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Abstract

The non-intrusiveness and low cost of ultrasonic interrogation is motivating the development of new

means towards the detection of osteoporosis and other bone deficiencies. Bone is a porous media satu-

rated with a viscous fluid, and could thus be well characterized by the Biot model. The main purpose

of this work is to present an in vitro methodology for the identification of the properties and structural

parameters of the bone, adopting a statistical Bayesian inference technique using ultrasonic reflected sig-

nals at normal incidence. This approach allows the retrieval of some important parameters characterizing

the bone structure and associated uncertainties, such as the porosity and bulk modulus. The method

was applied to seven samples of bone extracted from a femoral head, immersed in water and exposed to

ultrasonic signals with a center frequency of ≈ 500 kHz. For all seven samples, signals at different sites

were acquired to check the method robustness.

I Introduction

Osteoporosis affects bone density and microstructure [1], reducing bone quality and increasing the risk of

fractures. The bone mass density (BMD) can be evaluated by X-Ray absorptiometry, but the BMD alone

does not fully account for fracture risks [2]. There is thus a need to refine the characterization of bones, to

help better understand the onset of bone aging and deterioration.
∗Corresponding author: remi.roncen@onera.fr
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To avoid the invasive treatments that current radiographic or neutron activation technologies require for

bone analysis, quantitative ultrasound assessments have been considered for more than 30 years [3–16] (for

an osteoporosis-focused review, see Refs. [2, 17]). The main rationale for these studies is that an ultrasonic

wave interacts differently between a normal and an osteoporotic bone.

Biot’s theory links the microstructural and mechanical properties of poroelastic media to the behavior of

waves propagating in them. While initially dedicated to geology, Biot’s theory has received a lot of attention

for its application to ultrasound propagation in bone [4, 14, 18–22]. Using the Biot model allows one to relate

the microstructural and mechanical properties of the bone to its acoustic response. It then becomes possible

to attempt an inverse problem, where the observation of a certain acoustic quantity (here an ultrasonic

reflected signal) is used to infer the values of certain parameters of interest. This was done previously with

the Biot model, using impedance tube measurements [23], reflected and transmitted ultrasonic waves [24]

and, in our previous work, using transmitted ultrasonic waves only [25]. In the aforementioned references,

the ill-posedness of the inverse problem was emphasized by the authors: if not enough prior information is

available, different solutions to the inverse problems can be found.

While reflected waves have already been used in previous work for in vivo and in vitro ultrasonic in-

terrogation of bone [10–12, 15, 26–28], only the diffusive properties of the waves were used (ultrasound

backscatter). The present work looks at this problem under the scope of propagation properties of waves

within a bone sample, with different physical phenomena at play.

Ultrasonic reflected waves are considered in this work at almost normal incidence on porous samples

immersed in water. The reason behind this choice of studying only the reflected waves is that in some cases,

the observation of a transmitted wave is made difficult due to the high dissipation of waves within the bone

samples. When a wave encounters a discontinuity in its propagation medium, part of the wave is reflected

back, while the rest is transmitted through the discontinuity. The signal measured in front of the material,

coined reflected wave, is thus composed of a first reflected wave that has not traveled within the material,

and of a succession of waves that have made it to the other end of the sample before coming back. It was

shown for rigid porous material that even with only the first reflected wave, some information could be found

on the porosity and tortuosity of the material [29–32]. Thus, even in the case of large samples or a very

strong attenuation within the material (where no transmitted wave can be measured), some information

might still be retrieved using the first reflected wave, as opposed to the transmission case.

A Bayesian inference approach is performed to update our state of belief (in the form of probability
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density functions) on the model parameters, which consist of the classical Biot parameters (density, Young’s

modulus, Poisson’s ratio, etc.) and the intrinsic microstructure properties of the Horoshenkov model [33].

The main reason for the use of the Horoshenkov model in the present work is the need for a set of identified

parameters that are easily understandable by the medical community (i.e., the mean pore radius is potentially

clearer than the viscous characteristic length of the Johnson-Koplik-Dashen (JKD) pore model [34], often

used in the acoustic community).

