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Abstract

This paper aims at introducing the Lempel–Ziv permutation complexity vs. permutation
entropy plane (EC-plane) as a tool to analyze time series with diverse dynamical nature.
These two quantities use the Bandt and Pompe representation to quantify a continuous-state
time series. The main strength of this approach lies in the fact that this plane combines two
different perspectives to study a signal, one being purely statistic (the permutation entropy)
and the other being algorithmic (the Lempel–Ziv complexity). The results allow us to
conclude that the EC-plane constitutes an appropriate framework for: (i) characterizing
non-linear chaotic maps, (ii) distinguishing deterministic from stochastic processes and (iii)
to discriminate between fractional Brownian motion, fractional Gaussian noise and K-noise.
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1. Introduction

Signals obtained from real physical experiments are very often produced by coupled
systems and exhibit complex dynamics. In addition to their deterministic behavior due
to the underlying physical structure, there is very often a stochastic component coming
from diverse noise sources [1, 2]. H. Wold showed in [1, 2] that any stationary time series
can be decomposed into two different parts: i) a deterministic one where the state of the
series at a given time is a function by its own past, and ii) a finite order moving average
component. In various applications, the question of deciding whether the deterministic part
of the signal is dominant, of regular or chaotic nature, or if it is mainly stochastic is crucial
for its comprehension and analysis.

To address these issues, signals are usually analyzed using tools coming either from
the probability theory or from the nonlinear dynamics. The former approach includes the
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analysis of statistics of the data ( e.g., probability distribution, higher order moments,. . . ),
analysis of the spectral content of the signals, among others. In this line, tools coming from
the information theory take a particular importance [3, 4, 5, 6]. On the other hand, the
latter approach is well suited for signals having a deterministic origin, generally nonlinear.
Tools used here are usually those describing chaotic signals, such as fractal dimensions or
Lyapunov exponents, among many others (see e.g. [7, 8]). Of particular interest are the
tools issued from the Kolmogorov complexity or algorithmic complexity theory [3, 9, 10, 11].

Motivated by the fact that a single measure is generally insufficient to resume the com-
plexity (in a statistical and/or deterministic sense), it has been proposed in the literature to
analyze time series using simultaneously two measures of information in a so-called “infor-
mation plane, demonstrating that the joint use of two quantities gives a richer information
about the series than each measure separately [12]. Such an approach has been used in
the literature in various areas, for example, to differentiate chaotic series from random sig-
nals [13], to characterize chaotic maps [14], to determine the authorship of literary texts [15],
to quantify the crypto currencies prices inefficiency [16], or for the analysis of the EEG dy-
namics [17]. In these mentioned works, the informational measures used were based
on statistical measures, for instance, the “Martin-Plastino-Rosso (MPR) sta-
tistical complexity [18, 19]. However, the statistical measures are not always able to
capture important characteristics of a time series. As an example, the Shannon entropy
or statistical complexity usually make difficult to distinguish persistent from anti-persistent
behavior in fractional Gaussian noises [13]. To overcome such a drawback, in addition to a
statistical measure, we propose to employ a measure based on the algorithmic complexity
with the idea to extract complementary information to a statistical one. More precisely,
in this work, we propose to use simultaneously a statistical and an algorithmic measure,
namely the well known Shannon entropy and the Lempel–Ziv complexity [20, 21], to anal-
yse times series and in particular to contrast stochasticity with chaos. By this way, when
analyzing time series, it is expected to capture both the random informational content and
the deterministic one. This approach differ substantially from the various variants of the
literature [12, 13, 15, 22, 14, 17].

By definition of these quantities, the use of the Lempel–Ziv complexity as well as of the
Shannon entropy, one has to deal with time series taking their values over a discrete finite
size alphabet 1. Thus, the quantization of a signal, i.e., to convert a continuous-states signal
into a discrete-states one, is a fundamental issue of the analysis. Many methods to quantize
continuous-states data exist in the literature, from nonparametric estimators making use of
the nearest neighbors or graph lengths for instance [23, 25, 24, 26, 27], to quantifiers based on
Parzen–Rosenblatt approaches, for instance, with a square kernel, i.e., using histograms [28,
29]. In this paper, we focus on an approach proposed by Bandt and Pompe introduced
a decade ago, based on a multivariate trajectory build from the scalar series, i.e., an
embedding, and the so-called permutation vectors constructed from this embedding [30].

1Actually, the “entropy of continuous-state random variables is defined by analogy with the entropy and
is called differential entropy. However, in practice, the estimation of this differential entropy from the data
is not an easy task [23, 24].
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More precisely, for each point of the embedded trajectory, the vectors components are sorted
in ascending order, and the values are replaced by their rank. The probability distribution
of the permutation vectors is thus used to evaluate the Shannon entropy, i.e., the so-called
permutation entropy [30]. In the same context, we proposed recently the use of the Lempel–
Ziv complexity applied to permutation vectors for the continuous-states sequences, leading
to what we named permutation Lempel–Ziv complexity [31]. In the present paper, we propose
to contrast deterministic with stochastic dynamics by using the hence constructed entropy–
complexity plane.

The paper is organized as follows. Section 2 gives an introduction to the measures used
for the analysis. Section 3 describes the permutation method we used to quantize the series,
i.e., the procedure to obtain the permutation vectors. In Section 4 we analyzed with the
entropy–complexity plane chaotic maps, Gaussian and non-Gaussian noises. Finally, some
discussions are given in Section 6.

2. Definitions of the uncertainty measures considered in the study

A great number of measures were proposed in the literature to analyse time series;
for example, Lyapunov exponent [32], entropy [21] and complexities [13, 20].
But many times the information obtained by these quantifiers is insufficient to
understand the dynamics of the series completely. To address this problem, recent
research where are combined two informational measures via an entropy-complexity plane
for such a discrimination has proved to be very promising [13]. Motivated by such studies,
we propose here to combine the two particular quantities introduced above, namely the
permutation Shannon entropy and permutation Lempel–Ziv complexity.

