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Rethinking Epistemic Logic with Belief Bases

Emiliano Lorini
IRIT-CNRS, Toulouse University, France

Abstract

We introduce a new semantics for a family of logics of explicit and implicit belief
based on the concept of multi-agent belief base. Differently from standard semantics
for epistemic logic in which the notions of possible world and doxastic/epistemic alter-
native are primitive, in our semantics they are non-primitive but are computed from the
concept of belief base. We provide complete axiomatizations and prove decidability
for our logics via finite model arguments. Furthermore, we provide polynomial em-
beddings of our logics into Fagin & Halpern’s logic of general awareness and establish
complexity results via the embeddings. We also present variants of the logics incorpo-
rating different forms of epistemic introspection for explicit and/or implicit belief and
provide complexity results for some of these variants. Finally, we present a number of
dynamic extensions of the static framework by informative actions of both public and
private type, including public announcement, belief base expansion and forgetting. We
illustrate the application potential of the logical framework with the aid of a concrete
example taken from the domain of conversational agents.

1. Introduction

An important distinction in formal epistemology is between explicit belief and im-
plicit belief. According to Levesque [54], “...a sentence is explicitly believed when it
is actively held to be true by an agent and implicitly believed when it follows from
what is believed” (p. 198). In other words, explicit beliefs correspond to an agent’s ac-
tual beliefs, whereas implicit beliefs correspond to her potential ones. This distinction
is particularly relevant for the design of resource-bounded agents who spend time to
make inferences and do not believe all facts that are deducible from their actual beliefs.
It is also acknowledged by Fagin & Halpern (F&H)’s logic of general awareness [29]
which defines explicit belief as a formula implicitly believed by an agent and of which
the agent is aware.

The concept of explicit belief is tightly connected with the concept of belief base
[66, 59, 38, 70]. In particular, an agent’s belief base, which is not necessarily closed
under deduction, includes all facts that are explicitly believed by the agent.

In this article, we present a multi-agent logic, called Logic of Doxastic Attitudes
(LDA), that precisely articulates the distinction between explicit belief, as a fact in
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an agent’s belief base, and implicit belief, as a fact that is deducible from the agent’s
explicit beliefs, given the agents’ common ground. The concept of common ground
[73] corresponds to the body of information that the agents share and that they use
to make inferences from their explicit beliefs. The multi-agent aspect of the LDA
framework lies in the fact that it supports reasoning about agents’ higher-order beliefs,
i.e., an agent’s explicit (or implicit) belief about the explicit (or implicit) belief of
another agent. Differently from existing Kripke-style semantics for epistemic logic —
exploited, among other logics, by F&H’s logic of general awareness — in which the
notion of doxastic alternative is primitive, in the LDA semantics the notion of doxastic
alternative is defined from, and more generally grounded on, the concept of belief base.
Specifically, it is assumed that at a given state s agent i considers state s0 possible if
and only if s0 satisfies all formulas that are included in agent i’s belief base at s.1

The main motivation behind the logic LDA is to bridge two traditions that have
rarely talked to each other up to now. On the one hand, we have epistemic logic: it
started in the 60ies with the seminal work of Hintikka [45] on the logics of knowledge
and belief, it was extended to the multi-agent setting at the end of 80ies [30, 61] and
then furtherly developed during the last 20 years, the period of the “dynamic turn”,
with growing research on dynamic epistemic logic [83]. On the other hand, we have
syntactic approaches to knowledge representation and reasoning mainly proposed in
the area of artificial intelligence (AI). The latter includes, for instance, work on belief
base and knowledge base revision [38, 40, 14], belief base merging [48], input-output
logic [60], as well as more recent work on the so-called “database perspective” to the
theory of intention [72] and resource-bounded knowledge and reasoning about strate-
gies [6]. All these approaches defend the idea that the right level of abstraction for
understanding and modelling cognitive processes and phenomena is the “belief base”
level or, more generally, the “cognitive attitude base” level. The latter consists in iden-
tifying a cognitive agent with the sets of facts that she believes (belief base), desires
(desire base) and intends (intention base) and in studying the interactions between the
different bases.2

There is also a practical motivation behind the logic LDA in relation to modelling
Theory of Mind (ToM) in social robotics [90, 71, 91] and in the domain of intelligent
virtual agents (IVAs) [69, 67, 22, 42]. ToM is the general capacity of ascribing mental
attitudes and mental operations to others and of predicting the behavior of others on the
basis of this attribution [33]. An important aspect of ToM consists in forming higher-
order beliefs about other agents’s beliefs. This is essential, among other things, for AI
persuasive technologies, since an artificial agent’s persuasiveness relies on her capacity
of representing the human interlocutor’s beliefs in such a way that she can modify them
through communication and, consequently, influence the human’s behavior.

1Other grounded semantics for epistemic logics have been proposed in the AI literature. For instance,
a semantics based on the concept of interpreted system is provided in [55], while semantics exploiting the
notion of propositional observability are presented in [79, 24].

2This approach has also been used in linguistic work on modal expressions. For instance, according to
Kratzer [52], conversational common ground can be seen as a set of formulas shared by the interlocutors and
the set of worlds that are considered possible by the interlocutors are those worlds that satisfy all formulas
in the common ground.

2



Although existing computational models of ToM used in social robotics and in
human-machine interaction (HMI) take this aspect into consideration, they have some
limitations. For instance, robotic models of ToM (see, e.g., [53, 62, 23]) only allow to
represent higher-order beliefs of depth at most 2. Furthermore, both classes of models
do not clearly spell out how the speaker’s decision to perform a certain speech act may
depend on her higher-order beliefs about the hearer’s beliefs, and how the speaker’s
speech act may affect the hearer’s higher-order beliefs.

As shown in [17], the standard epistemic logic (EL) approach [30] and dynamic
epistemic logic (DEL) approach [83] overcome these drawbacks by allowing to repre-
sent higher-order beliefs of any depth and by offering a framework for formalizing a
variety of communication dynamics in a multi-agent setting with the help of so-called
action models [12]. Albrecht & Stone [4] include EL and DEL in the category of recur-
sive reasoning methods, in their classification of methods for modelling other agents’
minds and predicting other agents’ actions. They claim that such methods “...use ex-
plicit representations of nested beliefs and “simulate” the reasoning processes of other
agents to predict their actions ” [4, p. 80].

Unfortunately, standard EL and DEL have other disadvantages. First of all, they
do not distinguish between explicit and implicit belief. They only allows to represent
what an artificial agent believes a human could potentially believe — if she had enough
computational resources and time to infer it —, without representing what the artificial
agent believes the human actually believes. Secondly, modelling complex information
dynamics in DEL comes with a price: as shown in [32], in case of private announce-
ments, the original epistemic model has to be duplicated by creating one copy of the
model for the perceiver in which her beliefs have changed and one copy for the non-
perceivers in which their beliefs have not changed. Thus, the original epistemic model
may grow exponentially in the length of the sequence of private announcements. This
feature is reflected in the computational aspects of DEL, which exhibits an increase in
complexity when moving from public announcements to private forms of communica-
tion in a multi-agent setting. In particular, although extending multi-agent epistemic
logic by simple notions of state eliminating public announcement or arrow eliminating
private announcement does not increase its PSPACE complexity (see, e.g., [58, 19]),
complexity increases if we move into the realm of full DEL, whose satisfiability prob-
lem is known to be NEXPTIME-complete [9]. It is also known that epistemic planning
in PAL is decidable, while it becomes undecidable in general DEL, due to the fact that
the epistemic model grows as a consequence of a private announcement [18].

The logic LDA we present in this article does not have these disadvantages. First
of all, it provides a generalization of the standard EL approach in which the distinction
between explicit and implicit belief can be captured: it allows us to represent both
what an artificial agent believes a human is explicitly believing in a given situation
— which is the essential aspect of ToM — and what an artificial agent believes a
human can infer from what she explicitly believes. Secondly, it offers a ‘parsimonious’
account of private informative actions that — differently from standard DEL — does
not require to duplicate epistemic models and to make them exponentially larger. This
is due to the fact that private belief change operations are modeled in LDA as set-
theoretic operations on the belief base of an agent (the perceiver) which do not affect
the belief bases of the non-perceivers. This feature has interesting implications on the
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computational level. For instance, we will show that extending LDA by private belief
base expansion operators does not increase the PSPACE-complexity of the static logic.

Before discussing related work let us provide some terminological clarifications.
We use the term ‘private explicit belief change’ to refer to change of an agent’s explicit
beliefs that does not affect the other agents’ explicit or implicit beliefs. Symmetrically,
we use the term ‘private implicit belief change’ to refer to change of an agent’s implicit
beliefs that does not affect the other agents’ explicit or implicit beliefs. We use ‘private
belief change’ as a generic term covering both of them.

Related work. The logic LDA belongs to the family of logics for non-omniscient
agents. Purely syntactic approaches to the logical omniscience problem have been
proposed in which an agent’s beliefs are described either by a set of formulas which is
not necessarily closed under deduction [28, 64] or by a set of formulas obtained by the
application of an incomplete set of deduction rules [49, 46]. Logics of time-bounded
reasoning have also been studied [2, 5, 34, 27] in which reasoning is a represented as
a process that requires time due to the time-consuming application of inference rules.
Other authors [87, 15] have tried to solve the logical omniscience problem by using a
non-normal worlds semantics for belief that prevents distributivity of belief operators
across implication (so-called Axiom K) from being valid and the rule of necessitation
for belief from being admissible.

Justification logic [8] provides a solution to the logical omniscience problem by
formalizing a notion of justified belief based on the notion of evidence. The reason
why justified belief does not necessarily distribute across implication is that having an
immediate evidence in support of ' and having an immediate evidence in support of
' !  does not necessarily imply having an immediate evidence in support  , since
the agent could draw the conclusion that  only through some inference steps.

Finally, logics of (un)awareness have been studied both in AI [29, 80, 3] and eco-
nomics [63, 43, 36].

As we will show in Section 5, LDA is closely related to Fagin & Halpern (F&H)’s
logic of general awareness (LGA), as there exists a polynomial embedding of the for-
mer into the latter. Nonetheless, the semantics of the two logics are genuinely different
both formally and conceptually. First of all, in the semantics of LGA the notion of
doxastic alternative is given as a primitive, while in the LDA semantics it is computed
from an agent’s belief base. Secondly, the LGA ontology of epistemic attitudes is richer
than the LDA ontology, as the former includes the concept of awareness which is not
included in the latter. We believe that this is a virtue of LDA compared to LGA. In our
opinion, modelling explicit and implicit belief without invoking the notion of aware-
ness is a good thing, as the latter is intrinsically polysemic and ambiguous. This aspect
is emphasized by F&H, according to whom the notion of awareness is “...open to a
number of interpretations. One of them is that an agent is aware of a formula if he
can compute whether or not it is true in a given situation within a certain time or space
bound” [29, p. 41].

There are also important differences between LDA and LGA at the level of the
belief dynamics. Private explicit belief change in LDA just consists in applying set-
theoretic operations on an agent’s belief base (e.g., adding a formula to it, removing a
formula from it, etc.), without modifying the other agents’ belief bases. Moreover, in
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LDA private implicit belief change is derivative of private explicit belief change (i.e.,
an agent’s implicit beliefs privately change as a consequence of a change of her belief
base). The picture is more convoluted in LGA, since the notions of doxastic alternative
and awareness are independent and explicit belief is defined from them. In particular, as
shown in [76], in LGA explicit beliefs can change either as a consequence of awareness
change, which modifies an agent’s awareness function,3 or as a consequence of implicit
belief change, which modifies an agent’s set of doxastic alternatives. Hence, modelling
private explicit belief change in LGA is at least as complex as modelling private implicit
belief change in the standard DEL approach, since the LGA semantics is an extension
of the EL semantics by the notion of awareness. As we have emphasized above, the
standard DEL semantics for private implicit belief change is intrinsically complex, as
it requires to duplicate the original epistemic model by creating one copy of the model
for the perceiver and one copy for the non-perceivers. This complication is avoided
altogether in our logic LDA.

Another system related to LDA is the logic of local reasoning also presented in
[29], in which the distinction between explicit and implicit belief is captured. F&H
use a neighborhood semantics for explicit belief: every agent is associated with a set
of sets of worlds, called frames of mind. (See also [86, 10] for the use of neighbor-
hood semantics for modelling explicit beliefs.) They define an agent’s set of doxastic
alternatives as the intersection of the agent’s frames of mind. According to F&H’s se-
mantics, an agent explicitly believes that ' if and only if she has a frame of mind in
which ' is globally true. Moreover, an agent implicitly believes that ' if and only if, '
is true at all her doxastic alternatives. In their semantics, there is no representation of
an agent’s belief base, corresponding to the set of formulas explicitly believed by the
agent. Moreover, differently from the LDA notion of explicit belief, their notion does
not completely solve the logical omniscience problem. For instance, while their notion
of explicit belief is closed under logical equivalence, the LDA notion is not. Specif-
ically, the following rule of equivalence preserves validity in F&H’s logic but not in
LDA:

↵ $ ↵0

4
i

↵ $ 4
i

↵0

where 4
i

↵ means that agent i has the explicit belief that ↵. This is a consequence
of their use of an extensional semantics for explicit belief. Levesque too provides an
extensional semantics for explicit belief with no connection with the notion of belief
base [54]. In his logic, explicit beliefs are closed under conjunction, while they are not
in our logic LDA.

Plan of the article. The article is organized as follows. In Section 2, we present the
language of the family of LDA logics. We talk about the family of LDA logics — or,
more shortly, about the LDA logics — instead of a single LDA logic, since we con-
sider different variants of a logic of explicit and implicit belief working under different

3Van Benthem & Velasquez define two basic operations of awareness change: the operation of “con-
sidering” (or becoming aware of something) and the operation of “dropping” (or becoming unaware of
something).
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assumptions. For example, we study the LDA logic in which an agent’s belief base is
assumed to be globally consistent as well as the LDA logic in which an agent’s explicit
beliefs are assumed to be correct. Then, in Section 3, we introduce a semantics for
the LDA language based on the notion of multi-agent belief base. We define two ad-
ditional Kripke-style semantics in which the notion of doxastic alternative is primitive.
These additional semantics will be useful for proving completeness and decidability
results for the logics LDA. We show that the three semantics are all equivalent with
respect to the formal language under consideration. In Section 4, we provide axiom-
atizations for the different LDA logics and prove that their satisfiability problems are
decidable. In Section 5, we provide polynomial embeddings of the LDA logics into
Fagin & Halpern’s logic of general awareness (LGA). Thanks to these embeddings and
to the known complexity of LGA, we will be able to prove a number of complexity
results for the LDA logics. In Section 6, we extend our analysis to logics in the LDA
family implementing different forms of introspection for explicit and/or implicit belief.
In Section 7, we move from the static to the dynamic setting. We present extensions of
LDA by belief change operators both of public and private type. This includes opera-
tors for public announcement, private belief base expansion and forgetting. We show
how the private belief base expansion operator can be used in the context of an AI
application in which a conversational agent is expected to use its persuasive capabili-
ties in its interaction with a human. Section 8 is devoted to the comparison between the
LDA approach to private belief change and the DEL approach. We show that the notion
of private belief base expansion studied in the LDA setting can be seen as a compact
form of private update in the DEL sense, which does not require world duplication. In
Section 9, we conclude.4

2. A Language for Explicit and Implicit Beliefs

This section presents the language of the logic LDA for representing explicit be-
liefs and implicit beliefs of multiple agents. Assume a countably infinite set of atomic
propositions Atm = {p, q, . . .} and a finite set of agents Agt = {1, . . . , n}. We define
the logical language in two steps.

We first define the language LANG0(Atm,Agt) by the following grammar in
Backus-Naur Form (BNF):

↵ ::= p | ¬↵ | ↵1 ^ ↵2 | 4
i

↵,

where p ranges over Atm and i ranges over Agt . LANG0(Atm,Agt) is the language
for representing explicit beliefs of multiple agents. The formula 4

i

↵ is read “agent
i explicitly (or actually) believes that ↵ is true”. In this language, we can represent
higher-order explicit beliefs, i.e., an agent’s explicit belief about another agent’s ex-
plicit beliefs.

The language LANGLDA(Atm,Agt) extends the language LANG0(Atm,Agt) by
modal operators of implicit belief and is defined by the following grammar:

4This article is a considerably extended and improved version of [56].
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' ::= ↵ | ¬' | '1 ^ '2 | ⇤
i

',

where ↵ ranges over LANG0(Atm,Agt) and i ranges over Agt . For notational con-
venience we write LANG0 instead of LANG0(Atm,Agt) and LANGLDA instead of
LANGLDA(Atm,Agt), when the context is unambiguous.

The other Boolean constructions >, ?, _, ! and $ are defined from ↵, ¬ and ^
in the standard way.

For every formula ' 2 LANGLDA, we write Atm(') to denote the set of atomic
propositions of type p occurring in '. Moreover, for every set of formulas X ✓
LANGLDA, we define Atm(X) =

S
'2X Atm(').

The formula ⇤
i

' has to be read “agent i implicitly (or potentially) believes that '
is true”. We define the dual operator ⌃

i

as follows:

⌃
i

'
def
= ¬⇤

i

¬'.

⌃
i

' has to be read “' is compatible (or consistent) with agent i’s explicit beliefs”.
Note that the language LANGLDA does not allow us to represent explicit beliefs

about implicit beliefs. The reason for this syntactic restriction is that the semantics we
will present in Section 3 is designed in such a way that an agent’s doxastic accessibility
relation is computed from the agent’s belief base. More generally, the notion of implicit
belief is defined in terms of the notion of explicit belief. Therefore, having explicit
beliefs about implicit beliefs, would make our definition circular.5

3. Formal Semantics

In this section, we present three families of formal semantics for the language of
explicit and implicit beliefs defined above. In the first semantics, the notion of dox-
astic alternative is not primitive but it is defined from the primitive concept of belief
base. The second semantics is a Kripke-style semantics, based on the concept of no-
tional model, in which an agent’s set of doxastic alternatives coincides with the set of
possible worlds in which the agent’s explicit beliefs are true. The third semantics is a
weaker semantics, based on the concept of quasi-notional model. It only requires that
an agent’s set of doxastic alternatives is included in the set of possible worlds at which
the agent’s explicit beliefs are true. We will show that the three families of semantics
are equivalent with respect to the formal language under consideration.

We consider the first semantics to be the “natural” semantics for the logic LANGLDA.
The reason for introducing the Kripke-style semantics based on notional models is that
it is closer to the possible world semantics commonly used in the areas of epistemic
logic [30] and modal logic [16] than the belief base semantics. Consequently, we can
import methods and techniques from these areas to prove results about axiomatics and
complexity for the logic LDA. Another reason is that it eases the tasks of comparing
LDA with F&H’s logic of general awareness and of defining properties of introspection

5A way of avoiding this circularity would be a fixed-point definition of the implicit belief operator which
would make our semantics considerably more complex. We leave the study of this alternative semantics for
future work.
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on beliefs in the LDA framework. These two issues will be investigated in Sections 5
and 6, respectively. The reason for introducing quasi-notional models is purely tech-
nical. We can use a standard canonical model argument for proving completeness of
LDA relative to this class of models. Then, given the equivalence between the belief
base semantics, the notional model semantics and the quasi-notional model semantics
for the language LANGLDA, we have completeness of LDA relative to the three model
classes.

The following are some useful properties of binary relations that we will use in
different parts of the article. Let S be a set and let R ✓ S ⇥ S. We say that:

• the relation R is serial if and only if, for every s 2 S, there exists s0 2 S such
that sRs0;

• the relation R is reflexive if and only if, for every s 2 S, sRs;

• the relation R is transitive if and only if, for every s, s0, s00 2 S, if sRs0 and
s0Rs00 then sRs00;

• the relation R is Euclidean if and only if, for every s, s0, s00 2 S, if sRs0 and
sRs00 then s0Rs00.

