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Abstract. Active objects extend the Actor paradigm with structured
communication using method calls and futures. Active objects are, like
actors, known to be data race free. Both are inherently concurrent, as
they share a fundamental decoupling of communication and synchroni-
sation. Both encapsulate their state, restricting access to one process
at a time. Clearly, this rules out low-level races between two processes
accessing a shared variable. However, is that sufficient to guarantee de-
terministic results from the execution of an active object program?

In this paper we are interested in so-called high-level races caused by the
fact that the arrival order of messages between active objects can be non-
deterministic, resulting in non-deterministic overall behaviour. We study
this problem in the setting of a core calculus and identify restrictions on
active object programs which are sufficient to guarantee deterministic
behaviour for active object programs. We formalise these restrictions as
a simple extension to the type system of the calculus and prove that
well-typed programs exhibit deterministic behaviour.

1 Introduction

Concurrent programs are characterised by multiple threads executing over a
program’s state space, possibly in parallel on multicore or distributed hardware.
Concurrency introduces non-determinism in the programs, which makes it hard
to reason about program behaviour and easy to inadvertently introduce errors.
Two major causes for errors in concurrent programs are deadlocks and races. One
has to choose between making programs more synchronous, which makes them
exhibit less behaviour but also makes them more deadlock-prone, and making
program more asynchronous, which enables more behaviour and makes them
less deadlock-prone. However, allowing more behaviour also allows more races
to occur between the program threads.

Active object languages [1], which extend the Actor [2, 3] model of concur-
rency with asynchronous method calls and synchronisation using futures, natu-
rally lend themselves to an asynchronous program style because they decouple
communication from synchronisation. Asynchronous method calls can be dis-
patched without any transfer of control between the active objects. Although
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asynchrony generally leads to non-determinism, languages based on the Actor
model are known to be free from data races (e.g., [4]). This is because actors (and
active objects) encapsulate internal state and restrict local state access to one
method at a time, which eliminate such low-level races. However, these systems
are prone to high-level communication races which result in a non-deterministic
order of execution for methods on an actor in the system. These races may be
triggered by asynchronous method calls (e.g., they are the only races in ASP [5]),
by the synchronisation on the associated futures (e.g., [6, 7]) to retrieve the re-
turn values from these method calls, and by cooperative scheduling inside the
active objects (e.g., [8]). The occurrence of high-level races gives rise to the fol-
lowing question: under which conditions are active object programs guaranteed to
be deterministic? That is, the programs always produce the same output given
a particular input.

This paper studies the problem of active objects with guaranteed determin-
istic behaviour. Deterministic behaviour for a concurrent program boils down to
confluence properties between execution steps. We formalise the execution of ac-
tive objects systems in a core calculus to study their confluence properties. We
combine certain characteristics of the underlying communication network and
the local scheduling policy of each active object with restrictions on the pro-
gram’s topology, and show that these together suffice to prove confluence. We
identify characteristics that can ensure determinacy, and show how to restrict
existing languages to make them partially deterministic. We further show that a
simple typing discipline suffices to statically enforce this topology and relate our
findings to existing calculi and languages to shed light on how to approach the
problem of designing a deterministic active object system in different languages.

The main contributions of the paper can be summarised as follows: We ex-
tend previous work on deterministic active object systems, which enforce a tree-
shaped object graph, to handle explicit futures and cooperative scheduling, and
show that a simple type system is sufficient to guarantee deterministic behaviour
even when futures can be shared among objects in the tree-shaped topology.

Paper overview. Section 2 motivates the problem addressed in this paper through
an example. Section 3 introduces the active object calculus in which we study the
problem, including its operational semantics and basic type system. Section 4
defines and proves confluence properties for our calculus. Section 5 addresses
the problem of statically guaranteeing a tree structure in the program topology.
Section 6 discusses related work, and in particular to what extent existing active
object calculi and languages can guarantee deterministic behaviour. Section 7
concludes the paper.

2 Motivation and Example

An actor is a single-threaded unit of distribution that communicates with other
actors by asynchronous message sending. The absence of multi-threading inside
an actor and the fact that data is handled by a single actor prevents data races.
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However, race conditions can appear when two actors send messages to the same
receiver, or when an actor chooses the next message to be processed. Thus, ac-
tors are a programming abstraction that limits non-determinism, but does not
prevent it. Different adaptations of the actor principles entail different sources
of non-deterministic behaviour for programs. To motivate our work on deter-
ministic behaviour for active objects, which are actors synchronising on futures,
we review below two classical parallel programming patterns implemented using
active objects and discuss the races they exhibit.

