nested calls in mc(B,ϕ) is
bounded by the size of ϕ. The local memory used by the recursive
call is polynomial in the size of the initial B and the size of ϕ. Note
that the loop “for all B′. . . ” can be performed by enumerating the
B′ containing correct subformulas of formulas in the initialB and in

the initial formula ϕ. There is an exponential number of such B′ but
storing the current B′ requires only a polynomial amount of space.

For belief correct model checking we just check each time that
the states B′ under consideration are correct: this can be done in
polynomial time, hence in polynomial space. �

procedure mc(B,ϕ)
match ϕ do

case p: return B |= p
case ¬ψ: return not mc(B,ψ)
case ψ1 ∧ ψ2: return mc(B,ψ1) and mc(B,ψ2)
case4iα: return α ∈ Bi
case 2Gψ:

for all B′ such that rel(B,B′, G) do
if not mc(B′, ψ) return false

return true

Figure 1. Generic algorithm for model checking.

Note that the algorithm for belief correct model checking is the
same, except that we check that each state considered during the ex-
ecution is belief correct (Definition 3).

Corollary 2 Both model checking and belief correct model checking
are in PSPACE.

The algorithm of Figure 1 and Theorem 1 are important for the
other PSPACE-membership results given in the rest of the paper.

6 Introspective variant
The following definition introduces a variant of the notion of doxastic
alternative for potentially introspective (pi) coalitions.

Definition 11 (Doxastic alternatives for pi coalitions) Let G ∈
2Agt∗. Then, RpiG is the binary relation on the set S such that, for
all B = (B1, . . . ,Bn,V ), B′ = (B ′1, . . . ,B

′
n,V

′) ∈ S:

BRpiGB
′ if and only if

(i) ∀α ∈ PoolG(B) : B′ |= α, and

(ii) PoolG(B) = PoolG(B′).

BRpi
GB
′ means that B′ is a doxastic alternative for the potentially

introspective coalition G at B. According to the previous definition,
if coalition G is potentially introspectively then her set of doxastic
alternatives at B (i.e., RpiG (B)) includes all and only those states
that satisfy the coalition’s explicit beliefs, and that are for coalition
G subjectively equivalent to B. Note that RpiG ⊆ RG since item (i)
is exactly the definition of the relationRG.

As the following proposition indicates, if a coalition is potentially
introspective, then its implicit beliefs are closed under positive and
negative introspection.

Proposition 7 Let G ∈ 2Agt∗. Then, the relation RpiG is transitive
and Euclidean.

PROOF. We first prove transitivity. SupposeBRpiGB
′ andB′RpiGB

′′.
The latter implies that B′ |= α for all α ∈ PoolG(B), B′′ |= α for



all α ∈ PoolG(B′) and PoolG(B) = PoolG(B′) = PoolG(B′′).
Hence, B′′ |= α for all α ∈ PoolG(B), since PoolG(B) =
PoolG(B′). It follows that BRpiGB

′′.
Let us prove that RpiG is Euclidean. Suppose BRpiGB

′ and
BRpiGB

′′. The latter implies that B′ |= α and B′′ |= α for all α ∈
PoolG(B), and PoolG(B) = PoolG(B′) = PoolG(B′′). Hence,
B′′ |= α for all α ∈ PoolG(B′), since PoolG(B) = PoolG(B′). It
follows that B′RpiGB

′′. �

The following proposition generalizes Proposition 1 to the intro-
spective case.

Proposition 8 Let G ∈ 2Agt∗. Then,RpiG =
⋂
i∈GR

pi
{i}.

By means of the new relation Rpi
G , we can define a variant of the

language L1(Atm,Agt), denoted by L2(Atm,Agt), in which every
implicit belief operator 2G is replaced by a potentially introspective
variant of it of the form 2

pi
G , where 2

pi
Gϕ has to be read “if coali-

tion G was potentially introspective, it would implicitly believe that
ϕ” (or “coalition G implicitly believes that ϕ, under the assumption
that it is potentially introspectively”). The language L2(Atm,Agt)
is defined by the following grammar:

ϕ ::= α | ¬ϕ | ϕ1 ∧ ϕ2 | 2pi
Gϕ,

where α ranges over L0(Atm,Agt) and G ranges over 2Agt∗.
Like the operator 2G, the operator 2pi

G is interpreted relative to a
MAB (B,Cxt), as follows:

(B,Cxt) |= 2
pi
Gϕ ⇐⇒ ∀B′ ∈ Cxt : if BRpi

GB
′ then

(B′,Cxt) |= ϕ.