3.1. Multi-agent belief base semantics
We first consider the semantics based on the concept of multi-agent belief base that

is defined as follows.

Definition 1 (Multi-agent belief base). A multi-agent belief base is a tuple B = (B1, . . . ,
B

n

,V ) where:

• for every i 2 Agt , B
i

✓ LANG0 is agent i’s belief base,

• V ✓ Atm is the actual state.

The set of multi-agent belief bases is denoted by B.

The sublanguage LANG0(Atm,Agt) is interpreted with respect to multi-agent
belief bases, as follows.

Definition 2 (Satisfaction relation). Let B = (B1, . . . ,Bn

,V ) 2 B. Then:

B |= p () p 2 V ,

B |= ¬↵ () B 6|= ↵,

B |= ↵1 ^ ↵2 () B |= ↵1 and B |= ↵2,

B |= 4
i

↵ () ↵ 2 B

i

.

Observe in particular the set-theoretic interpretation of the explicit belief operator:
agent i explicitly believes that ↵ if and only if ↵ is included in her belief base.

It is worth to consider correct multi-agent belief bases according to which every
fact that an agent explicitly believes has to be true.

8



Definition 3 (Correct multi-agent belief base). The multi-agent belief base B = (B1,
. . . ,B

n

,V ) is said to be correct if and only if, for every i 2 Agt and for every
↵ 2 LANG0, if ↵ 2 B

i

then B |= ↵.

A multi-agent belief model (MAB) is defined to be a multi-agent belief base sup-
plemented with a set of multi-agent belief bases, called context. The latter includes all
multi-agent belief bases that are compatible with the agents’ common ground [73], i.e.,
the body of information that the agents commonly believe to be the case.

Definition 4 (Multi-agent belief model). A multi-agent belief model (MAB) is a pair
(B,Cxt), where B 2 B and Cxt ✓ B.

Note that in the previous definition we do not require B 2 Cxt . Let us illustrate the
concept of MAB with the aid of an example.

Example Let Agt = {1, 2} and {p, q} ✓ Atm . Moreover, let (B1,B2,V ) be such
that:

B1 = {p, 42p},

B2 = {p},

V = {p, q}.

Suppose that the agents have in their common ground the fact p ! q. In other words,
they commonly believe that p implies q. This means that:

Cxt = {B0 2 B : B0 |= p ! q}.

The following definition introduces the concept of doxastic alternative.

Definition 5 (Doxastic alternatives). Let i 2 Agt . Then, R
i

is the binary relation on
the set of multi-agent belief bases B such that, for all B = (B1, . . . ,Bn

,V ), B0 =
(B 01, . . . ,B

0
n

,V 0) 2 B:

BR
i

B0 if and only if 8↵ 2 B

i

: B0 |= ↵.

BR
i

B0 means that B0 is a doxastic alternative for agent i at B (i.e., at B agent i
considers B0 possible). The idea of the previous definition is that B0 is a doxastic
alternative for agent i at B if and only if, B0 satisfies all facts that agent i explicitly
believes at B. Observe that BR

i

B0 does not imply B
i

✓ B0. In Section 9, we will
discuss a variant of the logic LDA for which the implication from BR

i

B0 to B
i

✓ B0

holds.
The following definition generalizes Definition 2 of satisfaction relation to the full

language LANGLDA. Its formulas are interpreted with respect to MABs. (Boolean
cases are omitted, as they are defined in the usual way.)

Definition 6 (Satisfaction relation (cont.)). Let (B,Cxt) be a MAB. Then:

(B,Cxt) |= ↵ () B |= ↵,

(B,Cxt) |= ⇤
i

' () 8B0 2 Cxt : if BR
i

B0 then (B0,Cxt) |= '.
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Let us go back to the example.

Example (cont.) It is easy to check that the following holds:

(B,Cxt) |= ⇤1(p ^ q) ^ ⇤2(p ^ q) ^ ⇤1⇤2(p ^ q).

Indeed, we have:
�
R1(B) \ Cxt

�
✓ {B0 2 B : B0 |= p ^ q},

�
R2(B) \ Cxt

�
✓ {B0 2 B : B0 |= p ^ q},

⇣�
R1 � R2(B)

�
\ Cxt

⌘
✓ {B0 2 B : B0 |= p ^ q},

where � is the composition operation between binary relations and R
i

(B) = {B0 2
B : BR

i

B0}.

We focus on subclasses of MABs that guarantee, respectively, global consistency
of the agents’ belief bases and correctness of the agents’ beliefs. For the sake of exposi-
tion, when talking about correct (or true) explicit (resp. implicit) belief, we sometimes
use the terms explicit (resp. implicit) knowledge. Indeed, we assume that the terms
“true belief”, “correct belief” and “knowledge” are all synonyms.

Definition 7 (Global consistency for MAB). The MAB (B,Cxt) satisfies global con-
sistency (GC) if and only if, for every i 2 Agt and for every B0 2 ({B} [ Cxt), there
exists B00 2 Cxt such that B0R

i

B00.

Global consistency means that in every possible situation an agent has at least one
doxastic alternative. Saying that (B,Cxt) satisfies GC is the same thing as saying
that, for every i 2 Agt , the relation R

i

\
�
({B} [ Cxt) ⇥ Cxt

�
is serial.

We distinguish global consistency of a MAB from local consistency of the agents’
belief bases. Local consistency can mean different things. For instance, it could mean
that (i) for every i 2 Agt , for every B0 2 ({B} [ Cxt) and for every ↵ 2 LANG0,
↵ ^ ¬↵ 62 B0

i

, or that (ii) for every i 2 Agt , for every B0 2 ({B} [ Cxt) and
for every ↵ 2 LANG0, {↵, ¬↵} 6✓ B0

i

. Global consistency defined above implies
local consistency in both senses, but not vice versa. Indeed, an agent’s beliefs could
be locally consistent in one of the two senses, and they are rendered inconsistent by
means of purely deductive inference.

Definition 8 (Belief correctness for MAB). The MAB (B,Cxt) satisfies belief cor-
rectness (BC) if and only if B 2 Cxt and, for every i 2 Agt and for every B0 2 Cxt ,
B0R

i

B0.

Saying that (B,Cxt) satisfies BC is the same thing as saying that B 2 Cxt and, for
every i 2 Agt , the relation R

i

\ (Cxt ⇥ Cxt) is reflexive.
For every X ✓ {GC ,BC}, we denote by MAB

X

the class of MABs satisfying
every condition in X . MAB; is the class of all MABs. For notational convenience,
we sometimes write MAB instead of MAB;. We have MAB{BC} ✓ MAB{GC}.
In fact, BC implies GC since if B 2 Cxt and B0R

i

B0 for every B0 2 Cxt then,
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for every B0 2 ({B} [ Cxt), there exists B00 2 Cxt such that B0R
i

B00. Therefore,
MAB{GC ,BC} = MAB{BC}.

Note that the condition B 2 Cxt in Definition 8 is necessary to make agents’
implicit beliefs correct, i.e., to make the formula ⇤

i

' ! ' valid.
As the following proposition highlights, belief correctness for MABs is completely

characterized by the fact that the actual world is included in the agents’ common ground
and that the agents’ explicit beliefs are correct in the sense of Definition 3.

Proposition 1. Let (B,Cxt) be a MAB. Then, it satisfies BC if and only if B 2 Cxt

and, for every B0 2 Cxt , B0 is correct.

PROOF. (B,Cxt) satisfies belief correctness iff B 2 Cxt and for every i 2 Agt and
for every B0 2 Cxt , B0R

i

B0. By Definition 5, the latter is equivalent to stating that
B 2 Cxt and for every i 2 Agt , for every B0 2 Cxt and for every ↵ 2 B

0
i

, if ↵ 2 B

0
i

then B0 |= ↵. By Definition 3, the latter means that B 2 Cxt and every B0 2 Cxt is
correct. ⌅

Let ' 2 LANGLDA, we say that ' is valid for the class MAB
X

if and only if, for
every (B,Cxt) 2 MAB

X

we have (B,Cxt) |= '. We say that ' is satisfiable for the
class MAB

X

if and only if ¬' is not valid for the class MAB
X

.
In the article, given a class of models M and formula ', we use the symbol |=M '

to mean that the formula ' is valid relative to the class MAB. For instance, |=MABX

' means that the formula ' is relative to the class MAB
X

.

Agent 1’s
belief base

Agent 2’s
belief base

Common 
ground

Agent 1’s
implicit beliefs

Agent 2’s
implicit beliefs

DeductionDeduction

Figure 1: Conceptual framework

Figure 1 resumes the general idea behind the LDA framework, especially for what
concerns the relationship between the agents’ belief bases and the agents’ common
ground (or context) and the relationship between the latter and the agents’ implicit
beliefs. While an agent’s belief base captures the agent’s private information, the com-
mon ground captures the agents’ public information. An agent’s implicit belief corre-
sponds to a fact that the agent can deduce from the public information and her private
information. Common ground should be conceived as a sort of implicit common be-
lief. Indeed, as emphasized by Stalnaker, common ground can be described as the
“...presumed background information shared by participants in a conversation...” [73,

11



p. 701]. An information in the common ground, being in background, is taken into
consideration by the agents when making inferences, but is not necessarily part of an
agent’s belief base before an inference is made.

3.2. Notional model semantics
Let us now define a new semantics for the language LANGLDA which extends the

standard multi-relational Kripke semantics of epistemic logic by agents’ belief bases.

Definition 9 (Notional doxastic model). A notional doxastic model (NDM) is a tuple
M = (W, D, N , V) where:

• W is a set of worlds,

• D : Agt ⇥ W �! 2LANG0 is a doxastic function,

• N : Agt ⇥ W �! 2W is a notional function,

• V : Atm �! 2W is a valuation function,

and such that, given the following inductive definition of the semantic interpretation of
formulas LANGLDA relative to a pair (M, w) with w 2 W :

(M, w) |= p () w 2 V(p),
(M, w) |= ¬' () (M, w) 6|= ',

(M, w) |= ' ^  () (M, w) |= ' and (M, w) |=  ,

(M, w) |= 4
i

↵ () ↵ 2 D(i, w),

(M, w) |= ⇤
i

' () 8v 2 N (i, w) : (M, v) |= ',

it satisfies the following condition, for all i 2 Agt and for all w 2 W :

(C1) N (i, w) =
T
↵2D(i,w) ||↵||

M

,

with ||↵||
M

= {v 2 W : (M, v) |= ↵}.

We call the pair (M, w) in the previous definition pointed NDM.
For every agent i and for every world w, D(i, w) denotes agent i’s set of explicit

beliefs at w.
The set N (i, w), used in the interpretation of the implicit belief operator ⇤

i

, is
called agent i’s set of notional worlds at world w. The term ‘notional’ is borrowed
from the philosopher D. Dennett [25, 26] (see, also, [49]): an agent’s notional world is
a world at which all the agent’s explicit beliefs are true. This idea is clearly expressed
by Condition C1.

In order to relate NDMs with the MABs defined in Section 3.1, we consider specific
subclasses in which the accessibility relations

N
i

= {(w, v) 2 W ⇥ W : v 2 N (i, w)}

are assumed to be serial and reflexive, respectively.
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Definition 10 (Global consistency for NDM). The NDM M = (W, D, N , V) satis-
fies global consistency (GC) if and only if, for every i 2 Agt and for every w 2 W ,
N (i, w) 6= ;.

Global consistency for NDMs just means that an agent’s set of notional worlds must
be non-empty, i.e., there exists at least one situation which is compatible with what an
agent explicitly believes.

Definition 11 (Belief correctness for NDM). The NDM M = (W, D, N , V) satisfies
belief correctness (BC) if and only if, for every i 2 Agt and for every w 2 W , w 2
N (i, w).

Belief correctness for NDMs just means that an agent’s set of notional worlds must
include the actual world.

As in Section 3.1, we define different model classes satisfying such properties. For
every X ✓ {GC ,BC}, we denote by NDM

X

the class of NDMs satisfying every
condition in X . NDM; is the class of all NDMs. For notational convenience, we
sometimes write NDM instead of NDM;. As for MABs, we have NDM{BC} ✓
NDM{GC}.

We say that a NDM M = (W, D, N , V) is finite if and only if W , D(i, w) and
V (w) are finite sets for every i 2 Agt and for every w 2 W , where

V (w) = {p 2 Atm : w 2 V(p)}.

The class of finite NDMs satisfying every condition in X ✓ {GC ,BC} is denoted by
finite-NDM

X

.
Let ' 2 LANGLDA, we say that ' is valid for the class NDM

X

if and only if, for
every M = (W, D, N , V) 2 NDM

X

and for every w 2 W , we have (M, w) |= '.
We say that ' is satisfiable for the class NDM

X

if and only if ¬' is not valid for the
the class NDM

X

.

3.3. Quasi-model semantics
In this section we provide an alternative semantics for the language LANGLDA

based on a more general class of models, called quasi-notional doxastic models (quasi-
NDMs). This semantics will be fundamental for proving completeness of the logics we
will define in Section 4.

Definition 12 (Quasi-model). A quasi-notional doxastic model (quasi-NDM) is a tu-
ple M = (W, D, N , V) where W, D, N and V are as in Definition 9 except that Con-
dition C1 is replaced by the following weaker condition, for all i 2 Agt and for all
w 2 W :

(C1⇤) N (i, w) ✓
T
↵2D(i,w) ||↵||

M

.

As for NDMs, for every X ✓ {GC ,BC}, we denote by QNDM
X

the class of quasi-
NDMs satisfying every condition in X . QNDM; is the class of all quasi-NDMs. We
sometimes write QNDM instead of QNDM;. As for MABs and NDMs, we have
QNDM{BC} ✓ QNDM{GC}.
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Truth conditions of formulas in LANGLDA relative to quasi-NDMs are the same as
truth conditions of formulas in LANGLDA relative to the NDMs. Validity and satisfia-
bility of formulas for a class QNDM

X

are defined in the usual way.
As for NDMs, we say that the quasi-NDM M = (W, D, N , V) is finite if and only

if W , D(i, w) and V (w) = {p 2 Atm : w 2 V(p)} are finite sets for every i 2 Agt

and for every w 2 W . The class of finite quasi-NDMs satisfying every condition in
X ✓ {GC ,BC} is denoted by finite-QNDM

X

.

3.4. Equivalence between semantics
The main technical result of this section is an equivalence result between the five

different semantics for the language LANGLDA defined in Sections 3.1, 3.2 and 3.3,
namely, the multi-agent belief base semantics, the notional model semantics, the finite
notional model semantics, the quasi-notional model semantics, and the finite quasi-
notional model semantics.

Theorem 1. Let ' 2 LANGLDA and let X ✓ {GC ,BC}. Then, the following five
statements are equivalent:

• ' is satisfiable for the class QNDM
X

,

• ' is satisfiable for the class finite-QNDM
X

,

• ' is satisfiable for the class finite-NDM
X

,

• ' is satisfiable for the class NDM
X

,

• ' is satisfiable for the class MAB
X

.

The proof of Theorem 1 is given in the technical annex at the end of the paper.

4. Logic of Doxastic Attitudes

This section is devoted to present a number of logics of explicit and implicit belief
that are interpreted relative to the semantics defined in the previous section. They are all
extensions of a basic logic called LDA which stands for “Logic of Doxastic Attitudes”.
We will provide axiomatics and decidability results for this family of logics.

4.1. Definition of the Logic
The following is the definition of the logics in the LDA family, each logic being

defined by a set of axioms and rules of inference.

Definition 13 (LDA). We define LDA to be the extension of classical propositional
logic by the following axioms and rule of inference:

(⇤
i

' ^ ⇤
i

(' !  )) ! ⇤
i

 (K⇤i
)

4
i

↵ ! ⇤
i

↵ (Int4i,⇤i
)

'

⇤
i

'
(Nec⇤i

)
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For every X ✓ {D⇤i
, T⇤i

}, we define LDA
X

to be the extension of the logic LDA by
each axiom in X , where D⇤i

and T⇤i
are the following axioms:

¬(⇤
i

' ^ ⇤
i

¬') (D⇤i
)

⇤
i

' ! ' (T⇤i
)

As usual, for every logic LDA
X

with X ✓ {D⇤i
, T⇤i

} and for every' 2 LANGLDA,
we write `LDAX ' to mean that ' is deducible in LDA

X

, that is, there is a sequence of
formulas ('1, . . . ,'m

) such that:

• '
m

= ', and

• for every 1  k  m, either '
k

is an instance of one of the axiom schema
of LDA

X

or there are formulas '
k1 , . . . ,'kt such that k1, . . . , kt

< k and
'k1 ,...,'kt

'k
is an instance of some inference rule of LDA

X

.

We say that the set of formulas � from LANGLDA is LDA
X

-consistent if there are no
formulas '1, . . . ,'m

2 � such that `LDAX ('1 ^ . . . ^ '
m

) ! ?. Moreover, ' is
LDA

X

-consistent if {'} is LDA
X

-consistent.
According to the previous definition, LDA (alias, LDA;) is the most general system

for reasoning about explicit and implicit beliefs of multiple agents. It includes the
principles of system K for the implicit belief operator ⇤

i

as well as an Axiom Int4i,⇤i

relating explicit belief with implicit belief. All other logics are extensions of LDA by
specific principles about consistency of implicit beliefs (Axiom D⇤i

) and correctness
of implicit beliefs (Axiom T⇤i

).
The logic LDA{D⇤i

} includes the principles of system KD for the implicit belief
operator ⇤

i

, while the logic LDA{T⇤i
} includes the principles of system KT for the

implicit belief operator ⇤
i

. LDA{T⇤i
} has to be conceived as a logic of explicit and

implicit knowledge, since knowledge is necessarily veridical while a mere belief might
be wrong. Clearly, the logics LDA{D⇤i

,T⇤i
} and LDA{T⇤i

} coincide since Axiom D⇤i

is deducible in LDA{T⇤i
} by means of Axiom T⇤i

. By means of Axioms T⇤i
and

Int4i,⇤i
, in LDA{T⇤i

} we can, moreover, derive the following veridicality property
for explicit knowledge:

`LDA{T⇤i
} 4

i

↵ ! ↵. (1)

Note that there is no consensus in the literature about introspection for implicit
belief. For instance, in his seminal work on the logics of knowledge and belief [45],
Hintikka only assumed positive introspection for belief (Axiom 4) and rejected nega-
tive introspection (Axiom 5). Other logicians such as Jones [47] have argued against
the use of both positive and negative introspection axioms for belief. Nonetheless, all
approaches unanimously assume that a reasonable notion of implicit belief should sat-
isfy Axioms K and D. On this point, see also [13]. In this sense, the logic LDA{D⇤i

}
can be conceived as the minimal logic of explicit and implicit belief. We will go back
to the issue of introspection for belief in Section 6.

As we have emphasized above, explicit beliefs are conceivable as an agent’s actual
beliefs, while implicit beliefs are conceivable as potential beliefs that the agent can
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form through inference from her explicit beliefs and the common ground. Clearly, an
actual belief is also a potential belief, but not vice versa. This explains why we have
`LDAX 4

i

↵ ! ⇤
i

↵, for every X ✓ {D⇤i
, T⇤i

}, but 6`LDAX ⇤
i

↵ ! 4
i

↵. Note that
Axiom Int4i,⇤i

makes sense not only when ↵ is a propositional formula, but also when
it contains epistemic modalities. Let us justify this claim with the aid of an example.
Suppose agent i explicitly believes that p (i.e., 4

i

p), that p ! q (i.e., 4
i

(p ! q))
and that she does not believe that q explicitly (i.e., 4

i

¬4
i

q). By Axiom Int4i,⇤i
, it

follows that agent i implicitly believes that she does not believe that q explicitly (i.e.,
⇤

i

¬4
i

q) and, by Axiom K⇤i
together with Axiom Int4i,⇤i

, it follows that agent i
implicitly believes that q (i.e., ⇤

i

q). An intuitive explanation of why the following
formula

4
i

p ^ 4
i

(p ! q) ^ 4
i

¬4
i

q ^ ⇤
i

¬4
i

q ^ ⇤
i

q

is LDA
X

-consistent, for every X ✓ {D⇤i
, T⇤i

}, is that q is the conclusion of agent
i’s inferential process but, according to agent i, q is not included in the set of premises
from which her inference started.