1 Worker {
2 Array work(int i) { .... } // omitted
3 }
4 { // main
5 Worker w1 = new Worker (); // creation of active objects
6 Worker w2 = new Worker ();
7 Fut <Array > f1 = w1!work (1); // asynchronous invocation
8 Fut <Array > f2 = w2!work (2);
9 Array r1 = get f1; // synchronisation

10 Array r2 = get f2; // synchronisation
11 average = (sum(r1) + sum(r2)) / (length(r1) + length(r2))
12 }

Fig. 1. Implementation with a master-worker pattern.

1 Map {
2 int work(int i, Reducer red) {
3 .... // computation omitted
4 Fut <int > c = red!reduce(computedArray);
5 return 0
6 }
7 }
8 Reducer {
9 int expectedResults; // number of expected results

10 OutputObject out; // result is sent to out
11 int partialNb ,partialAvg;
12 int NbWorks; // number of received results
13
14 int reduce (Array oneResult) { // reduce computing partial average
15 int newPartialNb = partialNb+length(oneResult);
16 partialAvg = (partialAvg*partialNb+sum(oneResult))/newPartialNb;
17 partialNb = newPartialNb;
18 NbWorks = NbWorks + 1;
19 if (NbWorks == expectedResults) { out!send(partialAvg) } ;
20 return partialAvg
21 }
22 }
23 { // main. We suppose out is an active object expecting the result
24 Reducer red = new Reducer(2,out ,0,0,0); // reducer creation with

initial values for fields
25 Worker m1 = new Map();
26 Worker m2 = new Map();
27 Fut <int > f1 = m1!work(1,red); // asynchronous invocation
28 Fut <int > f2 = m2!work(2,red)
29 }

Fig. 2. Implementation with a map-reduce pattern.
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We consider two implementations of a program which computes the average
over a sequence of values. Figure 1 shows an implementation using a master-
worker pattern based on active objects. Two workers w1 and w2 are called asyn-
chronously (Lines 7 and 8) to perform some work task, the main object then
synchronises on the returns from the two invocations (Lines 9 and 10 use a
get-statement to retrieve the return values) before it computes the average in
Line 11. The implementation is presented in the core calculus of Section 3 using
an additional basic type Array with sum and length operators.

Figure 2 shows an implementation of the same problem using a map-reduce
pattern. In this implementation, partial results are reduced as they arrive. The
workers send their results to a Reducer active object who computes the partial
average of the results as they arrive and forwards the average to a receiving active
object out (we omit its implementation). We see that the asynchronous method
calls to the workers (Lines 27 and 28) are not associated with futures in this
implementation, but include a reference to the Reducer instance so the partial
results can be passed on directly. The computed result would be deterministic
with a commutative and associative reduction operator—but this is not the case
in our example. Observe that if the first partial average is computed over an
empty array, a division-by-zero error will be triggered. This bug might only
appear in some executions because messages are received in a non-deterministic
order, which makes the reducer difficult to debug. In contrast, the master-worker
implementation behaves deterministically; if a division-by-zero bug would occur
in that implementation, it would occur in every execution.

Map-reduce is a popular pattern that is supported by powerful runtime
frameworks like Hadoop. In the sequel, we identify why patterns such as map-
reduce are potentially non-deterministic and design a type-system that ensures
deterministic behaviour for active objects. This type system can type the master-
worker implementation, but not the map-reduce one.

3 An Active Object Language

In this section we propose a core language for active objects. We adopt a Java-like
syntax that is similar to ABS [8].

Notations. T denotes a list of elements T , unless stated otherwise this list is
ordered. In the syntax x, y, u range over variable names, m method names, α, β
active object identifiers, f future identifiers, and Act class names. The set of bi-
nary operators on values is represented by an abstract operator ⊕, it replaces all
the classical operations on integer and booleans. Mappings are denoted [x 7→ a]
which builds a map from the two lists x and a of identical length, m[x 7→ a]
updates a map, associating the value a to the entry x, and + merges two maps
(taking values in the rightmost one in case of conflict). q#q (resp. q#q) is the
FIFO enqueue (resp. dequeue) operation.
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P ::= Act{T x M} {T x s} program

M ::= T m(T x) {T x s} method
s ::= skip | x = z | if v { s } else { s } | s ; s statements
| return v | await e

z ::= e | v!m(v) | new Act(v) | get v rhs of assignments

e ::= v | v ⊕ v expressions
v ::= x | null | integer-and-boolean-values atoms
B ::= Int | Bool | Act basic type
T ::=B | Fut〈B〉 type

Fig. 3. Static syntax of the core language.

3.1 Syntax and Semantics

We design a simple active object model with one thread per object and where all
objects are active (uniform active object model). Interested readers are referred
to [1] for a complete description of the different request scheduling strategies in
active object languages.