Esta parte es una repetición de lo que decimos en la introduccion. Hay
que re-pensarlo. Entendiendo lo que dicen pero no se por que les parece mal,
muchas veces las ideas se repiten para enfocar al lector, si tienen una idea de
como rescribirlo, adelante

2.1. Shannon entropy

The concept of entropy was introduced in thermodynamics, statistical and quantum
physics by Boltzman, Gibbs or von Neumann among others [33, 34, 35, 36, 37, 38, 39]. It
found its counterpart in the communication domain through the seminal work of Claude
Shannon of 1948 [21]. The aim of Shannon was to define a measure of uncertainty attached
to discrete-states random variable under some axiomatic, namely: (i) the invariance by
permutation of the probabilities attached to the random variable; (ii) an increase with the
dimension of the state space when the distribution is uniform; and (iii) a recursive property
(ruling the loss of entropy when joining two states into one). These so-called Shannon-
Khinchin axioms [40] led to the following definition of the entropy H[X] of a discrete-state
random variable, taking its outcomes in a discrete alphabet A of finite size α = |A|, with
the probability mass function pX(x) = Pr[X = x], x ∈ A [21, 3]

H[X] = −
∑
x∈A

pX(x) log (pX(x)) . (1)

3



In the Shannon definition, the base 2 logarithm is used and H is expressed in bits; the
natural logarithm can also be used and thus H is expressed in nats.

The so-called Shannon entropy is a functional of the distribution of X and does not
depend on the values taken by random variable X. It is straightforward to show that
0 ≤ H[X] ≤ log |A|, where H[X] = 0 is minimal when p(x) = δx,x0 for a given x0 ∈ A (all
the information about X is known) and H[X] = log |A| is maximal when the distribution is
uniform over A. Thus, the logarithm logα of base α should be preferred,

h[X] = −
∑
x∈A

p(x) logα(p(x)).

so that the entropy is normalized. When the dimension d of X is higher than one, one
sometimes deals with the entropy per number of components H[X]

d
and for an infinite sequence

of variable (or vector) with the so-called entropy rate which is the limit of the entropy per
variable when the length goes to the infinity.

2.2. Lempel–Ziv complexity

The entropy and the tools associated with allow a statistical characterization of a random
variable and/or of a sequence. Conversely, to such an approach, Kolmogorov introduced the
notion of complexity of an observed sequence, viewed as a deterministic one (a trajectory),
to be the size of the minimal (deterministic) program (or algorithm) allowing to generate
the observed sequence [3, Chap. 14]. This notion is closely linked to the idea of sequence
compressibility. Later on, Lempel and Ziv proposed to define a complexity restricting to the
programs based on recursive copy-paste operators [20]. Their approach and variations gave
rise to the well-known algorithms of compression such as the famous gzip [3, 41, 42, 43].

To be more precise, let us consider a finite-size sequence S0:T−1 = S0 . . . ST−1 with size
T , where the symbols Si take their values on an alphabet A of finite size α = |A|. The
definition of the first version Lempel–Ziv complexity lies in the two concepts of reproduction
and production [20]:

• Reproduction: it consists in extending (or reproducing) a sequence S0:T−1 with a se-
quence Q0:N−1 only via recursive copy-paste operations, which leads to S0:T+N−1 =
S0:T−1Q0:N−1, i.e., where the first letter Q0 is in S0:T−1, let us say Q0 = Si, the second
one is the following one in the extended sequence of size T + 1, i.e., Q1 = Si+1 , etc.:
Q0:N−1 is a subsequence of S0:T+N−2. All the information of the extended sequence
S0:T+N−1 is in S0:T−1.

• Production: In this case the subsequence S0:T+N−2 taken from the extended sequence
S0:T+N−1 can be reproduced by S0:T−1 but the last symbol of the extension can either
follow the recursive copy-paste operation (thus we face a reproduction) or can be new.
Note thus that a reproduction is a production, but the converse is false. Let us denote
a production by S0:T−1 ⇒ S0:N+T−1.
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Any sequence can be viewed as constructed through a succession of productions, called
a history H. For instance, a history of S0:T−1 can be H(S0:T−1) : ∅ ⇒ S0 ⇒ S0:1 ⇒ · · · ⇒
S0:T−1. The number of productions used for the generation, denoted here CH(S0:T−1), is here
equal to the length of the sequence. For a given sequence, obviously, there is no unique
history. In the spirit of the Kolmogorov complexity, Lempel and Ziv were interested in
the “optimal” history, i.e., the minimal number of productions necessary to generate the
sequence. The size of the shortest history is the so-called Lempel–Ziv complexity, denoted
as C[S0:T−1] = minH(S0:T−1)CH(S0:T−1) [20]. In a sense, C[S0:T−1] describes the minimal
“algorithmic information” needed to generate the sequence S0:T−1 by recursive copy-paste
operations. One use sometimes a normalized Lempel–Ziv complexity

c[S0:T−1] =
C[S0:T−1] logα T

T

as one can show that, asymptotically with the length of the sequence, c goes to the interval
[0 , 1] [20].

The Lempel–Ziv complexity has various properties. Among them, it is remarkably con-
nected to the Shannon entropy rate when dealing with sequences randomly drawn: for an
ergodic sequence 2,

lim
T→∞

c[S0:T−1] = lim
T→∞

h[S0:T−1]

T
(2)

with probability 1 [20, 44]. Note that in the stationary case, i.e., when the statistics
are invariant by time translation, the joint entropy being lower or equal to the sum of the
individual entropies [3], the limit of the normalized Lempel–Ziv complexity is upper–bounded
by the entropy of the symbols of the sequence.

3. From continuous-state signals to discrete state representations

As previously introduced, the aim of the present paper is to analyze time series in a
complexity–entropy plane, namely the Lempel–Ziv complexity and Shannon entropy plane.
However, as described above, the Lempel–Ziv complexity can be defined only for discrete-
states sequences. Concerning the Shannon entropy, we have also seen that even if definitions
exist for both discrete-state and continuous–state, random variables; it is more adapted to
the uncertainty description of discrete-state variables (definition based on an axiomatic,
estimations problems in the continuous-state context).