In the next section, we are going to prove completeness of each logic LDA
X

. To
this aim, we introduce the correspondence function cf between Axioms D⇤i

and T⇤i

and their semantics counterparts of global consistency (GC ) and belief correctness
(BC ) defined in Section 3:

• cf (D⇤i
) = GC ,

• cf (T⇤i
) = BC .

4.2. Completeness and Decidability
This section is devoted to prove completeness and decidability results for the logics

in the LDA family.
We first prove completeness relative to the quasi-notional model semantics by using

a canonical model argument.
We consider maximally LDA

X

-consistent sets of formulas in LANGLDA (LDA
X

-
MCSs) with X ✓ {D⇤i

, T⇤i
}. The following proposition specifies some usual prop-

erties of MCSs.

Proposition 2. Let � be a LDA
X

-MCS with X ✓ {D⇤i
, T⇤i

}. Then:

• if ',' !  2 � then  2 �;

• ' 2 � or ¬' 2 �;

• ' _  2 � iff ' 2 � or  2 �.

The following is the Lindenbaum’s lemma for our logics. Its proof is standard (cf.
Lemma 4.17 in [16]) and we omit it.

Lemma 1. Let � be a LDA
X

-consistent set of formulas with X ✓ {D⇤i
, T⇤i

}. Then,
there exists a LDA

X

-MCS �0 such that � ✓ �0.
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Let the LDA
X

-canonical model be the tuple MLDAX = (W LDAX , DLDAX , N LDAX , VLDAX )
such that:

• W LDAX is set of all LDA
X

-MCSs;

• for all w 2 W LDAX , for all i 2 Agt and for all ↵ 2 LANG0, ↵ 2 DLDAX (i, w)
iff 4

i

↵ 2 w;

• for all w, v 2 W LDAX and for all i 2 Agt , v 2 N LDAX (i, w) iff, for all ' 2
LANGLDA, if ⇤

i

' 2 w then ' 2 v;

• for all w 2 W LDAX and for all p 2 Atm , w 2 VLDAX (p) iff p 2 w.

The next step in the proof consists in stating the following existence lemma. The
proof is again standard (cf. Lemma 4.20 in [16]) and we omit it.

Lemma 2. Let ' 2 LANGLDA and let w 2 W LDAX with X ✓ {D⇤i
, T⇤i

}. Then, if
⌃
i

' 2 w then there exists v 2 N LDAX (i, w) such that ' 2 v.

Then, we prove the following truth lemma.

Lemma 3. Let ' 2 LANGLDA and let w 2 W LDAX with X ✓ {D⇤i
, T⇤i

}. Then,
MLDAX , w |= ' iff ' 2 w.

PROOF. The proof is by induction on the structure of the formula. The cases with '
atomic, Boolean, and of the form ⇤

i

 are provable in the standard way by means of
Proposition 2 and Lemma 2 (cf. Lemma 4.21 in [16]). The proof for the case ' = 4

i

↵
goes as follows: 4

i

↵ 2 w iff ↵ 2 DLDAX (i, w) iff MLDAX , w |= 4
i

↵. ⌅
The last step consists in proving that the LDA

X

-canonical model belongs to the
appropriate model class for the logic LDA

X

.

Proposition 3. Let X ✓ {D⇤i
, T⇤i

}. Then, MLDAX 2 QNDM{cf (x):x2X}.

PROOF. We have to prove that MLDAX satisfies Condition C1⇤ in Definition 12. To this
aim, we just need to prove that if ↵ 2 DLDAX (i, w) then N LDAX (i, w) ✓ ||↵||

M

LDAX .
Suppose ↵ 2 DLDAX (i, w). Thus, 4

i

↵ 2 w. Hence, by Axiom Int4i,⇤i
and Proposi-

tion 2, ⇤
i

↵ 2 w. By the definition of MLDAX , it follows that, for all v 2 N LDAX (i, w),
↵ 2 v. Thus, by Lemma 3, for all v 2 N LDAX (i, w), (MLDAX , v) |= ↵. The latter
means that N LDAX (i, w) ✓ ||↵||

M

LDAX .
It is easy to verify that if D⇤i

2 X then MLDAX satisfies the condition of global
consistency of Definition 10 and that if T⇤i

2 X then MLDAX satisfies the condition
of belief correctness of Definition 11. ⌅

The following is the central result of this section.

Theorem 2. Let X ✓ {D⇤i
, T⇤i

}. Then, the logic LDA
X

is sound and complete for
the class QNDM{cf (x):x2X}.
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PROOF. As for soundness, it is routine to check that the axioms of LDA
X

are all
valid for the class QNDM{cf (x):x2X} and that the rule of inference Nec⇤i

preserves
validity.

As for completeness, suppose ' is a LDA
X

-consistent formula in LANGLDA. By
Lemma 1, there exists w 2 W LDAX such that ' 2 w. Hence, by Lemma 3, there
exists w 2 W LDAX such that MLDAX , w |= '. Since, by Proposition 3, MLDAX 2
QNDM{cf (x):x2X}, ' is satisfiable for the class QNDM{cf (x):x2X}. ⌅

Completeness of each logic LDA
X

relative to their corresponding notional model
semantics and multi-agent belief base semantics is a corollary of Theorem 2 and The-
orem 1.

Corollary 1. Let X ✓ {D⇤i
, T⇤i

}. Then,

• LDA
X

is sound and complete for the class NDM{cf (x):x2X}, and

• LDA
X

is sound and complete for the class MAB{cf (x):x2X}.

PROOF. As for the fist item, it is routine exercise to verify that LDA
X

is sound for
the class NDM{cf (x):x2X}. Now, suppose that formula ' is LDA

X

-consistent. Then,
by Theorem 1 and Theorem 2, there exists a finite M = (W, D, N , V) 2 QNDM

X

and w 2 W such that (M, w) |= '. Hence, again by Theorem 1, there exists a
finite M = (W, D, N , V) 2 NDM

X

and w 2 W such that (M, w) |= '. Thus,
more generally, ' is satisfiable for the class NDM

X

. The second item is a direct
consequence of the first item and Theorem 1. ⌅

We conclude our investigation of the mathematical and computational properties
of the LDA logics with a decidability result for their satisfiability problems. Like the
proof Theorem 1, the proof of Theorem 3 is given in the technical annex at the end of
the paper.

Theorem 3. Let X ✓ {GC ,BC}. Then, checking satisfiability of formulas in LANGLDA
relative to the class MAB

X

is decidable.

5. Relationship with logic of general awareness and complexity

In this section, we explore the connection between the LDA logics and the logic
of general awareness (LGA) by Fagin & Halpern (F&H) [29]. In particular, we will
provide polynomial embeddings of the former into the latter and, thanks to these em-
beddings, we will be able to state complexity results for their satisfiability problems.

The language of the logic of general awareness, denoted by LANGLGA, is defined
by the following grammar:

' ::= p | ¬' | '1 ^ '2 | B
i

' | A
i

' | X
i

',

where p ranges over Atm and i ranges over Agt .
The formula A

i

' has to be read “agent i is aware of '”. The operators B
i

and X
i

have the same interpretations as the operators ⇤
i

and 4
i

of the language LANGLDA.
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Specifically, B
i

' has to be read “agent i has an implicit belief that ' is true”, while
X
i

' has to be read “agent i has an explicit belief that ' is true”.
The previous language is interpreted with respect to so-called awareness structures,

that is, tuples of the form M = (S, )1, . . . , )n

, A1, . . . , An

,⇡) where S is a set
of states, every )

i

✓ S ⇥ S is a doxastic accessibility relation, every A
i

: S �!
2LANGLGA is an awareness function and ⇡ : Atm �! 2S is a valuation function for
atomic propositions. Let us denote by AS the class of awareness structures.

In order to relate LGA with each logic LDA
X

defined in Section 4, we focus on
specific subclasses of awareness structures.

We say that an awareness structure M = (S, )1, . . . , )n

, A1, . . . , An

,⇡) satisfies
global consistency (GC ) if every relation )

i

with 1  i  n is serial. We say that it
satisfies belief correctness (BC ) if every relation )

i

with 1  i  n is reflexive. For
every X ✓ {GC ,BC}, we denote by AS

X

the class of awareness structures satisfying
every condition in X .

In the logic of general awareness, the satisfaction relation is between formulas and
pointed models (M, s), where M = (S, )1, . . . , )n

, A1, . . . , An

,⇡) is an awareness
structure and s 2 S is a state:

(M, s) |= p () s 2 ⇡(p),

(M, s) |= ¬' () (M, s) 6|= ',

(M, s) |= '1 ^ '2 () (M, s) |= '1 and (M, s) |= '2,

(M, s) |= B
i

' () 8s0 2 S : if s )
i

s0 then (M, s0) |= ',

(M, s) |= A
i

' () ' 2 A
i

(s),

(M, s) |= X
i

' () (M, s) |= B
i

' and (M, s) |= A
i

'.

Let us define the following translation tr from the language LANGLDA of the logic
LDA to the language LANGLGA of the logic LGA:

tr(p) = p for p 2 Atm,

tr(¬') = ¬tr('),
tr('1 ^ '2) = tr('1) ^ tr('2),

tr(4
i

↵) = X
i

tr(↵),

tr(⇤
i

') = B
i

tr(').

We extend the translation tr to sets of formulas by defining tr(X) = {tr(') : ' 2 X},
for each X ✓ LANGLDA.

Although the logics LDA and LGA are fundamentally different at the semantic
level, they are very close at the syntactic level. In fact, as the translation tr highlights,
the language LANGLDA is a notational variant of LANGLGA.

The previous translation allows us to embed every logic LDA
X

into LGA.

Theorem 4. Let ' 2 LANGLDA and let X ✓ {GC ,BC}. Then, ' is satisfiable for
the class NDM

X

if and only if tr(') is satisfiable for the class AS
X

.
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PROOF. We first prove the left-to-right direction. Let M = (W, D, N , V) be a NDM
and let w 2 W such that (M, w) |= '. We build the corresponding structure M 0 =
(S, )1, . . . , )n

, A1, . . . , An

,⇡) as follows:

• S = W ,

• for every i 2 Agt and for every w 2 W , )
i

= {(w, v) 2 W ⇥ W : v 2
N (i, w)},

• for every i 2 Agt and for every w 2 W , A
i

(w) = tr

�
D(i, w)

�
,

• for every p 2 Atm , ⇡(p) = V(p).

It is easy to verify that M 0 is an awareness structure and that, for every x 2 {GC ,BC},
if M satisfies x then M 0 satisfies it as well.

By induction on the structure of ', we prove that for all w 2 W , “(M, w) |= ' iff
(M 0, w) |= tr(')”.

The case ' = p and the boolean cases ' = ¬ and ' =  1 ^  2 are clear. Let us
consider the case ' = 4

i

↵.
()) (M, w) |= 4

i

↵means that ↵ 2 D(i, w). By definition of A
i

, the latter implies
that tr(↵) 2 A

i

(w) which is equivalent to (M 0, w) |= A
i

tr(↵). Moreover, (M, w) |=
4

i

↵ implies that N (i, w) ✓ ||↵||
M

. By induction hypothesis, we have ||↵||
M

=
||tr(↵)||

M

0 . Thus, by definition of )
i

(w), it follows that )
i

(w) ✓ ||tr(↵)||
M

0 . The
latter means that (M 0, w) |= B

i

tr(↵). From the latter and (M 0, w) |= A
i

tr(↵), it
follows that (M 0, w) |= X

i

tr(↵).
(() (M 0, w) |= X

i

tr(↵) implies (M 0, w) |= A
i

tr(↵) which is equivalent to
tr(↵) 2 A

i

(w). By definition of A
i

, the latter implies ↵ 2 D(i, w) which is equivalent
to (M, w) |= 4

i

↵.
Finally, let us consider the case ' = ⇤

i

 . By induction hypothesis, we have
|| ||

M

= ||tr( )||
M

0 . (M, w) |= ⇤
i

 means that N (i, w) ✓ || ||
M

. By definition
of )

i

(w) and || ||
M

= ||tr( )||
M

0 , the latter is equivalent to )
i

(w) ✓ ||tr( )||
M

0

which in turn is equivalent to (M 0, w) |= B
i

tr( ).
Thus, (M 0, w) |= tr('), since (M, w) |= '.
In order to prove the right-to-left direction, we first prove a weaker result: if tr(')

is satisfiable for the class AS
X

, then it is satisfiable for the class QNDM
X

.
Let M = (S, )1, . . . , )n

, A1, . . . , An

,⇡) be an awareness structure. We build
the model M 0 = (W, D, N , V) as follows:

• W = S,

• for every i 2 Agt and for every s 2 S, N (i, s) =)
i

(s),

• for every i 2 Agt and for every s 2 S, D(i, s) = {↵ 2 LANGLDA :)
i

(s) ✓
||tr(↵)||

M

and tr(↵) 2 A
i

(s)},

• for every p 2 Atm , V(p) = ⇡(p).

Let us prove that M 0 is a quasi-NDM by showing that it satisfies Condition C1⇤ in
Definition 12. To this aim, we first prove by induction on the structure of ↵ that
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||tr(↵)||
M

= ||↵||
M

0 . The case ↵ = p is clear as well as the boolean cases. Let
us prove the case ↵ = 4

i

↵0. We have M 0, s |= 4
i

↵0 iff ↵0 2 D(i, s). By definition of
D(i, s), we have ↵0 2 D(i, s) iff )

i

(s) ✓ ||tr(↵0)||
M

and tr(↵0) 2 A
i

(s). The latter
is equivalent to M, s |= X

i

tr(↵0).
Suppose that ↵ 2 D(i, s). By definition of D(i, s), it follows that )

i

(s) ✓
||tr(↵)||

M

. Thus, since ||tr(↵)||
M

= ||↵||
M

0 , we have )
i

(s) ✓ ||↵||
M

0 . Hence,
by definition of N (i, s), N (i, s) ✓ ||↵||

M

0 . This shows that M 0 satisfies Condition
C1⇤.

It is easy to show that, for every x 2 {GC ,BC}, if M satisfies x then M 0 satisfies
it as well.

In the rest of the proof we show that for all s 2 S, “(M, s) |= tr(') iff (M 0, s) |=
'”. The proof is by induction on the structure of '.

The case ' = p and the boolean cases are clear. Let us now consider the case
' = 4

i

↵. (M, w) |= tr(4
i

↵) means that (M, w) |= X
i

tr(↵). The latter is equivalent
to )

i

(s) ✓ ||tr(↵)||
M

and tr(↵) 2 A
i

(s). By definition of D(i, s), the latter is
equivalent to ↵ 2 D(i, s) which in turn is equivalent to (M 0, w) |= 4

i

↵.
Let us finally consider the case ' = ⇤

i

 . By induction hypothesis, we have
||tr( )||

M

= || ||
M

0 . (M, w) |= tr(⇤
i

 ) means that (M, w) |= B
i

tr( ) which
in turn means that )

i

(w) ✓ ||tr( )||
M

. By definition of N (i, w) and || ||
M

=
||tr( )||

M

0 , the latter is equivalent to N (i, w) ✓ || ||
M

0 which in turn is equivalent to
(M 0, w) |= ⇤

i

 .
Thus, (M 0, s) |= ', since (M, s) |= tr(').
We have proved that if tr(') is satisfiable for the class AS

X

, then it is satisfiable
for the class QNDM

X

. From Theorem 1, it follows that if tr(') is satisfiable for the
class AS

X

, then it is satisfiable for the class NDM
X

. ⌅
The following theorem is a direct consequence of Theorems 1 and 4.

Theorem 5. Let ' 2 LANGLDA and let X ✓ {GC ,BC}. Then, ' is satisfiable for
the class MAB

X

if and only if tr(') is satisfiable for the class AS
X

.

In [1], it is proved that, for every X ✓ {reflexivity, transitivity, Euclideanity}, the
satisfiability problem for the logic of general awareness interpreted over awareness
structures whose relations )

i

satisfy all properties in X is in PSPACE. The proof is
based on tableau-based PSPACE satisfiability checking procedures for these logics. It
is easy to adapt Ågotnes & Alechina’s tableau-based method to show that the logic
of general awareness interpreted over awareness structures whose doxastic accessibil-
ity relations )

i

are serial is also in PSPACE. As a consequence, we can prove the
following result.

Theorem 6. Let X ✓ {GC ,BC}. Then, checking satisfiability of formulas in LANGLDA
relative to the class NDM

X

(resp. MAB
X

) is a PSPACE-complete problem.

PROOF. Theorem 4 (resp. Theorem 5) guarantees that the translation tr provides
a polynomial-time reduction of the satisfiability problem for formulas in LANGLDA
relative to the class NDM

X

(resp. MAB
X

) to the satisfiability problem of formulas
in LANGLGA relative to the class AS

X

. Since the latter problem is in PSPACE, it
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follows that the former problem is also in PSPACE. PSPACE-hardness follows from
known PSPACE-hardness results for modal logics K, KT and KD [16, 35]. ⌅

6. Introspection

The reason why we take introspection as a separate issue and devote an entire sec-
tion of the article to it is that its implications are debatable and require a careful exam-
ination. Since Hintikka’s seminal work on the logics of knowledge and belief [45], the
issue of introspection for mental states has been widely debated, namely, the question
whether an agent should have knowledge or belief about her own mental states (see,
e.g., [20, 89]). We do not pretend to enter this debate by providing further arguments
in favor or against introspection. The contribution of this section is more modest: we
simply show how principles of introspection for explicit and implicit belief can be in-
corporated into the LDA framework and then define a number of ‘introspective’ variants
of LDA assuming such principles. For some of these variants, we will study complexity
of their satisfiability problems.

In a logic of explicit and implicit belief, introspection can mean at least four differ-
ent things:

• Positive introspection closure for explicit belief (PIE ): if an agent explicitly
believes that ', then she explicitly believes that she explicitly believes that ',

• Negative introspection closure for explicit belief (NIE ): if an agent does not
explicitly believe that ', then she explicitly believes that she does not explicitly
believe that ',

• Positive introspection closure for implicit belief (PII ): if an agent implicitly
believes that ', then she implicitly believes that she implicitly believes that ',

• Negative introspection closure for implicit belief (NII ): if an agent does not
implicitly believe that ', then she implicitly believes that she does not implicitly
believe that '.

On the one hand, by assuming PIE , we impose that an agent’s belief base must be
either empty or infinite and, by assuming NIE , we impose that an agent’s belief base
must be infinite. Indeed, suppose an agent satisfies PIE and she explicitly believes
that ↵ is true. Then, she must explicitly believe that she explicitly believes that ↵ and,
consequently, she must explicitly believe that she explicitly believes that she explicitly
believes that ↵, and so on ad infinitum. Similarly, suppose the agent satisfies NIE

and her belief base is finite. Then, since the language LANG0 is infinite, there exist
infinitely many formulas of LANG0 that are not included in the agent’s belief base.
Thus, since the agent satisfies NIE , for each of these formulas she must explicitly
believe that she does not explicitly believe it. This means that the agent explicitly
believes an infinite number of facts which contradicts the initial hypothesis that her
belief base is finite. The requirement imposed by PIE and NIE that an agent’s belief
base is necessarily empty or infinite is clearly too strong. Indeed, realistic human or
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artificial agents — such as robots or conversational agents — have a limited amount of
information in their belief bases.