Figure 3 shows the syntax of our language. A program P is made of a set of
classes, each having a set of fields and a set of methods, plus a main method.
A method M has a name m, a set of parameters, and a body, made of a set of
local variables and a statement. Types and terms are standard of active object
languages, for instance new creates an active object, get accesses a future, and
v!m(v) performs a method invocation on an active object and thus systemati-
cally creates a future. The type constructor for future is Fut〈T 〉 like ABS or
any explicit future construct. Sequence is denoted as ; and is associative with
a neutral element skip. Consequently, each statement that is not skip can be
rewritten as s; s′ with s neither skip nor a sequence. ⊕ denotes the (standard)
operations on integers and booleans. Finally, including an await enables coop-
erative scheduling: it interrupts a thread until a condition is validated. Several
design choices had to be made in our language we discuss them briefly below:
– For simplicity, we suppose that local variables and fields have disjoint names.
– We specify a service of requests in FIFO order with a causal ordering of

request transmission, like in ASP [5], Rebeca [9] or Encore [10]. Also, FIFO
communication is supported by many actor and active object implementa-
tions, and it reduces the possible interleaving of messages.

– Adding subtyping is outside the scope of our study.
– With more complex active object models, it is sometimes necessary to have

a syntactic distinction between synchronous and asynchronous invocations.
For instance, ABS uses ! to identify asynchronous method invocations that
create futures. Our core language adopts ABS syntax here but does not have
synchronous invocation.
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cn ::= α(a, p, q) f(w) configuration
p ::= ∅ | q current request service
q ::= {` | s}f request
w ::= x | α | f | null | integer-values runtime values
`, a ::= [x 7→ w] local store and object fields
e ::= w | v ⊕ v expressions can now have runtime values
s ::= skip | x = z | if e { s } else { s } statements
| s ; s | return e | await e

z ::= e | v!m(v) | new Act(v) | get v expressions with side effects

Fig. 4. Runtime Syntax of the core language .

The operational semantics of our language is shown in Figure 5; it expresses
a small-step reduction semantics as a transition between runtime configurations.
The syntax of configurations and runtime terms is defined in Figure 4, statements
are the same as in the static syntax except that they can contain runtime values
like reference to an object or a future (inside assignment or get statement). A
configuration is an unordered set of active objects and futures. Each active object
is of the form α(a, p, q) where α is the active object identifier, a stores the value
of object fields, p is the task currently be executed, and q a list of pending tasks.
The configuration also contains futures that are resolved by a value w (when a
future is not yet resolved, it is not in the configuration). A task q is made of a
set of local variables ` and a statement s to be executed, additionally each task
is supposed to fulfil a future f . The currently performed task p is either empty ∅
or a single task q.

The semantics uses an auxiliary operator – bind – that creates a context for
evaluating a method invocation. If the object α is of type Act, and m is defined
in Act, i.e., Act{..T m(T x) {T y s}..} is one class of the program P , then4:
bind(α, (f, m, w)) , { [ this 7→ α, x 7→ w ] | s }.

To deal with assignment, we use a dedicated operator for updating the current
fields or local variables:

(a+ `)[x 7→ w] = a′ + `′ ⇐⇒ a′ = a[x 7→ w] and `′ = `, if x ∈ dom(a),
a′ = a and `′ = `[x 7→ w], otherwise

We also define a predicate checking whether a thread is enabled, i.e., can
progress. A thread is disabled if it starts with an await statement on a condition
that is false.

disabled(q) ⇐⇒ ∃` e s f. (q = {`|await e ; s}f ∧ [[e]]a+` = false)

enabled(q) ⇐⇒ ¬disabled(q)

4 It is not necessary to initialise the local variables in the local environment because
of the way store update is defined.
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w is not a variable
[[w]]` = w

x ∈ dom(`)

[[x]]` = `(x)

[[v]]` = k [[v′]]` = k′

[[v ⊕ v′]]` = k ⊕ k′

Context
cn→ cn′

cn cn′′ → cn′ cn′′

Assign
[[e]]a+` = w (a+ `)[x 7→ w] = a′ + `′

α(a, {` | x = e ; s}f , q′)→ α(a′, {`′ | s}f , q′)

New
[[v]]a+` = w β fresh y = fields(Act)

α(a, {` | x = new Act(v) ; s}f , q′)→
α(a, {` | x = β ; s}f , q′) β([y 7→ w],∅,∅)

Invk
[[v]]a+` = β [[v]]a+` = w β 6= α f ′ fresh bind(β,m,w) = {`′ | s}

α(a, {` |x=v!m(v);s}f , q′) β(a′, p, qβ)→ α(a, {` |x=f ′;s}f , q′) β(a′, p, qβ#{`′ | s}f ′)

Invk-Self
[[v]]a+` = α [[v]]a+` = w f ′ fresh bind(α,m,w) = {`′ | s}
α(a, {` | x = v!m(v) ; s}f , q′)→ α(a, {` | x = f ′ ; s}f , q′#{`′ | s}f ′)

Return
[[v]]a+` = w

α(a, {` | return v ; s}f , q)→
α(a,∅, q) f(w)

Get
[[v]]a+` = f ′

α(a, {` | y = get v ; s}f , q′) f ′(w)
→ α(a, {` | y = w ; s}f , q′) f ′(w)

Serve
∀q′ ∈ q1. disabled(q′) enabled(q)

α(a,∅, q1#q#q2)→ α(a, q, q1#q2)

await
disabled(q)

α(a, q, q′)→ α(a,∅, q#q′)

Fig. 5. Semantics of the core language (rules If-True and If-False for reducing if
omitted).

