

The evolution pathway from iron compounds to Fe 1 (II)-N 4 sites through gas-phase iron during pyrolysis

Lynne Larochelle Richard, Moulay Tahar Sougrati, Jingkun Li, Li Jiao, Evan Wegener, Lynne Larochelle Richard, Ershuai Liu, Andrea Zitolo, Moulay Tahar Sougrati, Sanjeev Mukerjee, et al.

▶ To cite this version:

Lynne Larochelle Richard, Moulay Tahar Sougrati, Jingkun Li, Li Jiao, Evan Wegener, et al.. The evolution pathway from iron compounds to Fe 1 (II)-N 4 sites through gas-phase iron during pyrolysis. Journal of the American Chemical Society, 2020, 142 (3), pp.1417-1423. 10.1021/jacs.9b11197 . hal-03008555

HAL Id: hal-03008555 https://hal.science/hal-03008555v1

Submitted on 16 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The evolution pathway from iron compounds to Fe₁(II)-N₄ sites through gas-phase iron during pyrolysis

Jingkun Li^{1,4,#}, Li Jiao², Evan Wegener³, Lynne Larochelle Richard⁴, Ershuai Liu⁴, Andrea Zitolo⁵, Moulay Tahar Sougrati¹, Sanjeev Mukerjee⁴, Zipeng Zhao⁶, Yu Huang^{6,7}, Fan Yang⁸, Sichen Zhong⁸, Hui Xu⁸, A. Jeremy Kropf³, Frédéric Jaouen¹, Deborah J. Myers^{*,3}, and Qingying Jia^{*,4}

¹Institut Charles Gerhardt Montpellier, UMR 5253, CNRS, Université Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier cedex 5, France

²Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, 02115, United States

³Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, 60439, United States

⁴Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115, United States

⁵Synchrotron SOLEIL, L'orme des Merisiers, BP 48 Saint Aubin, 91192 Gif-sur-Yvette, France

⁶Department of Materials Science and Engineering, University of California, Los Angeles, California, 90095, United States

⁷California NanoSystems Institute (CNSI), University of California, Los Angeles, California, 90095

⁸Giner, Inc, Newton, Massachusetts, 02466, United States.

[#]1 is the present address of J.L.; 4 is the previous address.

ABSTRACT: Pyrolysis is indispensable for synthesizing highly active Fe-N-C catalysts for the oxygen reduction reaction (ORR) in acid, but how Fe, N, and C precursors transform to ORR-active sites during pyrolysis remains unclear. This knowledge gap obscures the connections between the input precursors and output products, clouding the pathway toward Fe-N-C catalyst improvement. Herein, we unravel the evolution pathway of precursors to ORR-active catalyst comprised exclusively of single atom Fe₁(II)-N₄ sites via intemperature X-ray absorption spectroscopy. The Fe precursor transforms to Fe oxides below 300 °Cand then to tetrahedral Fe₁(II)-O₄ via a crystal-to-melt-like transformation below 600 °CThe Fe₁(II)-O₄ releases a single Fe atom that diffuses into the N-doped carbon defect forming Fe₁(II)-N₄ above 600 °CThis vapor phase single Fe atom transport mechanism is verified by synthesizing Fe₁(II)-N₄ sites via "non-contact pyrolysis" wherein the Fe precursor is not in physical contact with the N and C precursors during pyrolysis.

INTRODUCTION

Hydrogen fuel cell electric vehicles (FCEVs), based on proton exchange membrane fuel cells (PEMFCs), were first sold commercially in Japan in 2014, with the launch of the Toyota Mirai,¹ followed by limited commercialization in Europe, Korea, Canada, and the United States in 2015 by both Toyota and Hyundai. The catalysts used for the oxygen reduction reaction (ORR) in PEMFCs are Pt-alloys.¹ While advances have been made in reducing platinum usage in PEMFCs, the cost of automotive fuel cell systems is still prohibitively high, due primarily to the high loading of Pt in the PEMFC cathode.^{1,2} The key to widespread and sustainable commercialization of FCEVs from a cost perspective is the significant reduction of Pt loading² or the replacement of Pt-alloys with earth-abundant, inexpensive materials (i.e., platinum group metal (PGM)-free). The leading PGM-free catalysts for the ORR in PEMFCs are single transition metal atoms (M=Mn, Fe or Co) embedded in a nitrogen-doped carbon matrix (M-N-C).^{3.9} Recently, Ye et al.⁹ reported an Fe-N-C catalyst that delivers 570 mW·cm² in H₂/air PEMFCs. Nevertheless, this state-of-the-art performance is insufficient for automotive PEMFCs.² Further progress in per-

formance necessitates improvements in the turnover frequency and/or in the density of active sites in M-N-C materials, both of which are impeded by the lack of understanding of the formation of the active site(s) in the synthesis of M-N-C catalysts. The current synthesis strategies for M-N-C catalysts consist of combining sources of M, N, and C either in a single compound or in separate compounds and pyrolyzing the compound(s) typically in the 900 to 1100 °C temperature range.^{68, 10, 11} These synthesis strategies primarily rely on an empirical approach to choice of precursor, M content, and pyrolysis settings to increase catalytic activity. The underlying mechanism governing the competitive formation of metal-based active sites and byproducts during pyrolysis has remained elusive. Rational synthesis of improved M-N-C catalysts requires unraveling the current "black box" synthesis approach of input precursors and output products.