When dealing with continuous–state data, which is the most natural case in various
contexts, before any analysis, an observed sequence has to be quantized. Different methods
can be envisaged, all of them having impacts on the interpretation of the uncertainty measure
(entropy, complexity) associated to the hence quantized sequence (see e.g., [45, 31]). We
focus here on an approach based on the so-called permutation vector, which was at the heart
of the so-called permutation entropy proposed by Bandt and Pompe [30].

2A sequence S0:T−1 is said ergodic if, for any function g,
∑

k≥0 g(Sk) converges (almost surely) to a
deterministic value.
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3.1. Permutation vectors

The Bandt and Pompe approach seems to take its origin in the study of chaos [30], and
more specifically through the famous Taken’s delay embedding theorem [46]. The core of
this theorem concerns the reconstruction of the state trajectory of a dynamical system from
the observation of one of its states. To fix the ideas, consider a real-valued discrete-time
series {Xt}t∈N and two integers d ≥ 2 and τ ≥ 1, and from the series, let us then define
a trajectory in the d-dimensional space, {Y d,τ

t }t≥(d−1)τ , as:

Y d,τ
t = [Xt−(d−1)τ · · · Xt−τ Xt] (3)

where dimension d is called embedding dimension, and τ time delay. In the domain of
chaos analysis, the Taken’s theorem gives conditions on d and τ such that the embedding
Y d,τ
t preserves the dynamical properties of the full dynamic of the underlying system. This

point goes beyond the scope of the present paper. Therefore, we do not provide detailed
information and suggest to the readers refer to Ref. [46, 47].

Now, the Bandt and Pompe idea is to map continuous-state time series into discrete-
states one, replacing each component of vector Y d,τ

t by its rank when the components are
sorted ( e.g., in ascending order). The discrete-state vector is called permutation vector

(or pattern) and is denoted Π
(
Y d,τ
t

)
in the following. Such a vector takes its values over

the alphabet P issued from the ensemble of the permutation of {0, . . . , d − 1}, of cardinal
|P| = d!. As an illustration, if we have the vector Y 3,1

1 =
[
.55 1.7 −.45

]
, the permutation

vector associated with is Π
(
Y d,τ
t

)
=
[
1 2 0

]
. As mentioned in a series of papers [48, 49,

50, 51, 14], the frequencies or the organization of patterns in a sequence can reveal a chaotic
behavior versus a random one.

3.2. Permutation uncertainty and complexity measures

In their paper [30], Bandt and Pompe defined the permutation entropy as the Shannon
entropy of the empirical distribution associated to the permutation vector; i.e., where
the probabilities are the frequencies of each possible permutation vector in the sequence{

Π
(
Y d,τ
t

)}
t
. When dealing with time-series issued from a random process, this is nothing

more than an estimation of the Shannon entropy of the permutation vectors process. In
the following, we use the terminology permutation Shannon entropy to be more precise.
Moreover, to distinguish the permutation entropy as defined by Bandt and Pompe from the
formal entropy of a random permutation vector, we will use the notation,

ĥd,τ [X0:T−1] = −
∑
π∈P

f̂ d,τX (π) logd! f̂
d,τ
X (π)

where f̂ d,τX (π) is the proportion (frequency) of the permutation vector π in the sequence{
Π
(
Y d,τ
t

)}
t
.
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In a similar way to the Bandt and Pompe aproach, in a previous work [31], we proposed
the Lempel–Ziv complexity of the permutation vector sequence, as a tool for the analysis
of a complex time series. We named this tool permutation Lempel–Ziv complexity, which is
denoted

ĉ d,τ [X0:T−1] = c
[

Π
(
Y d,τ
(d−1)τ

)
· · · Π

(
Y d,τ
T−1

) ]
in the sequel.

In the present paper, we propose to analysis time series in the hence defined permuta-
tion Lempel–Ziv complexity – permutation Shannon entropy plane, in short EC-plane , by

representing a sequence X0:T−1 by a point
(
ĥd,τ [X0:T−1] , ĉ

d,τ [X0:T−1]
)

in a 2D-plane. The

motivations lie on the following observations:

• As noted by several authors [48, 49], in various chaotic contexts, the presence of
forbidden patterns can reveal the chaotic behavior of a sequence since, in general,
there is no forbidden pattern in random sequences. As an example, for the logistic
map Xt+1 = 4Xt(1 −Xt), for d = 3 and τ = 1, the pattern [2 1 0] never appears.
However, this is not always the case: there are chaotic maps without forbidden patterns
and conversely noises exhibiting forbidden patterns [50, 51]. Therefore, the chaotic
aspect can be revealed by the time organization of the permutation vectors by their
frequencies of occurrence; i.e., by the permutation Lempel–Ziv complexity rather than
by the permutation Shannon entropy.

• From the relations Eqs. (2) for (sufficiently long) stationary and ergodic random se-
quences, the normalized complexity reaches the entropy rate of the sequence. From
the fact that for random variables Xi, H(X1, . . . , Xn) ≤

∑
iH(Xi) [3], the entropy

rate is always less than individual entropies. In the other word, one may expect that
ĉd,τ ≤ ĥd,τ , with equality for sequences of permutation vectors with independent and
identically distributed samples. This results in the existence of a straight line, where
no signal can be above.

• Moreover, if in a parametrized family of noise series, the entropy rate (of the permuta-
tion vectors) is linked to the individual entropy through a function of the parameter,

the noises values (ĥd,τ , ĉd,τ ) are expected to be close to this straight line.

• From the previous remark, one may expect that in chaotic sequences, for a given
permutation entropy, the complexity will be lower than for noisy sequences due to the
temporal organization governed by a deterministic dynamics.

In other words, it is expected that various kinds of noises and of chaos can be better
characterized (separated) in such an EC-plane, distinguishing in some sense the part of
algorithmic complexity and the part of statistical uncertainty contained in a time series. This
substantially differs from the variants of information plane proposed in the literature [12, 13].

Finally, note that the proposed analysis of a series applies as well when dealing with
intrinsic vector series. In this case, as done in [31], the permutation vectors are issued from
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the vector of the trajectories (and thus no embedding is done previously to permutation
procedure).

Let us now turn to the various type of time series we aim at studying with the proposed
approach.