The semantics of a program features the classical elements of active object
programming [8,11], the stateful aspects of the language are expressed as accesses
to either local variables (`) or object fields (a). The first three rules of the
semantics define an evaluation operator [[e]]a+` that evaluates an expression.
Note that [[e]]a+` = w implies that w can only be an object or future name,
null, or an integer or boolean value. The semantics in Figure 5 contains the
following rules that are standard of active object languages.

Assign deals with assignment to either local variables or object fields.
New creates a new active object at a fresh location β.
Invk (method invocation) creates a task and enqueues it in the target active

object, and a future identifier f ′, a reference to the future can then be used
by the invoker α.

Invk-Self deals with the particular case where the target is the invoking
object.
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Return evaluates a return statement and resolves the corresponding futures,
finishing a task so that a new task can be performed.

Serve occurs when there is no current task, it picks the first one that can be
activated from the list of pending tasks and starts its execution. This ensures
a strict single-threaded execution of each request one after the other.

Get fetches the value associated to a future.
Await suspends a task, waiting for the object to be in a given state before

continuing the task. Note that the awaited condition only depends on the
internal state of the active object. This scheduling feature is called cooper-
ative scheduling because several threads can be executing at the same time
but only one progresses and the context switch between a thread and another
is triggered by the program itself.
The initial configuration for running a program Act{T x M} {T x s} con-

sists of a single object performing a single task defined by the main method, the
corresponding future f is useless as no other object will fetch the result (it can
be any future identifier): α(∅, {∅|s}f ,∅). We use→∗ for the reflexive transitive
closure of →.

3.2 Type System

We define a simple type system for our language (the syntax of types is defined
in Figure 3). The type system is standard for a language with active objects and
futures. The type checking rules are presented in Figure 6. Classically, Act ranges
over class names and types. Γ is used for typing environments. The typing rules
have the form Γ `T s for statements where T is the return type of the current
method, Γ ` e for expressions, Γ ` M for methods, and Γ ` P for programs.
The static type checking is defined in the first twelve rules of the figure. We
describe below the most interesting rules.
T-Get removes one future construct.
T-Invk creates a future type. This rule adds a future construct for the result

of asynchronous method invocation.
T-Program Note that the main body return type can be chosen arbitrarily:

there is no constraint on the typing of a return statement in the main block.
The initial typing environment Γ , which types the program, associates to each
class name a mapping from method names to method signatures. If m is a method
of class Act defined as follow T ′′ m (T x){T ′ x′ s}, we will have Γ (Act)(m) =
T → T ′′.

The type system is extended for typing configurations, this is expressed in
the last four rules of Figure 6. A typing environment gives the type of each active
object and future. Each element of the configuration is checked individually in a
very standard manner. The only complex case happens when checking processes,
i.e., statements of requests in the queue or being processed, the complexity only
comes from the necessity to build the typing environment for the body of the
methods.

Properties of the type system Our type system verifies subject reduction.
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(T-Var)

Γ ` x : Γ (x)

(T-Null)

Γ ` null : Act

(T-Assign)

Γ (x) = T ′ Γ ` z : T ′

Γ `T x = z

(T-New)

Γ ` v : T

fields(Act) = T x

Γ ` new Act(v) : Act

(T-Expression)

⊕ : T × T ′ → T ′′

Γ ` v : T Γ ` v′ : T ′

Γ ` v ⊕ v′ : T ′′

(T-Get)

Γ ` v : Fut〈B〉
Γ ` get v : B

(T-Return)

Γ ` e : T

Γ `T return e

(T-Invk)

Γ (Act)(m) = T → T ′

Γ ` v : Act Γ ` v : T

Γ ` v!m(v) : Fut〈T ′〉

(T-Seq)

Γ `T s Γ `T s′

Γ `T s ; s′
(T-Skip)

Γ `T skip

(T-Program)

Γ [x′ 7→ T ′] `T0 s

∀Act{T x,M} ∈ Act{T x,M}.∀M ∈M.Γ [x 7→ T ][this 7→ Act] `M

Γ ` Act{T x,M} {T ′ x′ s}

(T-Method)

Γ [x 7→ T ][x′ 7→ T ′] `T s

Γ ` T ′′
m (T x){T ′ x′ s}

(T-Config)