The study is organized as follows. The acoustical modeling, an extension of the Biot model to account

for visco-inertial dissipation within the pore spaces, is recalled in Sec. II. The experimental configuration

used to obtain the ultrasonic reflected signals and the statistical Bayesian inference problem are succinctly

presented in Sec. III. In Sec. IV, the inference method is first applied on a synthetical test signal obtained

via the modeling of Sec. II and artificially polluted by a random Gaussian noise to represent uncertainties

in the measurement. The inference method is then applied on the experimental measurements of different

bone samples extracted from different femoral heads. A conclusion is drawn in Sec. V.

II Acoustical model

Bone is a porous material in which the fluid phase (composed of blood and marrow, i.e., a viscoelastic fluid)

interacts with a solid phase (calcified tissue, with a complex microstructure that is linked to bone physical

strength).

A Biot model for the coupling between fluid and solid phases

Biot’s alternative formulation [35] is used in this work, including the additional visco-inertial dissipation

that occurs within the pores. The following is similar to the approach detailed in Ref [24] and in our

earlier work [25], and only differs in the definition of the semi-phenomenological pore model that is used

(Horoshenkov model instead of Johnson model).

Equations are written in the frequency domain (e+jωt convention). The wavelength is assumed large

compared with the size of the pores. Biot’s coupling equations are given as

ω2ρfw + ω2ρu = −∆ · σ,

ω2ρfu+ ω2ρ̃eqw = ∆ · p, (1)

with p the pressure field, σ the total stress tensor, u the solid phase displacement field, w the relative
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displacement field between the phases: w = φ(U − u) with U the fluid phase displacement field and φ the

porosity. The angular frequency writes ω = 2πf , with f the frequency in Hz; ρf is the ambient fluid density

and ρ = (1− φ)ρs + φρf is the density of the bulk medium, with ρs the density of the calcified tissue. The

equivalent density of the fluid phase ρ̃eq is a complex frequency dependent quantity that takes into account

visco-inertial effects within the fluid phase inside the pores, and is defined in Sec. B.

The total stress tensor σ and the pressure field p are related via the expressions

σ = 2Nε+ (λcξ − αBMζ) I,

p = M (ζ − αBξ) , (2)

where N is the shear modulus, ε = 1
2

(
∇u+ (∇u)

T
)
is the strain tensor, I is the identity matrix, ξ = ∇ ·u

and ζ = −∇ ·w. The Biot–Willis coefficient αB is defined by

αB = 1− Kb

Ks
, (3)

with Kb the bulk modulus of the porous frame and Ks the bulk modulus of the solid constituent of the

material. The shear modulus N , the Young’s modulus and Poisson’s ratio of the solid Es, νs and the

Young’s modulus and Poisson’s ratio of the porous frame Eb, νb are related as

Ks =
Es

3 (1− 2νs)
, Kb =

Eb
3 (1− 2νb)

, N =
Eb

2 (1 + νb)
. (4)

The parameters Es and νs are non identifiable in this experiment, as they define a single parameter Ks,

which is the one inferred in practice.

The elastic parameter λc of Eq. 2 is defined as

λc = λ+ α2
BM, (5)

where λ is the first Lamé’s coefficient of the elastic frame, and

M =

[
αB +

(
Ks

Kf
− 1

)
φ

]−1
Ks, (6)

with Kf the bulk modulus of the fluid.

To take into account additional viscoelastic damping effects, a loss factor parameter ξs (resp. ξb) is

defined for the solid part of the material (resp. for the bulk). Structural parameters are updated as

Ks → Ks (1 + jξs) ,

Eb → Eb (1 + jξb) ,

N → N (1 + jξb) . (7)
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The state vector formalism used in Refs. [24, 25] is used in this work, following the theory of Refs. [36, 37].

The initial problem of Eq. 1 is expressed in the physical space of the fluid and solid phases of the poroelastic

material (the six unknowns are physical quantities: displacement, pressure, stress tensor). The problem can

be recast in the eigenspace, where the waves amplitudes are the new unknowns. In poroelastic materials, three

types of waves can propagate: two compression waves and one shear wave. Expressing the problem in terms

of waves propagating in a direction or the other (thus totaling six unknown waves) allows for the removal of

spurious evanescent terms in the formulation. This removes the problem of instability at high frequencies,

encountered with the transfer matrix method, as shown in Ref [37]. The reflection coefficient R(ω) is found

after the solving of a linear system expressed with a sparse matrix containing the information of all frequencies

simultaneously [24]. The reflection coefficient here contains all the contributions of the successive incoming

reflected waves altogether. In this work, the frequency domain signals (reflection coefficients) are used for

the identification procedure of the material parameters. While in some cases, working with the time domain

signals can prove useful during the inference process (manual detection of the successive transmitted/reflected

waves), it is also more computationally intensive due to the additional transformations between frequency

and time domain at each iteration.