4. Characterization of chaotic maps and noises

To illustrate how the permutation Lempel–Ziv complexity vs permutation Shannon en-
tropy plane can reveal characteristics of a time series through this EC-plane, we analyze
chaotic and random series which will describe in the next subsections. Our purpose is to ex-
hibit that the proposed plane allows not only to distinguish between stochastic and chaotic
time series but also to separate Gaussian and non–Gaussian processes with the same spec-
trum over their “degree of correlation. In the sequel, the number in parentheses will denote
the studied map and only this number is reported in the figures.

4.1. Chaotic maps

In the present work, we consider 26 chaotic maps described by Sprott in the appendix
of his book [52]. These chaotic maps are grouped as follows.

• Conservative Maps: conservative systems have some conserved quantities,
such as mechanical energy or angular momentum. In this case, the phase–
space volume is preserved. In this paper, we analyze the following con-
servative maps (1) Arnold’s cat map, (2) the chaotic web map, (3) the Chirikov
standard, (4) the Gingerbreadman, (5) the Hénon area-preserving quadratic, (6) the
Lorenz three-dimensional chaotic map,

• Dissipative maps: mechanical systems are systems in which mechanical en-
ergy is converted (or dissipated) into heat. A consequence is that the phase-
space volume contracts [52]. In this paper, we analyzed the following dissipative
maps: (7) The Hénon map, (8) the Lonzi map, (9) the Delayed logistic map, (10) the
Tinkerbell map, (11) the Holmes cubic map, (12) the dissipative standard map, (13) the
Ikeda map, (14) the Sinai map, (15) the discrete predator prey map.

• Non-inverted maps: An iterated map is called noninverted, when in a se-
quence, each iterate Xn has two preimages Xn−1 that do not coincide. Con-
sequently, one it of information (a factor of 2) is lost with each iteration
since there is no way to know from which preimage each value came. This
exponential loss of information is equivalent to exponential growth of the
error in the initial condition that is the hallmark of chaos [52]. Here, we
analyzed the following non inverted maps, (16) The lineal congruential gener-
ator, (17) the cubic map, (18) the Cusp map, (19) the Gauss map, (20) the logistic
map, (21) Pincher’s map, (22) Ricker’s population model, (23) the sine circle map,
(24) the sine map, (25) the Spence map, (26) the tent map.
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For all the maps presented above, we use the parameters and initial conditions expressed
in [52]. For more detail about each map see [52, 13, 14].

4.2. Random sequences

For the study of random sequences we used the following Gaussian and nonGaussian,
stationary or nonstationary noises:

• K-noises with a power spectrum 1/fk. Noises with such a power-law spectrum are
widely found in nature, in physics [53], in biology [54], in astrophysics [55] among
other domains. Such noises are not necessarily Gaussian. In particular, in this paper,
we focus on noises generated through the algorithm described in [13] that basically
consists in (i) generating a pseudo random sequences of independent samples with
uniform probability distribution and zero mean value, (ii) taking the Fourier transform,
(iii) multiplying this Fourier transform by f−k/2 and symmetrizing the result to obtain
a real function (iv) performing the inverse Fourier transform and discarding the small
imaginary components produced by numerical approximations. The obtained sequence
are nonGaussian [13]. In this work we concentrate on the parameters k = 0.25×n, n =
0, . . . 14, cases respectively denoted (27) to (41).

• Standard fractional Brownian motion (FBM). The Gaussian process BH(t) is non-
stationary and parametrized by a quantity H ∈ (0, 1), called Hurst exponent, and has
the covariance function CovBH

(t, s) = E [BH(t)BH(s)]

CovBH
(t, s) =

1

2

(
|t|2H + |s|2H − |t− s|2H

)
.

This process was introduced by Kolmogorov [56] and studied by the climatologist
Hurst [57] and later on by Mandelbrot and Van Ness in [58] to model fractals for
instance. The FBM increments BH(t)− BH(s) are stationary and the process is self-
similar, i.e., BH(at) has the same distribution as |a|HBH(t) [59, 60, 61, 62, 63, and
ref. therein]. These processes exhibit a very rich behavior depending on H: for H = 1

2

one recovers the standard Brownian motion (limit process of the random walk); For
H > 1

2
, the process exhibits persistency in the sense that a trend or increment sign in

the past tends to persist in the future (the increments have a positive correlation) and
the process exhibits long range dependence; for H < 1

2
, the process is anti-persistent

in the sense that the trends from past to future are more likely to be opposite (the
increments have a negative correlation). Finally, note that the spectrum3 of an FBM
is proportional to 1

f2H+1 [60, 64].

• Fractional Gaussian noise (FGN). Such a process is defined as the increments of a
FBM [65], as

GH(t) = BH(t+ 1)−BH(t).

3Because the process is non stationary, rigorously the notion of spectrum has no sense in itself. However,
one can consider it through the Wigner-Ville spectrum, averaged in time [60], which would be the spectrum
estimated from a sample path for instance.
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Due to the stationarity of increments of FBM, a FGN is stationary and it is straight-
forward to show that its covariance function is

CovGH
(u) =

1

2

(
|u+ 1|2H − 2|u|2H + |u− 1|2H

)
.

Note that for H = 1
2

the correlation function vanished for non-zero lags u. Thus G 1
2

corresponds to a Gaussian white noise. Finally, note that the spectrum of FGN is
proportional to 1

f2H−1 [64]. When H ∈ (0.5, 1), CGH(u) is positive and finite for all

u and the corresponding series exhibits long-range dependence. If H ∈ (0, 0.5),
the integral of CovGH(u) is zero and CGH(0) diverge when u → ∞. Hence, it is
short-range dependence when H ∈ (0, 0.5). Finally, when H = 0.5 we obtain white
noise [64]. Hay un problema acá. La covarianza, asi escrita, claramente
no da 0 para u 6= 0. Hay que mirar bien por ejemplo Moltz, donde
se define GH(t, h) = 1

h
(BH(t+ h)−BH(t)) da una covarianza bajo la forma

CovGH
(τ) = E[Gh(t, h)GH(t + τ, h)] = 1

2h2

(
|τ + h|2H + |τ − h|2H − 2|τ |2H

)
. Ahora,

para τ = 0 se obtiene CovGH
(0) = h2H−2 que es constante cuando H = 1

2
.

