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Abstract. In [5] a new epistemic logic LDA of explicit and implicit be-
liefs was introduced, and in [6] we presented a tableau-based satisfabil-
ity checking procedure as well as a dynamic extension for LDA. Based
on such procedure, we created a portable software implementation that
works for the family of multi-agent epistemic logics, as well as for the
proposed dynamic extension. This software implementation runs as a li-
brary for the most common operative systems, also runs in popular IoT
and robot hardware, as well as cloud environments and in server-less
configurations.

1 Introduction

We believe that semantics based on explicit representation of agents’ epistemic
states expressed as knowledge or belief bases, are a more natural paradigm for
the description of intelligent systems such as robotic and conversational agents
than the Kripkean semantics commonly used for epistemic logics [3]. In order to
have a tool to experiment with such semantics and explore its use, we used the
logic LDA given in [6] and implemented a tableau-based satisfability procedure
for it.

2 Language, Semantics and Syntax

2.1 Language of Doxastic Alternatives

The language LLDA (Language of Doxastic Alternatives) is constructed in the
following way. Assume a countably infinite set of atomic propositions Atm =
{p, q, . . .} and a finite set of agents Agt = {1, . . . , n}.

The language L0, is the language of explicit beliefs defined by the grammar:

α ::= γ | 4iα

Where γ is the grammar of classical propositional logic.
The multi-modal operator 4iα is read as “α is a formula on agent’s i belief

base”.
The language of implicit beliefs LLDA is defined by the grammar:

https://www.irit.fr
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φ ::= α |�iφ | ♦iφ
Where α ∈ L0 And the �iφ modality can be read as “agent i can deduce φ

from its belief base” and the modal dual ♦iφ as “φ is consistent with agent i
belief base”.

The semantics for this language, is based on belief bases for a set of agents
according to the following definition.

Definition 1 (Multi-agent Database). A multi-agent database is a tuple
B = (B1, . . . , Bn,S ) where:

Bi ⊆ L0, i ∈ Agt, and S ⊆ Atm

Definition 2 (Satisfaction Relation).
Let B = (B1, . . . , Bn,S ) be a multi-agent database. Then, the satisfaction

relation |= for formulas in L0 is defined as follows:

B 6|= ⊥
B |= p⇐⇒ p ∈ S

B |= ¬α⇐⇒ B 6|= α

B |= α1 ∧ α2 ⇐⇒ B |= α1 and B |= α2

B |= 4iα⇐⇒ α ∈ Bi

Definition 3 (Multi-Agent Belief Base). A multi-agent belief base (MAB)
is a multi-agent database where for all i ∈ Agt and for all α ∈ L0:

if α ∈ Bi then B |= α

Formulas of the language LLDA are interpreted relative to multi-agent belief
bases as follows.

Definition 4 (Doxastic Alternatives). Let B = (B1, . . . , Bn,S ) and B′ =
(B′1, . . . , B

′
n,S

′) be two multi-agent belief bases. Then, BRiB′ if and only if, for
every α ∈ Bi, B′ |= α.

So, a database B′ it is a doxastic alternative to the database B for an agent,
if everything he could deduce in the initial database he can still deduce it in the
alternative database.

Definition 5 (Satisfaction Relation (cont.)). Let B a MAB. Then:

B |= �iϕ⇐⇒ ∀B′ : if BRiB′ then B′ |= ϕ

B |= ♦iϕ⇐⇒ ∃B′ : BRiB′ and B′ |= ϕ

Therefore, the �i modality, relates a database B with every database B′

which is a doxastic alternative from the point of view of the agent i.
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2.2 Dynamic Extension

The dynamic extension of LDA we present in our companion paper, allow us to
describe actions of agents under observability conditions, this perceptive context,
where the dynamic actions take place is defined by the following grammar LOBS:

ω ::= seei,j | seeiω

The expression seei,j Can be read as “agent i sees what agent j does”. And
seeiω represents the fact that “agent i sees that ω”.

The language LDLDA is defined by the following grammar:

χ ::= ¬χ | χ1 ∧ χ2 | [(p, τ, i, Ω)]χ | φ

Where p is a proposition, i ∈ Agt , φ ranges over the language LLDA ,τ ranges
over {+,−} and Ω is a finite set of formulas of LOBS.

The action +p consists in setting the value of the atomic variable p to true,
whereas the action −p consists in setting the value of the atomic variable p to
false. The formula [(p, τ, i, Ω)]φ has to be read “φ holds after the action τp has
been performed by agent i under the perceptive context Ω”.