B Semi-phenomenological model of Horoshenkov for the viscous dissipation

within the fluid phase

Bone samples are composed of pores whose shape and size obey a certain statistical distribution. The

pore size distribution might be of importance, as an additional marker of bone health. In order to infer

this parameter distribution from acoustic measurement, an adequate model has to be used. In the present

work, the viscous dissipation in the pores is accounted for by the Horoshenkov model [33], based on the

rational (Padé) approximation approach [38] and on the hypothesis that the pore size follows a log-normal

distribution and that the pores have a circular shape. While the log-normal distribution hypothesis is typical

of porous materials, and seems to hold for bone samples in the case of cancellous bones (as suggested in

Ref. [39, Figs. 2-4]), the circular shape hypothesis might not hold as well as the former does. The influence

of the shape parameters in the Horoshenkov model can, however, be neglected in a first approximation. A

future study could try to infer these shape parameters as well, with the additional difficulty that an increase

in the number of parameters could lead to a more ill-posed problem.

In the case where the above approximations are valid, the Horoshenkov model for viscous dissipation
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writes

ρ̃eq =
ρf
φ
α̃(ω), (8)

where the dynamic tortuosity α̃ is defined as

α̃(ω) = α∞

[
1 +

1

jω̄
F̃ (ω)

]
, (9)

with

F̃ (ω) = 1− P + P

√
1 +

M2

2P 2
jω̄, ω̄ = ωρf

k0α∞
µφ

, (10)

P = 4
M2

2βPφΛ2
, M2 = 8

k0α∞
φΛ2

. (11)

The parameters used in this model are the classical JKD ones [34], and relate to the microstructure of

the porous sample: porosity φ, tortuosity α∞, permeability k0 and characteristic viscous length Λ. Using

the hypotheses of a log-normal pore distribution and a circular pore shape, it is possible to use only three

parameters, namely the porosity φ, mean pore size s̄ and pore size standard deviation σs (normalized by

log(s̄)), instead of four. The relationships between JKD and Horoshenkov model parameters are [40, 41]

φ = φ,

α∞ = e4(σs log 2)2 ,

k0 =
s̄2φ

8α∞
e−6(σs log 2)2 , (12)

Λ = s̄e−
5
2 (σs log 2)2 ,

βP =
4

3
e4(σs log 2)2 .

The main drawback of using the Horoshenkov model in the present study is the lack of information

regarding the true pore shape, here assumed to be circular. However, assuming a pore size distribution

seems more appropriate to this kind of analysis than simply assuming a single value for the pore size. In the

present work, the pore size distribution parameters s̄ and σs are themselves considered as random variables

during the inference process, similarly to the other variables.

III Identification method

This section presents the different elements required to perform the identification of the bone parameters of

interest, using an inverse method (statistical inference). The experimental apparatus used to measure the
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Figure 1: Experimental setup for ultrasonic measurements

reflected waves is first given, followed by a succinct summary of the Bayesian inference approach used to

find the posterior density functions of the parameters.

A Experimental apparatus

Experiments are performed in water using one Panametrics A 303S plane piezoelectric transducer of di-

ameter 1 cm, with a 500 kHz central frequency. Pulses of 400 V are provided by a 5058PR Panametrics

pulser/receiver, amplified to 90 dB, filtered above 10 MHz and averaged over 1000 iterations. A schematic

of the experiment is shown in Fig. 1. The size of the ultrasound beam is small compared with the size of

the specimens. The liquid initially in the pore space (blood and marrow) has been removed from the bone

sample and substituted by water. The bone samples, machined from the cancellous parts of a femoral head

and neck of different human specimens, are constantly immersed in liquid to prevent them from drying,

which can alter their properties [42]. The angle of incidence of the incident wave θ (displayed in Fig. 1) is

considered small but unknown.

For each test, the sample is first replaced by a totally reflecting metal plate, and the reflected wave is

recorded and is considered the reference signal. Then, the sample is placed and a new reflected wave is

measured by the transducer and recorded. Transforming both signals in frequency domain and dividing the

second one by the first one yields the reflection coefficient of the sample.