Para τ 6= 0, con un desarollo de Taylor al orden 2 se muestra sencilla-
mente que cuando h → 0, CovGH

(τ) tiende a 2H(2H − 1)|τ |2H−2 que vale 0
para H = 1

2
. Hay que retomar este caso rigurosamente. Ademas, el fin del

parafo no se entiende nada sobre el tema se short y longue range depn-
dence. . . Steeve estuvimos discutiendo con Felipe y no entendemos, estas
definiciones fueron sacadas de las bibliografias citadas. Tus comentarios
superan nuestro conocimiento del tema. Si sabes como corregirlo hacelo,
sino lo dejamos como esta.

To generate time series from FBM and FGN, we used the algorithm proposed by Abry
and Sellan [66, 67]. By nature, the sequences generated by this algorithm are discrete-time
approximation of the continuous-time sequence, which is precisely needed to be able to
analyze such sequences in the plane previously introduced.

4.3. Chaos and K-noises analysis

For each of the 41 times series labeled in the previous section ((1) to (26) for the chaotic
maps, and (27) to (41) for theK-noise) we generatedN = 4×104 times series of L = 106 sam-
ples. For each time series, we computed the corresponding sequence of permutation vectors
(choosing the parameters (d, τ)), and then the permutation Shannon entropy ĥd,τ and the

permutation Lempel–Ziv complexity ĉd,τ . Figure 1A depicts the points
(
〈ĉd,τ 〉N , 〈ĥd,τ 〉N

)
where 〈·〉N denotes the averaged quantities over the N independent realizations with param-
eters (d, τ) = (5, 1). We also tested the embedding dimensions d = 4 and 6 with τ = 1; the
distribution of the coordinates in the EC-plane is similar for all parameter, giving a robust
analysis over dimension d. Figure 1B and C are zooms in a zone containing the coordinates
for specific chaotic maps. The dots represent the mean values and the ellipses represent the
dispersion of the values over the snapshots via the sample covariance matrix Ĉĥ,ĉ computed
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from the data, i.e., an ellipse corresponds to
[
ĥ ĉ

]
Ĉĥ,ĉ

[
ĥ ĉ

]t
= 1. The inferior and

lateral histograms depict the corresponding histograms of the values taken by each mea-
sure separately using N = 4 × 104 snapshots. Comparing the values belonging to
the chaotic dynamics of the time series in the plane, with their complex and
entropy values separately, we can observe that the plane allows a much clearer
distinction than just only using one measure. This shown an improvement in
the discrimination between different dynamics is successfully achieved by using
a statistical and algorithmic measure in conjunction, compared to the measures
used separately

For the K-noises, a smooth transition in the planar location is observed; the complexity-
entropy coordinates corresponding to these are remarkably aligned on a line, while that of
the chaotic sequences separates clearly from this line. Due to the entropy rate of a process
decreases with the temporal correlation, the entropy and complexity values decrease when
the correlation increases in the noise giving values from (ĥ, ĉ) = (0.2, 0.05) for k = 3.5 to

(ĥ, ĉ) = (1, 0.485) for k = 0. The observed alignment of the K-noises sequence points reveals
a more or less linear dependence with k, so that due to the asymptotic behavior of these
stationary ergodic sequences, permutation entropy and the permutation complexity show a
linear dependence.

Referring to the chaotic maps, as already observed, the representative average coordi-
nates clearly separate from the “noise-line”, and are always positioned below this line. The
separation from the line is indeed a consequence of the deterministic dynamics underlying
such processes, mechanisms that are of relatively low complexity. Thus, for the same single
entropy, chaotic sequences have a lower complexity than noise. A notable exception lies in
the lineal congruential map (16) (see the insert of figure 1A). This anomaly can be explained
by the pathological characteristic of this map. Indeed, sequences generated by this map are
often used to generate pseudo-random sequences and share a huge number of characteristic
of purely random sequences [68, Chap. 5]. Moreover, from the analysis of the correlation
(in a deterministic sense), it appears that it is very small, explaining why the coordinate
entropy-complexity of this map is so close to that of the Gaussian white noise.

In a deeper analysis, it can be seen that the proposed map allows to distinguish the
Hénon area–preserving quadratic map (5) from the delayed logistic map (9), Pincher’s map
(21) from the Gingerbreadman map (4) and the Spence map (25) from the Hénon map
(7), whereas these maps are less distinguishable using the plane previously proposed in the
literature [14]. This clearly exhibits the benefit of using the algorithmic complexity in the
analysis of these chaotic maps. The same scene is observed between chaotic maps and K–
noises, for example in the case of dissipative standard map (12) and the correlated noise
with (k = 1.25). Here again these differences are rising due to the implementation of a non
statistical measure, such as the Lempel–Ziv complexity, which demonstrates that the plane
of analyze we propose here can be a good alternative when sequences are not separable in
the plane previously proposed in the literature (and conversely).

Finally, note that the chaotic maps are relatively well separated in “clusters” regarding
their classification as non inverted, dissipative and conservative. This observation suggests
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that the analysis of a sequence in a permutation Shannon entropy and permutation Lempel–
Ziv complexity plane is powerful to characterize finely the class such sequences belong to.

4.4. K-noise, FBM and FGN analysis

Now we focus on the EC-plane analysis for the K-noises, FBM and FGN time series for
different values of the parameter k or H. To this aim, we generated N = 4×104 noise series,
of length L = 106 samples each. For the non-Gaussian K-noises we used the parameter
k ∈ [0 ; 3.5] with step ∆k = 0.25. For the FBM and FGN series the Hurst exponents used
were H = 0.1 × n, n = 1, . . . , 9 and the Bandt–Pompe symbolization parameter taken for
all the series are d = 5 and τ = 1. Figure 2 depicts the mean values of (ĉ, ĥ) over the
realizations, for each sequence.