∀α(a, p, q) ∈ α(a, p, q). Γ ` α(a, p, q)

∀f(w) ∈ f(w). Γ ` w : Γ (f)

Γ ` α(a, p, q) f(w)

(T-Obj)

Γ (α) = Act fields(Act) = T x

Γ ′ = Γ [this 7→ Act][x 7→ T ] ∀x ∈ dom(a). Γ ′ ` a(x) : Γ ′(x)

∀{[y 7→ w]|s}f ∈p ∪ q.∃T ′.
(
Γ ′ ` w : T ′ ∧ Γ ′[y 7→ T ′] `Γ (f) s

)
Γ ` α(a, p, q)

(T-ObjRef)

Γ ` α : Γ (α)

(T-FutRef)

Γ ` f : Γ (f)

Fig. 6. Type system (operator ⊕ has a predefined signature, rule for if omitted).

Property 1 (Subject reduction). If Γ ` cn and cn → cn′ then Γ ′ ` cn′ with
Γ ⊆ Γ ′.

Proof (Sketch). The proof is by straightforward induction over the application
of transition rules. For example the correct typing of the future value is ensured
by the fact that the return statement is well-typed in the initial configuration
(i.e., it has the return type of the method). This also ensures that the get
statement is well-typed (accordingly to the future type and the return type of
the method), and thus the Get reduction rule obtains the return type without
the future construct. Then, it is easy and classical to prove that every bind
succeeds (because the target method exists). The proof is standard and thus
omitted from the paper. ut
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4 Confluence Properties

In the following, we will state under which conditions a program written in
our language can behave deterministically. We first identify the configurations
modulo renaming of futures and active object identifiers. For this we let σ range
over renaming of futures and active object identifiers (mapping names to names),
and use cnσ to apply the renaming σ to the configuration cn.

Definition 1 (Equivalence). The configurations cn1 and cn2 are equivalent,
denoted as cn1 ≡ cn2, if and only if ∃σ.cn1 = cn2σ.

Note that it is trivial to prove that two equivalent configuration can do the same
reduction step (according to the SOS rules) and reach equivalent configurations.
Our properties will rely on the topology of active objects. For this we first define
the set of active objects referenced by a term of the language as follows.

Definition 2 (References). We state that active object β is referenced by ac-
tive object α in configuration cn, written β ∈ refscn(α), if inside configuration
cn, the content of the active object α holds a reference to active object β.
More precisely

refs(`) = {β|β ∈ range(`)}

refs({`|s}) = {β|β ∈ range(`)}

refs(α(a, q , q ′)) = refs(a) ∪ refs(q) ∪
⋃

q′∈q′
refs(q ′)

refscn(α) = refs(α(a, q , q ′)) if α(a, q, q′) ∈ cn

For example, consider the configuration

cn1 =α
(
[x 7→ β], {[y 7→ β] | y := new Act(v) ; y!m()},∅

)
γ
(
∅,∅,∅

)
β
(
[z 7→ f ], {[w 7→ 1] | y := w + 1}, {[g 7→ γ] | h = g!m()}

)
f(3)

We have refscn1
(α) = {β}, refscn1

(β) = {γ} and refscn1
(γ) = ∅

We can now define when a configuration has a tree structure. To be precise,
we should call such a configuration a forest as there is no requirement on the
unicity of the tree root.

Definition 3 (Tree structure). We say that a configuration has a tree struc-
ture when no two objects reference the same third one.

Tree(cn) = ∀αβ ∈ cn. refscn(α) ∩ refscn(β) = ∅

The configuration cn1 given as example above verifies Tree(cn1) because active
object α only references active object β, active object β only references γ, and
active object γ references nothing. If the object field x of α was mapped to γ
instead of β, we would have two active objects referencing γ and the property
Tree(cn1) would be false.
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(T-New)

fields(Act) = T x Γ 
 v : T ∀v ∈ v. Γ 
 v : ActB =⇒ v = null

Γ 
 new Act(v) : Act

(T-Invk)

Γ 
 v : Act Γ (Act)(m) = T → T ′

Γ 
 v : T ∀v′ ∈ v. Γ (∃ActB. 
 v′ : ActB) =⇒ v′ = null @ActB. T ′ = ActB

Γ 
 v!m(v) : Fut〈T ′〉

Fig. 7. Type system modified for no reference passing (each operator⊕ has a predefined
signature, rule for if-statement is omitted). T 6=Act means T is not an object type.

Now, we can state one crucial property of our language; it is a partial con-
fluence property constrained by the structure of the references between active
objects. We first prove a local confluence property. It relies on the fact that the
only conflicting reductions of the calculus is the concurrent sending of request to
a same target active object, from two different active objects. As a consequence,
if each object is referenced by a single object, then there is no conflicting reduc-
tion and we have local confluence.

