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ABSTRACT

Context. Conservation properties of magnetic helicity and energy in the quasi-ideal and low-β solar corona make these two quantities
relevant for the study of solar active regions and eruptions.
Aims. Based on a decomposition of the magnetic field into potential and nonpotential components, magnetic energy and relative helic-
ity can both also be decomposed into two quantities: potential and free energies, and volume-threading and current-carrying helicities.
In this study, we perform a coupled analysis of their behaviors in a set of parametric 3D magnetohydrodynamic (MHD) simulations
of solar-like eruptions.
Methods. We present the general formulations for the time-varying components of energy and helicity in resistive MHD. We cal-
culated them numerically with a specific gauge, and compared their behaviors in the numerical simulations, which differ from one
another by their imposed boundary-driving motions. Thus, we investigated the impact of different active regions surface flows on the
development of the energy and helicity-related quantities.
Results. Despite general similarities in their overall behaviors, helicities and energies display different evolutions that cannot be
explained in a unique framework. While the energy fluxes are similar in all simulations, the physical mechanisms that govern the
evolution of the helicities are markedly distinct from one simulation to another: the evolution of volume-threading helicity can be
governed by boundary fluxes or helicity transfer, depending on the simulation.
Conclusions. The eruption takes place for the same value of the ratio of the current-carrying helicity to the total helicity in all sim-
ulations. However, our study highlights that this threshold can be reached in different ways, with different helicity-related processes
dominating for different photospheric flows. This means that the details of the pre-eruptive dynamics do not influence the eruption-
onset helicity-related threshold. Nevertheless, the helicity-flux dynamics may be more or less efficient in changing the time required
to reach the onset of the eruption.
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1. Introduction

Magnetic helicity is a volume-integrated ideal magnetohydro-
dynamic (MHD) invariant describing the level of twist and
entanglement of the magnetic field lines. Initially introduced
by Elsasser (1956), magnetic helicity is a conserved quantity
within the ideal MHD paradigm (Woltjer 1958). However, the
strict definition of Elsasser is gauge invariant only for magnet-
ically bounded system, a condition that is not satisfied in most
cases, such as the solar atmosphere. This led to the introduction
by Berger & Field (1984) and Finn & Antonsen (1985) of the
relative magnetic helicity, a gauge-invariant quantity suitable for
use in solar physics and more generally for natural plasmas.

Using a numerical simulation, Pariat et al. (2015) confirmed
the hypothesis introduced by Taylor (1974) that even in pres-
ence of nonideal processes, the dissipation of magnetic helicity
is negligible. Relative magnetic helicity cannot be dissipated or
created within the corona, therefore it can only be transported or
annihilated. This conservation property has several major con-
sequences, one of which might be that coronal mass ejections
(CMEs) are the consequence of the evacuation of an excess of
helicity (Rust 1994; Low 1996).

In recent years, magnetic helicity has been at the heart of
many studies dealing with various topics such as the generation

of solar eruptions (e.g., Kusano et al. 2004; Longcope &
Beveridge 2007; Priest et al. 2016), magnetic reconnection
(e.g., Linton et al. 2001; Linton & Antiochos 2002; Del Sordo
et al. 2010), solar filaments (e.g., Antiochos 2013; Knizhnik
et al. 2015; Zhao et al. 2015), and solar and stellar dynamos (e.g.,
Brandenburg & Subramanian 2005; Simon 2012).