As observed in Figure 2, the complexity-entropy points belong to the sequences of the
K-noises spread along the straight line. As intuitively expected, signals with low correlation
stay in the high entropy and complexity values, as seen zoomed in the insert of Figure 2.
This effect remains for FBM sequences, but it is no more valid for the FGN. The maximum
is reached when k = 0 which corresponds to a decorrelated noise (white noise). As the
noise has more correlation, the values start to move to the medium and low area. The FBM
remains in the same line that as K-noises but lies in an intermediate-high value of entropy
and complexity. It can be seen if the distance between two consecutive Hurst exponent
value (ĉ(Hi), ĥ(Hi)) and (ĉ(Hi+1), ĥ(Hi+1)) is shorter when the processes are antipersitence
(H < 1/2).

The inner box in Figure 2 shows that the FGN is concentrated in a high region of
the complexity-entropy plane. In particular, given a spectrum (power-law exponent), the
three types of noise are clearly separated, which is obviously impossible by means of a
usual spectral analysis. This suggests that the measures proposed here can capture more
information than pure statistical (Gaussian vs non-Gaussian) or stationary saco ese par-
rafo por que parece que hay una confucion mia muy grande, si tienen algo que
aportar adelante. No queda claro: si 2 ruidos tienen espectros diferentes, se
distinguen por analysis espectral, como lo decis. Es decir que hay que comparar
estos tres tipos, con el mismo exponente de la decrecencia espectral; eso es dado
cuando HFBM = HFGN−1 y K = 2HFGN − 1, lo que se prodria indicar. Luego,
en la figura, no veo tal correspondencia... Ejemplo, el K = 3.5 da el mismo
espectro que HFGN = 2.25 que no esta en la figura, HFGN = 1.25 que tampoco
hay. . . Ademas, no te equivocaste de label de figura? Igual el parafo siguiente?

The FGN behaviour is illustrated in the inner box Figure 2. We can note as min(H, 1−
H) increases, the absolute value of the correlation increases. This behavior is conserved
in terms of permutation entropy and permutation Lempel–Ziv complexity. However, the
permutation entropy given by H and 1 − H is more or less identical, that is, entropy is
unable to distinguish whether correlation or anticorrelation characterizes the underlying
FGN process. These results are in accordance with recent works [13, 69]. Nevertheless, the
permutation Lempel–Ziv complexity can clearly distinguish between them (see the insert
of Figure 2). In other words, measure captures the short-range correlation, or persistency
vs anti-persistency behaviour. This effect highlights the importance of using two different
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Figure 1: A) Localization in the permutation Lempel–Ziv complexity vs permutation Shannon entropy plane
of the chaotic and K-noise series studied in the present work, for the parameters d = 5 and τ = 1. For
each case, we generated N = 4 × 104 times series of L = 106 samples, initializing each of them randomly
(see the text ) The labels correspond to those in section 4.3. All chaotic maps are clearly separate from
the K-noises. B-C) Zoom in a zone containing the coordinates for specific chaotic maps. The inferior and
lateral plots illustrate the corresponding histograms of the values taken by each measure separately using
the N = 4 × 106 snapshots. The ellipses corresponding to the dispersion (see text). Similar results are
obtained for the parameters d = 4, 6 and τ = 1.
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“complementary” measures to analyze such random sequences. Using this approach, we can
distinguish sequences than are impossible using other maps in the literature.

Figure 2: Localization in the permutation Lempel–Ziv complexity vs permutation Shannon entropy plane of
K-noise, FGN and FBM sequences. The K-noises were generated using the parameter M = 0.25×m, m =
1, . . . , 3.5. For the FGN and FBM we use the Hurst exponent H = 0.1×n, n = 1, . . . , 9 .For each time series
we generated N = 4 × 104 times series of L = 106 samples. The corresponding Bandt-Pompe parameters
were d = 5 and τ = 1. Similar figure is obtained for parameter values d = 4, 6 and τ = 1.

5. Real world data

To illustrate the performance of the proposed representation plane in a real context, we
have considered four different experimental scenarios.

• Chaotic laser data: chaotic intensity pulsations recorded from a single-mode far-
infrared NH3 laser by employing a LeCroy oscilloscope. This experimental time series
was used for the Santa Fe Time Series Competition. Here we have considered the longer
data set (4000 data points), which presents a very clear chaotic dynamics (signal-to-
noise ratio about 300) [70]. For more details of the recording procedure of this data
set, please see Ref. [71].

• Stream-flow: The stream-flow process are commonly accepted as nonlinear [72]. How-
ever, it has been debated whether river flow dynamics can be chaotic or not [73, 74].
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Here, we consider the stream-flow data of the Umqpua River, which is on the Pacific
coast of Oregon in the United States. Daily stream-flow of the river starting on Oc-
tober 10, 1905 and ending on Jun 5, 2019, were considered (30928 data points). The
data is available at United States Geological Survey website [75].

• Human gait: Hausdorff et al. have shown that the stride interval fluctuations (SIF)
from subjects walking at their usual pace exhibit long-term correlations [76]. It has
been shown that the SIF can be modeled as fBm with a Hurst exponent 0.88 [76, 77].
The data consist of 10 sequences of SIF from different healthy subjects (available
in [78]). The data lengths span in a range between 2902 and 3397 data points. Further
details about the experiment and data acquisition, see Ref. [76]. Here we have analyzed
the integrated SIF.

• Price returns: It is well known that prices in efficient stock markets should follow
random walks [79]. Then, developed markets should produce totally independent in-
crements of their prices. In contrast, emerging markets should exhibit temporal corre-
lation than developed ones, suggesting more predictability and less efficiency [80, 81].
Here we have considered forty-eight stock market indices for different countries. All
data were collected from the Datastream platform [82]. Daily prices starting on Jan-
uary 3, 2000, and ending on May 27, 2016, are considered (4,280 observations). These
stock markets are classified as developed (20), emerging (17) or frontier (11) using
the Morgan Stanley Capital Index. Here we have analyzed the integrated logarithmic
price returns.