The complexity of M-N-C catalyst structures arises largely from the pyrolysis process, which was demonstrated in the 1980s to be essential to producing highly active M-N-C catalysts for the ORR in acidic media.¹¹ The material resulting from the high temperature pyrolysis, however, is often a mixture of species including N-doped carbon defects or edges, M-N_x moieties,

and inorganic particles of metal, metal oxides, carbides, nitrides, etc.¹²⁻¹⁷ All these species have been proposed to be ORR active in alkaline and even in acidic electrolyte.^{3, 10, 12-19} It thus remains inconclusive which site(s) are responsible for the superior ORR activity of M-N-C catalysts. This issue has been addressed by efforts to gain some control over the final products. By lowering the Fe content in the precursors (<1 wt%), some research groups managed to produce Fe-N-C catalysts with predominately Fe₁(II)-N₄ (Fe₁ denotes the single atom configuration without direct Fe-Fe bonds) moieties, as evidenced by ⁵⁷Fe Mössbauer and X-ray absorption spectroscopy (XAS).6, 10, 19, 20 These catalysts exhibit high ORR performance despite their low gravimetric and volumetric density of Fe₁(II)-N₄ sites. Recently, Fe1(II)-N4 moieties were visualized in the Fe-N-C catalyst by scanning transmission electron microscopy coupled with electron energy loss spectroscopy.³ These studies indicate that the Fe₁(II)-N₄ moiety has a high turnover frequency towards the ORR and likely is the major contributor to the ORR activity of pyrolyzed Fe-N-C catalysts. This finding identifies an obvious pathway towards Fe-N-C catalyst advancement via increasing the Fe1(II)-N4 site density. However, the electrochemically active Fe₁(II)-N₄ site density saturates at a very low Fe content (< 3 wt%).6, 20 despite substantial efforts to optimize the type and composition of precursors and pyrolysis conditions. The marginal improvement in Fe-N-C catalysts reported in recent years using the trial-and-error synthesis approach calls for a return to the original question: how is the Fe1(II)-N4 site formed during pyrolysis? Herein, we directly monitor the stepwise transformation from Fe precursors to Fe₁(II)-N₄ sites during pyrolysis and validate our site formation mechanistic model via "noncontact pyrolysis" where the Fe and C-N precursors are not in physical contact during pyrolysis.

RESULTS AND DISCUSSION

In-temperature XAS at the Fe K-edge was measured on the mixture of Fe, N, and C precursors throughout the pyrolysis and cooling processes and after exposure of the material to air at room temperature after the pyrolysis. We gradually increased the temperature of the samples to 1000 °C and then decreased the temperature to room temperature in a flowing Helium atmosphere, holding at targeted temperatures during XAS measurements. Two different routes were chosen for intemperature XAS measurements. The first route used a mixture of iron(II) acetate (FeAc₂), 1,10-phenanthroline monohydrate, and a Zn-based metal organic framework (MOF), zeolitic imidazolate framework eight (ZIF-8), mixed via ball milling (see Supplementary). These precursors are typical for synthesis of MOF-derived Fe-N-C catalysts^{6, 8, 10, 15, 20} and have been shown to generate active Fe-N-C catalysts with predominantly Fe1(II)-N4 sites.^{6, 10, 20} However, with this route, the thermal evolution of the Fe compound is convoluted with the thermal evolution of the N and C precursors. To deconvolute the effect of pyrolysis on the Fe and C-N constituents, the second route used a mixture of FeCl₂·4H₂O, as the iron precursor not containing N and C, and a heat-treated N-doped carbon matrix (N-C) as the N and C precursor. Following the procedure developed for pyrolvsis of MOF-derived Fe-N-C catalysts,^{10, 20} the N-C was synthesized by homogenizing ZIF-8 and 1,10-phenanthroline dry powders via low-energy planetary ball-milling, followed by heat treatment in Ar at 1050 °C for one hour and a second heat

treatment in NH₃ at 900 °C for 15 minutes. Multiple characterizations (Figure S1) showed that the N-C has a porous structure with a Brunauer-Emmett-Teller (BET) surface area of 950 m²·g¹, of which 770 m²·g¹ is contributed from micropores according to the t-plot analysis (Figure S1E). X-ray photoelectron spectroscopy (XPS) indicated 0.46 at% of residual Zn, 2.86 at% of O, 6.51 at% of N, and, notably, an ultra-high content of pyridinic N, as manifested by the prominent peak at 398.3 eV (Figure S1D).²¹ The simultaneous presence of abundant micropores and pyridinic N preferentially located at the defects and edges of the carbon matrix²² signifies the presence of abundant nitrogen-doped microporous defects.²¹