Model checking and belief correct model checking for L2 are the
same as the model checking problems defined in Section 5 except
that the input formula ϕ is now in L2.

Theorem 2 Model checking and belief correct model checking for
L2 is in PSPACE.

SKETCH OF PROOF. To satisfy the hypothesis of Theorem 1, we need
to check thatBRpi

GB
′ can be checked in polynomial space. Note that

formulas α are in L0 in Point (i) in Definition 11. So checking that
B′ |= α can be performed in polynomial time, since it is close to
model checking of a propositional formula. Therefore BRpi

GB
′ can

be checked in polynomial time, and thus in polynomial space. �

7 Consistency
The pooling operation we defined in Section 3 does not necessarily
guarantee consistency of the collective belief base resulting from the
aggregation of the individual belief bases. Indeed, two agents in a
coalition may have contradictory explicit beliefs so that, by pooling
together their belief bases, we obtain an inconsistent belief base for
the collective. In this section we study a different belief aggregation
operation, called belief base combination, that warrants belief base
consistency. Before defining it, we need some preliminary notions.

We denote by MCSG(B) the set of maximally consistent subsets
of coalition G’s belief base.

Definition 12 Let G ∈ 2Agt∗ and B ∈ S. Then, X ∈ MCSG(B) if
and only if:

• X ⊆ PoolG(B),

• ||X||S 6= ∅, and
• there is no X ′ ⊆ PoolG(B) such that X ⊂ X ′ and ||X ′||S 6= ∅,

where, for every Y ⊆ L0, ||Y ||S = {B′ ∈ S : ∀α ∈ Y,B′ |= α}.

It is worth noting that the definition of MCSG(B) can be formu-
lated in terms of propositional consistency. To see this, let LPROP

be the propositional language built from the set of atomic formulas
Atm+ = Atm ∪ {pi,α : i ∈ Agt and α ∈ L0} and let tr be the
following translation from L0 to LPROP:

tr(p) = p tr(¬α) = ¬tr(α),

tr(α1 ∧ α2) = tr(α1) ∧ tr(α2), tr(4iα) = pi,α.

For each X ⊆ L0, we define tr(X) = {tr(α) : α ∈ X}.
Moreover, we say that X is propositionally consistent if and only
if ⊥ 6∈ Cn

(
tr(X)

)
, where Cn is the classical deductive closure op-

erator over the propositional language LPROP. The following holds.

Proposition 9 Let X ⊆ L0. Then, ||X||S 6= ∅ if and only if tr(X)
is propositionally consistent.

PROOF. Let W be the set of all valuations for the propositional lan-
guage LPROP. There exists a bijection f : W −→ S such that
(f(w),S) |= α iff w |= tr(α), for all w ∈ W and α ∈ L0.
Propositional consistency of tr(X) means that we can find a valu-
ation w ∈ W where all formulas in tr

(
X
)

hold. Thus, there exists
B′ ∈ S such that f(w) = B′ and (B′,S) |= α for all α ∈ X . The
left-to-right direction can be proved in an analogous way. �

By the previous proposition, the set MCSG(B) can be defined in
an equivalent way by replacing ||X||S 6= ∅ by ⊥ 6∈ Cn

(
tr(X)

)
in

the first item and ||X ′||S 6= ∅ by ⊥ 6∈ Cn
(
tr(X ′)

)
in the second

item of Definition 12.
The following definition introduces the notion of belief base com-

bination.

Definition 13 (Combining) Let B = (B1, . . . ,Bn,V ) ∈ S. Then,

CombG(B) =
⋂

X∈MCSG(B)

X.