2.3 Input Syntax

The syntax used for the library is the following. Operations and precedence
order for unparenthesized expressions in LLDA are (operators are separated by
commas):

false := false, F,⊥
true := true, T,>

box operator agent j := [j],�j

diamond operator agent j := < j >,♦j

triangle operator agent j := {j},4j
negation := −,∼,¬

conjunction := &,∧, /\,̂
disjunction := ∨, \/, |
implication := − >,→

double implication := < − >,↔
conjunction := ;

Propositions are strings of lowercase letters of length greater than zero, fol-
lowed by zero or more digits, agents are non empty strings of digits.

We represent seei,j in LOBS as “i < j” with infix right associative operator
“<” as . We use “;” to separate observations in a perceptive context, and for
the dynamic operator introduced as: [(p, τ, i, Ω)] we will use i + p or i − p to
represent the Boolean value of the variable p for the agent i. And “[(”, “)]”
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will be used to open and close the definition of the operator. For example, if
Ω = {seei,i, seej,i, seeiseej,i}. Then the LDLDA operator [(p,+, i, Ω)] is written
as:

[(i+p;i<i;j<i;i<j<i)]

For readability, we allow comments starting from a character ’#’ to the end
of the line, and all contiguous white space characters including new lines are
interpreted as a single space.

3 Tableau

Definition 6 (Tableau Rules). A tableau rule consists of a set Γ above a line
called the numerator, and a list of distinct sets Γ1, .., Γn separated by |, called
the denominators:

Γ
Γ1 | . . . | Γn

The following definition specifies the conditions under which a rule is appli-
cable.

Definition 7 (Applicable Rule and Saturated Set). A tableau rule is ap-
plicable to a set Γ if Γ is an instance of its numerator and Γ is not an instance
of one of its denominators. We say that a set Γ is saturated if there is no rule
applicable to it.

The condition requiring that for a tableau rule to be applicable to a set Γ ,
Γ does not have to be an instance of one of its denominators, guarantees that
when constructing a tableau we do not loop indefinitely by applying the same
rule infinitely often. In the following definition, we introduce the static rules for
our tableau method.

Definition 8 (Static Rules). Let X be a finite set of formulas from LLDA,
then:

ψ;¬ψ;X
⊥-rule: ⊥

ψ ∧ φ;X
∧-rule:

ψ;φ;ψ ∧ φ;X

¬¬ψ;X
¬-rule:

ψ;¬¬ψ;X

4iα;X4i-rule:
�iα;4iα;X

¬(ψ ∧ φ);X
∨-rule: ¬ψ;¬(ψ ∧ φ);X | ¬φ;¬(ψ ∧ φ);X

The following extra rules are used for the KD and KT variants of the logic

Definition 9 (T-rule and D-rule). Let X be a finite set of formulas from
LLDA, then:

�iψ;X
T-rule:

ψ;�iψ;X

�iψ;X
D-rule:

♦iψ;�iψ;X
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The D-rule corresponds to the property of global consistency (GC) on multi-
agent belief models, while the T-rule corresponds to the property of belief cor-
rectness (BC). This correspondence is captured by the function cf such that:

cf (D-rule) = GC

cf (T-rule) = BC

Lemma 1 (Monotonicity). For all static rule distinct to ⊥, if Γk is a denom-
inator of Γ then Γ ⊂ Γk

The transitional rule allows to generate a new successor for a certain agent
i.

Definition 10 (Transitional Rule). Let X be a finite set of formulas from
LLDA, then:

♦iψ;X
♦i:

ψ; {φ|�iφ ∈ X}

Observe that the transitional rule preserves the subsets relation, i.e. if we
have two sets Γ,∆ such that Γ ⊆ ∆ and the transtional rule applies to Γ (and
therefore to ∆) then, the denominators Γ ′, ∆′ of applying the ♦i − rule for an
agent i to Γ and ∆ respectively also have the subset relation Γ ′ ⊆ ∆′.

The following definition introduces the concept of tableau.

Definition 11 (Tableau). Let X ⊆ {T-rule,D-rule}. A tableau for Γ is a tree
such that each vertex v carries a pair (Γ ′, ρ), where Γ ′ is a set of formulas and ρ
is either an instance of a static rule applicable to Γ ′, an instance of a rule from
X applicable to Γ ′, a transitional rule applicable to Γ ′ or the empty rule nihil,
the root carries a pair (Γ, ρ) for some tableau rule ρ and for every vertex v, if v
carries the pair (Γ ′, ρ), then the following conditions hold:

– if Γ ′ is not saturated then ρ 6= nihil, and
– if ρ has k denominators Γ1, . . . , Γk then v has exactly k children v1, . . . , vk

such that, for every 1 ≤ h ≤ k, vh carries (Γh, ρ
′) for some tableau rule ρ′,

Observe that any sub-tree of a tableau is also a tableau.
The following definition introduces the concept of closed tableau.