Entropy and complexity values for all experimental data described above are depicted in
Fig. 3. Additionally, as a reference it has been included the fBm model locations using, in
each case, the same sequence length as the experimental data. Particularly, chaotic laser
data is localized underneath the stochastic reference (fBm model) with medium permutation
entropy and low complexity values, giving an account of its chaotic nature, as can be seen in
Fig. 3A. Same affirmation stands for the stream-flow data of the Umqpua River—see Fig. 3B.
From this result we can conclude that this river flow dynamics is chaotic, in accordance with
results previously reported [74]. On the other hand, in Fig. 3C is observed that SIF data
locates close to the fBm with H = 0.8, as expected. Finally, results for the stock markets
are depicted in Fig. 3D. It is observed that all the markets overlap with the fBm model.
Developed countries tent to locate, in average, around to the random walk reference (fBm
with H = 0.5), while for emerging and frontier countries show long-term correlations having
lower values of entropy and complexity.

6. Discussion

In the analysis of time series, the challenge of distinguishing chaotic from stochastic
dynamics underlying a complex time series could be a critical and subtle issue. Therefore,
it is important to develop methods of analysis that allow to differentiate and characterize
these natures. Based on the evidence that the use of entropy-complexity planes to analyse
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Figure 3: Localization in the permutation Lempel–Ziv complexity vs permutation Shannon entropy plane
of (A) chaotic laser data, (B) stream-flow data, (C) human gait dynamics and (C) price returns. fBm model
locations using, in each case, the same sequence length as the experimental data are also depicted as a
reference.
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time series give results allowing such discrimination [14, 13], in this work we introduce a
particular variant of complexity-entropy plane. The main difference from the variants of
the literature lie in the combination of both statistical and algorithmic complexity measures
to extract both the random and deterministic parts that can compose a time series. The
two chosen measures are the Shannon entropy and the Lempel–Ziv complexity applied to
the permutation vectors, i.e., the so-called permutation Shannon entropy and permutation
Lempel–Ziv complexity respectively. We used the hence defined EC-plane to analyze sev-
eral wells-known time series of the literature –chaotic maps, K-noises, fractional Brownian
motion and fractional Gaussian noise.

In particular, the proposed representation allows to distinguish clearly chaotic maps from
random processes. Figure 4 shows that the EC-plan has the tendency to classify the chaotic
maps according to their “non-inverted, “dissipative and “conservative characteristics. We
can observe that there is a first area below the K-noises area (blue area) where lies all the
non-inverted chaotic maps. Further down with less complexity reside most of the dissipative
maps in the green area, although there are exceptions such as Sinai map (14) and dissipative
standard map (12) which are in the range of the non-invertible ones. In the inferior triangular
area (red) resides the conservative maps, which have lower complexity values, the only
exception is the Arnolds cat map (1) which has a high entropy and complexity. This capacity
to cluster chaotic maps is not obtained by other planes existing in the literature such as the
entropy-complexity causal plane and causal Shannon-Fisher plane for instance [13, 14]. In
addition, this plane can separate noises sharing the same spectrum, capturing implicitly
both their statistics and their stationarity/nonstationarity character. The relation 2 defines
a straight line in the plane as an upper-limit, i.e., where no times series generates an
entropy-complexity point. The K-noises are distributed along this line, because
for a random stationary and ergodic process, when correctly normalized, the
Lempel-Ziv complexity of the sequence tends to the entropy rate of the process
[3]. Because of the temporal organization governed by the deterministic dynamics in the
chaotic sequences, the complexity–entropy values are far from this limit line. This gives a
clear distinction between chaotic form stochastic behaviour. For those characteristics, this
plane appears thus to be a good alternative or complement to the already proposed planes
of the literature [13, 83].

Porque, de reprente, la parte que sigue aparece en la discusion? Es un analysis
y deberia caer antes. Ademas, es redundante por parte con la que describe la
figura 1. Sin embargo, me gusta la figura, aparte los labels que son gigantesques.
Falta de organizacion. Esto es algo que me marco Rosso que hiciera para que se
entendiera , mas alla que sea similar a la figura uno creo que describe bien la
clusterizacin de los mapas.

Focusing on the random processes, this representation can distinguish different degrees
of correlations in non-Gaussian noises. FBM and FGN processes are well separated in the
permutation EC-plane. Since FGN is an increment of FBM, the entropy and complexity
values are higher. Moreover, for the FGN the EC-plan can separate the long-term memory
(LTM) processes from short-term memory (STM) processes, this result was not obtained
using only permutation entropy [69] or other EC-plans [13]. This differentiation is given
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Figure 4: Using the ĉ× ĥ plane, it is possible to separate the chaotic maps into three zones according to their
nature. The blue band lies the non-invertible maps. Below, in the green area, resides most of the dissipative
maps except Ikeda map (14) and the dissipative standard map (12). In inferior triangle stay distributed the
conservative maps which have the lower complexity values.

to the incorporation of an algorithmic measure such as the Lempel-Ziv complexity, and is
based on that for LTM need a greater amount of code to represent the signal than STM,
this characteristic is not detectable with statistical measures used by others authors. It is
important to mention a plane introduced by Tarnopolsky [83] based on variance and turning
points of a time series can also distinguish between FBM from FGN but chaotic dynamics
as Lorenz map or Chirkov map are difficult to differentiate from FBM, which is not our
case. In our EC-plane these two dynamics are well separated. For the non–Gaussian noises
(K-noise) can be observed as the correlation increases entropy and complexity decrease,
tending to reside on the limit line.

The distribution of the complexity and entropy values in the plane allows to differentiate
between deterministic and stochastic processes, since the deterministic process is always
below the straight line where the K-noises reside. Therefore, our permutation Lempel–Ziv
complexity vs permutation Shannon entropy plane is a “robust tool to distinguish chaotic
from random signals, as well as to observe the degree of correlation existing in the signal.
Due to all the properties mention above, this EC-plan could be applied in many fields from
biology, medicine to engineering.

As future direction of investigation, the maps proposed in the literature should be com-
pared through automatic classification approaches. One can also imagine combining three
measures to capture more complementary aspects rather than only “permutation” statistical
and algorithmic aspects, without a too complex estimation/evaluation procedure. Similarly,
rather than Shannon entropy, generalized entropy may be able to capture finer statistical
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aspects ( e.g., the tails of head of distribution via Rényi-Tsallis entropies).
As a future direction of investigation, the maps proposed in the literature should be com-

pared through automatic classification approaches. One can also imagine combining three
measures to capture more complementary aspects rather than only “permutation statistical
and algorithmic aspects, without a too complex estimation/evaluation procedure. Similarly,
rather than Shannon entropy, generalized entropy may capture finer statistical aspects (
e.g., the tails of head of distribution via Renyi-Tsallis entropies).
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[25] T. Schürmann, P. Grassberger, Entropy estimation of symbol sequences, Chaos 6 (3) (1996) 414.
doi:10.1063/1.166191.