B Identification method: Bayesian inference

Within the Bayesian inference framework used in this work, all the model parameters are considered as

random variables associated with probability density functions (pdf). These pdfs encode the information one
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has on the parameters [Chap. 8 43]. An experimental dataset vobs is observed (here a reflection coefficient),

thus potentially increasing our state of knowledge on the variables of interest. vobs is the realization of a

multivariate random variable Υobs (we separate the real and imaginary parts, assumed uncorrelated). The

information on the (random variable) parameters Q = (φ, s̄, . . .), with realizations q, is encoded within the

marginal posterior density π(q|vobs). This quantity of interest is written, using Bayes theorem,

π(q|vobs) =
π(vobs|q)π0(q)

π(vobs)
. (13)

In the previous equation, L(q) ≡ π(vobs|q) is the likelihood function, representing the probability of the

experiment being observed, given a realization q of model parameters; π(vobs) is an integral not calculated

in practice because of the potentially high dimension of the parameter space; π0(q) is the prior probability

and represents all the information obtained on q before the new observation (i.e, one could weigh the sample

to access its overall density ρ, thus providing bounds during the identification of φ and ρs). In this work,

almost no previous knowledge on the bone parameters is used, so π0 is a uniform distribution, whose bounds

depend on the case considered.

Contrary to our previous work [25], frequency domain information is now used to build the likelihood.

The rationale for this change is that staying in the frequency domain avoids the additional use of fast Fourier

transformations for comparison with the measured time domain signals. When considering a Gaussian error

representing the measurement uncertainties, the likelihood writes as the product of the likelihoods associated

with both the real (subscript <) and imaginary parts (subscript =) of the reflection coefficient:

π(vobs
i |q) = π< · π=, (14)

with

π< =

n∏
i=1

1√
2πσ2

<,i

e−|<(vobs
i −Ri(q))|2/2σ2

<,i

and a similar definition for π=, where n = 50 is the number of discrete frequencies where the reflection

coefficient was measured, and Ri(q) is the numerical reflection coefficient. The noise parameter σ<,i (resp.

σ=,i) is a standard deviation of the assumed Gaussian distribution of errors on the real part (resp. imaginary

part). This parameter is included in the inference process, but a single value σ is assumed at all frequencies

and for both real and imaginary parts, since they have the same order of magnitude in most cases.

In contrast to what is described in Ref [24], only the reflection coefficient is used, not the transmission

coefficient. The objective of this work is to evaluate the type of knowledge that can be extracted from

this quantity only. The use of the Horoshenkov model also makes it possible to reduce the parameter space
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dimension by one, when compared with the Biot-JKD approach in the high frequency regime. If the frequency

regime is arbitrary and the high-frequency limit cannot be used anymore, the Biot-JKD model makes use of

between 4 and 5 parameters depending on whether the model improvements made by Pride [44] are used or

not. By contrast, the Horoshenkov model still uses only 3 parameters. This reduction is made at the cost of

a strong hypothesis, i.e., that of the pore size following a log-normal distribution.

To solve the problem and obtain π(q|vobs), a Markov Chain Monte Carlo strategy is used to explore the

parameter space and sample from the target distribution. Similarly to our previous work [25, Sec. 4.2],

the algorithm strategy developed in Ref. [45] is used, which performs well on multimodal distributions of

dimensions < 20.

IV Results

This sections presents two different kind of results. First, the model of Sec. II is used with known parameters

to create a signal (reflection coefficient). This signal is then polluted by a noise, and the inference strategy

of Sec. III is applied to evaluate the method capabilities and potential shortcomings. Then, the inference is

performed on experimental signals obtained on seven different human femoral head samples.

A Inference of a known synthetic material

In order to evaluate the proposed inference strategy, a test case is developed. A set of known parameter

values q∗ is chosen to feed the model of Sec. II and create a reflection coefficient between 200 kHz and 700 kHz,

which is the typical frequency range of our transducers. These parameters are close to the ones inferred later

on in Sec. B. A random Gaussian noise of standard deviation σ = 5 ·10−3 is then added to both the real and

imaginary parts of the signal to artificially pollute it and represent the measurement uncertainties. The value

of σ corresponds to 3.2% of the maximum amplitude of the real part of the reflection coefficient, and 6.6%

of the maximum amplitude of the imaginary part of the signal. To test the limits of the method, the prior