Magnetic energy is another relevant quantity in MHD with
which eruptivity in the solar corona is studied because most of
solar events are driven magnetically (e.g., Schrijver & Zwaan
2008). From the point of view of the energetic budget, magnetic
energy is the only source of energy that can generate the pow-
erful events that are observed in the solar atmosphere, such as
coronal mass ejections, flares, and solar jets (Forbes 2000). Mag-
netic energy can be decomposed into a current-carrying energy,
known as free energy, and a potential energy (cf. Sect. 3.1).
Solar flares and CMEs are characterized by a rapid change of
the coronal magnetic field that does not change the radial com-
ponent of the photospheric field. Because the potential field is
determined by the radial magnetic field at the photosphere, only
the free energy can therefore be converted into kinetic and ther-
mal energies during fast coronal events (Aulanier et al. 2009;
Karpen et al. 2012). The potential energy thus represents the
lowest energy state of the magnetic field in the solar corona (e.g.,
Priest 2014).
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An analysis of magnetic energies combined with a study of
magnetic helicities appears a powerful tool for characterizing
active regions and their evolutions toward eruptive events. How-
ever, measuring these quantities from observational data remains
challenging. One possibility is to estimate the accumulation of
magnetic helicity and energy in the solar corona by integrating
their fluxes across the solar photosphere over time (Kusano et al.
2002; Nindos et al. 2003; Yamamoto et al. 2005; Yamamoto &
Sakurai 2009). This method cannot trace the coronal evolution
and requires high-cadence time-series magnetograms as well as
the velocity fields on the photosphere. Because no direct obser-
vation of the photospheric velocity is available, it is obtained
by inferring the magnetic field on the solar surface. Despite the
progress made in deducing the velocity field (Kusano et al. 2002;
Welsch et al. 2004; Longcope 2004) as well as further improve-
ment on flux estimations (Pariat et al. 2005; Chae 2007; Liu
& Schuck 2012, 2013; Dalmasse et al. 2014, 2018), the com-
putation of magnetic energy and helicity fluxes remains very
sensitive to the method that is used and to the quality of the
observations. A different approach is to compute energy and
helicity in coronal volumes. Because magnetic energy and helic-
ity are volume integrals, properly computing them with this
method requires the full 3D knowledge of the magnetic field in
the volume that is studied. Currently, only 2D measurement on
the solar surface are provided, therefore a 3D extrapolation of
the magnetic field is a necessary step. The diverse methods based
on the volume-integration approach for estimating the magnetic
relative helicity were benchmarked in Valori et al. (2016). Differ-
ent solar active regions have previously been investigated (Valori
et al. 2013; Moraitis et al. 2014, 2019; Guo et al. 2017; Polito
et al. 2017; Temmer et al. 2017; James et al. 2018; Thalmann
et al. 2019).

In parallel, the properties of both helicity and energy are still
being studied in solar-like parametric simulations. Berger (2003)
introduced the decomposition of the relative magnetic helicity
into two gauge-invariant components: a current-carrying helic-
ity related to the current-carrying magnetic field, and a comple-
mentary volume-threading helicity. Pariat et al. (2017) followed
and estimated these quantities in a set of seven simulations of
the formation of solar active regions (Leake et al. 2013, 2014).
The different simulations led to either stable or eruptive config-
urations. The authors found that it is possible to distinguish the
two configurations by studying the ratio of the current-carrying
helicity to the relative helicity. The ratio before the eruption
indeed presents high values only in the eruptive case. To bet-
ter understand the properties of the relative helicity decomposi-
tion, Linan et al. (2018) provided the first analytical formulae of
the time-variation of nonpotential and volume-threading helic-
ity. They also computed and followed them in two simulations
of Leake et al. (2013, 2014) and in a simulation of the generation
of a coronal jet (Pariat et al. 2005). They found that the current-
carrying helicity does indeed not evolve as a result of boundary
fluxes, but builds up through its exchange with the volume-
threading helicity. The evolutions of the current-carrying and the
volume-threading helicities are partially controlled by a transfer
term that reflects the exchange between these two types of helic-
ity. This exchange term dominates the dynamics of the current-
carrying helicity at different instants of the simulations. This
means that this helicity does not only evolve as a result of bound-
ary fluxes. The eruption phases of these simulation follow the
same dynamics: the current-carrying helicity is first transformed
into the volume-threading helicity, and then the latter is ejected
from the domain by boundary fluxes. Moreover, the transfer
term is expressed as a volume integral: consequently, these two

helicities are not classically conserved quantities in the sense
that they cannot be independently expressed as a flux through
the boundaries, even in ideal MHD, unlike the relative magnetic
helicity. This finding strengthens the knowledge of the proper-
ties of nonpotential and volume-threading helicity that was first
studied by Moraitis et al. (2014).