CombG(B) is the result of combining the individual belief bases in
B of coalition G’s members. This notion of belief base combination
is inspired by [4, 5]. It is slightly different from belief merging in the
sense of [17] since it takes the intersection of all maximally consis-
tent subsets of coalition G’s belief base, while in belief merging the
intersection of a selection of the MCSs is taken. This parallels the dis-
tinction between full meet contraction and partial meet contraction in
the belief revision literature [2].8 We leave for future work the anal-
ysis of a notion of distributed belief more in line with such a notion
of belief merging using a selection function on the set MCSG(B).

Doxastically consistent (dc) coalitions are coalitions whose dox-
astic accessibility relations are computed after having combined the
individual belief bases of its members.

Definition 14 (Doxastic alternatives for dc coalitions) Let G ∈
2Agt∗. Then, Rdc

G is the binary relation on the set S such that, for
all B = (B1, . . . ,Bn,V ), B′ = (B ′1, . . . ,B

′
n,V

′) ∈ S:

BRdc
GB

′ if and only if ∀α ∈ CombG(B) : B′ |= α.

8 For more details about the differences between belief base combination and
belief base merging, see [16].



Accessibility relations of typeRdc
G can be used to define a variant

of the language L1(Atm,Agt), denoted by L3(Atm,Agt), for dox-
astically consistent coalitions. It is defined by the following gram-
mar:

ϕ ::= α | ¬ϕ | ϕ1 ∧ ϕ2 | 2dc
G ϕ,

where α ranges over L0(Atm,Agt) and G ranges over 2Agt∗.
The operator 2dc

G ϕ has the following semantics:

(B,Cxt) |= 2
dc
G ϕ ⇐⇒ ∀B′ ∈ Cxt : if BRdc

GB
′ then

(B′,Cxt) |= ϕ.

As the following proposition highlights, in a complete model, a
doxastically consistent coalition cannot implicitly believe a contra-
diction.

Proposition 10 Let G ∈ 2Agt∗ and B ∈ S. Then,

(B,S) |= 3
dc
G>,

where 3dc
G ϕ

def
= ¬2dc

G ¬ϕ.

PROOF. For every X ∈ MCSG(B), we have ||X||S 6= ∅. Thus, by
definition of CombG(B), we have ||CombG(B)||S 6= ∅. It follows
thatRdc

G (B) 6= ∅. Hence, (B,S) |= 3dc
G>. �

As the following theorem indicates, model checking for language
L3 has the same upper bound as model checking for L1 and L2.

Theorem 3 Model checking and belief correct model checking for
L3 are in PSPACE.

SKETCH OF PROOF. To satisfy the hypothesis of Theorem 1, we
only need to show that CombG(B) can be computed in polyno-
mial space in B. To compute CombG(B), we consider all subsets
X ⊆ PoolG(B) by lexicographic order. For each such X , we check
whether it is consistent and any superset of it is not. Checking propo-
sitional consistency of a subset of L0-formulas is in NP, thus in
PSPACE. So CombG(B) can be computed in polynomial space. �

In order to deal with potentially introspective coalitions, the no-
tions of MCS and belief base combination need to be redefined, in
order to warrant belief consistency. We denote by MCSpi

G (B) the
set of maximally consistent subsets of a potentially introspective (pi)
coalition G’s belief base.

Definition 15 Let G ∈ 2Agt∗ and B ∈ S. Then, X ∈ MCSpi
G (B) if

and only if:

• X ⊆ PoolG(B),
• ||X||∼G

(B,S) 6= ∅, and
• there is no X ′ ⊆ PoolG(B) s. th. X ⊂ X ′ and ||X ′||∼G

(B,S) 6= ∅,

where, for every Y ⊆ L0,

||Y ||∼G
(B,S) = ||Y ||S ∩

{
B′ ∈ S : PoolG(B) = PoolG(B′)

}
.

Belief base combination for pi coalitions goes as follows.

Definition 16 (Combining for pi coalitions) Let B =
(B1, . . . ,Bn,V ) ∈ S. Then,

CombpiG (B) =
⋂

X∈MCS
pi
G

(B)

X.

CombpiG (B) is the result of combining the individual belief bases in
B of the pi coalition G’s members.

The following definition introduces the notion of doxastic accessi-
bility relation for coalitions which are, at the same time, potentially
introspective (pi) and doxastically consistent (dc).