XAS of the FeCl2.4H2O and N-C mixture. As compared to the as-received FeCl2·4H2O, the FeCl2·4H2O mixed with N-C via ball-milling exhibits a much lower peak intensity of the X-ray absorption near edge structure (XANES) spectrum at room temperature (Figure 1A). Meanwhile, the intensity of the Fe-O (O from H_2O) scattering, with a peak at approximately 1.5 Åin the Fourier transform of the extended X-ray absorption fine structure (FT-EXAFS, note that the distances in the FT-EXAFS are not corrected for phase shift), drops dramatically; whereas the Fe-Cl scattering peak at approximately 2.1 Åremains largely unchanged (Figure 1B). These results indicate that ligating water molecules are partially detached upon ball-milling. As the temperature increases to 300 °C denoted as FeCl₂-NC-300), the Fe-Cl scattering peak disappears, and new peaks emerge. The Fe-O peak at 1.4 Åand the newly-emerging Fe-Fe peaks at 2.7 Å and 4.6 Åoverlap those of the α Fe₂O₃ standard (Figure 1B). Meanwhile, the edge energy increases and the XANES spectrum approaches that of αFe_2O_3 (Figure 1A). These results indicate that ferric oxides are formed at 300 °CAs the temperature gradually increases to 600 °Cthe XANES shifts to lower energy approaching that of the Fe(II)O standard (Figure 1A), indicating the reduction of ferric oxides to ferrous oxides. The intensities of both the Fe-O and Fe-Fe peaks drop, with the Fe-Fe peaks eventually disappearing at 600 °C eaving behind one prominent peak at 1.5 Å(Figure 1B). The peak can be fit well with an Fe-O path with a bond distance of 1.99 ± 0.01 Åand a coordination number of 3.6±0.4 (Table S2 and Figure S2). This Fe-O configuration was previously reported, in molten Fe salts, to be a tetrahedral Fe(II)-O4 moiety with an Fe-O bond distance of 1.98±0.02 Å²³ The tetrahedral structure of the Fe₁(II)-O₄ species observed at 600 °Gs supported by the high intensity of the 1s \rightarrow 3d transition feature of XANES at 7112 eV, as this feature is minimal for centrosymmetric Fe species, such as the in-plane Fe1(II)-N4 in iron phthalocyanine (FePc), and is intense in noncentrosymmetric Fe species, especially for the tetrahedral geometry (Figure S3).^{13, 23} The observed transition from ferric oxides, with a local structure of octahedral Fe-O6 with Fe-Fe bonds, to tetrahedral Fe₁(II)-O₄, without Fe-Fe bonds, is akin to the crystal-to-melt transition of Fe salts to Fe(II)-O4 upon melting above 1300 ° \mathfrak{C}^3 Here the Fe₁(II)-O₄ is not in a molten state since it is observed at much lower temperature. Moreover, Fe₁(II)-O₄ is unstable by itself owing to the unbalanced cationic and anionic charge. It is rather stabilized by N-C in a solid state via electron delocalization that restores the charge balance, such as is observed for Fe₁(II)-N₄ sites imbedded in a graphene plane.¹⁶

The in-plane $Fe_1(II)$ -N₄ moieties emerge at approximately 600 °CThis is signified by the appearance of a peak at 7117 eV in the first derivative of the XANES spectra, overlapping that of the

Fe(II)-Pc standard (Figure 1C). This peak arises from the 1s -4p, transition with simultaneous ligand to metal charge transfer, and is the fingerprint of the in-plane $Fe_1(II)-N_4$ structure.^{12, 13} As the temperature increases to 1000 °Cthe XANES spectrum at energies above 7117 eV gradually shifts to higher energies, approaching that of Fe(II)Pc (Figure 1A), indicating the transformation from the tetrahedral Fe₁(II)-O₄ to in-plane Fe₁(II)-N₄. This shift continues rather than reverses during cooling to room temperature, which indicates that the Fe₁(II)-O₄ -Fe₁(II)-N₄ transformation is an irreversible thermal process. After cooling to room temperature, but before exposure to air, the Fe speciation (FeCl₂-NC-End) is dominated by in-plane Fe₁(II)-N₄ moieties, as verified by both the XANES and EXAFS spectra. The in-plane Fe₁(II)-N₄ fingerprint shoulder at 7117 eV becomes prominent in the first derivative of the XANES (Figure 1C) and even discernible in the XANES spectrum of FeCl₂-NC-End (Figure 1A). The EXAFS fitting (Figure S6) gives a first shell Fe-N coordination number of 4.3±0.4 and bond length of 1.91±0.01 Å close to that of Fe(II)Pc (1.93±0.01 Å.20 This Fe-N bond distance is much shorter than that of Fe-O (1.99±0.01 Å as expected from the in-plane structure versus the tetrahedral structure.

Figure 1. (A) XANES, (B) Fourier Transform (FT)-EXAFS and (C) the first derivative of the XANES spectra of FeCl₂-NC-T collected with temperature increasing from room temperature to 1000 °Gnd cooling down to room temperature. (D) ⁵⁷Fe Mössbauer spectrum (5 K) and fitting of FeCl₂-NC-Air. (E) ORR performance of FeCl₂-NC-T catalysts. RDE polarization plots were obtained in room temperature O₂-saturated 0.1 M HClO₄ from 0.05 to 1.05 V with a scan rate of 1 mV·s⁻¹ at a rotation rate of 1,600 *rpm*. The corresponding cyclic voltammograms are displayed in Figure S4.

Upon exposure to air (FeCl₂-NC-Air), the XANES spectrum shifts positively and the fingerprint shoulder at 7117 eV becomes barely discernible (Figure 1A), indicating the oxidation of the surface Fe₁(II)-N₄- O_2 /OH sites. Low temperature (5 K) *ex situ* Mössbauer identifies two doublets D1 and D2 in FeCl₂-NC-Air (Figure 1D and Table S3). D1 and D2 are the most common doublets identified in Fe-N-C materials and have recently been assigned to Fe₁(III)-N₄- O_2 and Fe₁(II)-N₄, respectively.^{10, 24} These combined results conclusively confirm the formation of gas-phase accessible in-plane Fe₁(II)-N₄ upon pyrolysis at temperatures >600°C.

In parallel, X-ray diffraction (XRD) measurements were conducted on the same mixture after it was subjected to pyrolysis at various temperatures. No Fe-related signals are observed throughout the temperature range up to 1000 °C(Figure S7). This result indicates the lack of long-range order in all the Fe species, including the oxides observed by XAS, consistent with the lack of prominent FT-EXAFS peaks at high R values (Figure 1B). The ORR activities of these mixtures were assessed using a rotating disk electrode (RDE) in an O₂-saturated 0.1 M HClO₄ electrolyte. The ORR activities of the catalysts pyrolyzed at 200 °C and 400 °Care similar to that of N-C (Figure 1E). The ORR activity improves dramatically as the pyrolysis temperature increases to 600 °C coinciding with the emergence of Fe1(II)-N4 sites. The activity continues to improve with increasing temperature up to 1000 °Creaching a half-wave potential of 0.8 V (all the potentials reported here are versus the reversible hydrogen electrode and are not IR-corrected) (Figure 1E), which coincides with the increasing transformation from $Fe_1(II)$ -O₄ to $Fe_1(II)$ -N₄. Not only is the RDE-determined activity comparable to that of state-of-the-art Fe-N-C,^{3, 6, 25} but the intimate correlation between the increasing ORR activity and the increasing relative content of Fe₁(II)-N₄ in the sample provides startling evidence that the Fe₁(II)-N₄ moiety is responsible for the high ORR activity of Fe-N-C in acidic electrolyte.