Zuccarello et al. (2015) presented 3D parametric resistive
MHD simulations of solar coronal eruptions. Simulations are
distinguished by the different motions (line-tied) applied on the
photosphere with similar but distinct flux cancelation drivers.
Their eruptions were driven by the torus instability (Aulanier
et al. 2009; Démoulin & Aulanier 2010) and occurred at a pre-
cise time identified by a series a relaxation runs. Recently, these
models were used to investigate the increase in the downward
component of the Lorentz force density around an polarity-
inversion line in comparison with the photospheric observation
(Barczynski et al. 2019). From these simulation, Zuccarello et al.
(2018) studied the impact of the different boundary driving flows
on the helicity and energy injection. They found that the helic-
ity ratio of the current-carrying helicity to the relative helicity
is clearly associated with the eruption trigger because the erup-
tions within the different runs took place exactly when the ratio
reached the very same threshold value.

Recently, the first preliminary observational tests confirmed
the idea that the helicity ratio is a good predictor of eruptiv-
ity. Based on 3D extrapolation and using different nonlinear
force-free models, the time evolution of the helicity ratio has
been investigated in three active regions: AR 12673 in Moraitis
et al. (2019), the most active of the cycle 24; and AR 11158 and
AR 12192 in Thalmann et al. (2019), two extensively studied
active regions that generated eruptive and confined flares. How-
ever, complementary studies are still needed to understand how
the different magnetic topologies observed in the solar corona
are linked to the dynamics of the helicity ratio.

In the present study, we apply the helicity decomposition to
the analysis of the simulations of Zuccarello et al. (2015, 2018)
to investigate the time-variations of the different types of mag-
netic energy and helicity. In particular, we are interested in the
way that the different boundary motion influence the helicity and
energy dynamics. Zuccarello et al. (2018) showed that the dif-
ferent boundary motions lead to different efficiency in injecting
helicity and energy in the domain. In the present work, we aim
to explain the physical processes that are responsible for these
differences: are they related to boundary fluxes, dissipation, or
volume evolution? We also examine whether the transfer term
between the two helicity components plays a major role in the
helicity budgets, as has been observed in Linan et al. (2018).

Additionally, we study the dynamics of the helicities in
comparison with the dynamics of their energy counterparts, for
instance, current-carrying helicity and free energy, and volume-
threading helicity and potential energy. Our goal is to highlight
the differences and the similarities in the helicity and energy
buildup. This study aims to improve our knowledge on mag-
netic helicities and energies, and it is a necessary step to better
understand the full topological and energetic complexity of solar
active regions.

Our paper is divided into different sections that are orga-
nized as follows. First, we present the time-variation of nonpo-
tential and volume-threading helicities (see Sect. 2). In the same
way, we then introduce the different components of the magnetic
energy and also their time-variation written for the specific case
of resistive MHD (see Sect. 3). After presenting the simulations
(see Sect. 4), we present the time evolution of the different quan-
tities (see Sect. 5). Using our set of simulations, we investigate
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the role of the transfer term between the helicity components in
their evolutions (see Sect. 6). While we investigate the differ-
ence in helicity dynamics in Sect. 7, we focus on the similari-
ties between magnetic energy and helicity fluxes in Sect. 8. In
the conclusion, we discuss the effect of the different boundary-
driving motions on the energy and helicity injection and on the
eruptivity helicity ratio.

2. Nonpotential and volume-threading helicities

In the fixed volume V bounded by the surface S , the magnetic
helicity is defined as

Hm =

∫
v

A · B dV, (1)

with A the vector potential of the studied magnetic field B, i.e
∇× A = B. In practice, this scalar description of the geometrical
properties of magnetic field lines is general only if the magnetic
field is tangential to the surface, that is, if V is a magnetically
bounded volume. The magnetic helicity is gauge invariant if
and only if this condition is respected. For the study of natu-
ral plasmas, especially in solar physics, the magnetic field does
not satisfy this condition, the solar photosphere being subject to
significant flux. Berger & Field (1984) introduced the relative
magnetic helicity, a gauge-invariant quantity, based on a refer-
ence field. Throughout the paper, we use the potential reference
field Bp that has the same normal distribution of B throughout
the surface S and satisfies{
∇ × Bp = 0
n · (B − Bp)|S = 0, (2)

where n is the outward-pointing unit vector normal on S . The
potential field can thus be defined by a scalar function, such as
∇φ = Bp, and φ is the solution of the Laplace equation,{

∆φ = 0
∂φ
∂n |S = (n · B)|S .