Definition 12 (Closed Tableau). A branch in a tableau is a path from the
root of the tableau to an end vertex, where an end vertex is a vertex carrying
a pair (Γ ′, nihil). A branch in a tableau is closed if its end node is of the form
({⊥}, nihil). A tableau is closed if all its branches are closed, otherwise it is open.

From this definition and the tableau definition follows that any sub-tree of a
closed tableau it is also a close tableau.

The proof of the following theorem is shown in the article

Theorem 1. Let ϕ ∈ LLDA and let X ⊆ {T-rule,D-rule}. Then, if ϕ is satisfi-
able for the class M{cf (x):x∈X} then all tableaux for {ϕ} are open.
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The algorithm that our proof induces, has to check if there is any closed-
tableaux, and for that has to check every possible configuration. In order to
reduce the search space, we introduce the concept of strategy.

Definition 13 (Strategy). Let <σ be an order for the tableau rules. We say
that a tableau follows the strategy σ if for every vertex (Γ, ρ) in the tableau, if
ρ′ <σ ρ then ρ′ doesn’t apply to Γ

Theorem 2. Let <σ be the following total order of the tableau rules:

⊥− rule < 4− rule < ∧ − rule < ∨ − rule < T − rule < D − rule < ♦− rule

If there is a closed tableau, then exist a closed tableau that follows the strategy
σ.

To prove this we will start with the closed tableau τ and for each edge
((Γ, ρ), (Γ ′, ρ′)) ∈ τ if ρ′ applies to Γ and ρ′ <σ ρ then, we will create a closed
tableau τ ′ that replace the sub-tree with root (Γ, ρ) with another closed tableau
with root (Γ, ρ′).

The intuition is, by using this operation repeatedly, we can “bubble sort”
the tableau by “pushing upwards” the lesser operators whenever they apply to
upper nodes.

We will use the following lemma in the proof.

Lemma 2 (Weakening). Let Γ, Γ ′ ⊆ LLDA If there is a closing tableau for Γ ,
then, there is a closing tableau for Γ ∪ Γ ′.

Proof. If τ is a tableau for Γ then, we can create a tree τ ′ isomorphic to τ by
mapping every node (∆, ρ)→ (∆∪ Γ ′, ρ), since ρ applies to ∆ then ρ applies to
∆ ∪ Γ ′ therefore τ ′ is also a tableau which applies the same rules in the same
order than τ , and because τ closes, τ ′ also closes.

Proof Outline We will prove by each pair of rules, that if there is a closing
tableau τ having an edge ((Γ, ρ), (Γ ′, ρ′)) ∈ τ , ρ′ <σ ρ and ρ′ applies to Γ , then
there is a closing tableau with (Γ, ρ′) as its root.

(ρ,⊥) There is an edge ((Γ, ρ), (Γ ′,⊥− rule)) ∈ τ and ⊥− rule applies to Γ , then,
by just applying the ⊥− rule we have a closing tableau.

(ρ,4i) There is an edge ((Γ, ρ), (Γ ′,⊥− rule)) ∈ τ and ⊥− rule applies to Γ , then,
by just applying the ⊥− rule we have a closing tableau.

(♦, ρ) There is an edge (Γ,♦ − rule), (Γ ′, ρ)) ∈ τ and ρ applies to Γ . As the
rule ρ applies to Γ consider Γ2 the result of applying ρ to Γ , as ρ is a
transactional rule distinct of ⊥− rule, by monotonocity Γ ′ ⊆ Γ2 let Γ ′2 the
result of applying the ♦i − rule on Γ2, as the transitional rule preserves
subsets Γ ′′ ⊆ Γ ′2 as, there is a closing tableau for (Γ,♦− rule) by weakening
there is a closing tableau for Γ2.

(∗, ∗) The rest of the cases are proven by induction on the number of rules that
apply to elments of Γ , as we can assume all 4i rules have been applied and
no applicable ♦i have been applied. The well know proof by invertibility of
rules for tableau in modal logic [4] will work with no modifications.
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4 Algorithm

We assume all formulas in B have been translated in negated normal form
(NNF).