Nearly the same thermal evolution process was observed in the in-temperature XAS experiment on the MOF-based mixture: $FeAc_2$ –ferric oxides with a local octahedral $Fe{\cdot}O_6$ structure \rightarrow ferrous oxides -tetrahedral Fe1(II)-O4 -in-plane Fe1(II)-N4 (Supplementary Section 3). The two different but representative groups of Fe, N, and C precursors undergoing the same thermal evolution pathway suggests that this is likely a common pathway towards the formation of Fe1(II)-N4 during the pyrolysis of mixtures of Fe, N, and C precursors. This pathway is, however, missing details regarding the mechanism for transformation of tetrahedral Fe1(II)-O4 to in-plane Fe1(II)-N4. The question remains as to how the Fe₁(II)-O₄ transforms to a moiety with a very different local geometry and ligand environment. An alternative transformation from tetrahedral Fe-N₄ to active FeN₄ was recently proposed to occur at temperatures \geq 800 °C luring the pyrolysis of Fe-doped ZIFs to form Fe-N-C catalysts.⁶ However, EXAFS cannot distinguish the Fe-O₄ structure from Fe-N₄ since it cannot distinguish O from N as the scattering neighbor.

To address this uncertainty, we conducted the *in-temperature* XAS on the mixture of FeCl₂·4H₂O and nanoscale SiO₂ powders in an environment free of N and C. The SiO₂ was deliberately chosen to dilute FeCl₂·4H₂O for XAS measurements in the transmission mode, as it can also serve as a support with high thermal stability as an alternative to N-C.^{13, 23} The thermal

evolution involving the decomposition of FeCl₂·4H₂O to form a species with one prominent FT peak at approximately 1.4 Åat 600 °Gvas again observed (Figure 2A). The fitting of the EXAFS spectrum at 600 °Gves an Fe-O coordination number of 3.9 ± 0.6 and bond length of 2.00 ± 0.02 Å(Table S5), thus conclusively confirming the formation of tetrahedral Fe₁(II)-O₄ rather than Fe₁(II)-N₄ or Fe₁(II)-C₄. More importantly, this XAS spectrum at 600 °GFeCl₂·SiO₂·600) nearly overlaps that of the FeCl₂-NC-600, with trivial differences arising from a small fraction of Fe₁(II)-O₄ being already converted to Fe₁(II)-N₄ in FeCl₂·NC-600 (Figure 2A and Figure S12). This result verifies the formation of Fe₁(II)-O₄ upon the pyrolysis of FeCl₂·4H₂O mixed with either N-C or SiO₂ and, by inference, pyrolysis of the FeAc₂·ZIF-8 mixture.

As the temperature of the FeCl₂SiO₂ mixture increases from 600 °Gto 1000 °Ctin the absence of N-C the Fe₁(II)-O₄ partly transforms to ferrous oxides and then Fe nanoparticles, rather than Fe₁(II)-N₄ (Figure 2A) (Supplementary Section 4). The Fe₁(II)-O₄ and Fe nanoparticles are present throughout the process of cooling to room temperature, as seen in Figure 2B, wherein the growth of the FT-EXAFS peaks is mainly attributed to the decreasing Debye-Waller factor with decreasing temperature. The XANES spectra remain largely unchanged during cooling (Figure S11B). The presence of Fe₁(II)-O₄ at room temperature verifies that it is a stable species when anchored onto a substrate. The observed thermal evolution pathway of the FeCl₂-SiO₂ mixture may be representative of the typical pathway for the formation of single atom catalysts supported on oxides.

Figure 2. FT-EXAFS spectra of FeCl₂·4H₂O mixed with SiO₂ collected with (**A**) temperature increasing from room temperature to 1000 °**G**ogether with and (**B**) cooling down to room temperature. (**C**) Schematic illustration of the common pathways up to 600°C of the thermal evolution of iron compounds during pyrolysis, and then diverging pathways at T \geq 600°C depending on the absence or

presence of N-C defects. Note the ${\rm FeN_4}$ configuration in the edge of two carbon planes displayed is only a representative case for illustration, without excluding other possible structures.

Collectively, the thermal evolution of the Fe precursors in the three mixtures converges to the formation of tetrahedral Fe₁(II)-O₄ at 600 °C and then diverges at higher temperatures with/without N-C (Figure 2C). This thermal decomposition generally follows the Fe-O phase diagram that depicts the transformation of ferric oxides to ferrous oxides around 300 °C n an oxygen-deficient gaseous environment and then to Fe nanoparticles around 600 °C with all the oxygen neighbors removed.^{26, 27} A natural hypothesis deduced from the Fe-O phase diagram is that complete removal of the oxygen neighbors from Fe₁(II)-O₄ leaves behind a single free Fe atom (Fe₁), which may form Fe₁(II)-N₄ if captured by the N-C defect nearby: Fe₁(II)-O₄ –Fe₁ \rightarrow Fe₁(II)-N₄, or sinter into aggregated Fe clusters in the absence of N-C defects (Figure 2C).