(3)

When Ap is the vector potential of the potential field
Bp =∇ × Ap, the relative magnetic helicity provided by
Finn & Antonsen (1985) is defined as

Hv =

∫
v
(A + Ap) · (B − Bp) dV. (4)

In this form, the relative magnetic helicity is independently
invariant to gauge transformation of both A and Ap. The dif-
ference between the potential field and the magnetic field can be
written as a nonpotential magnetic field, Bj = B−Bp, associated
with the vector Aj, defined as Aj = A− Ap, such as ∇× Aj = Bj.
When we use this unique decomposition of B and following the
work of Berger (2003), Eq. (4) can be divided into two gauge-
invariant quantities:

Hv = Hj + Hp j (5)

Hj =

∫
v

Aj · Bj dV (6)

Hp j = 2
∫

v
Ap · Bj dV, (7)

where Hj is the current-carrying magnetic helicity associated
with only the current-carrying component of the magnetic field
Bj, and Hp j is the volume-threading helicity involving both B

and Bp. By construction, both Hj and Hp j are gauge invariant
because by virtue of Eq. (3), Bj has a vanishing normal compo-
nent on the surface.

In resistive MHD, where E = −u × B + η∇ × B (η being the
resistivity, which is here assumed to be constant), Linan et al.
(2018) established the following equation for the time evolution
of the current-carrying magnetic helicity Hj:

dHj

dt
=

dHj

dt

∣∣∣∣∣∣
Diss

+
dHj

dt

∣∣∣∣∣∣
Bp, var

+
dHj

dt

∣∣∣∣∣∣
Transf

+ FVn, Aj + FBn, Aj + FAj, Aj + Fφ, Aj + FNon-ideal, Aj (8)

with

dHj

dt

∣∣∣∣∣∣
Diss

= −2
∫

v
η(∇ × B) · Bj dV (9)

dHj

dt

∣∣∣∣∣∣
Transf

= −2
∫

v
(u × B) · Bp dV (10)

dHj

dt

∣∣∣∣∣∣
Bp, var

= 2
∫

v

∂φ

∂t
∇ · Aj dV (11)

FVn, Aj = −2
∫

S
(B · Aj)u · dS (12)

FBn, Aj = 2
∫

S
(u · Aj)B · dS (13)

FAj, Aj =

∫
S

Aj ×
∂

∂t
Aj · dS (14)

Fφ, Aj = −2
∫

S

∂φ

∂t
Aj · dS (15)

FNon-ideal, Aj = −2
∫

S
η(∇ × B) × Aj · dS . (16)

From this decomposition, Linan et al. (2018) obtained an equa-
tion for the time-variation that is composed only of gauge-
invariant terms:

dHj

dt
=

dHj

dt

∣∣∣∣∣∣
Own

+
dHj

dt

∣∣∣∣∣∣
Diss

+
dHj

dt

∣∣∣∣∣∣
Transf

, (17)

with

dHj

dt

∣∣∣∣∣∣
Own

=
dHj

dt

∣∣∣∣∣∣
Bp, var

+ FNon-ideal, Aj

+ Fφ, Aj + FVn, Aj + FBn, Aj + FAj, Aj. (18)

All these terms initially provided by Linan et al. (2018) are
recalled here because we analyze them and comment on them
in the next sections.