On the other hand, PII and NII lead to an interpretation of the notion of implicit
belief that is different from the usual one. According to the usual interpretation (see
Figure 1 in Section 1), an agent’s set of implicit beliefs includes all information that the
agent can obtain through deduction from her explicit beliefs and the common ground, if
she had enough time and computational resources to do it. By assuming introspection
over implicit beliefs, we impose that the set of implicit beliefs has to be closed not
only under deduction but also under introspection. This assumption is debatable since
it conflates in the notion of implicit belief both the information accessible through
deduction and the information accessible through introspection, thereby not separating
mental acts of different nature.

In the next section we define PIE , NIE , PII and NII formally and study their
relationships.

6.1. Relationships between introspection properties
We assume PIE , NIE , PII and NII to be specific conditions on notional doxastic

models (NDMs) of Definition 9. For ease of exposition and in order to avoid redun-
dancies, we do not define corresponding introspection conditions on multi-agent belief
models (MABs) of Definition 4. The reason why we focus on NDMs rather than on
MABs is that, in the notional model semantics, conditions PII and NII are formulated
as transitivity and Euclideanity on accessibility relations. This is the standard way to
define positive and negative introspection in epistemic logic.

Definition 14 (Introspection conditions). Let M = (W, D, N , V) be a NDM. Then,

• M satisfies positive introspection closure for explicit belief (PIE ) if and only if,
for every i 2 Agt , for every w 2 W and for every ↵ 2 LANG0, if ↵ 2 D(i, w)
then 4

i

↵ 2 D(i, w);

• M satisfies negative introspection closure for explicit belief (NIE ) if and only if,
for every i 2 Agt , for every w 2 W and for every ↵ 2 LANG0, if ↵ 62 D(i, w)
then ¬4

i

↵ 2 D(i, w);

• M satisfies positive introspection closure for implicit belief (PII ) if and only if,
for every i 2 Agt , the relation N

i

= {(w, v) 2 W ⇥ W : v 2 N (i, w)} is
transitive;

• M satisfies negative introspection closure for implicit belief (NII ) if and only if,
for every i 2 Agt , the relation N

i

is Euclidean.

We extend the definitions of NDM classes by considering NDMs satisfying some of
the previous introspection conditions. For example, NDM{GC ,PIE ,NIE} is the class
of NDMs satisfying global consistency, positive and negative introspection closure for
explicit belief.
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We have the following validities relative to the different introspection properties:

|=NDMX 4
i

↵ ! 4
i

4
i

↵ if PIE 2 X, (2)
|=NDMX ¬4

i

↵ ! 4
i

¬4
i

↵ if NIE 2 X, (3)
|=NDMX ⇤

i

' ! ⇤
i

⇤
i

' if PII 2 X, (4)
|=NDMX ¬⇤

i

' ! ⇤
i

¬⇤
i

' if NII 2 X. (5)

As the following Proposition 4 highlights, PIE is at least as strong as PII and NIE

is at least as strong as NII . In other words, positive explicit belief introspection implies
positive implicit belief introspection, and negative explicit belief introspection implies
negative implicit belief introspection.

Proposition 4. We have the following relations between classes of NDMs:

• NDM{PIE} ✓ NDM{PII},

• NDM{NIE} ✓ NDM{NII}.

PROOF. Let M = (W, D, N , V) be a NDM.
We prove the first item “PIE implies PII ”.
Let w, v, u 2 W . Suppose M satisfies PIE , wN

i

v and vN
i

u. We are going to
show that wN

i

u.
By Condition C1 in Definition 9, wN

i

v means that, for all ↵ 2 D(i, w), (M, v) |=
↵. Thus, since M satisfies PIE , for all ↵ 2 D(i, w), (M, v) |= ↵ and 4

i

↵ 2 D(i, w).
Hence, for all ↵ 2 D(i, w), (M, v) |= ↵ and (M, v) |= 4

i

↵. The latter implies that,
for all ↵ 2 D(i, w), ↵ 2 D(i, v). Since vN

i

u, we have that, for all ↵ 2 D(i, v),
(M, u) |= ↵. Thus, we have (M, u) |= ↵, for all ↵ 2 D(i, w). By Condition C1 in
Definition 9, the latter means that wN

i

u.
Let us prove the second item “NIE implies NII ”.
Let w, v, u 2 W . Suppose M satisfies NIE , wN

i

v and wN
i

u. We are going to
show that vN

i

u.
By Condition C1 in Definition 9, wN

i

v means that, for all ↵ 2 D(i, w), (M, v) |=
↵. Thus, since M satisfies NIE , for all ↵ 2 D(i, w), (M, v) |= ↵ and, for all � 62
D(i, w), ¬4

i

� 2 D(i, w). Thus, for all � 62 D(i, w), (M, v) |= ¬4
i

�. The latter
implies that, for all �, if � 62 D(i, w) then � 62 D(i, v), which is equivalent to D(i, v) ✓
D(i, w). Since wN

i

u, by Condition C1 in Definition 9, the latter implies vN
i

u. ⌅
PII and NII together do not necessarily imply PIE and NIE . To see this, consider

the single agent NDM M = (W, D, N , V) such that

W = {w, v, u},

D(1, w) = {p}, D(1, v) = {q}, D(1, u) = {p, q},

N (1, w) = {v, u}, N (1, v) = {u}, N (1, u) = {u},

V (w) = ;, V (v) = {p} and V (u) = {p, q}.

Clearly, M satisfies PII and NII since the relation N1 is transitive and Euclidean, but
it does not satisfy PIE or NIE since agent 1’s belief bases at w, v and u are not closed
under positive introspection or negative introspection.

This point is highlighted by the following proposition.
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Proposition 5. There exists a NDM M such that M 2 NDM{PII ,NII} and M 62�
NDM{PIE} [ NDM{NIE}

�
.

Therefore, by Propositions 4 and 5, we have that PIE is stronger than PII and that
NIE is stronger than NII .

6.2. Complexity of introspective extensions
In this section, we study the complexity of the variants of LDA under the assump-

tion of introspection closure for implicit belief (PII and NII ). The next theorem high-
lights that adding this assumption to the single-agent variant of LDA reduces its com-
plexity by making it NP-complete. It parallels the complexity results for the modal
logics K45, KD45 and S5.

Theorem 7. Let X ✓ {GC ,BC ,PII ,NII } such that {PII ,NII } ✓ X and let
|Agt | = 1. Then, checking satisfiability of formulas in LANGLDA relative to the class
NDM

X

is a NP-complete problem.

PROOF. The satisfiability problem is clearly NP-hard since there exists a polynomial-
time reduction of SAT to LDA-satisfiability checking.

In order to prove NP-membership, we first show that if {PII ,NII } ✓ X , |Agt | = 1
and ' is satisfiable for the class NDM

X

, then there exists a NDM M in NDM
X

such
that M satisfies ' and M has at most |'| worlds, where |'| is the size of ', i.e., the
number of symbols used to write it.

Suppose |Agt | = 1 and {PII ,NII } ✓ X . Let M = (W, D, N , V) 2 NDM
X

and
w 2 W such that (M, w) |= '. Since |Agt | = 1, we can omit the agent argument from
the functions D and N and from the explicit and implicit belief operators and simply
write D(w), N (w), 4↵ and ⇤ .

Let M 0 = (W 0, D0, N 0, V 0) such that W 0 = {w} [ N (w), D0 = D|
W

0 , N 0 =
N|

W

0 and V 0(p) = V(p)\W 0, for all p 2 Atm . It is easy to check that M 0 2 NDM
X

.
By {PII ,NII } ✓ X , we have that, for all v 2 W , N (v) = N (w). Therefore, by
induction on the structure of ' and the fact that (M, w) |= ', it is easy to check that
(M 0, w) |= '.

We now distinguish two cases.
Case 1: N 0(w) = ;. Clearly, M 0 has at most one world. Hence, it has at most |'|

worlds.
Case 2: N 0(w) 6= ;. We adapt the proof of [35, Proposition 6.2] to our case.

Let F
'

be the set of subformulas of ' of the form ⇤ for which (M 0, u) |= ¬⇤ 
for all u 2 N 0(w). Since N 0(w) 6= ;, for each formula ⇤ 2 F

'

, there should be
w
 

in N 0(w) such that (M 0, w
 

) |= ¬ . Let M 00 = (W 00, D00, N 00, V 00) such that
W 00 = {w} [ {w

 

: ⇤ 2 F
'

}, D0 = D|
W

00 , N 0 = N|
W

00 and V 0(p) = V(p) \ W 00,
for all p 2 Atm . It is easy to check that M 00 2 NDM

X

. Moreover, M 00 has at most
|'| worlds since |F

'

|  |sub(')|  |'|. By induction on the structure of ', it is
routine exercise to prove that, for all v 2 W 00 and for all  2 sub('), (M 0, v) |=  
iff (M 00, v) |=  . The only non-trivial case is when  is of the form ⇤�. We only
prove the right-to-left direction, as the left-to-right one is straightforward. Suppose
(M 0, v) |= ¬⇤�. Since NII 2 X , we have (M 0, v) |= ⇤¬⇤�. Thus, by construction
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of M 0, (M 0, u) |= ¬⇤� for all u 2 N 0(w). Hence, ⇤� 2 F
'

and (M 0, w
�

) |= ¬�.
By construction, w

�

2 W 00 and, by induction hypothesis, (M 00, w
�

) |= ¬�. Since
w
�

2 N 00(w), it follows that (M 00, w) |= ¬⇤�.
Thus, we have (M 00, w) |= ', since (M 0, w) |= '.
Now, let us prove that if |Agt | = 1 and {PII ,NII } ✓ X then the satisfiability

problem relative to the class NDM
X

is in NP. We have shown that if |Agt | = 1
and {PII ,NII } ✓ X then every satisfiable formula is satisfiable in a model which is
polysize in |'|.6 Here is an non-deterministic algorithm to check if a given formula '
is satisfiable for the class NDM

X

:

• guess non-deterministically a NDM M 2 NDM
X

whose size is bounded by
|'|,

• guess non-deterministically a world w of M ,

• check whether (M, w) |= '.

This algorithm non-deterministically runs in polynomial time. So, if |Agt | = 1, then
checking satisfiability of formulas in LANGLDA relative to a class NDM

X

such that
{PII ,NII } ✓ X is in NP. ⌅

We conclude this section with a complexity result for all multi-agent variants of
the LDA framework, with and without introspection properties for implicit beliefs. It
complements Theorem 6 in Section 5 and the previous Theorem 7.

Theorem 8. Let X ✓ {GC ,BC ,PII ,NII } and let |Agt | > 1. Then, checking satisfi-
ability of formulas in LANGLDA relative to the class NDM

X

is a PSPACE-complete
problem.

PROOF. We generalize Theorem 4 by showing that, for every X ✓ {GC ,BC ,PII ,NII },
the translation tr given in Section 5 provides a polynomial-time reduction of satisfiabil-
ity of formulas in LANGLDA relative to the class NDM

X

to satisfiability of formulas
in LANGLGA relative to the class AS

X

. From Ågotnes & Alechina [1] we know that
the latter problem is in PSPACE if |Agt | > 1. PSPACE-hardness follows from known
PSPACE-hardness results for multi-agent epistemic logics under the assumption that
there is more than one agent in the system [35]. ⌅

Figure 2 summarizes the complexity results of Theorems 6, 7 and 8. Specifically, it
highlights the complexity of checking satisfiability of formulas in LANGLDA for each
class NDM

X

with X ✓ {GC ,BC ,PII ,NII }. Note that the PSPACE-completeness
result for |Agt | = 1 and X ✓ {GC ,BC} is a consequence of Theorem 6 which applies
to both cases |Agt | = 1 and |Agt | > 1.

We leave for future work the analysis of the complexity of the satisfiability prob-
lems for the single-agent variants of LDA missing in the table such as, e.g., checking
satisfiability relative to the classes NDMGC ,PII , NDMGC ,NII , NDMBC ,PII and

6A model M is said to be polysize in k 2 N if there is polynomial � such that M contains at most �(k)
worlds [16, Definition 6.6].
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NDMBC ,NII under the assumption that |Agt | = 1. Our conjecture is that all these
problems are PSPACE-complete.

Complexity class
NP PSPACE

Number of agents |Agt | = 1 If {PII ,NII } ✓ X If X ✓ {GC ,BC}
|Agt | > 1 No X Every X

Figure 2: Complexity results for classes of models NDM
X

such that X ✓ {GC ,BC ,PII ,NII}.

7. Dynamic extensions

The aim of this section is to study some extensions of the logic LDA capturing
different types of belief dynamics in a multi-agent setting.

The logics in the LDA family allow us to model a rich taxonomy of belief change
operations affecting either the agents’ common ground or their belief bases. On the one
hand, common ground change is typically the result of a public announcement in the
sense of public announcement logic (PAL) [68]. On the other hand, belief base change
is the result of an agent privately perceiving that a certain fact is true or receiving
a piece of information from a certain source. As we have emphasized in the intro-
duction, modelling private belief change in standard dynamic epistemic logic (DEL)
[32, 83] has a limitation. Whenever an agent privately receives a piece of information,
the original epistemic model has to be duplicated by creating one copy of the model for
the perceiver in which her beliefs have changed and one copy for the non-perceivers in
which their beliefs have not changed. Thus, the original epistemic model grows expo-
nentially in the length of the sequence of private announcements. As we show in this
section, this limitation can be overcome in the context of the LDA framework, by mod-
elling private announcements as operations modifying the belief bases of some agents
but not of all agents. This leads to a “parsimonious” account of private informative
actions in LDA since, differently from traditional DEL, it does not require to duplicate
epistemic models and to make them exponentially larger.

In the rest of this section, we first present the extension of LDA by public announce-
ments. Then, we move to private belief change by presenting an extension of LDA by
belief base expansion operators. We illustrate it with the aid of a concrete example from
human-machine interaction (HMI). We finally discuss the semantics of further types of
private belief change operations including forgetting and belief base contraction.

7.1. Public announcements
In order to represent the effects of a public announcement on the agents’ com-

mon ground, we extend the language LANGLDA by modal operators of the form ['!],
thereby obtaining the following language LANGLDA-PA:

' ::= ↵ | ¬' | '1 ^ '2 | ⇤
i

' | ['!] ,
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where ↵ ranges over LANG0, i ranges over Agt and LDA-PA stands for “Logic of
Doxastic Attitudes and Public Announcements”.

The formula ['!] has to be read “ holds after the public announcement of '”.
Following [68], we assume that public announcements are truthful, i.e., an announce-
ment is executable if and only if the formula to be announced is true. Consequently,
h'!i which abbreviates ¬['!]¬ , has to read “the public announcement of ' is exe-
cutable and  will hold after its occurrence”.

We generalize the satisfaction relation between MABs and formulas of Definition
6 to this new type of formulas, as follows:

Definition 15 (Satisfaction relation (cont.)). Let (B,Cxt) be a MAB. Then:

(B,Cxt) |= ['!] () if (B,Cxt) |= ' then (B,Cxt'!) |=  ,

where

Cxt

'! = {B0 2 Cxt : (B0,Cxt) |= '}.

The idea is that  is the consequence of the public announcement of ' if and only
if, if ' is true, then  is going to be true after restricting the agents’ common ground
to the states satisfying the announced formula '. Note that the previous definition
would perfectly work, if the formula ['!] was interpreted with respect to the class
MAB{BC}, as public announcement so defined preserves the necessary and sufficient
conditions for the class of multi-agent belief bases satisfying belief correctness given in
Proposition 1. In particular, we have that if (B,Cxt) |= ' and (B,Cxt) 2 MAB{BC}
then B 2 Cxt

'! and B0R
i

B0 for every B0 2 Cxt

'!. Therefore, if (B,Cxt) |= ' and
(B,Cxt) 2 MAB{BC} then (B,Cxt'!) 2 MAB{BC}.

On the contrary, it would not work if the formula ['!] was interpreted with respect
to the class MAB{GC}. Indeed, restricting the common ground to the '-situations
could empty an agent’s set of doxastic alternatives, i.e., it might be the case that
(B,Cxt) 2 MAB{GC} and R

i

(B0) = ; for some B0 2 ({B} [ Cxt

'!). There-
fore, (B,Cxt) |= ' and (B,Cxt) 2 MAB{GC} do not together guarantee that
(B,Cxt'!) 2 MAB{GC}. Consequently, the previous semantics for public announce-
ments is compatible with the logics LDA and LDA{T⇤i

}, while being incompatible with
the logic LDA{D⇤i

}. Thus, more generally, our semantics for public announcements is
compatible with the model classes MAB and MAB{BC}.

The following proposition provides reduction principles for the dynamic operators
['!].

Proposition 6. The following formulas are valid relative to every class MAB
X

such
that X ✓ {BC}.

['!]p $ (' ! p)

['!]¬ $ (' ! ¬['!] )
['!]( 1 ^  2) $ (['!] 1 ^ ['!] 2)

['!]⇤
i

 $ (' ! ⇤
i

['!] )

['!]4
i

↵ $ (' ! 4
i

↵)
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PROOF. The first three validities are proved in the same way as in PAL. The last validity
is clear since public announcements can modify the common ground but cannot modify
the agents’ belief bases. Let us prove the fourth validity:

(B,Cxt) |= ['!]⇤
i

 () if (B,Cxt) |= ' then (B,Cxt'!) |= ⇤
i

 ,

() if (B,Cxt) |= ' then
�
8B0 2 Cxt

'! : if BR
i

B0

then (B0,Cxt'!) |=  
�
,

() if (B,Cxt) |= ' then
⇣
8B0 2 Cxt : if

�
BR

i

B0 and

(B0,Cxt) |= '
�

then (B0,Cxt'!) |=  
⌘
,

() if (B,Cxt) |= ' then
⇣
8B0 2 Cxt : if BR

i

B0 then
�

if (B0,Cxt) |= ' then (B0,Cxt'!) |=  
�⌘

,

() if (B,Cxt) |= ' then
�
8B0 2 Cxt : if BR

i

B0 then

(B0,Cxt) |= ['!] 
�
,

() if (B,Cxt) |= ' then (B,Cxt) |= ⇤
i

['!] ,

() (B,Cxt) |= ' ! ⇤
i

['!] .

⌅
The first four validities are the standard reduction principles of PAL. The fifth one

is the reduction principle for explicit belief. It highlights that an agent’s explicit beliefs
are not affected by public announcements. Public announcements only operate on the
agents’ common ground.

The equivalences of Proposition 6 allow to find for every formula of the language
LANGLDA-PA an equivalent formula of the language LANGLDA. Call redLDA-PA the
mapping which iteratively applies the equivalences of Proposition 6 from the left to
the right. It pushes the dynamic operators ['!] inside the formula, and finally elim-
inates them when facing an atomic formula. Specifically, the mapping redLDA-PA is
inductively defined as follows:

1.redLDA-PA(p) = p

2.redLDA-PA(4i

↵) = 4
i

redLDA-PA(↵)

3.redLDA-PA(¬') = ¬redLDA-PA(')

4.redLDA-PA(' ^  ) = redLDA-PA(') ^ redLDA-PA( )

5.redLDA-PA(⇤i

') = ⇤
i

redLDA-PA(')

6.redLDA-PA(['!]p) = redLDA-PA(' ! p)

7.redLDA-PA(['!]¬ ) = redLDA-PA(' ! ¬['!] )
8.redLDA-PA

�
['!]( 1 ^  2)

�
= redLDA-PA(['!] 1 ^ ['!] 2)

9.redLDA-PA(['!]⇤i

 ) = redLDA-PA(' ! ⇤
i

['!] )

10.redLDA-PA(['!]4i

↵) = redLDA-PA(' ! 4
i

↵)

We can state the following proposition.
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Proposition 7. Let ' 2 LANGLDA-PA and let X ✓ {BC}. Then, ' $ redLDA-PA(')
is valid relative to the class MAB

X

.