bounds are all taken quite large, even when the property is expected to be well known or easily measured

in practice (i.e., angle of incidence, sample thickness and ambient fluid properties). The bounds of the prior

qmin and qmax are given in Table 1, where the true value q∗ is recalled and where the inference results are

also given by their mean and standard deviation (st. dev). The posterior densities are displayed in Fig. 2,

where the vertical dashed blue line represents the true value. The noisy signal used for the inference is shown

on the right side in Fig 2, and where the 65% (resp. 99.7%) credibility intervals are given (dark and light
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gray zones, respectively). To evaluate the credibility intervals, a number of N = 10000 samples from the

Markov chains are used to calculate the reflection coefficient. The gray areas correspond to a plot around

the calculated reflection coefficient mean value, with a distance from the mean equal to 1 (resp. 3) standard

deviations.

Table 1: True values q∗, inferred values and prior bounds qmin/max of the parameters for the synthetic test

case. The symbol – means unitless

Parameter θ L φ s̄ σs Ks ξs Eb ξb νb ρs Kf µf ρf

Name A
ng
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T
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ss

P
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M
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n
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P
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e
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B
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Y
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m
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B
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k
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ss
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B
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k
P
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ss
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o

So
lid
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y

F
lu
id

bu
lk

m
od

ul
us

F
lu
id

dy
na

m
ic

vi
sc
os
it
y

F
lu
id

de
ns
it
y

Unit rad mm – µm – GPa – GPa – – kg/m3 GPa mPa · s kg/m3

q∗ 0.02 15 0.85 20 0.2 50 0.1 1.3 0.1 0.3 1.95 2.4 1 1

mean −0.005 13.2 0.86 20.6 0.22 61.4 0.42 1.26 0.1 0.23 2.5 2.2 1.1 1.1

st. dev 0.099 1.9 0.02 0.4 0.07 32.8 0.24 0.47 0.015 0.11 0.67 0.58 0.26 0.19

qmin −0.2 5 0.4 0.1 0 1 0 0.001Ks 0 0.05 0.1 1.4 0.5 0.5

qmax 0.2 25 0.99 1500 2 150 0.95 0.95Ks 0.95 0.49 5 3.4 1.5 1.5

For all parameters, the posterior density function encompasses the true value. However, the uncertainty

on the identified parameters can be quite large, relatively to the prior uncertainty. Notable cases are Ks, ξs,

the ambient fluid parameters (Kf , µf , ρf ) and the solid density ρs, which all seem to have a low sensitivity

with respect to the likelihood function. This, we believe, is a theoretical limit of the present method.

In the inference performed on experimental signals, the focus will be placed on four parameters that can

be well identified in theory and that could represent an interest to the medical field: φ, s̄, σs, Eb.

B Inference of femoral heads

Seven samples of different femoral heads were tested during this study. For each sample, between 2 and 5

reflected signals were acquired at different site locations, depending on the size of the sample.
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(a) (Color online). Probability density functions of iden-

tified parameters of the synthetic material. The dashed

blue vertical line corresponds to the true value.

(b) (Color online). Real and imaginary parts of

the teflection coefficient of the synthetic material.

Blue markers correspond to the noisy data used

during the inference. The gray areas correspond to

the credibility intervals of the reconstructed signal

using samples from the probability functions.

Figure 2: Inference results for the synthetic sample.

Using the test case of Sec. A, it becomes clear that the proper identification of the fluid properties and of

the solid density are not possible with the present method, due to their lack of sensitivity in the likelihood

function. While the ambient fluid parameters are fairly well known, the solid density of bone doesn’t have

a fixed known value and can change in test subjects due to a condition called osteopenia. To avoid possible

ill-posedness in the problem, as in Ref. [25], the prior of the solid density was constrained too.

The bounds of the prior are given in Table 2.