Similarly, the time evolution of the volume-threading mag-
netic helicity Hp j can be decomposed as

dHp j

dt
=

dHp j

dt

∣∣∣∣∣∣
Diss

+
dHp j

dt

∣∣∣∣∣∣
Bp, var

+
dHp j

dt

∣∣∣∣∣∣
Transf

+ FNon-ideal, Ap

+ FVn, Ap + FBn, Ap + FAj, Ap + Fφ, Ap (19)
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with

dHp j

dt

∣∣∣∣∣∣
Diss

= −2
∫

v
η(∇ × B) · Bp dV (20)

dHp j

dt

∣∣∣∣∣∣
Transf

= 2
∫

v
(u × B) · Bp dV (21)

dHp j

dt

∣∣∣∣∣∣
Bp, var

= 2
∫

v

∂φ

∂t
∇ · (Ap − Aj) dV (22)

FVn, Ap = −2
∫

S
(B · Ap)u · dS (23)

FBn, Ap = 2
∫

S
(u · Ap)B · dS (24)

FAj, Ap = 2
∫

S
Aj ×

∂

∂t
Ap · dS (25)

Fφ, Ap = −2
∫

S

∂φ

∂t
(Ap − Aj) · dS (26)

F Non-ideal, Ap = −2
∫

S
η(∇ × B) × Ap · dS . (27)

The time-variation of Hp j can also be constructed with gauge-
invariant terms only:

dHp j

dt
=

dHp j

dt

∣∣∣∣∣∣
Own

+
dHp j

dt

∣∣∣∣∣∣
Diss
−

dHj

dt

∣∣∣∣∣∣
Transf

(28)

with

dHp j

dt

∣∣∣∣∣∣
Own

=
dHp j

dt

∣∣∣∣∣∣
Bp, var

+ FNon-ideal, Ap

+ FVn, Ap + FBn, Ap + FAj, Ap + Fφ, Ap. (29)

These decompositions were obtained without any particular
hypothesis on the gauge that is used. In particular, we are free
to use the Coulomb gauge for A and Ap. With this choice, the
volume terms dHj/dt

∣∣∣
Bp, var and dHp j/dt

∣∣∣
Bp, var both vanish. Thus

dHj/dt
∣∣∣
Own and dHp j/dt

∣∣∣
Own only contain boundary-flux contri-

butions. The transfer term dHj/dt
∣∣∣
Transf expresses the exchange

between the helicities Hj and Hp j without any consequence on
the evolution of the total relative helicity HV . Furthermore, this
quantity being a volume term, the time-variations of Hj and Hp j
cannot be expressed solely through boundary fluxes. Therefore
Hj and Hp j are not conserved quantities in resistive or ideal
MHD.

3. Magnetic energy

3.1. Free and potential energies

With the decomposition of the magnetic field into current-
carrying and potential components, B = Bp + Bj, the total mag-
netic energy Ev can be also decomposed as

Ev =
1

8π

∫
v

B2 dV

= Ep + Ej +
1

4π

∫
S
φBj · dS −

1
4π

∫
v
φ∇ · Bj dV, (30)

with

Ep =
1

8π

∫
v

B2
p dV Ej =

1
8π

∫
v

B2
j dV. (31)

In this decomposition, Ej is the energy of the current-carrying
magnetic field, also known as free energy, and Ep the energy
of the solenoidal magnetic field. Because the potential field
shares the same surface distribution as the total magnetic field,
the surface integral vanishes in Eq. (30). Numerically, the dis-
cretization of the mesh grid unavoidably induces a finite level of
non-solenoidality (∇ · B , 0), and consequently, the last term
in Eq. (30) is not exactly null (cf. Valori et al. 2013). However,
considering a solenoidal field, Eq. (30) can be simplified into

Ev = Ej + Ep. (32)

This decomposition is similar to the decomposition of the helic-
ity obtained in Eq. (5). However, here, the potential energy Ep,
unlike the volume-threading helicity, only depends on the poten-
tial field without a dependence on the nonpotential field.

3.2. Time-variation of the total magnetic energy

We aim to determine the time-variation of the total magnetic
energy Ev in a fixed volume V ,

dEv

dt
=

1
4π

∫
v

B ·
∂B
∂t

dV. (33)

In the resistive MHD, we use the Faraday law, ∂B/∂t = −∇ × E,
and we obtain
1

4π

∫
v

B ·
∂B
∂t

dV = −
1

4π

∫
v

B · ∇ × E dV

=
1

4π

∫
v

B · ∇ × (u × B) dV (34)

−
1

4π

∫
v

B · (∇ × (η∇ × B)) dV.