PROOF. The proposition is provable by induction on the structure of '. The cases
corresponding to the items 5-10 in the definition of redLDA-PA are direct consequences
of the validities in Proposition 6. Proving the cases corresponding to the items 1, 3
and 4 in the definition of redLDA-PA is a routine exercise. The case corresponding to
the item 2 in the definition of redLDA-PA relies on the fact that redLDA-PA(↵) = ↵ for all
↵ 2 LANG0. ⌅

The fact that checking satisfiability for formulas in LANGLDA-PA is decidable fol-
lows from the decidability results for the logics LDA (Theorem 3) and the fact that
redLDA-PA provides an effective procedure for reducing a formula ' in LANGLDA-PA
into an equivalent formula redLDA-PA(') in LANGLDA.

Theorem 9. Let X ✓ {BC}. Then, checking satisfiability of formulas in LANGLDA-PA
relative to the class MAB

X

is decidable.

Note that the size of the formula redLDA-PA(') may be exponential in the size of '.
We leave for future work the quest for a polynomial-time reduction of the satisfiability
problem for formulas in LANGLDA-PA to the satisfiability problem for formulas in
LANGLDA through an adaptation of the reduction techniques presented in [58]. We
also leave for future work the proof-theoretic analysis of the family of logics LDA-PA.
We only mention here an interesting difference between standard PAL and LDA-PA.
While the following rule of replacement of equivalents (REE) is admissible in PAL

 1 $  2

' $ '[ 1/ 2]

it is not admissible in LDA-PA. To see this, it suffice to observe that p is logically
equivalent to p ^ (q _ ¬q), but 4

i

p is not logically equivalent to 4
i

�
p ^ (q _ ¬q)

�
.

Note that this is already a difference between standard epistemic logic, in which rule
REE is admissible, and the static logic LDA, in which it is not.

7.2. Private belief base expansion
In this section, we present a second dynamic extension of the LDA framework

by informative events of private nature that modify an agent’s explicit beliefs without
modifying the beliefs of the others. Specifically, we extend the language LANGLDA
by operators of the form [+

i

↵], where [+
i

↵]' has to be read “' holds after agent i has
expanded her belief base with ↵”. We obtain the following language LANGLDA-PBE:

' ::= ↵ | ¬' | '1 ^ '2 | ⇤
i

' | [+
i

↵]',

where ↵ ranges over LANG0, i ranges over Agt and LDA-PBE stands for “Logic of
Doxastic Attitudes and Privated Belief Expansion”.

The following definition generalizes the satisfaction relation of Definition 6 to this
new family of dynamic operators.
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Definition 16 (Satisfaction relation (cont.)). Let B = (B1, . . . , Bn

,V ) 2 B and let
(B,Cxt) 2 MAB. Then:

(B,Cxt) |= [+
i

↵]' () (B+i↵,Cxt) |= '

with B+i↵ = (B+i↵

1 , . . . , B+i↵
n

,V+i↵), where:

V

+i↵ =V ,

and for all j 2 Agt:

B+i↵

j

= B
j

[ {↵} if i = j,

B+i↵

j

= B
j

otherwise.

As the previous definition highlights, the informative event +
i

↵ merely consists
in agent i learning that ↵, thereby expanding her belief base accordingly, while the
other agents’ belief bases remain unchanged. This is private belief change in the strong
sense of “all agents different from i do not know that i has just learnt that ↵”, which
is different from the weak sense of “all agents different from i know that i has just
learnt something, but they do not know what”. Agent i’s private belief base expansion
indirectly changes agent i’s implicit beliefs since, after the operation takes place, agent
i’s set of doxastic alternatives is recomputed.7

Note that the operator [+
i

↵] cannot be interpreted relative to a class MAB
X

such
that X \ {GC ,BC} 6= ;. Indeed, none of the properties in {GC ,BC} is necessarily
preserved under the operation +

i

↵.
A sufficient condition for preservation of BC under the belief base expansion op-

eration +
i

↵ is that the state resulting from the occurrence of the operation +
i

↵ is
compatible with the agents’ common ground and that ↵ is deducible from agent i’s
explicit beliefs before belief base expansion. As for preservation of GC , we only need
to assume that ↵ is deducible from agent i’s explicit beliefs:

if (B,Cxt) satisfies GC and (B,Cxt) |= ⇤
i

↵,

then (B+i↵,Cxt) satisfies GC as well;

if (B,Cxt) satisfies BC , B+i↵ 2 Cxt and (B,Cxt) |= ⇤
i

↵,

then (B+i↵,Cxt) satisfies BC as well.

It is also worth noting that the belief base expansion operation +
i

↵ does not nec-
essarily preserve positive introspection on implicit beliefs, we discussed in Section 6.
Indeed, after having expanded her belief base, an agent may start to believe that '

7Private belief base expansion is closely connected to the “consider” operation, the awareness change
operation studied by van Benthem & Velázquez-Quesada [76], which consists in extending the set of formu-
las that an agent is aware of. Given the embedding of LDA into the logic of general awareness, according
to which “explicitly believing that ↵” means “being aware that ↵ and implicitly believing that ↵”, agent i’s
private belief base change with ↵ is conceivable as the joint execution of the private announcement that ↵ to
agent i and agent i’s mental act of considering ↵.

31



implicitly, without implicitly believing that she implicitly believes that '. To see this,
suppose there is only one agent. Let B = (B1, V ), B0 = (B01, V

0), B00 = (B001 , V 00),
Cxt = {B, B0, B00} with B1 = B01 = B001 = {p}, V = ;, V 0 = {p} and V 00 = {p, q}.
It is easy to check that, in the initial situation, agent 1 has positive introspection on
all her implicit beliefs, i.e., for every formula ', if she implicitly believes that ',
then she implicitly believes that she implicitly believes that '. Indeed, for every
' 2 LANGLDA, we have:

if (B,Cxt) |= ⇤1' then (B,Cxt) |= ⇤1⇤1'.

This is is due to the fact that
�
R1(B) \ Cxt

�
= {B0, B00},

�
R1(B0) \ Cxt

�
=

{B0, B00}, and
�
R1(B00) \ Cxt

�
= {B0, B00}, so that every doxastic alternative from

a doxastic alternative from B is also a doxastic alternative from B. Nonetheless, after
having expanded her belief base with ¬q, agent 1 will implicitly believe that p ^ ¬q
without implicitly believing that she implicitly believes that p ^ ¬q, that is:

(B+1¬q,Cxt) |= ⇤1(p ^ ¬q) ^ ¬⇤1⇤1(p ^ ¬q).

In the rest of this section, we focus on the generic class MAB.
The following proposition provides reduction principles for the private belief ex-

pansion operators.

Proposition 8. The following formulas are valid relative to the class MAB.

[+
i

↵]p $ p

[+
i

↵]¬ $ ¬[+
i

↵] 

[+
i

↵]( 1 ^  2) $ ([+
i

↵] 1 ^ [+
i

↵] 2)

[+
i

↵]⇤
j

' $ ⇤
j

' if i 6= j

[+
i

↵]⇤
i

' $ ⇤
i

(↵ ! ')

[+
i

↵]4
j

� $ 4
j

� if i 6= j or ↵ 6= �

[+
i

↵]4
i

↵ $ >

Thanks to the equivalences of Proposition 8, for every formula of the language
LANGLDA-PBE we can find an equivalent formula of the language LANGLDA. We de-
fine redLDA-PBE to be the mapping which iteratively applies the equivalences of Propo-
sition 8 from the left to the right in order to eliminate the dynamic operators [+

i

↵] from
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the formula. Specifically, we define redLDA-PBE in an inductive way as follows:

1.redLDA-PBE(p) = p

2.redLDA-PBE(4j

↵) = 4
j

redLDA-PBE(↵)

3.redLDA-PBE(¬') = ¬redLDA-PBE(')

4.redLDA-PBE(' ^  ) = redLDA-PBE(') ^ redLDA-PBE( )

5.redLDA-PBE(⇤j

') = ⇤
j

redLDA-PBE(')

6.redLDA-PBE([+i

↵]p) = redLDA-PBE(p)

7.redLDA-PBE([+i

↵]¬ ) = redLDA-PBE(¬[+i

↵] )

8.redLDA-PBE
�
[+

i

↵]( 1 ^  2)
�
= redLDA-PBE([+i

↵] 1 ^ [+
i

↵] 2)

9.redLDA-PBE([+i

↵]⇤
j

') = redLDA-PBE(⇤j

') if i 6= j

10.redLDA-PBE([+i

↵]⇤
i

') = redLDA-PBE
�
⇤

i

(↵ ! ')
�

11.redLDA-PBE([+i

↵]4
j

�) = redLDA-PBE(4j

�) if i 6= j or ↵ 6= �

12.redLDA-PBE([+i

↵]4
i

↵) = redLDA-PBE(>)

The following proposition is provable by induction on the structure of ' in a way
similar to Proposition 7.

Proposition 9. Let ' 2 LANGLDA-PBE. Then, ' $ redLDA-PBE(') is valid relative to
the class MAB.

It is easy to check that the size of the formula redLDA-PBE(') is linear in the size of
'. Therefore, thanks to Theorem 6 in Section 5, we obtain the following complexity
result.

Theorem 10. Checking satisfiability of formulas in LANGLDA-PBE relative to the class
MAB is a PSPACE-complete problem.

Like for the logic LDA-PA, we leave the proof-theoretic analysis of the logic LDA-PBE
to future work.

We conclude this section by commenting two modeling issues:

• how the consequences of an agent’s inference process can be represented in the
logic LDA-PBE, and

• how LDA-PBE can handle semi-private forms of belief change in a multi-agent
setting.

As for the first issue, it is interesting to remark that LDA-PBE allows us to elucidate
how an agent’s inferential action retroacts on the agent’s belief base by expanding it
with a new piece of information. Specifically, a new family of dynamic operators of
type [infer(i,↵)] are definable in LDA-PBE, as abbreviations:

[infer(i,↵)]'
def
= ⇤

i

↵ ! [+
i

↵]'.

Formula [infer(i,↵)]' has to be read “' holds, after agent i has inferred that ↵ from
her belief base”. The intuition behind this definition is that inferring ↵ consists in
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“actualizing” the implicit belief that ↵, by expanding the belief base with ↵. Formula
⇤

i

↵ should be conceived as the precondition of agent i’s mental action of inferring ↵,
since agent i can infer ↵ if and only if she implicitly believes that ↵. The following
two validities deserve to be mentioned:

|=MAB ⇤
i

' ! [infer(i,↵)]⇤
i

', (6)
|=MAB ¬⇤

i

' ! [infer(i,↵)]¬⇤
i

'. (7)

They state that, inferring ↵ does not have any influence on an agent’s implicit beliefs: if
agent i implicitly believes that ' before inferring ↵, then she will implicitly believe that
' after the inference, and if agent i does not believe that ' implicitly before inferring
↵, then she will not believe that ' implicitly after the inference. Note that the previous
two validities can be recasted as a single validity:

|=MAB ⇤
i

↵ ! (⇤
i

' $ [+
i

↵]⇤
i

'). (8)

As for the second issue, the idea is rather simple. We model semi-private belief
change in LDA-PBE through the joint (or parallel) execution of private expansion op-
erations on the belief bases of multiple agents affecting both the agents’ first-order and
higher orders beliefs. For example, consider the situation in which two agents 1 and
2 perceives that p is true, 2 observes 1, but 1 does not observe 2. Then, both 1 and 2
will come to explicitly believe that p, 2 will come to explicitly believe that 1 explicitly
believes that p, but not vice versa. This situation can be described in LDA-PBE as
follows: (i) agent 1 expands her belief base just with p and, in parallel, (ii) agent 2
expands his belief base with both p and the fact that agent 1 explicitly believes that p.
Now the question is, how can the joint execution of private belief base expansion op-
erations be modeled? It turns out that in LDA-PBE joint execution can be “simulated”
through sequential execution. We are going to show how this can be done.

Let agent i’s set of belief base expansion operations (a.k.a. actions) be defined as
follows:

Act

i

= {+
i

↵ : ↵ 2 LANG0}.

Moreover, let Act =
S

i2Agt Act i. We have the following validity, for all e1, . . . , ek 2
Act :

|=MAB [e1] . . . [ek]' $ [�(e1)] . . . [�(ek)]' (9)

where � is any permutation of the set {e1, . . . , ek}. This means that the result of a
sequence of private belief base expansion operations is order-independent (i.e., it does
not depend on the position of each operation in the sequence).8 Thus, for every non-
empty coalition of agents J = {i1, . . . , ik} 2 2Agt⇤ =

�
2Agt \ {;}

�
, we can safely

8Note that this does not hold in general in the context of DEL. For instance, in the logic of private
announcements by Gerbrandy & Groeneveld [32], the order of the private announcements in the sequence
matters. The reason why the private belief base expansion operations of LDA-PBE commute is due to the
fact that they are set-theoretic operations on the agents’ belief bases, while private announcements of DEL
are operations on the agents’ epistemic accessibility relations. More details about the connection between
LDA-PBE and DEL will be given in Section 8.
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define joint belief base expansion operators of type [�
J

], as follows:

[�
J

]'
def
= [�

J

(i1)] . . . [�J(ik)]'

where �
J

is a total function with domain J and codomain Act such that, for every i 2
J , �(i) 2 Act

i

. We call �
J

a joint belief base expansion operation for the coalition J .
It can also be represented as the tuple

�
�
J

(i1), . . . , �J(ik)
�
, and the abbreviation [�

J

]'
has to read “' holds after every agent i in J has executed her belief base expansion
operation �

J

(i)”.
The semi-private form of belief change for agents 1 and 2 discussed above is rep-

resentable by the joint belief base expansion operation �{1,2} =
�
+1 p,+2(p^41p)

�
.

We clearly have the following validity:

|=MAB

⇥�
+1 p,+2(p ^ 41p)

�⇤�
41p ^ 42(p ^ 41p)

�
. (10)

In the next section, we illustrate the expressive power of the logical language
LANGLDA-PBE with the aid of a concrete example from human-machine interaction
(HMI).

7.3. Example: persuasive agent
We consider a conversational agent that has to interact with a human user in order

to support her activity and to take care of her well-being. Specifically, HAL is an
artificial companion which takes care of an elderly person called Bob and keeps him
company. Bob has to do regular physical activity to be in good health. The problem is
that Bob prefers to stay at home watching TV or reading a book rather than to go out
for a walk. In this situation, HAL has to play a tutor role: it has to ensure that Bob will
do regular physical activity in his interest. To this aim, HAL needs to use its persuasive
capabilities in order to induce Bob to adopt a healthy lifestyle. This requires a proper
understanding of Bob’s beliefs by HAL and, in particular, of the relationship between
his beliefs and his actions (i.e., the way Bob’s beliefs determine his actions).

It is 3:00 pm and it is less than two hours before the sunset of a winter day. HAL
knows that Bob has done no physical activity during the last two days. It decides to
recommend to Bob to go out for a walk:

“Hey Bob! It is a great sunny day. You should take advantage of it and go
out for a walk before the end of the day.”

Bob replies as follows by expressing discontent:

“The last time I went out for a walk it was so cold. I did not like it at
all. If I am sure that it is not cold outside, then I will follow your advice,
otherwise I will not!”

Let us assume that (i) the communication channel between HAL and Bob works well,
(ii) HAL (resp. Bob) trusts what Bob (resp. HAL) says, that is, HAL (resp. Bob) be-
lieves that if Bob (resp. HAL) provides some information, then this information has to
be true, and (iii) both HAL and Bob believe that (i) and (ii). Under the assumptions (i),
(ii) and (iii), “agent i’s speech act of informing agent j that ↵”, with i, j 2 {HAL, Bob}
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and i 6= j, amounts to the operation of making the hearer (agent j) explicitly believe
that ↵ and of making the speaker (agent i) explicitly believe that the hearer explicitly
believes that ↵. In formal terms, the latter corresponds to the joint belief base expansion
operation (+

i

4
j

↵,+
j

↵) for the coalition {i, j}, that we abbreviate as follows:

tell

i,j,↵

def
= (+

i

4
j

↵,+
j

↵).

Intuitively, +
i

4
j

↵ captures the effect of the speech act on the speaker’s mind, i.e.,
what i learns through the performance of the speech act, whereas +

j

↵ represents the
effect of the speech act on the hearer’s mind, i.e., what j learns through the perception
of the speech act performed by i.

We can use the joint belief base expansion operator defined at the end of Section
7.2 to infer that, after Bob’s initial speech act, HAL explicitly believes that Bob will
intend to go out, if he explicitly believes that it is not cold outside:

|=MAB [tellBob,HAL,(4Bob¬cold!intBob,out )]4HAL(4Bob¬cold ! intBob,out) (11)

where the atomic formulas cold and intBob,out have to be read, respectively, “it is cold
outside” and “ Bob has the intention to go out”.

Let us further assume that HAL explicitly believes that if Bob explicitly believes
that the outside temperature is above 10�C, then he explicitly believes that it is not cold
outside. This fact is expressed by the following formula ↵0, where the atomic formula
temp

>10 has to be read “the outside temperature is above 10�C”:

↵0
def
= 4HAL(4Bobtemp

>10 ! 4Bob¬cold).

On the basis of what it believes about Bob’s beliefs, HAL decides to inform him that
the outside temperature is acceptable:

“Bob, you shouldn’t worry so much. If you go out, you won’t feel cold:
the outside temperature is above 10�C.”

Again, we can use our language LANGLDA-PBE to infer that, after the occurrence
of its last speech act, HAL can conclude that Bob will intend to go out for a walk:

|=MAB ↵0 ![tellBob,HAL,(4Bob¬cold!intBob,out )]

[tellHAL,Bob,temp>10
]⇤HALintBob,out . (12)

Before concluding this section, we would like to clarify the role played by explicit
and implicit belief in the example as well as the modeling perspective of LDA-PBE in
comparison with the one of DEL.

In our formalization of HAL & Bob’s scenario, there is a crucial difference be-
tween what HAL explicitly believes about Bob’s beliefs and what HAL only implicitly
believes about Bob’s beliefs and intentions given its explicit beliefs about Bob’s be-
liefs. For instance, after HAL tells to Bob that the outside temperature is above 10�C,
HAL explicitly believes that Bob believes that the outside temperature is above 10�C.
In other words, the latter belief of HAL is a direct consequence of HAL’s speech act,
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since HAL does not need to make any inference to form it. On the contrary, in order
to form the belief that Bob intends to go out for a walk, HAL has to make an inference
from its explicit beliefs about Bob’s beliefs. This explains why HAL’s belief that Bob
intends to go out for a walk is implicit but not explicit. This distinction is relevant
for AI modeling, since it allows us to clearly separate the information contained in the
artificial agent’s database from the information that the artificial agent can infer from
it.

LDA and LDA-PBE are specifically designed to account for the relationship be-
tween explicit and implicit belief and for belief dynamics induced by belief base change.
In dynamic epistemic logic (DEL) there is no such a distinction between explicit and
implicit belief, as it only deals with the implicit beliefs of logical omniscient agents.
We think that this is a limitation of the DEL approach, compared to LDA-PBE, since
in HMI scenarios such as the previous one, we would like to represent the limited
reasoning of the human agent, whose explicit beliefs are not necessarily closed under
deduction, as well as the unbounded inferential capability of an artificial agent, which
is always capable of verifying whether a formula is deducible from its beliefs. Note that
the latter capability can be concretely implemented in an artificial agent by exploiting
automated reasoning procedures for the logics LDA and LDA-PBE. An initial work in
this direction is reported in [57].