Property 2 (Local Confluence). For any configuration cn such that Tree(cn), if
there exists cn1 and cn2 such that cn → cn1 and cn → cn2, then there exists
cn′1 and cn′2 such that cn1 → cn′1 ∧ cn2 → cn′2 ∧ cn′1 ≡ cn′2.

Proof (Sketch). The proof of local confluence is classically done by case analysis
on each pair of reduction rules that can be applied. We start by eliminating the
Context rule that is used to extract a sub-configuration and apply it automati-
cally in the proof, which is detailed in an accompanying technical report [12]. ut

Finally, as a consequence of the previous property, we can state the following
partial confluence theorem. When at each point of the execution, the graph of
dependencies between active objects forms a tree, the program behaves deter-
ministically.

Theorem 1 (Global Confluence). Let cn be any configuration such that
∀cn′. cn→∗ cn′ ⇒ Tree(cn′).

If there exists cn1 and cn2 such that cn →∗ cn1 and cn →∗ cn2, then there
exists cn′1 and cn′2 such that cn1 →∗ cn′1 ∧ cn2 →∗ cn′2 ∧ cn′1 ≡ cn′2.

5 Static Tree Structure Guarantee

In this section we define a type system that is sufficient to ensure the tree
structure of active objects and show that every well typed program according to
the type system defined in this section is confluent.
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The type system in Figure 6 is modified by revising rules T-New and T-
Invk, which handles object creations and method invocations, as shown in Fig-
ure 7. The modified type system is denoted as 
. The two revised rules ensure
that references to an object cannot be passed upon object creation or method
invocation, thus only the creator of an object keeps a reference to it.

Note that this is useless in a tree-structure setting because an object cannot
call itself and it cannot pass its reference to an external object either. Note that,
however, we could add a synchronous call on this to the calculus (stacking a
method invocation), which would not raise any problem (just extending syntax).
Alternatively an asynchronous self call that adds the invocation at the head of the
queue like await would also be safe and maintain confluence property (but with
a strange semantics). To keep the typing rules simple, we use ActA, ActB, . . . , to
represents the types of different objects. Alternatively, we could use subtyping
relatively to a generic object type.

To show that a well-typed program in our language is confluent, we first show
that the type system 
 verifies subject reduction and reduction maintains the
tree property.

Property 3 (Subject reduction of 
). If Γ 
 cn and cn → cn′ then Γ ′ 
 cn′,
where Γ ⊆ Γ ′.

Proof (Sketch). The proof is by classical induction over the application of tran-
sition rules, and is detailed in an accompanying technical report [12]. The proof
also ensures that any return-type and thus any future is not an object, i.e., its
type is not an Act. More concretely, we never have Γ (f) = Act. ut

Property 4 (Reduction maintains tree property). Consider the type-system of our
language modified according to Figure 7 and extended to configurations.

(Γ 
 cn ∧ cn→ cn′ ∧ Tree(cn)) =⇒ Tree(cn′)

Proof. This is due to the fact that the type system prevents the communication
of an object reference to a newly created object or as method parameter, or as
method result. In fact we prove by induction a stronger property:

(Γ 
 cn ∧ cn→ cn′ ∧ Tree(cn) ∧ ∀f(w) ∈ cn. w 6= α)
=⇒ Tree(cn′) ∧ ∀f(w) ∈ cn′. w 6= α

Invk. Let cn = α1(a1, {`1 | x = v!m(v) ; s1}f , q1) α2(a2, p, q2). We are given
that Tree(cn), i.e., refscn(α1) ∩ refscn(α2) = ∅, and Γ 
 cn, which implies
Γ1 
T1 v!m(v) for some Γ1 and T1. This further gives us by rule T-Invk that
(i) Γ1 
T1 v : Act, (ii) Γ1 
T1 v : T , (iii) Γ (Act)(m) = T → T ′, (iv) @ActB. T ′ =
ActB, and (v) ∀v′ ∈ v. Γ ′(∃ActB. 
 v′ : ActB) =⇒ v′ = null.

We are further given by rule Invk that cn→ cn′ and cn′ = α1(a1, {`1 | x =
fm ; s1}f , q1) α2(a2, p, q2#{`m | sm}fm) where [[v]]a1+`1 = α2 and α2 6= α1,
[[v]]a1+`1 = w, bind(α2,m,w) = {`m | sm}, and fm is fresh. Given (v) above,
we have refs(`m) = ∅; thus ∀γ. refs(γ) ∩ refs(`m) = ∅. This, together with
Tree(cn), implies Tree(cn′) because `m is the only new term in cn′ that can
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contain references to active objects. Also ∀f(w) ∈ cn′. w 6= α because the set of
resolved future is the same in cn and cn′.