Table 2: Prior bounds of the parameters for bone samples. The symbol – means unitless

Parameter θ L φ s̄ σs Ks ξs Eb ξb νb ρs Kf µf ρf

Unit rad mm – µm / GPa – GPa – – kg/m3 GPa mPa · s kg/m3

qmin −0.05 0.9L∗i 0.4 1.0 0 5 0 0.001Ks 0 0.1 1.8 2.3 0.95 0.95

qmax 0.05 1.1L∗i 0.99 100 2 150 0.9 0.9Ks 0.5 0.45 2.2 2.5 1.05 1.05
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Table 3 summarizes the characteristics of the posterior probability density function (pdf) of each parame-

ter, giving for each the mean and standard deviation. Although some distributions are not perfectly Gaussian,

the mean and standard deviation have been chosen here because they remain simple and widespread indi-

cators. When the non-Gaussianity is strong, the standard deviation can exceed the mean, suggesting the

possibility of negative values, while in the actual Markov chain, no negative value is encountered. A special

case occurs for sample 2, where a bi-modal distribution is obtained for Eb for two out of the three tests that

were performed. This indicates that for these signals, the model interprets both distinct modes (i.e., peak

density) as likely candidates. More credit should be given to the first mode (lower value), due to its value

being closer to what was found for other samples. In Table 3, the mean and standard deviation is given for

both modes, as they are sufficiently separated.

The parameters ρs, Kf , µf and ρf were, as expected, consistently displaying an almost uniform prob-

ability density covering the entirety of their prior support: ρs = 2.0 ± 0.1 kg/m3, Kf = 2.40 ± 0.023 GPa,

µf = 1.0±0.022 10−3 N · s/m2 and ρf = 1.0±0.024 kg/m3. Their values have been omitted from Table 3 for

clarity. The values for the angle of incidence and the sample thickness were both well identified, with a pdf

that was narrow compared with the original extent of the prior support. The parameters were omitted from

the table for clarity.. The measured thicknesses L∗i of Table 2, with i the sample number, were obtained by

caliper measurements: L∗1 ∈ [4.5− 8.5 ]mm, L∗2 ∈ [5.9− 7.4 ]mm, L∗3 ∈ [4.4− 8.4 ]mm, L∗4 ∈ [15− 15.9 ]mm,

L∗5 ∈ [9.2− 12.1 ]mm, L∗6 ∈ [10.6− 11.6 ]mm, L∗7 ∈ [7.5− 7.7 ]mm.

Using only reflected signals in the ultrasonic range for this study, we were not able to estimate all

parameters accurately. For instance, the parameters related to the ambient fluid (Kf , µf , ρf ) all display a

distribution that spanned the entirety of the prior bounds that were set. However, the focus of this work was

on the proof of identifiability of the parameters pertaining to the bone strength. Four of these parameters

were consistently well identified, i.e., the porosity φ, the pore mean size s̄, the pore size standard deviation

σs and the porous bulk Young modulus Eb. Their pdfs are shown on the left side in Figs. 3,4,5,6,7,8,9, where

each line style or color corresponds to a given measurement on the same sample, and at a different location

(note that a log scale is used for s̄). Bone samples are known to display strong heterogeneities in both the

trabecular and cortical regions. As the ultrasonic interrogation was performed at different positions over the

bone sample each time, it is then not surprising to obtain different pdfs for each test. However, despite these

differences in the pdfs for a given material sample, the values typically fall within a similar range. This tends

to show that the problem is not too ill-posed: a variation in the data (the reflected wave signal) does not
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yield an arbitrarily high variation in the output (the pdfs). This is reassuring, given the goal of extending

this method to in vivo measurements in the future.

Even when samples differ, their parameters exhibit similar values. Of particular importance, the frame

Young modulus Eb consistently displays a well defined pdf whose support is between 1 and 4 GPa, well within

the range observed in direct measurements on wet cancellous bone [46, Fig. 3], albeit on the upper side of

the values found in the literature. The porosities and mean pore size radii are equally well identified, and

also display values within the range found in the literature on trabecular bones (0.7 − 0.9 for the porosity,

and 1µm − 1 mm for the pore size). In our previous study, ultrasonic waves transmitted in a femoral head

sample were used. For sample M3 of Ref. [25] (not used in the present work), a porosity of φ = 0.84 and a

viscous length of Λ = 40.5µm were found , which is equivalent to s̄ = 42.5µm with σs = 0.2. A lower value

of |Eb| was also found (0.71 GPa). Further studies will be required to explain why, in the present study,

values of Eb are consistently on the higher end of the spectrum.