Once the inferential capability is implemented in the artificial agent, it can be ex-
ploited for plan verification in the domain of epistemic planning [18]. For instance, the
artificial agent will be able to verify whether a sequence of speech acts will necessarily
induce the human to form a certain belief or intention, like in HAL & Bob’s scenario
in which HAL can verify whether, after telling to Bob that the outside temperature is
above 10�C, Bob intends to go out for a walk.

7.4. Discussion: forgetting and belief base contraction
In the preceding sections we have studied two types of information dynamics at a

multi-agent level: common ground change determined by public announcements and
private belief base expansion. We here present the semantics of a further type of private
belief change operation called forgetting.9

The idea is simple; we assume that an agent i forgets that ↵ is true if and only if ↵ is
removed from her belief base, while all other agents keep their belief bases unchanged.
In formal terms, we introduce modal operators of the form [�

i

↵] where the formula
[�

i

↵]' has to be read “' holds after agent i has forgotten that ↵ is true”. The following
is the truth condition of the formula [�

i

↵]'which is evaluated with respect to a generic
MAB (B,Cxt):

(B,Cxt) |= [�
i

↵]' () (B�i↵,Cxt) |= '

9See [85, 31] for logical accounts of forgetting in the standard DEL setting and [10] for a formalization
of forgetting in a neighborhood semantics for explicit beliefs.
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with B�i↵ = (B�i↵

1 , . . . , B�i↵
n

,V ), and for all j 2 Agt :

B�i↵

j

= B
j

\ {↵} if i = j,

B�i↵

j

= B
j

otherwise.

Note that this semantics for forgetting is compatible with logic LDA{D⇤i
}. In fact,

erasing a piece of information from an agent’s belief base only increases the agent’s
uncertainty without making her explicit beliefs inconsistent. More precisely, we have
that if (B,Cxt) 2 MAB{GC} then (B�i↵,Cxt) 2 MAB{GC}. On the contrary it
is not compatible with the logic LDA{T⇤i

}, as it might be the case that (B,Cxt) 2
MAB{BC} and (B�i↵,Cxt) 62 MAB{BC}. To see why the operation �

i

↵ does not
preserve the property of belief correctness BC suppose that, before the occurrence of
�1p, agent 2 explicitly and correctly believes that agent 1 explicitly believes that p.
After the occurrence of �1p, 1 does not believe anymore that p, but 2 still believes that
1 believes that p, since 1’s forgetting is private and does not affect 2’s belief base.

We have the following two validities relative to every class of models MAB
X

such
that X ✓ {GC}:

|=MABX [�
i

↵]¬4
i

↵ if X ✓ {GC}, (13)
|=MABX ¬⇤

i

' ! [�
i

↵]¬⇤
i

' if X ✓ {GC}. (14)

According to the first validity, after having forgot something, an agent does not explic-
itly believe it anymore. According to the second validity, if an agent forgets something,
then she cannot infer anything new that she could not infer before forgetting. We also
have the following two validities relative to every class MAB

X

such that X ✓ {GC}:

|=MABX 4
j

� $ [�
i

↵]4
j

� if i 6= j and X ✓ {GC}, (15)
|=MABX ⇤

j

' $ [�
i

↵]⇤
j

' if i 6= j and X ✓ {GC}. (16)

They highlight the private aspect of forgetting: if i and j are different agents then j
does not forget or learn anything from i’s (privately) forgetting something. The reason
why an agent’s private forgetting does not affect the implicit beliefs of the others is
that, just like private belief base expansion, it changes the belief base of one agent,
while keeping the belief bases of the others unchanged. Since the agents’ doxastic
accessibility relations are built from their belief bases, if the latter do not change, the
agents’ implicit beliefs do not change either.

As we have emphasized in Section 7.2, the belief base expansion operation +
i

↵
may destroy the global consistency of agent i’s belief base. The forgetting opera-
tion �

i

¬↵ is not sufficient to prevent this. To see this, let us extend the language
LANGLDA-PBE of Section 7.2 by the forgetting operators to obtain the following lan-
guage LANGLDA-PBEF:

' ::= ↵ | ¬' | '1 ^ '2 | ⇤
i

' | [+
i

↵]' | [�
i

↵]'.

where LDA-PBEF stands for “Logic of Doxastic Attitudes, Privated Belief Expan-
sion and Forgetting”. It is easy to verify that the following formula of the language
LANGLDA-PBEF is satisfiable relative to the class of models MAB:

¬⇤
i

? ^ [�
i

¬↵][+
i

↵]⇤
i

?.
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This means that it is not necessarily the case that if agent i’s belief base is globally
consistent and i forgets ¬↵ then, i’s belief base will remain globally consistent, after
she has expanded her belief base with ↵. The intuitive explanation of this property is
that, after agent i has erased ¬↵ from her belief base, ¬↵ could still be deducible from
her explicit beliefs. Consequently, if she adds ↵ to her belief base, it could become
globally inconsistent.

A way of avoiding this problem consists in introducing a new family of partial meet
contraction operators in the Hansson’s style [37, 40] that guarantee the non-derivability
of ¬↵ from agent i’s explicit beliefs, after ¬↵ was removed from the agent’s belief
base. The general idea of partial meet contraction is that the belief base resulting from
the contraction by ¬↵ should be equal to the intersection of a selection of the maximal
subsets of the initial belief base not entailing ¬↵.10 It is worth noting that, by means of
such operators and the so-called Levi’s identity, we could define a belief base revision
operator as the composition of partial meet contraction with ¬↵ followed by belief
base expansion with ↵, as defined in Section 7.2. Again following Hansson [37, 40],
we could define belief base consolidation — a basic operation aimed at restoring global
consistency of an agent’s belief base — as belief base contraction with ?.

We leave for future work the extension of the LDA framework by operators for be-
lief base contraction and the study of belief base revision and belief base consolidation
in the context of this framework. We believe that LDA offers the basis for a minimalis-
tic account of belief revision in a multi-agent setting, inspired by theory of single-agent
belief base change [40]. Indeed, modelling belief base revision in LDA does not require
a notion of epistemic entrenchment or plausibility ordering over possible worlds as in
the traditional DEL account of belief revision [11, 74].

We also leave for future work an analysis in the LDA framework of resource-
bounded belief change operations such as local partial meet contraction in which the
contraction operation is restricted to a compartment of an agent’s belief base [88, 41].
We believe that resource-bounded belief change is relevant for AI applications such as
the one discussed in Section 7.3 in which a conversational agent has to interact with a
human user who is, by definition, resource-bounded.

8. Comparison with DEL: a closer inspection

In Section 7, we studied some dynamic extensions of LDA including extensions by
public announcement, private belief base expansion and contraction. The most widely
used logical tool for modeling belief change in a multi-agent setting is DEL. We have
already discussed some conceptual differences between the DEL approach to multi-
agent belief change and our approach based on LDA. In this section, we make the
comparative analysis between the two approaches more precise. We explain in detail
how private belief base expansion, as defined in Section 7.2, can be translated into the

10Partial meet contraction for belief bases is traditionally opposed to kernel contraction as defined in [39]
(see, e.g., [21]). In kernel contraction, one has to compute all minimal subsets of the initial belief base that
entail ¬↵ and then remove (in some fashion) an element of each such set, so as to obtain a new belief base
that does not entail ¬↵.
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DEL semantics, the latter consisting in update operations on multi-relational Kripke
models. Specifically, after having shown how multi-agent belief models (MABs) can
be mapped to multi-relational Kripke models (Section 8.1), we introduce in Section
8.2 the general update semantics for DEL based on the notion of arrow update model
[50, 51], whereby Kripke models are updated through arrow elimination. The latter
slightly differs from the update semantics for DEL based on action (or event) models
[12, 77, 81], whereby Kripke models are updated through state elimination.

Finally, in Section 8.3, we show that private belief base expansion of Section 7.2
can be mapped to a specific kind of DEL update of private type based on arrow update
models à la Kooi & Renne. Differently from public update by which the beliefs of all
agents are changed, private update modifies the beliefs of a single agent, while keeping
the beliefs of all other agents unchanged. In particular, we show that the model obtained
through private belief base expansion and the model obtained through private update
are bisimilar, although the former is more compact than the latter. Indeed, while private
update requires world duplication, private belief base expansion does not require it.

8.1. From multi-agent belief models to Kripke models
The standard semantics for epistemic logic (EL) and dynamic epistemic logic (DEL)

builds on the class of multi-relational Kripke models or, simply, Kripke models. A
Kripke model is a structure in which every agent is identified with her epistemic acces-
sibility relation over states and a valuation function specifies the set of states in which
an atomic formula is true. DEL update consists in modifying a Kripke model in dif-
ferent ways, e.g., by eliminating states and/or arrows, changing truth values of atomic
formulas, duplicating states.

It is straightforward to provide a semantic interpretation of formulas in the language
LANGLDA relative to Kripke models of this kind. The idea is to conceive explicit belief
formulas of type 4

i

↵ as atomic formulas, in the same way as the atomic propositions
of type p. Let us show how this can be done.

Let

Atm

+ = Atm [ {4
i

↵ : i 2 Agt and ↵ 2 LANG0}

be the set of atomic formulas. For notational convenience elements of Atm+ are de-
noted by x, y, x0, y0, . . . We consider Kripke models of the form K = (S, )1, . . . , )n

,⇡) where S is a set of states, )
i

✓ S ⇥ S with i 2 Agt is agent i’s epistemic accessi-
bility relation and ⇡ : Atm+ �! 2S maps atomic formulas to sets of states. A pointed
Kripke model is a pair (K, s), where K is a Kripke model and s 2 S. The class of
pointed Kripke models is denoted by PK.

Formulas of the language LANGLDA are interpreted relative to pointed Kripke
models, as follows:

(K, s) |= x () s 2 ⇡(x) for x 2 Atm

+,

(K, s) |= ¬' () (K, s) 6|= ',

(K, s) |= ' ^  () (K, s) |= ' and (K, s) |=  ,

(K, s) |= ⇤
i

' () 8s0 2 S : if s )
i

s0 then (K, s0) |= ',
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where (K, s) |= ' means that ' is true at s in K.
There is a natural way to define a functor

transf : MAB �! PK

which transforms a multi-agent belief model into a corresponding pointed Kripke model
satisfying the same formulas as the original model.11 A similar transformation is
used in the proof of Lemma 7 in the technical annex at the end of the paper, to con-
struct the quasi-NDM corresponding to a given multi-agent belief model. It is for-
mally defined as follows. For all (B,Cxt) 2 MAB and (K, s) 2 PK we have
transf

�
(B,Cxt)

�
= (K, s) with K = (S, )1, . . . , )n

,⇡) if and only if:

• S =
�
s
B

0 : B0 2 {B} [ Cxt

 
,

• for every i 2 Agt ,

)
i

=
�
(s

B

0 , s
B

00) 2 S ⇥ S : B0 2 Cxt [ {B}, B00 2 Cxt and B0R
i

B00
 
,

• for every p 2 Atm , ⇡(p) = {s
B

0 2 S : p 2 V 0},

• for every 4
i

↵ 2 LANG0, ⇡(4
i

↵) = {s
B

0 2 S : ↵ 2 B0
i

}, and

• s = s
B

,

where the binary relation R
i

is defined as in Definition 5.
The idea of connecting different classes of models used to represent epistemic in-

formation through functors is borrowed from van Benthem [75], in which the idea of
tracking epistemic information from one type of model to another is formally investi-
gated.12

It is easy to show that (B,Cxt) and transf

�
(B,Cxt)

�
satisfy the same formulas

of the language LANGLDA. In other words, information provided at the level of the
multi-agent belief model is tracked at the level of the Kripke model.

Proposition 10. Let ' 2 LANGLDA. Then,

(B,Cxt) |= ' if and only if transf
�
(B,Cxt)

�
|= '.

In the next section, we provide a concise presentation of the arrow-eliminating
version of the update semantics for DEL.

11The term “functor” is used here in a loose sense. A category-theoretical analysis of the relationship
between multi-agent belief models and Kripke models is beyond the scope of this paper.

12Van Benthem studies, among the others, the connection between standard epistemic models and plausi-
bility models [11] as well as the connection between plausibility models and evidence models [78].
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8.2. Product update
Following Kooi & Renne [50], we define the following concept of arrow update

model. It shall be conceived as an event which is responsible for updating the agents’
beliefs (epistemic change) and/or the truth values of the atomic formulas (factual change).

Definition 17 (Arrow update model). An arrow update model is a pair U = (O, ⌧, post)
consisting of a finite nonempty set of outcomes O, a partial function

⌧ : Agt ⇥ O ⇥ O * LANGLDA ⇥ LANGLDA,

called the arrow function, and a postcondition function

post : O ⇥ Atm

+ �! LANGLDA.

A pointed arrow update model is a pair (U, o) where U = (O, ⌧, post) is an arrow
update model and o 2 O.

Our definition of arrow update model slightly differs from Kooi & Renne (K&R)’s
original definition, as it includes the postcondition function which is not included in
K&R’s definition. Note that the postcondition function is usually integrated in the
definition of action model in order to model factual change in DEL, in opposition to
epistemic change (see, e.g., [77, 81]). Another minor difference with Kooi & Renne’s
definition concerns the arrow function ⌧ that they specify as a total function with do-
main Agt ⇥ O and codomain LANGLDA ⇥ O ⇥ LANGLDA. However, this difference
has no implication, since the partiality of our arrow function can be ‘simulated’ in K&R
by the fact that, possibly, ⌧(i, o) = (?, o0, ?) for some o, o0 2 O and i 2 Agt .

For notational convenience, for every i 2 Agt and for every o0, o00 2 O, we write
⌧1(i, o0, o00) to denote the formula ' such that ⌧(i, o0, o00) = (', ) for some  , and
⌧2(i, o0, o00) to denote the formula  such that ⌧(i, o0, o00) = (', ) for some '.

A pointed arrow update model (U, o) is applied to a pointed Kripke model (K, s) to
generate a new pointed Kripke model, called general product update, which is defined
as follows.

Definition 18 (Product update). Let (U, o) be a pointed arrow update model with
U = (O, ⌧, post) and let (K, s) be a pointed Kripke model with K = (S, )1, . . . , )n

,⇡). The product update of (U, o) and (K, s) is the pointed Kripke model
�
K ⌦

U, (s, o)
�

with K ⌦ U = (S0, )01, . . . , )0n,⇡0) such that:

• S0 = S ⇥ O,

• for every i 2 Agt and for every (s0, o0) 2 S0,

)0
i

�
(s0, o0)

�
=
�
(s00, o00) 2 S0 : s0 )

i

s00, ⌧(i, o0, o00) is defined,

(K, s0) |= ⌧1(i, o
0, o00) and (K, s00) |= ⌧2(i, o

0, o00)
 
,

• for every x 2 Atm

+, ⇡0(x) =
�
(s0, o0) 2 S0 : (K, s0) |= post(o0,x)

 
.
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General product update increases the size of the initial model by size-change factor
|O|. Indeed, for every outcome o0 in O and for every state s0 in the Kripke model to
be updated, an o0-indexed copy (s0, o0) of s0 is generated. Moreover, for every agent
i 2 Agt and for every pair of outcomes (o0, o00), the arrow update model specifies the
source condition ⌧1(i, o0, o00) that has to be satisfied by a state s0 and the target con-
dition ⌧2(i, o0, o00) that has to be satisfied by another state s00, to guarantee that in the
updated Kripke model there will be a i-arrow from (s0, o0) to (s00, o00). Intuitively, this
means that an agent’s uncertainty between states in the original Kripke model is carried
over to outcome-indexed copies of those states if and only if the original states satisfy
the source and target conditions for the corresponding outcomes. The postcondition
function post is responsible for changing the truth values of atomic formulas. In par-
ticular, it specifies the formula post(o0, x) that must be satisfied by a state s0 to make
the atomic formula x true at its outcome-indexed copy (s0, o0).

From the postcondition function post , we can identify the set of assignments oc-
curring at a given outcome o0 2 O, denoted by

Assign(o0) =
�
x ,!  : x 2 Atm

+, 2 LANGLDA and post(o0, x) =  
 
.

Following van Ditmarsch et al. [84], we call x ,!  an assignment since it corresponds
to the operation of assigning the value of  to the value of x.

8.3. Private belief expansion as a compact version of private product update
In this section, we show how the operation of private belief expansion defined in

Section 7.2 can be mapped to a specific kind of product update of private type in which
the beliefs of a single agent are updated, while the beliefs of all other agents are kept
unchanged. We call it private arrow update model. It consists of two outcomes o1 and
o2. Outcome o1 is the outcome at which agent i shrinks her set of doxastic alternatives
to '-states and at which assignment x ,!  takes place. Outcome o2 is the outcome at
which nothing happens.

Definition 19 (Private arrow update model). The private arrow update model for agent
i by information ' and assignment x ,!  is the arrow update model U (',x,! )i =
(O, ⌧, post) such that:

• O = {o1, o2};

• for every k, h 2 {1, 2} and for every j 2 Agt , o(j, o
k

, o
h

) is defined if and only
if (k = 1 and h = 2) or k = h = 2;

• o(i, o1, o2) = (>,') and o(i, o2, o2) = (>, >);

• o(j, o1, o2) = (>, >) and o(j, o2, o2) = (>, >) for every j 6= i;

• for every y 2 Atm

+ and for every k 2 {1, 2}:

post(o
k

, y) =

(
y if k = 2 or x 6= y,

 if k = 1 and x = y.
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Let us see what the model obtained by product update with the private arrow up-
date model of Definition 19 looks like. Let (K, s) be a pointed Kripke model with
K = (S, )1, . . . , )n

,⇡) and s 2 S.
�
K ⌦ U (',x,! )i , (s, o1)

�
is the product up-

date of (K, s) and the pointed private arrow update model (U (',x,! )i , o1), where
K ⌦ U (',x,! )i is the Kripke model (S0, )01, . . . , )0n,⇡0) which is defined as fol-
lows:

S0 ={(s0, o1) : s0 2 S} [ {(s0, o2) : s0 2 S},

for all s0 2 S and for all j 2 Agt :

)0
j

((s0, o1)) =
�
(s00, o2) : s0 )

j

s00 and (M, s00) |= '
 

if i = j,

)0
j

((s0, o1)) =
�
(s00, o2) : s0 )

j

s00
 

if i 6= j,

)0
j

((s0, o2)) =
�
(s00, o2) : s0 )

j

s00
 
,

and for all y 2 Atm

+:

⇡0(y) =

8
>>><

>>>:

�
(s0, o

k

) 2 S0 : k = 1 and (K, s0) |=  
 
[�

(s0, o
k

) 2 S0 : k = 2 and (K, s0) |= y
 

if x = y,

�
(s0, o

k

) 2 S0 : k 2 {1, 2} and (K, s0) |= y
 

if x 6= y.

We call
�
K⌦U (',x,! )i(s, o1)

�
private update of (K, s) for agent i by information

' and assignment x ,!  . To make notation more compact, in what follows, we write
(K, s)(',x,! )i instead of

�
K ⌦ U (',x,! )i(s, o1)

�
.

In order to formally define the correspondence between private belief base expan-
sion and private update, we exploit the notion of bisimulation. Let us recall its defini-
tion.