Return. Let cn = α(a, {` | return e ; s}f , q). We are given that Tree(cn),
and Γ 
 cn. We are further given by rule Return that cn → cn′, where cn′ =
α(a,∅, q) f(w) and [[e]]a+` = w. Since Tree(cn), it is easy to see that Tree(cn′).
By Property 3, we have Γ ′ 
 cn′ where Γ ⊆ Γ ′ implying that Γ ′ 
 w : Γ ′(f),
where Γ ′(f) = T . From the remark on return-types in the proof of Property 3,
it is clear a well-typed future can never be of any type Act, i.e., 6 ∃Act.T = Act.
Since f(w) is the only future that is changed, ∀f(w) ∈ cn′.w 6= α holds.

The remaining cases are straightforward. ut

Now, we can prove that the type system 
 is sufficient to ensure the tree structure
required for confluence.

Property 5 (Tree structure). Consider the type-system of our language modified
according to Figure 7. If for a program P , Γ 
 P then the execution of P
verifies the conditions of the global confluence theorem, and P has a deterministic
behaviour.

Proof. Consider cn0 is the initial configuration for the program P , we can prove
that ∀cn. cn0 →∗ cn =⇒ Tree(cn). This is a direct consequence of Property 4
and of the fact that cn0 forms a tree. By application of Property 2 we obtain
global confluence. ut

It is easy to see that in the examples of Section 2, the master-worker ex-
ample in Figure 1 can be typed with our type system. On the other hand, the
transmission of object references (Lines 27 and 28) in the map-reduce example
in Figure 2 makes it impossible to type with our type system. This reflects the
fact that only the first one is deterministic.

Ensuring the confluence property in a more flexible way would require a more
dynamic view of the object dependencies, for example by a more powerful static
analysis or a linear type system that would allow the creator to forget a reference
and send it to another object. These more dynamic systems are not studied in
this article and left for future work.

6 Related Work

We review the closest related work and discuss how different actor calculi could
be made partially confluent by following the approach advocated in this paper.
Table 1 summarises the features of some of the languages we discuss, with respect
to the key points that make our approach feasible in practice. FIFO channels are
mandatory to ensure determinacy of communication between two given objects.
Futures can be safely added to the language to handle responses to messages in
a deterministic manner provided they can only be accessed in a blocking manner.
In the following, when a language appears to us as a meaningful target for our
approach, we explain briefly how our result is applicable. We consider that for the
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Language FIFO channels Blocking future
synchronisation Cooperative scheduling

ProActive and ASP YES YES NO
Rebeca YES NO NO
AmbientTalk NO NO NO
ABS NO YES Non-deterministic
Encore YES YES Non-deterministic
Akka YES Discouraged Non-deterministic
Lustre with futures YES YES NO

Table 1. Deterministic characteristics for a few actor and active object languages.

other languages, the decisions made in the design of the language are somehow
contradictory with the principles of our approach.

ProActive [13] uses active objects to implement remotely accessible, asyn-
chronous objects. The ASP calculus [5] formalises the ProActive Java library.
This paper also identifies partial confluence properties for active objects, which
can be seen as a follow-up to [5], except that our futures are explicit, where ASP
features implicit futures. Compared to the original work, the presented core lan-
guage is more streamlined, making this contribution easier to adapt to many
programming languages.

Applying our approach to ProActive. This paper can be seen both as an extension
of [5] and as an adaptation to explicit futures. Additionally we partially address
cooperative scheduling via a restricted await primitive. We also identify a simple
type system that allows us to ensure deterministic behaviour of programs.

Rebeca [9] and its variants mostly consist of actors communicating by asyn-
chronous messages over FIFO queues, which makes model-checking for Rebeca
programs less prone to state-explosion than most distributed systems [14]. En-
suring a tree structure of Rebeca actors would then be sufficient to guarantee
deterministic behaviour; unfortunately the absence of futures in Rebeca forces
callbacks to be used to transmit results of computations, and it is very challeng-
ing to maintain a tree-structure in the presence of callbacks.

AmbientTalk [15], based on the E Programming Language [16], implements
an actor model with a communicating event-loop. It targets embedded systems
and uses asynchronous reaction to future resolution, which prevents deadlocks
at the price of more non-determinism, creating a race between the reaction to
the future resolution and the rest of the computation in the same actor.

Creol [17] and languages inheriting from it, JCoBox [18], ABS [8] and En-
core [10], rely on cooperative scheduling allowing the single execution thread of
the active object to interrupt the service of one request and start (or recover)
another at explicitly defined program points. A main difference between ABS
and Encore is that the former is built upon Erlang [19] that does not ensure
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FIFO ordering of messages, while the latter is built upon Pony [20] that en-
sures causal ordering of messages. In addition, Encore supports an advanced
capability-based type system [21] which enables race-free data sharing between
active objects. Confluence properties for cooperative scheduling in ABS have
previously been studied, based on controlling the local scheduler [22,23].