In addition to the pdfs of the parameters, the experimental reflected signals are compared with the

numerical realizations associated with samples of the pdfs (drawn directly from the Markov Chains so that

the correct distributions are used). The time-domain fit between experimental and numerical signals is

displayed on the right side in Figs 3,4,5,6,7,8,9, where the 65% (resp. 99.7%) credibility intervals are given

(dark and light gray zones, respectively). The line style indicates the correspondence between experiments

and the related identified pdf, in the left and right figures. To evaluate the credibility intervals on the time

domain signals, a number of N = 10000 samples from the Markov chains are used after each inference to

calculate the reflection coefficients in the frequency domain. The signal is transformed back into time domain

via an inverse FFT after multiplication with the incident signal. At each time step, the N values of the

signals are stored. The distribution of the output at each time step is assumed Gaussian, and the gray areas

on the right side in Figs 3,4,5,6,7,8,9 correspond to a plot around the signal mean value, with a distance

from the mean equal to 1 (resp. 3) standard deviations.

While the numerical signals are in quite good agreement with the experimental signals, a discrepancy

is observed for some signals at later times: a stronger amplitude of the secondary oscillations at around

2.2 · 10−5 s is displayed on the numerical signals (see e.g. Figs .7,8). The reason for this discrepancy is not

immediately clear. It is possible that the heterogeneity of these samples participate in the acoustic response

in an unexpected manner (i.e., not predictable by the model).

13



E

(a) Probability density functions of selected bone

structural parameters for different measurements

on the bone sample.

(b) Experiment vs fitted model comparison of time

domain reflected signals

Figure 3: Inference results for sample M1
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Figure 4: Inference results for sample M2
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Figure 5: Inference results for sample M3
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Figure 6: Inference results for sample M4
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Figure 7: Inference results for sample M5
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Figure 8: Inference results for sample M6
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(a) Probability density functions of selected bone

structural parameters for different measurements

on the bone sample.

(b) Experiment vs fitted model comparison of time

domain reflected signals

Figure 9: Inference results for sample M7
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C Discussion

The inference results obtained in this work are overall consistent with what could be expected for bone

samples from femoral heads. One of the limitations of the present work is the lack of comparison between

the identified properties and those directly measured on these samples - comparison which could be obtained

with dedicated equipment that we are currently lacking. Comparisons with what can be found in the

literature are not always insightful, given the very large spread of measured values.

The use of the Horoshenkov model proved adequate for the task at hand. The model seems able to

capture well the main features of the reflected ultrasonic signals within the bone samples (good fit between

experimental and numerical reflected signals) and also seems robust enough, in combination with the selected

Bayesian inference framework, to identify material properties. It was quite satisfying to observe similar

parameter pdfs across different samples or different test sites on the same sample. It seems that for the

subset of parameters of interest selected in this work (porosity, pore mean size and standard deviation, and

Young modulus), the problem is well-posed. However, reflected signals alone might not be sufficient to fully

characterize bone samples. In particular, it was not possible to identify ρs, the solid bone tissue density, an

important parameter of bone strength.

A natural extension of this work would be to increase the complexity of the Horoshenkov model in order

to identify the parameters pertaining to the definition of the pore shape.

Another potential extension of this work would be to develop prior modeling for some intrinsic prop-

erties, based on different experiments. An experiment that could be used is the ultrasonic backscattering

measurement, which also feeds on reflected ultrasonic signals, albeit at higher frequencies, where diffusion

effects predominate within the bone sample. In this experiment, some bone properties could be inferred,

thus providing a prior density function for the method presented in this work.

A difficult but necessary extension of this work (towards in vivo testing) would be the consideration of

heterogeneity in the sample. While the direct problem of wave propagation in these kind of material has

already been devised (see e.g., Ref. [36]), studies on Bayesian inference on this type of problem are lacking.

Further including the cortical bone, muscle and skin elements in the modeling (as done in Ref. [47]) could

then potentially lead to in vivo applications.
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V Conclusion

This article has introduced a general identification method for bone samples, based on ultrasonic signals

reflected through bone samples saturated by water. A statistical inference strategy was used to identify the

microstructural and mechanical properties of seven porous samples. The direct problem consisted in the

Biot equations of wave propagation inside a poroelastic material coupled with the Horoshenkov model to

account for the wave dissipation within the pores. The advantage of this statistical inference method was

that it provides an easy interpretation of the results, in the form of probability density functions of the model

parameters, and a robust way to take into account prior knowledge on the different identified properties, if

any.