A bisimulation between two Kripke models K = (S, )1, . . . , )n

,⇡) and K 0 =
(S0, )01, . . . , )0n,⇡0) is a nonempty binary relation -✓ S ⇥ S0 such that whenever
s - s0 for s 2 S and s0 2 S we have that:

Atomic harmony: for every x 2 Atm

+, s 2 ⇡(x) if and only if s0 2 ⇡0(x),

Zig: for every s00 2 S, if s )
i

s00, then there exists s000 2 S0 such that s0 )0
i

s000 and
s00 - s000,

Zag: for every s00 2 S0, if s0 )0
i

s00, then there exists s000 2 S such that s )
i

s000 and
s000 - s00.

Two pointed Kripke models (K, s) and (K 0, s0) with K = (S, )1, . . . , )n

,⇡) and
K 0 = (S0, )01, . . . , )0n,⇡0) are said to be bisimilar if there exists a bisimulation -✓
S ⇥ S0 such that s - s0.

As a consequence of [16, Theorem 2.20], we have that if (K, s) and (K 0, s0) are
bisimilar then they satisfy the same formulas in LANGLDA.

The following theorem is the core result of this section.
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Theorem 11. The pointed Kripke model transf
�
(B+i↵,Cxt)

�
and the pointed Kripke

model transf
�
(B,Cxt)

�(↵,4i↵,!>)i are bisimilar.

PROOF. Let transf
�
(B,Cxt)

�
= (K, s) with K = (S, )1, . . . , )n

,⇡) and s 2 S.
Furthemore, let transf

�
(B+i↵,Cxt)

�
= (K 0, s0) with K 0 = (S0, )01, . . . , )0n,⇡0)

and s0 2 S0. Finally, let (K, s)(↵,4i↵,!>)i = (K 00, s00) with K 00 = (S00, )001 , . . . , )00
n

,⇡00).
We recall that:

S0 =
�
s
B

0 : B0 2 Cxt [ {B+i↵}
 
, and

S00 =
�
(s

B

0 , o1) : B0 2 Cxt [ {B}
 

[
�
(s

B

0 , o2) : B0 2 Cxt [ {B}
 
.

Moreover, s = s
B

, s0 = s
B

+i↵ and s00 = (s
B

, o1).
We define the binary relation -✓ S0 ⇥ S00, as follows:

-(s
B

+i↵) ={(s
B

, o1)},

-(s
B

0) ={(s
B

0 , o2)} for every B0 6= B+i↵.

It is routine exercise to show that - defines a bisimulation between K 0 and K 00

and, consequently, (K 0, s0) and
�
K 00, (s, o1)

�
are bisimilar. ⌅

Private belief base expansion
(B,Cxt)

(K, s)

(B+i�,Cxt)

(K, s)(�,4i��!>)i

(K �, s�)transf

transf

bisimilar

Private update

Figure 3: Connection between private belief base expansion and private update

Theorem 11 highlights that the Kripke model obtained by applying private belief
base expansion with ↵ to agent i first, and then the transformation functor transf ,
is bisimilar with the Kripke model obtained by applying the transformation functor
transf first, and then private update for i by information ↵ and assignment 4

i

↵ ,! >.
This result is summarized in Figure 3. From Theorem 11, it follows that, for every
' 2 LANGLDA,

transf

�
(B+i↵,Cxt)

�
|= ' if and only if transf

�
(B,Cxt)

�(↵,4i↵,!>)i |= '.
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Observe that product update by the private arrow update model of Definition 19
duplicates the size of the original Kripke model, since, for every state s0, two copies
(s0, o1) and (s0, o2) are generated. Consequently, the size of the original Kripke model
increases exponentially in the length of the sequence of private update operations.13 On
the contrary, private belief base expansion as defined in Section 7.2, simply requires to
add a piece of information to the local belief base of a single agent, while keeping the
belief bases of all other agents unchanged. Consequently, the size of the original multi-
agent belief model increases at most linearly in the length of the sequence of private
belief base expansion operations.

In the light of the previous observation and of Theorem 11, we can safely conclude
that the dynamic version of the logic LDA offers a parsimonious and practical approach
to modeling private belief change in a multi-agent setting, compared to the DEL ap-
proach. It is worth noting that dynamic extensions of LDA studied above also have an
advantage compared to dynamic extensions of F&H’s logic of general awareness, such
as the ones studied in [82, 80]. The semantics of F&H’s logic extends the Kripkean
semantics of epistemic logic by the syntactic notion of awareness. In this logic, explicit
belief change is derivative of awareness and implicit belief change, i.e., an explicit be-
lief may change as a consequence of either awareness change or implicit belief change,
since explicit belief is defined in terms of implicit belief and awareness. Therefore,
modeling private (explicit or implicit) belief change in F&H’s logic requires to expo-
nentially increase the size of the initial model in the length of the sequence of private
update operations. Let us emphasize again that this drawback is not encountered in the
LDA framework.

Before concluding, a mention must be made to the fact that, although modeling
private belief change in LDA is simpler than modeling it in DEL, there are forms of
DEL update such as semi-private announcements about generic formulas in LANGLDA
that do not seem to be representable in the LDA framework.

9. Perspectives and conclusion

We have presented a family of logics of explicit and implicit belief with a seman-
tics based on belief bases. We have explored several aspects of these logics both at
the conceptual level and at the mathematical and computational level. This includes
the distinction between belief and knowledge, the connection with the logic of general
awareness, different dimensions of introspection for explicit and implicit beliefs, dy-
namic aspects related to belief change, axiomatizability of these logics, complexities
of their satisfiability problems and comparison with the DEL approach to multi-agent
belief change. We have also illustrated the application potential of the LDA framework
with the aid of a concrete example taken from the domain of conversational agents.

13Indeed, let x0, . . . , x
k

2 Atm+, i0, . . . , i
k

2 Agt and  0, . . . , 
k

2 LANGLDA. Moreover, let
K0 = (S0,)1, . . . ,)n

,⇡) with s0 2 S0 and, for every k � 1, let:

(K
k

, s

k

) = (K
k�1, sk�1)

(↵k�1,xk�1,! k�1)ik�1

with K

k

= (S
k

,)0
1, . . . ,)0

n

,⇡

0). Then, |S
k

| = |S0|⇥ 2k .
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Directions of future research are manifold. Some of them were already mentioned
in the previous sections. Among them, we plan to study the proof-theoretic aspects
of the introspective variants of LDA, we discussed in Section 6. Moreover, we intend
to investigate the proof-theoretic and complexity aspects for the dynamic extension of
LDA by the forgetting operators [�

i

↵]. Finally, we plan to extend LDA by operators
for private belief base contraction and revision, along the lines we briefly discussed in
Section 7.4. Before concluding, we mention further perspectives of future research.

Restoring introspection. As we observed in Section 7.2, private belief base expansion
does not necessarily preserve positive introspection on implicit beliefs. This is due
to the “locality” of the private belief base expansion operation. Private belief base
expansion updates an agent’s actual belief base without updating the states that the
agent considers possible from the actual state. Consequently, if the agent expands her
belief base with ↵, she will start to believe that ↵, without necessarily believing that
she believes that ↵. This is a natural property of belief expansion for non-introspective
agents whose beliefs are not necessarily closed under positive introspection.

The previous observation naturally raises the following problem: how can we re-
store positive introspection on implicit beliefs after the occurrence of a belief base
expansion operation? Solving this problem is important if we want to model belief
base expansion for an introspective agent, who does not fail to form the higher-order
belief that she believes that ↵, when forming the belief that ↵.

A solution to this problem relies on the notion of introspective discernment (ID).
The fact that an agent has introspective discernment means that all her doxastic al-
ternatives are for her subjectively-equivalent to the actual state, where two states are
‘subjectively-equivalent’ for an agent if the agent has the same belief base at the two
states. In other words, an introspectively discerning agent cannot consider possible a
situation at which her belief base differs from her actual belief base. Therefore, (i) if an
introspectively discerning agent explicitly believes that ↵, then she implicitly believes
that she explicitly believes that ↵, and (ii) if she does not believe that ↵ explicitly, then
she implicitly believes that she does not believe that ↵ explicitly.

Introspective discernment guarantees recovery of an agent’s introspective access
to her implicit beliefs, after the occurrence of a belief base expansion operation. In-
deed, after having expanded her belief base with ↵, an introspectively discerning agent
“recomputes” her doxastic accessibility relation by shrinking her set of doxastic al-
ternatives to the states in which ↵ holds and, then, by closing it under positive and
negative introspection.14

Let us sketch a formal analysis of this notion of introspective discernment. The first
thing to be defined is the doxastic accessibility relation for an introspectively discerning
agent i, denoted by RID

i

. Specifically, RID

i

is a binary relation on the set of multi-
agent belief bases B such that, for all B = (B1, . . . ,Bn

,V ), B0 = (B 01, . . . ,B
0
n

,V 0) 2

14This corresponds to the operation of taking the minimal expansion that includes ↵ and is closed under
positive and negative introspection.
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B:

BRID

i

B0 if and only if
(i) 8↵ 2 B

i

: B0 |= ↵, and
(ii) B

i

= B0
i

.

BRID
i

B0 means that B0 is a doxastic alternative for the introspectively discerning agent
i at B. According to the previous definition, if agent i is introspectively discerning, then
i’s set of doxastic alternatives at B (i.e., RID

i

(B)) includes all and only those states
that satisfy i’s explicit beliefs, and that are for i subjectively equivalent to B. Note that
RID

i

✓ R
i

since item (i) is exactly the definition of the relation R
i

(Definition 5 in
Section 3.1).

By means of the new relation RID
i

, we can define a variant of the language LANGLDA
in which every implicit belief operator ⇤

i

is replaced by an introspectively discerning
variant of it of the form ⇤ID

i

, where ⇤ID
i

' has to be read “if agent i was introspectively
discerning, she would implicitly believe that '” (or “agent i implicitly believes that ',
under the assumption that she is introspectively discerning”). Likewise the operator
⇤

i

, the operator ⇤ID
i

is interpreted relative to a MAB (B,Cxt), as follows:

(B,Cxt) |= ⇤ID
i

' () 8B0 2 Cxt : if BRID
i

B0 then (B0,Cxt) |= '.

Notions of satisfiability and validity for this variant of the language LANGLDA in
which operators ⇤

i

are replaced by operators ⇤ID
i

are defined in the usual way.
Intuitively speaking, the operator ⇤ID

i

should be understood as describing the body
of information that agent i can form either through deduction from her belief base and
the common ground or through introspection on what she explicitly believes and on
what she does not believe explicitly.

As the following proposition indicates, if an agent is introspectively discerning,
then her implicit beliefs are closed under positive and negative introspection.

Proposition 11. Let i 2 Agt . Then, the relation RID

i

is transitive and Euclidean.

PROOF. We first prove transitivity. Suppose BRID

i

B0 and B0RID

i

B00. The latter
implies that B0 |= ↵ for all ↵ 2 B

i

, B00 |= ↵ for all ↵ 2 B

0
i

and B
i

= B0
i

= B00
i

.
Hence, B00 |= ↵ for all ↵ 2 B

i

, since B
i

= B0
i

. It follows that BRID

i

B00.
Let us prove that RID

i

is Euclidean. Suppose BRID

i

B0 and BRID

i

B00. The latter
implies that B0 |= ↵ and B00 |= ↵ for all ↵ 2 B

i

, and B
i

= B0
i

= B00
i

. Hence, B00 |= ↵
for all ↵ 2 B

0
i

, since B
i

= B0
i

. It follows that B0RID

i

B00. ⌅
The following four validities capture some fundamental properties of this operator:

|=MAB 4
i

↵ ! ⇤ID
i

4
i

↵, (PID4i )

|=MAB ¬4
i

↵ ! ⇤ID
i

¬4
i

↵, (NID4i )

|=MAB ⇤ID
i

' ! ⇤ID
i

⇤ID
i

', (PID⇤ID
i

)

|=MAB ¬⇤ID
i

' ! ⇤ID
i

¬⇤ID
i

'. (NID⇤ID
i

)
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Principles PID4i and NID4i are direct consequences of the definition of the accessi-
bility relation RID

i

and of the interpretation of the operator ⇤ID
i

, whereas principles
PID⇤ID

i
and NID⇤ID

i
are direct consequences of Proposition 11 and of the interpreta-

tion of the operator ⇤ID
i

. They capture, respectively, positive introspective discern-
ment on explicit beliefs (principle PID4i ), negative introspective discernment on ex-
plicit beliefs (principle NID4i ), positive introspective discernment on implicit beliefs
(principle PID⇤ID

i
) and negative introspective discernment on implicit beliefs (princi-

ple NID⇤ID
i

). PID⇤ID
i

and NID⇤ID
i

are nothing but the modal logic Axioms 4 and 5 for
the ⇤ID

i

-operator.
Likewise the operator ⇤

i

, if the operator ⇤ID
i

is interpreted relative to the model
class MAB{BC}, it satisfies the “knowledge implies truth” principle:

|=MAB{BC} ⇤ID
i

' ! '. (T⇤ID
i

)

Indeed, a MAB (B,Cxt) satisfies belief correctness if and only if B 2 Cxt and, for
every i 2 Agt and for every B0 2 Cxt , B0RID

i

B0.
Therefore, ⇤ID

i

becomes a S5-modality in the context of the model class MAB{BC}.
The interesting aspect of the operator ⇤ID

i

is its behavior in the presence of the
private belief base expansion operator [+

i

↵], whose interpretation was given in Section
7.2 (Definition 16).

As the following validities highlight, an introspectively discerning agent will keep
positive and negative introspection on her implicit beliefs, when performing a belief
base expansion:

|=MAB [+
i

↵](⇤ID
i

' ! ⇤ID
i

⇤ID
i

'), (17)

|=MAB [+
i

↵](¬⇤ID
i

' ! ⇤ID
i

¬⇤ID
i

'). (18)

This contrasts with the behavior of the operator ⇤
i

for which — as we observed
in Section 7.2 — preservation of positive introspection on beliefs under private belief
base expansion is not guaranteed.

Another interesting difference between the operators ⇤
i

and ⇤ID
i

concerns stability
of implicit beliefs under inference. As we observed in Section 7.2, if an agent implic-
itly believes that ', then she will still implicitly believe that ' after inferring that ↵.
Moreover, if she does not believe that ' implicitly, then she will not believe that '
implicitly after inferring that ↵. This stability property is not satisfied by the operator
⇤ID

i

. Indeed, the following two formulas are satisfiable for the class MAB:

⇤ID
i

' ^ ¬[infer(i,↵)]⇤ID
i

',

¬⇤ID
i

' ^ ¬[infer(i,↵)]¬⇤ID
i

'.

To see this, let B = (B1, V ), B0 = (B01, V
0), B00 = (B001 , V 00), Cxt = {B, B0, B00}

with B1 = B01 = B001 = ; and V = V 0 = V 00 = {p}. It is easy to check that

(B,Cxt) |= ⇤ID
1 ¬41p ^ ⇤ID

1 p ^ ¬[+1p]⇤ID
1 ¬41p.

Thus,

(B,Cxt) |= ⇤ID
1 ¬41p ^ ¬[infer(1,p)]⇤ID

1 ¬41p.
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Similarly, we can observe that

(B,Cxt) |= ¬⇤ID
1 41p ^ ¬[infer(1,p)]¬⇤ID

1 41p.

Future work will be devoted to study more in detail this variant of the logic LDA
in which ⇤

i

-operators are replaced by ⇤ID
i

-operators. Specifically, for each model
class MAB

X

with X ✓ {BC ,GC}, we plan to study complexity of its satisfiability
problem and provide a proof theory.

Operators for common ground and distributed belief. In future work, we also plan to
extend LDA by a common ground operator ⌅ with the following interpretation relative
to a MAB (B,Cxt):

(B,Cxt) |= ⌅' () 8B0 2 Cxt : (B0,Cxt) |= '.

The operator ⌅ is the syntactic counterpart of the context Cxt . It corresponds to the
universal modal operator studied in modal logic [44]. The interest of having it in the
language lies in the possibility of completing the conceptual framework depicted in
Figure 1 by formalizing the influence of the agents’ common ground on their deductive
processes and, consequently, the connection between the agents’ explicit beliefs and
their implicit beliefs via their common ground. The following is an example of validity
relative to the class MAB capturing such a connection:

|=MAB

�
4

i

↵ ^ ⌅(↵ ! �)
�

! ⇤
i

�. (19)

Common ground is a kind of collective belief. As we pointed out in Section 3.1, it is
conceivable as the body of information shared by the agents which is in the background
of their inference processes.

There is another kind of collective belief that deserves to be studied in the context
of the LDA framework. It is the notion of distributed belief that, similarly to individual
belief, can be either of explicit type or of implicit type. Distributed explicit belief is
the results of pooling together the agents’ belief bases. Specifically, the agents in the
coalition J 2 2Agt⇤ =

�
2Agt \{;}

�
have a distributed explicit belief that ↵, denoted by

4
J

↵, if and only if some agent in J explicitly believes that ↵. In formal terms, 4
J

↵
is interpreted relative to a multi-agent belief base, as follows:

B |= 4
J

↵ () ↵ 2 B
J

,

with B
J

=
S

i2J B
i

. In order to define distributed implicit belief we have to generalize
the doxastic accessibility relation of Definition 5 to coalitions, as follows:

BR
J

B0 if and only if 8↵ 2 B
J

: B0 |= ↵.

By means of the relation R
J

, we can provide a semantic interpretation of the distributed
implicit belief operator relative to a MAB, which parallels the interpretation of the
individual implicit belief operator given in Definition 6:

(B,Cxt) |= ⇤
J

' () 8B0 2 Cxt : if BR
J

B0 then (B0,Cxt) |= '.
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This means that the agents in the coalition J have a distributed implicit belief that ',
denoted by ⇤

J

', if and only if ' is true at all states that satisfy the explicit beliefs of
the agents in J . The following validities capture some interesting relationships between
individual belief and distributed belief:

|=MAB 4
J

↵ $
_

i2J
4

i

↵, (20)

|=MAB 4
J

↵ ! ⇤
J

↵, (21)
|=MAB ⇤{i}' $ ⇤

i

', (22)
|=MAB ⇤

J

' ! ⇤
J

0' if J ✓ J 0. (23)

The first validity reduces distributed explicit belief that ↵ to the existence of an indi-
vidual explicit belief that ↵ in the coalition. The second validity is a generalization
of Axiom Int4i,⇤i

given in Section 4 to coalitions of agents. The third and fourth
validities are standard principles for distributed implicit belief according to which dis-
tributed belief of a singleton coalition is the same as individual belief of the agent in the
singleton, and the larger the sub-coalition, the greater the distributed belief of that sub-
coalition. In future work, we plan to study the proof-theoretic as well as the complexity
aspects of this LDA extension by distributed explicit and implicit belief.

Connection with machine learning. As a long-term objective, we plan to explore the
connection between LDA and machine learning. Specifically, we plan to combine the
LDA framework with machine learning methods, such as inductive logic programming
(ILP) [65] and learning of Horn clauses [7], in order to acquire information to be added
to the agents’ belief bases through experience. More generally, the idea is to con-
struct an agent’s belief base through inductive methods based on machine learning
techniques, and then to exploit the information contained in the agents’ belief base
for deductive reasoning. The interesting and novel aspect of our approach is that an
agent’s belief base may contain not only propositional facts but also a theory of the
other agents’ minds and, in particular, information about the other agents’ explicit be-
liefs. Learning a theory of mind is a fascinating issue that, we believe, can be ade-
quately modeled in the context of our semantics for epistemic logic exploiting belief
bases. The challenging aspect of the integration between the LDA framework and ma-
chine learning techniques such as ILP and learning of Horn clauses lies in the fact that
the latter techniques are mostly developed in the context of propositional logic and
first-order logic. We will need to adapt them to the multimodal setting of the logic
LDA.