Applying our approach to languages à la ABS. ABS is a good candidate for our
approach because of the numerous formal developments it supports. However,
ABS features much less determinism than our core language because commu-
nications are unordered, and cooperative scheduling entails unpredictable in-
terleaving between the treatment of different messages. For example, Encore is
similar to ABS but already ensures FIFO ordering of messages, it would thus be
easier to adapt our work to Encore.

Concerning cooperative scheduling in JCoBox, ABS and Encore, we can state
that await on a future creates a non-blocking future access and should be pro-
scribed if determinism is expected. Other await statements (on the internal state
of an active object) can be kept in the language, but the cooperative scheduling
policy has to be adapted to make it deterministic.

Futures are becoming increasingly mainstream and are now available through
libraries in many languages, including Java, Scala, C++, and Rust. Akka [24,25]
is a scalable library for actors on top of Java and Scala. Communication in Akka
is FIFO which allows scheduling to be performed deterministically. Concerning
return-values, Akka used to favour asynchronous reaction to future resolution
which is not deterministic by nature. In the newest release, Akka 2.6.0, callbacks
are the preferred strategy for returning values. By nature, callbacks entail a
non-tree structure of object dependencies and create race-conditions between
the handling of callbacks and of standard requests.

Lohstroh et al. [26] recently proposed a deterministic actor language. The key
ingredient for determinism is the logical timing of messages based on a protocol
which combines physical and logical timing to ensure determinacy. Unfortunately
the resulting language is only deterministic when each message reaching the
same actor is tagged with a different time, which may not be easy to ensure.
Additionally, to the best of our knowledge, there is no proof of correctness of
the used scheduling protocol and its adaptation to the context of the paper. We
believe our approach could provide the right abstractions to prove correctness
of such scheduling approaches for determinacy, adapting the proof of confluence
provided in this paper and relating it to the scheduling protocol could prove the
confluence property of [26].

Ownership type systems [27] can enforce a given object topology. Their ap-
plication to active objects [28], especially inside the Encore language [10, 21],
ensures the separation between different memory spaces. Ownership types guar-
antee that each passive (or data) object is referenced by a single active object.
Ownership types are in general adapted to enforce a tree topology, and these
works could be extended to active objects so that their dependencies form a tree
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(and passive objects are still owned by a single active object). This significant
extension of type systems is outside the scope of this paper but would allow
more programs in our calculus to be accepted by the type checker and proven
deterministic. Other modern type system features, especially linearity and bor-
rowing [29], should also be considered for the same reasons. In particular we
envisage the use of linear types and borrowing techniques to extend our results
to computations where the tree structure of active objects may change over time.

Outside the actor community, the addition of futures in Lustre has been
proposed in 2012 [30]. In this work, the authors provide an asynchronous com-
putation primitive based on futures inside a synchronous language. As futures
have good properties with respect to parallelism and determinism, they obtain
a language that is equivalent to the synchronous language but with more par-
allelism. Our approach is very close to futures in Lustre for two reasons: firstly,
both set up a programming model that ensure deterministic behaviour by us-
ing futures and asynchronous invocations, secondly, the way futures are encoded
in Lustre corresponds in fact to an actor-like program where the dependency
between actors form a tree and communication is over FIFO channels.

Applying our approach to Lustre with futures. We prove here that, in an asyn-
chronous setting, futures in Lustre still have a deterministic behaviour (the same
behaviour as synchronous programs). Additionally, our await primitive could be
used in Lustre with future to enable cooperative scheduling.

7 Conclusion

This paper has given guidelines on how to implement deterministic active objects
and ensure that in any given framework a program behaves deterministically if
this is desired. We formalised a basic active object calculus where communication
between objects is performed by asynchronous method invocations on FIFO
channels, replies by means of futures, and synchronisation by a blocking wait on
future access. We added a deterministic cooperative scheduling policy, allowing
a thread to be suspended and recovered depending on the internal state of the
object. These conditions are the necessary prerequisites for our approach to be
applicable; in such system we identify precisely the possible races. Our first result
can be summarised as: in our calculus the only source of non-determinacy is the
concurrent sending of messages from two active objects to the same third one.
Then we showed that with the given semantics we can design a type system
that ensure determinacy of results by enforcing a tree structure for objects. For
example, if the active objects were using a communication library ensuring FIFO
ordering and deterministic scheduling, our type system would ensure that the
correctly typed active objects using this library behave deterministically.

The current results are still restrictive in the programs that can be expressed
and the rigidity of its properties; however, we believe that we have a minimal
and reliable basis for further studies. In the future, we plan to introduce more
dynamic trees for example using linearity and borrowing types, but also primitive
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to attach and detach tree to the object dependence graph, in order to constantly
ensure a tree structure, but allow the structure of the tree to evolve at runtime.
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