A unique aspect of this so-called impregnation mechanism lies in the formation of Fe_1 . The Fe_1 is essentially a gas phase iron that expands to fill the volume available, from which we deduce that it is not necessary to mix the Fe precursors with N and C during pyrolysis to produce active Fe-N-C catalysts, as previously asserted, since the Fe₁ released from the Fe precursor can diffuse or otherwise transported into N-C defects to form Fe₁(II)-N₄. To test this hypothesis, we developed a so-called noncontact pyrolysis procedure wherein the Fe precursor and N-C are separately placed in two boats in the furnace without direct physical contact between the two materials during pyrolysis (Figure 3A). In addition to FeAc₂ and FeCl₂·4H₂O, that were shown above to transform to Fe1(II)-N4 sites when mixed with N and C precursors, αFe_2O_3 was also investigated as the Fe precursor since ferric oxides were observed at intermediate temperatures during both synthesis routes via in-temperature XAS.

Figure 3. (A) Schematic illustration of the non-contact pyrolysis wherein the Fe precursor and N-C were separately placed in two boats in the furnace during pyrolysis with Fe placed upstream of the gas flow. (B) ORR performance of indicated catalysts. RDE polarization plots were obtained in room-temperature O2-saturated 0.1 M HClO_4 from 0.05 to 1.05 V with a scan rate of 1 mV·s⁻¹ at a rotation rate of 1600 rpm. Solid lines represent catalysts obtained by non-contact pyrolysis; dashed line catalysts obtained by regular pyrolysis for comparison. (C) H_2 - O_2 and (D) H_2 -air fuel cell polarization curves. Cathode: ~4.0 mg·cm⁻² of FeCl₂ \bigvee NC-1000; Anode: 0.3 mg_{Pt} ·cm⁻² Pt/C; Membrane: NR212 membrane (Ion Power); 200 and 1000 mL·min⁻¹ gas fed with 100% RH at anode (H₂) and cathode (O_2 /air), respectively; electrode area 5 cm². The back pressures during the fuel cell tests are 1.0 bar reactant gas. (E) XANES and (F) FT-EXAFS spectra of the three catalysts obtained by non-contact pyrolysis, and of the Fe foil and FePc-O₂. (G) TGA of the three Fe precursors including FeCl₂·4H₂O, FeAc₂, and **a** Fe₂O₃.

The ORR performance of the N-C subjected to the noncontact pyrolysis with FeCl₂·4H₂O at 1000 °C(denoted as FeCl₂\/NC-1000) is essentially the same as that of the mixture of FeCl₂·4H₂O and N-C pyrolyzed at 1000 °C(FeCl₂-NC-1000) (Figure 3B). This catalyst also exhibits reasonably high performance in a PEMFC membrane-electrode assembly, delivering an iR-corrected current densities of 105 mA·cm⁻² and 400 mA·cm⁻² at 0.8 V and 0.7 V, respectively, in H₂·O₂ (Figure 3C), and a maximum power density of 0.28 W·cm² in H₂-air (Figure 3D). This relatively high performance is likely related to an enrichment of surface active sites, as expected from the vapor deposition feature of the non-contact pyrolysis. This is the first demonstration of a highly active Fe-N-C PEMFC cathode catalyst that is synthesized without mixing the Fe precursor with N and C precursors. Driven by the proof-of-concept, optimizations of the precursors, non-contact pyrolysis, and the corresponding PEMFC testing are underway in our groups.

The formation of Fe₁(II)-N₄ in the non-contact pyrolysis material, as reflected by the RDE and PEMFC results, is confirmed by the post-pyrolysis XAS and low temperature ⁵⁷Fe Mössbauer measurements. The amount of Fe deposited onto N-C is \sim 1.5 wt%, as estimated from the edge step of the XANES, and \sim 1.8 wt% by X-ray fluorescence (XRF). The XANES aligns well with the oxygen adduct of Iron(III) phthalocyanine-tetrasulfonic acid (FePc-O₂) (Figure 3E). Correspondingly, the EXAFS shows a prominent Fe-N/O peak around 1.5 Åthat nearly overlaps the Fe-N/O scattering peak of FePc-O₂ (Figure 3F). The small Fe-Fe peaks indicate the co-presence of Fe nanoparticles and oxides, which are evident in the XRD pattern (Figure S14). In agreement with the XAS, the ⁵⁷Fe Mössbauer spectrum collected at 5 K identifies four components: D1 (assigned to $Fe_1(III)-N_4-O_2)$, another doublet with higher isomer shift assigned to high spin Fe²⁺, γ -Fe, and α -Fe (Figure S15). Excellent fits were obtained without inclusion of a D2 doublet. These results demonstrate that the non-contact pyrolysis produces highly active Fe-N-C catalysts with predominantly Fe1(II)-N4 sites and provides support for the proposed gas-phase transport-impregnation mechanism. However, these results do not necessarily indicate that the gas phase Fe species is Fe₁. The anhydrous $FeCl_2$ has a relatively low boiling point of ~1000 °C and possesses a vapor pressure of ~1 atm at 1000 °C²⁸ Gas phase FeCl₂ may exist and be transported from the Fe-precursor boat to the N-C boat at high temperatures, forming Fe₁(II)-N₄ sites once contacting the N-C. When mixed with N-C, the $FeCl_2 \cdot 4H_2O$, however, undergoes a completely different evolution pathway via the formation of iron oxides and Fe₁ as illustrated in Figure 2C. Therefore, to verify the existence of gas phase Fe₁, non-contact pyrolysis was also conducted on aFe₂O₃ and FeAc₂ to exclude the formation of gas phase iron chlorides.