Last but not least, we plan to develop decision procedures based on tableaux for
all variants of LDA presented in Sections 4 and 6. We expect these decision proce-
dures to be exploitable in the context of AI applications including social robots and
conversational agents, as the ones briefly discussed in Section 7.3. In [57] we made
the first steps into this direction by proposing tableau-based decision procedures for
the logics LDA, LDA{D⇤i

} and LDA{T⇤i
}. Nonetheless, there is still a long way ahead

for what concerns their implementation as well as the experimental analysis of their
performance in comparison with the performance of existing decision procedures for
standard epistemic logic.
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AppendixA. Proof of Theorem 1 and Theorem 3

AppendixA.1. Proof of Theorem 1
We divide the proof of Theorem 1 in three parts, each part corresponding to the

proof of one of the following equivalence results: (i) satisfiability relative to quasi-
notional models implies satisfiability relative to finite quasi-notional models, (ii) sat-
isfiability relative to finite quasi-notional models implies satisfiability relative to finite
notional models, and (iii) satisfiability relative to multi-agent belief bases is equivalent
to satisfiability relative to notional models.

Satisfiability relative to quasi-NDMs implies satisfiability relative to finite quasi-NDMs.
We use a filtration argument to show that if a formula ' of the language LANGLDA is
true in a (possibly infinite) quasi-NDM then it is true in a finite quasi-NDM.

Let M = (W, D, N , V) be a (possibly infinite) quasi-NDM and let ⌃ ✓ LANGLDA
be an arbitrary finite set of formulas which is closed under subformulas. (Cf. Definition
2.35 in [16] for a definition of subformulas closed set of formulas.) Let the equivalence
relation ⌘⌃ on W be defined as follows. For all w, v 2 W :

w ⌘⌃ v iff 8' 2 ⌃ : (M, w) |= ' iff (M, v) |= '.

Let [w]⌃ be the equivalence class of the world w with respect to the equivalence relation
⌘⌃.

We define W⌃ to be the filtrated set of worlds with respect to ⌃:

W⌃ = {[w]⌃ : w 2 W}.

Clearly, W⌃ is a finite set.
Let us define the filtrated valuation function V⌃. For every p 2 Atm , we define:

V⌃(p) = {[w]⌃ : (M, w) |= p} if p 2 Atm(⌃),

V⌃(p) = ; otherwise.

The next step in the construction consists in defining the filtrated doxastic function.
For every i 2 Agt and for every [w]⌃ 2 W⌃, we define:

D⌃(i, [w]⌃) =
� \

w2[w]⌃

D(i, w)
�

\ ⌃.

Finally, for every i 2 Agt and for every [w]⌃ 2 W⌃, we define agent i’s set of
notional worlds at [w]⌃ as follows:

N⌃(i, [w]⌃) = {[v]⌃ 2 W⌃ : 9w 2 [w]⌃, 9v 2 [v]⌃ such that v 2 N (i, w)}.

We call the model M⌃ = (W⌃, D⌃, N⌃, V⌃) the filtration of M under ⌃.
We can state the following filtration lemma.

Lemma 4. Let ' 2 ⌃ and let w 2 W . Then, (M, w) |= ' if and only if (M⌃, [w]⌃) |=
'.
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PROOF. The proof is by induction on the structure of '. For the ease of exposition,
we prove our result for the language LANGLDA in which the “diamond” operator ⌃

i

is
taken as primitive and the “box” operator ⇤

i

is defined from it. Since the two operators
are inter-definable, this does not affect the validity of our result.

The case ' = p is immediate from the definition of V⌃. The boolean cases ' =
¬ and ' =  1 ^  2 follow straightforwardly from the fact that ⌃ is closed under
subformulas. This allows us to apply the induction hypothesis.

Let us prove the case ' = 4
i

↵.
()) Suppose (M, w) |= 4

i

↵ with 4
i

↵ 2 ⌃. Thus, ↵ 2 D(i, w). Hence, by
definition of D⌃(i, [w]⌃) and the fact that ⌃ is closed under subformulas, we have
↵ 2 D⌃(i, [w]⌃). It follows that (M⌃, [w]⌃) |= 4

i

↵.
(() For the other direction, suppose (M⌃, [w]⌃) |= 4

i

↵ with 4
i

↵ 2 ⌃. Thus,
↵ 2 D⌃(i, [w]⌃). Hence, by definition of D⌃(i, [w]⌃), ↵ 2 D(i, w).

Let us conclude the proof for the case ' = ⌃
i

 . It is easy to check that N⌃ gives
rise to the smallest filtration and that the following two properties hold for all w, v 2 W
and for all i 2 Agt :

(i) if v 2 N (i, w) then [v]⌃ 2 N⌃(i, [w]⌃), and

(ii) if [v]⌃ 2 N⌃(i, [w]⌃) then for all ⌃
i

' 2 ⌃, if (M, v) |= ' then (M, w) |= ⌃
i

'.

()) Suppose (M, w) |= ⌃
i

 with ⌃
i

 2 ⌃. Thus, there exists v 2 N (i, w) such
that (M, v) |=  . By the previous item (i), [v]⌃ 2 N⌃(i, [w]⌃). Since ⌃ is closed under
subformulas, we have  2 ⌃. Thus, by the induction hypothesis, (M⌃, [v]⌃) |=  . It
follows that (M⌃, [w]⌃) |= ⌃

i

 .
(() For the other direction, suppose (M⌃, [w]⌃) |= ⌃

i

 with ⌃
i

 2 ⌃. Thus,
there exists [v]⌃ 2 N⌃(i, [w]⌃), such that (M⌃, [v]⌃) |=  . Since ⌃ is closed under
subformulas, by the induction hypothesis, we have (M, v) |=  . By the item (ii) above,
it follows that (M, w) |= ⌃

i

 . ⌅
The following proposition highlights that M⌃ is the right model construction, as it

is an element of the class of finite quasi-NDMs.

Proposition 12. The tuple M⌃ = (W⌃, D⌃, N⌃, V⌃) is a finite quasi-NDM. More-
over, for every x 2 {GC ,BC}, if M satisfies the condition x then M⌃ satisfies it as
well.

PROOF. Clearly, M⌃ is finite. We are going to prove that it satisfies the Condition C1⇤
in Definition 12.

By Lemma 4, if ↵ 2
�T

w2[w]⌃
D(i, w)

�
\⌃ then ||↵||

M⌃ = {[v]⌃ : v 2 ||↵||
M

}.
Moreover, as M is a quasi-NDM, we have

N (i, w) ✓
\

↵2D(i,w)

||↵||
M

✓
\

↵2
�T

w2[w]⌃
D(i,w)

�
\⌃

||↵||
M

.

Hence, by definitions of N⌃(i, [w]⌃) and D⌃,

N⌃(i, [w]⌃) ✓
\

↵2D⌃(i,[w]⌃)

||↵||
M⌃ .

60



Moreover, it is easy to verify that if M satisfies global consistency of Definition 10
then M⌃ satisfies it as well, and if M satisfies belief correctness of Definition 11 then
M⌃ satisfies it as well. ⌅

The next lemma states the equivalence between the semantics in terms of quasi-
NDMs and the semantics in terms of finite quasi-NDMs.

Lemma 5. Let ' 2 LANGLDA and let X ✓ {GC ,BC}. Then, if ' is satisfiable for
the class QNDM

X

, then ' is satisfiable for the class finite-QNDM
X

.

PROOF. Let M be a possibly infinite quasi-NDM satisfying every condition in X and
let w be a world in M such that (M, w) |= '. Moreover, let sub(') be the set of
subformulas of '. Then, by Lemma 4 and Proposition 12, (Msub('), [w]sub(')) |= '
and Msub(') is a finite quasi-NDM. Moreover, Proposition 12 guarantees that Msub(')

satisfies every condition in X . ⌅

Satisfiability relative to finite quasi-NDMs implies satisfiability relative to finite NDMs.
Our second result concerns the equivalence between the semantics in terms of finite
notional models and the semantics in terms of finite quasi-notional models. It is clearly
expressed by the following lemma.

Lemma 6. Let ' 2 LANGLDA and let X ✓ {GC ,BC}. Then, if ' is satisfiable for
the class finite-QNDM

X

, then ' is satisfiable for the class finite-NDM
X

.

PROOF. The strategy of the proof consists in enlarging an agent i’s belief base at world
w (i.e., D(i, w)) so that agent i’s set of doxastic alternatives at w (i.e., N (i, w)) shrinks
and perfectly coincides with the set of worlds in which all formulas in agent i’s belief
base at w are true, as required by Condition C1 in Definition 9.

Let M = (W, D, N , V) be a finite quasi-NDM that satisfies ', i.e., there exists
w 2 W such that (M, w) |= '. Let

T (M) = [
w2W,i2AgtAtm(D(i, w))

be the terminology of model M including all atomic propositions that are in the explicit
beliefs of some agent at some world in M . Since M is finite, T (M) is finite too.

Let us introduce an injective function:

f : Agt ⇥ W �! Atm \ (T (M) [ Atm('))

which assigns an identifier to every agent in Agt and world in W . The fact that Atm is
infinite while W , T (M) and Atm(') are finite guarantees that such an injection exists.

The next step consists in defining the new model M 0 = (W 0, D0, N 0, V 0) with
W 0 = W , N 0 = N and where D0 and V 0 are defined as follows.

For every i 2 Agt and for every w 2 W :

D0(i, w) = D(i, w) [ {f(i, w)}.
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Moreover, for every p 2 Atm:

V 0(p) = V(p) if p 2 T (M) [ Atm('),

V 0(p) = N (i, w) if p = f(i, w),

V 0(p) = ; otherwise.

It is easy to verify that M 0 satisfies Condition C1 in Definition 9. In particular, we
have N 0(i, w) =

T
↵2D0(i,w) ||↵||

M

0 for all i 2 Agt and for all w 2 W 0. Thus, more
generally, M 0 is a finite NDM.

Furthermore, it is easy to check that, for every condition x 2 {GC ,BC}, if M
satisfies x then M 0 satisfies it as well. Indeed, for every i 2 Agt , N 0(i, w) = N (i, w).
Thus, if N (i, w) 6= ; then N 0(i, w) 6= ; and if w 2 N (i, w) then w 2 N 0(i, w).

By induction on the structure of ', we prove that, for all w 2 W , “(M, w) |= ' iff
(M 0, w) |= '”.

The case' = p is immediate from the definition of V 0. By the induction hypothesis,
we can prove the boolean cases ' = ¬ and ' =  1 ^ 2 in a straightforward manner.

Let us prove the case ' = 4
i

↵.
()) Suppose (M, w) |= 4

i

↵. Then, we have ↵ 2 D(i, w). Hence, by the defini-
tion of D0, ↵ 2 D0(i, w). Thus, (M 0, w) |= 4

i

↵.
(() Suppose (M 0, w) |= 4

i

↵. Then, we have ↵ 2 D0(i, w). The definition of
D0 ensures that ↵ 6= f(i, w), since f(i, w) 62 Atm(4

i

↵). Thus, ↵ 2 D(i, w) and,
consequently, (M, w) |= 4

i

↵.
Let us prove the case ' = ⇤

i

 . (M, w) |= ⇤
i

 means that (M, v) |=  for
all v 2 N (i, w). By induction hypothesis and the fact that N (i, w) = N 0(i, w),
the latter is equivalent to (M 0, v) |=  for all v 2 N 0(i, w). The latter means that
(M 0, w) |= ⇤

i

 .
Since M satisfies ' and “(M, w) |= ' iff (M 0, w) |= '” for all w 2 W , M 0

satisfies ' as well. ⌅

Satisfiability relative to multi-agent belief bases is equivalent to satisfiability relative to
NDMs. Our third result concerns the equivalence between the multi-agent belief base
semantics and the notional model semantics.

Lemma 7. Let ' 2 LANGLDA and let X ✓ {GC ,BC}. Then, ' is satisfiable for the
class MAB

X

if and only if ' is satisfiable for the class NDM
X

.

PROOF. As for the left-to-right direction, we prove the following weaker result: if ' is
satisfiable for the class MAB

X

, then ' is satisfiable for the class QNDM
X

.
Let (B,Cxt) be a MAB with B = (B1, . . . ,Bn

,V ) and such that (B,Cxt) |= '.
We define the structure M = (W, D, N , V) as follows:

• W = {w
B

0 : B0 2 Cxt [ {B}},

• for every i 2 Agt and for every w
B

0 2 W : D(i, w
B

0) = B0
i

,

• for every i 2 Agt and for every w
B

0 2 W : N (i, w
B

0) = {w
B

00 2 W : B00 2
Cxt and B0R

i

B00},
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• for every p 2 Atm: V(p) = {w
B

0 2 W : B0 |= p}.

One can show that M so defined is a quasi-NDM and that, for every condition x 2
{GC ,BC}, if (B,Cxt) satisfies x then M satisfies it as well. Moreover, by induc-
tion on the structure of ', one can prove that, for all w

B

0 2 W , (M, w
B

0) |= ' iff
(B0,Cxt) |= '. Thus, (M, w

B

) |= ', since (B,Cxt) |= '.
We have proved that if ' is satisfiable for the class MAB

X

, then ' is satisfiable
for the class QNDM

X

. Thus, by Lemmas 5 and 6, we have that if ' is satisfiable for
the class MAB

X

, then ' is satisfiable for the class NDM
X

.
We now prove the right-to-left direction. Let M = (W, D, N , V) be a NDM and

let w be a world in W such that (M, w) |= '.
Let us say that a NDM M = (W, D, N , V) is redundant if and only if there

are w, v 2 W such that w 6= v and w ⇠ v, where w ⇠ v denotes the fact that
{p 2 Atm : w 2 V(p)} = {p 2 Atm : v 2 V(p)} and, for all i 2 Agt ,
D(i, w) = D(i, v). Intuitively, a redundant NDM is a NDM which contains two identi-
cal worlds, where the criterion for saying that two worlds are identical is that valuations
of propositional atoms and agents’ belief bases are the same in the two worlds. The
class of redundant NDMs includes all NDMs of this kind. The class of non-redundant
NDMs is the complementary class including all NDMs which are not redundant. A
non-redundant pointed NDM is a pointed NDM (M, w) such that M is non-redundant.

We can show that if a formula is satisfiable for the class of NDMs then it is satisfi-
able for the class of non-redundant NDMs. Indeed, to every NDM M = (W, D, N , V)
we can associate a NDM Mnr = (W nr , Dnr , N nr , Vnr ) such that:

W nr = {[v] : v 2 W} with [v] = {u 2 W : v ⇠ u},

for every [v] 2 W 0, for every i 2 Agt and for every p 2 Atm:

Dnr (i, [v]) = D(v),

N nr (i, [v]) = {[u] 2 W nr : 9v 2 [v], 9u 2 [u] such that u 2 N (i, v)},

Vnr (p) = {[v] 2 W nr : v 2 V(p)}.

Clearly, Mnr is non-redundant. Moreover, by induction on the structure of the formula,
we can prove that, for every v 2 W and for every  2 LANGLDA, (M, v) |=  if and
only if (Mnr , [v]) |=  . The boolean cases and the case  = 4

i

↵ are obvious. The
only interesting case is  = ⇤

i

�. Let us prove it.
Suppose (M, v) |= ⇤

i

�. The latter means that (M, u) |= � for all u 2 N (i, v).
By definition of N nr (i, [v]), u 2 N (i, v) implies [u] 2 N nr (i, [v]). Thus, by in-
duction hypothesis, (Mnr , [u]) |= � for all [u] 2 N nr (i, [v]). The latter means that
(Mnr , [v]) |= ⇤

i

�.
Now, suppose (Mnr , [v]) |= ⇤

i

�. Thus, (Mnr , [u]) |= � for all [u] 2 N nr (i, [v]).
Hence, by induction hypothesis, (M, u) |= � for all [u] 2 N nr (i, [v]).

[u] 2 N nr (i, [v]) means that u0 2 N (i, v0) for some v0 2 [v] and for some u0 2 [u].
By Condition C1 in Definition 9, if v ⇠ v0 and u0 2 N (i, v0) then u0 2 N (i, v).
Moreover, if u ⇠ u0 and u0 2 N (i, v) then u 2 N (i, v), since u ⇠ u0 implies
“(M, u) |= ↵ iff (M, u0) |= ↵” for all ↵ 2 LANG0. Therefore, [u] 2 N nr (i, [v])
implies u 2 N (i, v).
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Therefore, (M, u) |= � for all u 2 N (i, v). The latter means that (M, v) |= ⇤
i

�.
Thus, we can conclude that (Mnr , [w]) |= ', since (M, w) |= '.
Intuitively speaking, the reason for applying a truth-preserving transformation of

the initial NDM M into the non-redundant NDM Mnr is to obtain a MAB which is
isomorphic to Mnr and which is bound to satisfy the same formulas as Mnr in the
light of this isomorphism.15 Let us define such a MAB formally.

To every [v] 2 W nr , we associate a tuple B[v] = (B [v]
1 , . . . ,B

[v]
n

,V [v]) such that
(i) V [v] = {p 2 Atm : [v] 2 Vnr (p)} and (ii) B [v]

i

= Dnr (i, [v]) for each i 2 Agt .
Moreover, we define the context Cxt = {B[v] : [v] 2 W nr}. It is easy to show that, for
every B[v] 2 Cxt , (B[v],Cxt) is a MAB and that, for every condition x 2 {GC ,BC},
if M satisfies x then (B[v],Cxt) satisfies it as well.

The mapping f : [v] 7! B[v] clearly defines a bijection from W nr to Cxt such that
(Mnr , [v]) |= ' iff

�
f([v]),Cxt

�
|= '. Thus,

�
f([w]),Cxt

�
|= ', since (Mnr , [w]) |=

'. ⌅

Conclusion. The previous Lemmas 5, 6 and 7 are sufficient for proving Theorem 1.
Indeed, as Figure A.4 highlights, the five semantics defined in Section 3 are all equiv-
alent relative to the language LANGLDA, since from every node in the graph we can
reach all other nodes.

MABX

finite-NDMX finite-QNDMX

NDMX QNDMX

Figure A.4: Relations between semantics for the language LANGLDA. An arrow means that satisfiability
relative to the first class of structures implies satisfiability relative to the second class of structures. Full
arrows correspond to the results stated in Lemmas 5, 6 and 7. Dotted arrows denote relations that follow
straightforwardly given the inclusion between classes of structures.

AppendixA.2. Proof of Theorem 3
Suppose ' is satisfiable for the class NDM

X

. Thus, by Corollary 1, it is LDA
X

-
consistent. Hence, by Theorem 2, it is satisfiable for the class QNDM

X

. From the
proof of Lemma 5, we can observe that if ' is satisfiable for the class QNDM

X

then
there exists a finite M 2 QNDM

X

satisfying ' such that (i) M includes at most
2n worlds, (ii) the atomic propositions outside Atm(sub(')) are false at every world
of M , and (iii) the belief base of an agent at a world of M contains only formulas

15Note that this transformation is not required for the proof of the left-to-right direction of the lemma
since, by definition, a MAB cannot contain two identical copies of the same state. In this sense, MABs are
“intrinsically” non-redundant.
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from sub('), where n is the size of sub('). The construction in the proof of Lemma
6 ensures that from M , we can build a finite M 0 2 NDM

X

satisfying ' for which
condition (i) holds and such that (iv) the atomic propositions outside Atm(sub('))[Y
are false at every world of M 0, and (v) the belief base of an agent at a world of M 0

contains only formulas from sub(') [ Y , where Y is an arbitrary set of atoms from
Atm \ (Atm(')) of size at most 2n ⇥ |Agt |. Thus, in order to verify whether ' is
satisfiable for the class NDM

X

, we fix a Y and check satisfiability of ' for all NDMs
in NDM

X

satisfying conditions (i), (iv) and (v). There are finitely many NDMs of
this kind.
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