1: procedure IsSatisfiable(B,s) . under the semantics s
2: Parallel r ← SAT(B) [wait = false] do
3: if (¬r) then
4: return |cancel,⊥|
5: end if
6: end Parallel
7: Parallel r ← SAT(B) do
8: if matches((ψ ∧ ¬ψ,X), B) then
9: return |cancel,⊥|

10: end if
11: if matches((4ψ;X), B) then
12: return |current, IsSatisfiable(ψ;4ψ;�ψ;X, s)|
13: end if
14: if matches((ψ ∧ ξ;X), B) then
15: return |current, IsSatisfiable(ψ; ξ;X, s)|
16: end if
17: if matches((ψ ∨ ξ;X), B) then
18: return |wait, IsSatisfiable(ξ;X, s) ∨ IsSatisfiable(ψ;X, s)|
19: end if
20: if matches(♦ψ;X,B) then
21: for i← 1, n do
22: spawn IsSatisfiable(next(i,♦ψ;X,B), s)
23: end for
24: end if
25: return |wait,>|
26: end Parallel
27: end procedure

5 Example

In this section, we use the logic LLDA to formalize a simple scenario of human-
robot interaction in a dynamic domain inspired the famous Sally-Anne false
belief’s task from the psychological literature on Theory of Mind [1].

We assume that Agt = {h, r} where h denotes the human and r denotes
the robot. The scenario is depicted in Figure 1. The human and the robot are
standing in front of each other on the opposite sides of a table. The robot has two
boxes and two balls in front of him: box 1, box 2, a black ball and a gray ball. In
the initial situation the black ball is inside box 1 and the grey ball is inside box
2. The human can perfectly observe her actions as well as the robot’s actions.
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Similarly, the robot can perfectly observe its actions as well as the human’s
actions. Moreover, the robot can see that the human can see its actions and
the human can see that the robot can see her actions. Therefore, the perceptive
context is described by the following set of formula from the language LOBS:

Ω1 = {sr,r, sh,h, sr,h, sh,r, srsh,r, shsr,h}.

Let the atomic proposition blackIn1 denote the fact that the black ball is
inside box 1 and let blackIn2 denote the fact that the black ball is inside box
2. Similarly, let greyIn1 and greyIn2 denote, respectively, the fact that the grey
ball is inside box 1 and the fact that the grey ball is inside box 2.

Box	1	
	
	

Box	2	
	
	 1	 1	

Fig. 1: Balls in the boxes scenario

We assume that in the initial situation the human does not explicitly believe
that the black ball is inside box 1 and the human does not explicitly believe
that the black ball is inside box 2, as she cannot see the box’s content. Similarly,
the human does not explicitly believe that the grey ball is inside box 1 and
the human does not explicitly believe that the grey ball is inside box 2. We
also assume that the robot does not explicitly believe that the human explicitly
believes that the black ball is inside box 1 (resp. box 2) and that the robot does
not explicitly believe that the human explicitly believes that the grey ball is
inside box 1 (resp. box 2):

Hyp1
def
= ¬4hblackIn1 ∧ ¬4hblackIn2 ∧ ¬4hgreyIn1∧
¬4hgreyIn2 ∧ ¬4r4hblackIn1 ∧ ¬4r4hblackIn2∧
¬4r4hgreyIn1 ∧ ¬4r4hgreyIn2

Moreover, we assume that the robot explicitly believes that if the human explic-
itly believes that one ball is inside one box then she explicitly believes that the
ball cannot be inside the other box:

Hyp2
def
= 4r

(
(4hblackIn1 →4h¬blackIn2 )∧

(4hblackIn2 →4h¬blackIn1 )∧
(4hgreyIn1 →4h¬greyIn2 )∧
(4hgreyIn2 →4h¬greyIn1 )

)
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We can use the logic LLDA to infer that, in the perceptive context Ω1, if the
robot moves the black ball from box 1 to box 2 then, after the occurrence of
the action, both the human and the robot will explicitly believe that the black
ball is inside box 2, the robot will explicitly believe that the human explicitly
believes that the black ball is inside box 2, and the robot will implicitly believe
that the human explicitly believes that the black ball is outside box 1:

(Hyp1 ∧Hyp2 )→ [(r,+ blackIn2 ,Ω1)](4rblackIn2∧
4hblackIn2∧
4r4hblackIn2∧
�r4h¬blackIn1 )

Now, suppose the human moves away so that she cannot see anymore what
the robot does and the robot knows this. In other words, let us suppose that
situation has changed into the following perceptive context Ω2 in which the robot
and the human can see their own actions but cannot see the actions of the other:

Ω2 = {sr,r, sh,h}.