The ORR activity of the N-C subjected to the non-contact pyrolysis with αFe_2O_3 at 1000 ° $\alpha (Fe_2O_3)/NC-1000$) is much higher than that of N-C, lower than that of FeCl₂-NC-600, but has the same ORR onset potential (Figure 3B). These results suggest the presence of Fe₁(II)-N₄ sites as in FeCl₂-NC-600, but with lower site density. Indeed, the XANES and EXAFS of Fe_2O_3 /NC-1000 nicely overlap with those of $FeCl_2$ /NC-1000 and FePc-O₂ (Figure 3E and 3F), confirming the formation of Fe₁(II)-N₄. The very small XANES edge step for this material indicates that only small amounts of Fe were deposited on N-C, estimated at approximately 0.03 wt% by XRF. This is expected from the high thermal stability of **G**Fe₂O₃, with a decomposition temperature higher than 1000 °C as seen by the thermogravimetric analysis (TGA) results (Figure 3G). This validation of the non-contact pyrolysis synthesis using **QF**e₂O₃ further support the gas phase transport-impregnation mechanism. They also indicate that ionic compounds with stable crystalline structures are not ideal Fe precursors for Fe-N-C synthesis due to the high energies needed to break the stable Fe-Fe bonds to release Fe₁. It was shown that metal (Pd or Ni) nanoparticles can release single free metal atoms that form metal-N₄ sites upon impregnation into N-C defects, but this only occurs at >1000 °Cas the competitive sintering process dominates at lower temperatures.²⁹⁻³¹

The thermal stability of the ferric oxides generated in situ from FeCl₂·4H₂O or FeAc₂ mixed with N-C is much lower than that of bulk αFe_2O_3 , as it is readily reduced to $Fe_1(II)O_4$ with its Fe-Fe bonds cleaved in the 300 °Go 700 °Gemperature range (Figure 1B and Figure S8B). Note that the ferric oxides generated in situ are invisible to XRD (Figure S7), which indicates that the clusters are ultra-small and/or amorphous. We thus deduce that the N-C disturbs the long-range crystalline structure of Fe oxides thereby weakening the Fe-Fe bonds, and/or traps small clusters of Fe oxides, which have a reduced number of Fe-Fe bonds as compared to αFe_2O_3 . This promotes the transformation from Fe-O₆, with fewer and weakened Fe-Fe bonds, to $Fe_1(II)$ -O₄. In addition, the stabilization of $Fe_1(II)$ -O₄ in the solid state by the N-C or SiO₂ substrates further promotes the crystal-to-melt-like transformation of Fe-O6 -Fe1(II)-O4 at much lower temperatures. Without N-C, the **a**Fe2O3 with stable crystalline structures releases few Fe1 atoms and thus forms fewer Fe1(II)-N4 sites at 1000 °C

Surprisingly, the ORR performance of the N-C subjected to the non-contact pyrolysis with FeAc2 at 1000 °Gs only slightly better than that of N-C, and much worse than that of Fe_2O_3 /NC-1000 (Figure 3B), indicating the absence of Fe_1 (II)-N4. Both XAS (Figure 3E and 3F) and XRD (Figure S14) of the N-C after the non-contact pyrolysis show Fe nanoparticles and oxides as the predominant Fe species. The Fe content of this material is approximately 0.5 wt%, as estimated from both the XANES edge step and XRF. These results indicate that Fe1 atoms were released from FeAc₂ and transported onto the N-C, forming Fe clusters rather than Fe1(II)-N4. One key difference between $FeAc_2$ and $\mathbf{a}Fe_2O_3$ is that the former decomposes at 300 °C whereas the latter decomposes above 1000 °C Figure 3G). At 300 °C, sintering of Fe1 into aggregated clusters dominates,²⁹ due to the short mean free path of Fe₁ at this relatively low temperature, leading to the formation of Fe nanoparticles. In addition, 300 °C is below the temperature (~600 °C) of the transform from Fe₁(II)-O₄ to Fe₁(II)-N₄, and thus even if Fe₁ atoms reach the N-C substrate, they tend to form iron oxides rather than Fe₁(II)-N₄. These issues can be addressed by thorough mixing of FeAc2 with N and C precursors prior to pyrolysis. In the mixture, the N-doped defects are in close proximity to the Fe sources. It can be hypothesized that N-C stabilizes $Fe_1(II)$ -O₄ as the reservoir of Fe_1 throughout a wide temperature range of 400-1000 °C Figure S8). This promotes the formation of Fe₁(II)-N₄, despite the short mean free path of Fe₁. In comparison with FeAc2, aFe2O3 releases much fewer Fe1 atoms at much higher temperature,~1000 °C and thus the mean free path of Fe1 is longer. Consequently, these Fe₁ atoms can reach the N-C substrate and form Fe1(II)-N4. Similar to this proposed mechanism, Li's group recently observed the transformation of bulk Pd to Pd-N₄ at elevated temperature and accordingly proposed that this conversion was driven by the capture of mobile Pd atoms on the defects of N-C.²⁹

An important implication of the non-contact pyrolysis results is that the threshold temperature for the formation of $Fe_1(II)$ - N_4 of ~600 °Gs determined by the threshold temperature for the impregnation of Fe_1 into the N-C defect ($Fe_1 - Fe_1(II)$ - N_4), rather than the release temperature of Fe_1 . That is, it is determined by the inherent thermal stability of $Fe_1(II)$ - N_4 . The $Fe_1(II)$ - O_4 has a lower thermal stability as it forms and decomposes at lower temperatures. This difference in thermal stability between Fe₁(II)-N₄ and Fe₁(II)-O₄ accounts for the competition between these two species during pyrolysis above 600 °CThe Fe₁(II)-N₄ gradually wins the competition as the temperature reaches 1000 °C This fundamental limitation determines the necessity for multiple pyrolyses with an optimized temperature of ~1000 °C drive the Fe₁(II)-O₄ –Fe₁(II)-N₄ transformation.