[26] A. O. Hero III, B. Ma, O. J. J. Michel, J. Gorman, Application of entropic spanning graphs, IEEE
Signal Processing Magazine 19 (5) (2002) 85–95. doi:10.1109/MSP.2002.1028355.

[27] S. Frenzel, B. Pompe, Partial mutual information for coupling analysis of multivariate time series,
Physical Review Letters 99 (20) (2007) 204101. doi:10.1103/PhysRevLett.99.204101.

[28] M. Rosenblatt, Remarks on some nonparametric estimates of a density function, The Annals of Math-
ematical Statistics 27 (3) (1956) 832–837.

[29] E. Parzen, On estimation of a probability density function and mode, The Annals of Mathematical
Statistics 33 (3) (1962) 1065–1076.
URL http://www.jstor.org/stable/2237880

[30] C. Bandt, B. Pompe, Permutation entropy: A natural complexity measure for time series, Physical
Review Letters 88 (17) (2002) 174102. doi:10.1103/PhysRevLett.88.174102.

[31] S. Zozor, D. Mateos, P. W. Lamberti, Mixing Bandt–Pompe and Lempel–Ziv approaches: another way
to analyze the complexity of continuous-states sequences, The European Physical Journal B 87 (5)
(2014) 107. doi:10.1140/epjb/e2014-41018-5.

[32] J. B. Gao, J. Hu, W. W.Tung, Y. H. Cao, Distinguishing chaos from noise by scale-dependent lyapunov
exponent, Physical Review E 74 (6) (2006) 066204.

[33] L. B. (translated by Stephen G. Brush), Lectures on Gas Theory, Dover, Leipzig, Germany, 1964.
[34] J. W. Gibbs, Elementary Principle in Statistical Mechanics, University Press - John Wilson and son,

Cambridge, USA, 1902.
[35] J. von Neumann, Thermodynamik quantenmechanischer gesamtheiten, Nachrichten von der

Gesellschaft der Wissenschaften zu Göttingen 1 (1927) 273–291.
[36] F. R. S. W. D. Nieven, M. A., The scientific papers of James Clerk Maxwell, Vol. 2, Dover, New-York,

1952.
[37] E. T. Jaynes, Gibbs vs Boltzmann entropies, American Journal of Physics 33 (5) (1965) 391–398.

doi:10.1119/1.1971557.
[38] I. Müller, W. H. Müller, Fundamentals of Thermodynamics and Applications. With Historical Anno-

tations and Many Citations from Avogadro to Zermelo, Springer, Berlin, 2009. doi:10.1007/978-3-540-
74648-5.

[39] M. Planck, Eight Lectures on Theoretical Physics, Columbia University Press, New-York, 2015.
[40] A. I. Khinchin, Mathematical foundations of information theory, Dover Publications, New-York, 1957.
[41] J. Ziv, A. Lempel, A universal algorithm for sequential data compression, IEEE Transactions on Infor-

mation Theory 23 (3) (1977) 337–343. doi:10.1109/TIT.1977.1055714.
[42] J. Ziv, A. Lempel, Compression of individual sequences via variable-rate coding, IEEE Transactions on

Information Theory 24 (5) (1978) 530–536. doi:10.1109/TIT.1978.1055934.

20



[43] A. D. Wyner, J. Ziv, Some asymptotic properties of the entropy of a stationary ergodic data source with
applications to data compression, IEEE Transactions on Information Theory 35 (6) (1989) 1250–1258.
doi:10.1109/18.45281.

[44] G. Hansel, Estimation of the entropy by the Lempel-Ziv method, Lecture Notes in Computer Science
(Electronic Dictionaries and Automata in Computational Linguistics) 377 (1989) 51–65. doi:10.1007/3-
540-51465-1-4.

[45] F. Kaspar, H. G. Schuster, Easily calculable measure for the complexity of spatiotemporal patterns,
Physical Review A 36 (2) (1987) 842–848. doi:10.1103/PhysRevA.36.842.

[46] F. Takens, Detecting strange attractors in turbulence, in: D. Rand, L.-S. Young (Eds.), Dynamical
Systems and Turbulence, Vol. 898 of Lecture Notes in Mathematics, Springer Verlag, Warwick, 1981,
pp. 366–383. doi:10.1007/bfb0091924.

[47] J. C. Robinson, Dimensions, Embeddings, and Attractors, Cambridge University Press, Cambdrige,
UK, 2011.
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complexity plane: Robustness and missing ordinal patterns, Physica A 391 (1-2) (2012) 42–45.
doi:10.1016/j.physa.2011.07.030.

[52] J. Sprott, Chaos and time-series analysis, Oxford University Press, Oxford, 2003.
[53] P. Dutta, P. M. Horn, Low-frequency fluctuations in solids: 1/f noises, Reviews of Modern Physics

53 (3) (1981) 497–516. doi:10.1103/RevModPhys.53.497.
[54] J. R. M. Hosking, Fractional differencing, Biometrika 68 (1) (1981) 165–176.

doi:10.1093/biomet/68.1.165.
[55] B. West, M. Shlesinger, The noise in natural phenomena, American Scientist 78 (1) (1990) 40–45.

URL http://www.jstor.org/stable/29773862 .

[56] A. N. Kolmogorov, Sienersche spiralen und einige andere interessante kurven im hilbertschen raum,
Doklady Akademii nauk SSSR 26 (2) (1940) 115–118.

[57] H. Hurst, Long-term storage capacity in reservoirs, Transactions of the American Society of Civil
Engeniering 116 (1951) 770–799.

[58] B. Mandelbrot, J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM
review 10 (4) (1968) 422–437. doi:10.1137/1010093.
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