In the new perceptive context Ω2, if the robot moves the grey ball from box 2
to box 1 then, after the occurrence of the robot’s action, the human will continue
to believe that the black ball is inside box 2, without believing that the grey ball
is inside box 1. Moreover, the robot still does not believe that the human believes
that the grey ball is inside box 1:

(Hyp1 ∧Hyp2 )→[(r,+ blackIn2 ,Ω1)]

[(r,+ greyIn1 ,Ω2)](4hblackIn2∧
¬4hgreyIn1 ∧ ¬4r4hgreyIn1 )

We assume that Agt = {1, 2} where 1 denotes a human and 2 denotes a
robot. The human and the robot are standing in front of each other on the
opposite sides of a table. The robot has a black ball, a grey ball, and two boxes
in front of him. Initially, the human has not previous knowledge of the setting,
and the robot, doesn’t has any knowledge about the human’s knowledge. Then,
the robot puts the black ball inside the box no.2, while it is aware that the
human is watching his actions. And the robot believes that the human believes
that if a ball is in a given box, then that ball is not in the other box. From this
setting, the robot should be able to deduce that the human believes that the
black ball is not in box no.1.

# Observe the semicolon ’;’ means conjunction (with the least precendence)

#Hypotesis 1

-{1}b1 & -{1}b2; # Human doesn’t explicitly believe either ball

-{1}g1 & -{1}g2; # is in either box

-{2}{1}b1 & -{2}{1}b2; # Robot doesn’t explicitly believe the human believe
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-{2}{1}g1 & -{2}{1}g2; # if either ball is in either box

#Hypotesis 2

{2}({1}b1->{1}-b2; # Robot explicitly believes that

{1}b2->{1}-b1; # if human believes any ball is in either box

{1}g1->{1}-g2; # then it also believes that such ball is not

{1}g1->{1}-g2); # in the other box (here enumerated the 4 options)

# The observation context is both observing each other

# and simultaneosly aware of this fact and of themselves

-[( 2+b2; 1<1; 2<2; 1<2; 2<1; 1<2<1; 2<1<2 )]( # We set b2 true for the robot

({2}b2) & ({1}b2) & ({2}{1}b2);# All aware that black ball is in box 2

[2]{1}-b1 # Robot can conclude that human belives ...

) # ... that the black ball is not in box 1

Which of course, after evaluating the translation, returns that is unsatisfiable.
The tool is available for testing at https://tableau.irit.fr.

6 Implementation

6.1 Software, Architecture and Algorithms

We created a tool in the F] programming language (an open source, cross plat-
form ML language for the Common Language Infrastructure (CLI)), that follows
closely the paper as reference implementation, with the following speed improve-
ments.

There are two separated API methods, one for the reduction of the dynamic
extension, and the second for the evaluation of the satisfability given by the
tableau procedure.

For the reduction of the dynamic extension, we implement the exact rewriting
as specified in the paper, with no further optimization.

For the propositional case, we added a modern yet simple DPLL SAT solver,
we focused more in having a clean and solid functional architecture for this rather
than adding all possible heuristics, it is slower (2x-50x) than other modern SAT
solver (We benchmarked against Z3 [2]), and also is much simpler (the current
implementation of the SAT solver has less than 1k lines of code). However, is
written in F], so it is exactly as portable as the library itself, which simplifies
enormously the development/testing and integration as compared as using a
C+ + library which is the language most modern SAT solvers are implemented.
This solver is used to discard processes, but the solution when available, is given
by the tableau itself. So this is only used to help speed up execution, and it can
be disabled when calling the library.

We use a reactive asynchronous execution workflow that allows us to aggres-
sively benefit from hardware parallelism when available.

We create a process tree which is the contraction of the tableau tree on the
root node and all nodes created by applying a transitional rule. Each process runs
a “SAT solver” for the propositional interpretation of the set of variables, and

https://tableau.irit.fr
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spawns one process for each transitional rule that would apply to the contracted
tableau node. If the “SAT solver” is not satisfiable or any of the children sends
a message saying it is unsatisfiable, it kills all remaining children and returns
with the same message to its father. In other case, when all transitional children
return a satisfactory configuration, it returns itself with the appropriate message
to its father.

As we use immutable data structures, we can use shared memory between
processes, in a safe and fast manner.

It is written entirely for the .net core platform, which runs in an array of
architectures and operative systems, that include RaspberyPi, Linux, MacOs,
Windows and the Windows 10 IoT which is rapidly increasing the array of hosts.

A trade off for the current version, is that we use a full in-memory approach.
So, it runs well with models having few thousands of “modal” tableau nodes and
few million propositional variables among them, but fails in much larger models,
which we consider is acceptable for the kind of environments/problems the tool
is designed for.
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