CONCLUSION

We unraveled the thermal evolution pathway during the pyrolysis of Fe-N-C catalysts: Fe precursor -Fe oxides (octahedral Fe-O₆) -etrahedral Fe₁(II)-O₄ $-Fe_1$ $-Fe_1$ (II)-N₄. The demonstration of formation of Fe₁(II)-N₄ via non-contact pyrolysis (i.e., with the Fe precursor and nitrogen-doped carbon in separate boats) reveals the presence of gas-phase iron at mild temperatures and opens up an avenue for the synthesis of single-atom catalysts *via* vapor deposition approaches.

ASSOCIATED CONTENT

Supporting Information

Supporting information (PDF) includes: Experimental Section; Results and Discussion: Section 1. N-C Characterizations (Figure S1); Section 2. In-temperature XAS on the mixture of FeCl₂·4H₂O and N-C (Figure S2-S7 and Table S2-S3); Section 3. In-temperature XAS on the mixture of MOF-based mixture (Figure S8-S10 and Table S4); Section 4. In-temperature XAS on the mixture of FeCl₂·4H₂O and SiO₂ (Figure S11-S13 and Table S5); Section 5. Non-contact pyrolysis of three different Fe precursors (Figure S14). The Mössbauer spectrum of FeCl₂/NC-1000 measured at 5 K (Figure S15). This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

- * Deborah J. Myers: dmyers@anl.gov
- * Qingying Jia: <u>q.jia@northeastern.edu</u>

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENT

This work was supported by the US Department of Energy under award number DE-EE0008416 and DE-EE0008075. The authors acknowledge the support from the U.S. Department of Energy, Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office (DOE-EERE-FCTO) through the ElectroCatalysis consortium (ElectroCat) and the DOE program managers, Dimitrios Papageorgopoulos and Simon Thompson. The in-temperature XAS experiments were performed at the Advanced Photon Source (APS), a DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The operation of MRCAT at the APS is supported by the Department of Energy and the MRCAT member institutions. We acknowledge Synchrotron SOLEIL (Gif-sur Yvette, France) for provision of synchrotron radiation facilities at beamline SAMBA for ex situ XAS experiments (proposal number 20180635).

REFERENCES

1. Yoshida, T.; Kojima, K. Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society. *Electrochem Soc Interface* 2015, 24, 45.

2. James, B. D.; Huya-Kouadio, J. M.; Houchins, C.; DeSantis, D. A. Final report: mass production cost estimation of direct H₂ PEM fuel cell systems for transportation applications (2012-2016); Strategic Analysis Inc., Arlington, VA (United States), **2016**.

3. Chung, H. T.; Cullen, D. A.; Higgins, D.; Sneed, B. T.; Holby, E. F.; More, K. L.; Zelenay, P. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. *Science* **2017**, *357*, 479.

4. Li, J.; Chen, M.; Cullen, D. A.; Hwang, S.; Wang, M.; Li, B.; Liu, K.; Karakalos, S.; Lucero, M.; Zhang, H.; Lei, C.; Xu, H.; Sterbinsky, G. E.; Feng, Z.; Su, D.; More, K. L.; Wang, G.; Wang, Z.; Wu, G. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. *Nat. Catal.* **2018**, *1*, 935.

5. Zitolo, A.; Ranjbar-Sahraie, N.; Mineva, T.; Li, J.; Jia, Q.; Stamatin, S.; Harrington, G. F.; Lyth, S. M.; Krtil, P.; Mukerjee, S.; Fonda, E.; Jaouen, F. Identification of catalytic sites in cobalt-nitrogencarbon materials for the oxygen reduction reaction. *Nat. Commun.* **2017**, *8*, 957.

6. Zhang, H.; Hwang, S.; Wang, M.; Feng, Z.; Karakalos, S.; Luo, L.; Qiao, Z.; Xie, X.; Wang, C.; Su, D.; Shao, Y.; Wu, G. Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. J. Am. Chem. Soc. 2017, 139, 14143.

7. Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J.-P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. *Science* **2009**, *324*, 71.

8. Proietti, E.; Jaouen, F.; Lefèvre, M.; Larouche, N.; Tian, J.; Herranz, J.; Dodelet, J.-P. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. *Nat. Commun.* 2011, 2, 416.

9. Banham, D.; Kishimoto, T.; Zhou, Y.; Sato, T.; Bai, K.; Ozaki, J.i.; Imashiro, Y.; Ye, S. Critical advancements in achieving high power and stable nonprecious metal catalyst-based MEAs for real-world proton exchange membrane fuel cell applications. *Sci. Adv.* **2018**, *4*, 7180.

10. Li, J.; Ghoshal, S.; Liang, W.; Sougrati, M.-T.; Jaouen, F.; Halevi, B.; McKinney, S.; McCool, G.; Ma, C.; Yuan, X.; Ma, Z.-F.; Mukerjee, S.; Jia, Q. Structural and mechanistic basis for the high activity of Fe-N-C catalysts toward oxygen reduction. *Energy Environ. Sci.* **2016**, *9*, 2418.

11. Gupta, S.; Tryk, D.; Bae, I.; Aldred, W.; Yeager, E. Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction. J. Appl. Electrochem. 1989, 19, 19.

12. Jia, Q.; Ramaswamy, N.; Tylus, U.; Strickland, K.; Li, J.; Serov, A.; Artyushkova, K.; Atanassov, P.; Anibal, J.; Gumeci, C.; Barton, S. C.; Sougrati, M.-T.; Jaouen, F.; Halevi, B.; Mukerjee, S. Spectroscopic insights into the nature of active sites in iron-nitrogen-carbon electrocatalysts for oxygen reduction in acid. *Nano Energy* **2016**, *29*, 65.