The method robustness was tested by repeating the inference process on different signals obtained on

the same samples. Some parameters were not well identified, because of their lack of sensitivity relative to

the reflection coefficient. Still, the main parameters of interest were identified (porosity, mean pore size and

frame Young modulus), displaying well defined probability density functions, and values within the expected

range for femoral head samples.
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Table 3: Inference results, mean and standard deviation. The “a.b” notation of the left column indicates

both the femoral head sample “a” and the number of the test site location “b”

Sample φ s̄ σs Ks ξs Eb ξb νb

– µm – GPa – GPa – –

1.1 0.89± 0.01 5.4± 0.5 0.13± 0.07 32.2± 26.8 0.55± 0.21 1.84± 0.41 0.08± 0.05 0.22± 0.10

1.2 0.95± 0.02 4.2± 0.8 0.14± 0.08 65.8± 35.8 0.48± 0.22 1.85± 0.42 0.12± 0.08 0.22± 0.10

2.1 0.78± 0.01 6.0± 0.8 0.11± 0.07 46.7± 33.0 0.47± 0.23
2.59± 0.65

0.59± 0.30 0.20± 0.10
6.45± 1.03

2.2 0.86± 0.03 6.9± 1.4 0.18± 0.08 82.6± 40.1 0.50± 0.23
2.41± 0.73

0.54± 0.23 0.20± 0.09
13.5± 2.58

2.3 0.85± 0.02 16.8± 16.1 0.22± 0.12 55.0± 37.8 0.46± 0.22 1.86± 0.57 0.36± 0.18 0.23± 0.09

3.1 0.90± 0.02 23.2± 18.5 0.28± 0.11 56.6± 38.9 0.45± 0.22 1.17± 0.39 0.30± 0.15 0.22± 0.10

3.2 0.86± 0.01 8.2± 1.5 0.09± 0.06 50.5± 38.0 0.43± 0.22 1.98± 0.45 0.11± 0.06 0.23± 0.10

4.1 0.88± 0.05 29.2± 22.8 0.27± 0.15 45.4± 36.9 0.46± 0.22 1.36± 1.41 0.58± 0.16 0.23± 0.09

4.2 0.89± 0.03 28.6± 22 0.23± 0.13 55.5± 37.0 0.45± 0.23 1.59± 1.74 0.53± 0.19 0.23± 0.10

5.1 0.89± 0.01 48.1± 21.7 0.33± 0.05 44.8± 36.6 0.46± 0.22 0.77± 0.21 0.65± 0.12 0.24± 0.10

5.2 0.91± 0.02 31.9± 17.8 0.23± 0.11 49.9± 39.3 0.46± 0.22 0.89± 0.76 0.64± 0.17 0.24± 0.10

6.1 0.87± 0.01 34.0± 20 0.18± 0.07 44.6± 36.3 0.47± 0.22 0.80± 0.21 0.37± 0.12 0.23± 0.10

6.2 0.86± 0.03 27.8± 21.5 0.23± 0.12 42.3± 39.2 0.47± 0.22 1.15± 1.31 0.46± 0.18 0.23± 0.10

6.3 0.82± 0.05 14.2± 12.8 0.21± 0.13 54.0± 41.0 0.44± 0.22 2.78± 4.47 0.44± 0.16 0.23± 0.09

6.4 0.86± 0.04 8.4± 3.0 0.43± 0.11 60.4± 39.0 0.47± 0.22 3.99± 3.89 0.36± 0.13 0.22± 0.10

7.1 0.88± 0.03 6.7± 2.7 0.21± 0.13 45.0± 36.1 0.47± 0.22 1.33± 0.34 0.29± 0.11 0.23± 0.10

7.2 0.89± 0.02 7.2± 1.5 0.13± 0.08 54.4± 39.1 0.46± 0.21 1.86± 0.47 0.11± 0.1 0.23± 0.09

7.3 0.90± 0.02 8.6± 6.7 0.13± 0.09 50.7± 37.6 0.45± 0.22 1.35± 0.43 0.22± 0.17 0.24± 0.01

7.4 0.86± 0.02 9.9± 1.7 0.11± 0.07 51.7± 37.5 0.46± 0.22 1.48± 0.36 0.17± 0.06 0.23± 0.10

7.5 0.81± 0.02 24.2± 16.8 0.30± 0.05 37.9± 34.6 0.52± 0.22 1.56± 0.41 0.56± 0.15 0.21± 0.10
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