Definition 17 (Doxastic alternatives for pi and dc coalitions) Let
G ∈ 2Agt∗. Then, Rpi,dc

G is the binary relation on the set S such
that, for all B,B′ ∈ S, BRpi,dc

G B′ if and only if

(i) ∀α ∈ CombpiG (B) : B′ |= α, and

(ii) PoolG(B) = PoolG(B′).

The following proposition is a variant of Proposition 7 for dc coali-
tions and is proved in a similar way.

Proposition 11 Let G ∈ 2Agt∗. Then, the relation Rpi,dc
G is transi-

tive and Euclidean.

Accessibility relations of typeRpi,dc
G can be used to define a fourth

variant of the language L1(Atm,Agt), denoted by L4(Atm,Agt),
for potentially introspective, doxastically consistent coalitions. It is
defined by the following grammar:

ϕ ::= α | ¬ϕ | ϕ1 ∧ ϕ2 | 2pi,dc
G ϕ,

where α ranges over L0(Atm,Agt) and G ranges over 2Agt∗. The
operator 2pi,dc

G ϕ has the following semantic interpretation:

(B,Cxt) |= 2
pi,dc
G ϕ ⇐⇒ ∀B′ ∈ Cxt : if BRpi,dc

G B′ then

(B′,Cxt) |= ϕ.

The following proposition is the counterpart of Proposition 10 for
pi coalitions: in a complete model, a potentially introspective, doxas-
tically consistent coalition cannot implicitly believe a contradiction.

Proposition 12 Let G ∈ 2Agt∗ and B ∈ S. Then,

(B,S) |= 3
pi,dc
G >,

where 3
pi,dc
G ϕ

def
= ¬2pi,dc

G ¬ϕ.

PROOF. For every X ∈ MCSpi
G (B), we have ||X||∼G

(B,S) 6= ∅.
The latter means that there exists B′ ∈ S such that PoolG(B) =
PoolG(B′) and (B′,S) |= α for all α ∈ X . Thus, by defini-
tion of CombpiG (B), there exists B′ ∈ S such that PoolG(B) =
PoolG(B′) and (B′,S) |= α for all α ∈ CombpiG (B). It follows
thatRpi,dc

G (B) 6= ∅. Hence, (B,S) |= 3
pi,dc
G >. �

We conclude this section with PSPACE-membership of model
checking for the language L4.

Theorem 4 The model checking and belief correct model checking
for L4 are in PSPACE.

SKETCH OF PROOF. Again, to satisfy the hypothesis of Theorem 1,
we only need to show that CombpiG (B) can be computed in polyno-
mial space in B. In the spirit of the proof of Theorem 3, it is suffi-
cient to show that checking X ∈ MCSpi

G (B) (Definition 15) can be
turned into an algorithm in polynomial space. Let us just explain how
to check that ||X||∼G

(B,S) 6= ∅. For that, we enumerate in polynomial
space all B′ with PoolG(B) = PoolG(B′) and accepts if formulas
in X are true in B′ (that can be checked in polynomial time since
formulas in X are in L0). �



8 Conclusion
Let’s take stock. We have presented a new semantics for epistemic
logic exploiting the concept of belief base and shown that it offers a
natural framework for modelling the notion of distributed belief and,
more generally, belief aggregation in a multi-agent setting. Unlike the
belief merging approach that only deals with aggregation of proposi-
tional beliefs, our approach takes aggregation of higher-order beliefs
into consideration. We have studied four notions of distributed be-
lief, one based on belief pooling (i.e., 2G), its variant for potentially
introspective coalitions (i.e., 2pi

G ), another one based on belief com-
bination which guarantees collective belief consistency (i.e., 2dc

G ),
and its variant for potentially introspective coalitions (i.e., 2pi,dc

G ).
The logical framework we presented is static, as the agents’ belief

bases do not change. Future work will be devoted to bringing into
our framework different types of belief change operations including
belief base expansion, contraction and revision. The extended frame-
work will allow us to study the interplay between belief change and
belief aggregation. For instance, following [28, 30], we plan to inves-
tigate whether it should be possible for the members of a coalition to
come to individually believe that a certain fact ϕ is true, through in-
formation exchange, when they distributively believe that ϕ.
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