13. Serov, A.; Artyushkova, K.; Niangar, E.; Wang, C.; Dale, N.; Jaouen, F.; Sougrati, M.-T.; Jia, Q.; Mukerjee, S.; Atanassov, P. Nanostructured non-platinum catalysts for automotive fuel cell application. *Nano Energy* **2015**, *16*, 293.

14. Tylus, U.; Jia, Q.; Strickland, K.; Ramaswamy, N.; Serov, A.; Atanassov, P.; Mukerjee, S. Elucidating oxygen reduction active sites in pyrolyzed metal-nitrogen coordinated non-precious-metal electrocatalyst systems. J. Phys. Chem. C 2014, 118, 8999.

15. Strickland, K.; Miner, E.; Jia, Q.; Tylus, U.; Ramaswamy, N.; Liang, W.; Sougrati, M.-T.; Jaouen, F.; Mukerjee, S. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination. *Nat. Commun.* **2015**, *6*, 7343.

16. Ramaswamy, N.; Tylus, U.; Jia, Q.; Mukerjee, S. Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: linking surface science to coordination chemistry. J. Am. Chem. Soc. 2013, 135, 15443.

17. Olson, T. S.; Pylypenko, S.; Fulghum, J. E.; Atanassov, P. Bifunctional oxygen reduction reaction mechanism on non-platinum catalysts derived from pyrolyzed porphyrins. *J. Electrochem. Soc.* **2010**, *157*, B54.

18. Deng, D.; Yu, L.; Chen, X.; Wang, G.; Jin, L.; Pan, X.; Deng, J.; Sun, G.; Bao, X. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. *Angew. Chem. Int. Ed.* **2013**, *52*, 371.

19. Fei, H.; Dong, J.; Feng, Y.; Allen, C. S.; Wan, C.; Volosskiy, B.; Li, M.; Zhao, Z.; Wang, Y.; Sun, H.; An, P.; Chen, W.; Guo, Z.; Lee, C.; Chen, D.; Shakir, I.; Liu, M.; Hu, T.; Li, Y.; Kirkland, A. I.; Duan, X.; Huang, Y. General synthesis and definitive structural identification of MN_4C_4 single-atom catalysts with tunable electrocatalytic activities. *Nat. Catal.* **2018**, *1*, 63.

20. Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M.-T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. *Nat. Mater.* 2015, *14*, 937.

21. Artyushkova, K.; Serov, A.; Rojas-Carbonell, S.; Atanassov, P. Chemistry of multitudinous active sites for oxygen reduction reaction in transition metal-nitrogen-carbon electrocatalysts. *J. Phys. Chem.* C 2015, 119, 25917.

22. Matter, P. H.; Wang, E.; Arias, M.; Biddinger, E. J.; Ozkan, U. S. Oxygen reduction reaction activity and surface properties of nanostructured nitrogen-containing carbon. *J. Mol. Catal. A: Chem.* 2007, 264, 73.

23. Jackson, W. E.; Mustre de Leon, J.; Brown Jr., G. E.; Waychunas, G. A.; Conradson, S. D.; Combes, J.-M. High-temperature XAS study of Fe_2SiO_4 liquid: reduced coordination of ferrous iron. Science **1993**, 262, 229.

24. Kneebone, J. L.; Daifuku, S. L.; Kehl, J. A.; Wu, G.; Chung, H. T.; Hu, M. Y.; Alp, E. E.; More, K. L.; Zelenay, P.; Holby, E. F.; Neidig, M. L. A combined probe-molecule, Mössbauer, nuclear resonance vibrational spectroscopy, and density functional theory approach for evaluation of potential iron active sites in an oxygen reduction reaction catalyst. *J. Phys. Chem.* C 2017, 121, 16283.

25. Beltrán, D. E.; Litster, S. Half-wave potential or mass activity? characterizing platinum group metal-free fuel cell catalysts by rotating disk electrodes. ACS *Energy Letters* **2019**, *4*, 1158.

26. Channei, D.; Phanichphant,; S.; Nakaruk, A.; Mofarah, S. S.; Koshy, P.; Sorrell, C. C. Aqueous and surface chemistries of photocatalytic Fe-doped CeO₂ nanoparticles. *Catalysts* **2017**, **7**, **45**.

27. Ketteler, G.; Weiss, W.; Ranke, W.; Schlögl, R. Bulk and surface phases of iron oxides in an oxygen and water atmosphere at low pressure. *Phys. Chem. Chem. Phys.* **2001**, *3*, 1114.

28. Kanari, N.; Mishra, D.; Filippov, L.; Diot, F.; Mochón, J.; Allain, E. Kinetics of hematite chlorination with Cl₂ and Cl₂+O₂: Part I. Chlorination with Cl2. *Thermochim. Acta* **2010**, 497, 52.

29. Wei, S.; Li, A.; Liu, J.-C.; Li, Z.; Chen, W.; Gong, Y.; Zhang, Q.; Cheong, W.-C.; Wang, Y.; Zheng, L.; Xiao, H.; Chen, C.; Wang, D.; Peng, Q.; Gu, L.; Han, X.; Li, J.; Li, Y. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. *Nat. Nanotechnol.* **2018**, *13*, 856.

30. Yang, J.; Qiu, Z.; Zhao, C.; Wei, W.; Chen, W.; Li, Z.; Qu, Y.; Dong, J.; Luo, J.; Li, Z.; Wu, Y. In situ thermal atomization to convert supported nickel nanoparticles into surface-bound nickel single-atom catalysts. *Angew. Chem. Int. Ed.* **2018**, *57*, 14095.

31. Zhang, C.; Zhang, W.; Zheng, W. Pinpointing single metal atom anchoring sites in carbon for oxygen reduction: Doping sites or defects? *Chinese J. Catal.* **2018**, *39*, *4*.

For Table of Contents only