Using the Gauss divergence theorem, we can decompose the first
term of Eq. (34):

1
4π

∫
v

B · ∇ × (u × B) dV =
1

4π

∫
S

(u × B) × B · dS (35)

+
1

4π

∫
v
(u × B) · (∇ × B) dV.

Here, the surface term corresponds to the surface integral of the
poynting vector and can be divided into two terms:

1
4π

∫
S

(u × B) × B · dS = −
1

4π

∫
S

(B · B)u · dS

+
1

4π

∫
S

(u · B)B · dS . (36)

Finally, assuming for simplicity that the resistivity is constant in
space, the variation of the total magnetic energy can be decom-
posed as

dEv

dt
=

dEv

dt

∣∣∣∣∣
Diss

+
dEv

dt

∣∣∣∣∣
var

+ FBn, E + FVn, E , (37)

with
dEv

dt

∣∣∣∣∣
Diss

= −
1

4π
η

∫
v

B · (∇ × (∇ × B)) dV (38)

dEv

dt

∣∣∣∣∣
var

=
1

4π

∫
v
(u × B) · (∇ × B) dV (39)

FBn, E =
1

4π

∫
S

(u · B)B · dS (40)

FVn, E = −
1

4π

∫
S

(B · B)u · dS . (41)

A41, page 4 of 16



L. Linan et al.: Energy and helicity fluxes in line-tied eruptive simulations

We performed a similar time variation for Ev as Linan et al.
(2018) did for helicities as we summarized in Sect. 2. We find
two fluxes: FVn, E a shearing term associated with horizontal
motion, and an emerging term FBn, E that is related to the emer-
gence. Longcope et al. (2007) decomposed the shearing term
at the photospheric level into two contributions by differentiat-
ing the motion between the different flux patches and the spin
motion of isolated flux patches. As with Hj and Hp j, the time-
variation of Ev cannot be expressed through boundary fluxes,
and thus Ev is not a conserved quantity. Even in ideal MHD,
when dEv/dt|Diss is null, a volume term dEv/dt|var survives.
Unlike dHj/dt and dHp j/dt, the time-variation of the total energy
Ev depends on neither A nor Ap: each term of Eq. (37) is gauge
invariant.

3.3. Time-variation of the potential and free magnetic
energies

Similarly to the analysis of dEv/dt in the previous section, it
is possible to obtain the time-variation of Ep. Using the scalar
potential φ of Bp such as ∇φ = Bp and the Gauss divergence
theorem, we write

dEp

dt
=

1
4π

∫
v

Bp ·
∂Bp

∂t
dV

=
1

4π

∫
v

Bp ·
∂∇φ

∂t
dV

= Fφ,Bz +
dEp

dt
|ns, (42)

with

Fφ,Bz =
1

4π

∫
S

∂φ

∂t
Bp · dS (43)

dEp

dt
|ns = −

1
4π

∫
v

∂φ

∂t
(∇ · Bp) dV. (44)

For a purely solenoidal potential field, dEp/dt|ns is null and thus
the time-variation of Ep is written in a simple way as a single
surface term depending on the variation of the potential field. A
decrease in potential energy can therefore be associated in par-
ticular with a cancelation at the polarity-inversion line (PIL) or
a dispersion of the potential magnetic field. Unlike Ev, Ep is a
conserved quantity in resistive MHD.

For the study of the evolution of nonpotential energy Ej, the
easiest way is to consider only the difference between the decom-
positions obtained from Eqs. (37) and (42):

dEj

dt
=

dE
dt
−

dEp

dt
· (45)

Still, this identity is truly accurate only in the case of purely
solenoidal magnetic fields, that is, ∇ · Bj = 0 and when Bj|S = 0
(cf. Sect. 3.1). Hereafter, we therefore introduce a generic for-
mulation where terms that explicitly account for nonsolenoidal
errors are retained,

dEj

dt
=

1
4π

∫
v

Bj ·
∂Bj

∂t
dV (46)

=
dEv

dt
+

dEp

dt
−

1
4π

∫
v

B ·
∂Bp

∂t
dV −

1
4π

∫
v

Bp ·
∂B
∂t

dV.

The last two terms on the right are very similar to dEp/dt and
dEv/dt. They can thus be decomposed in the same way,

−
1

4π

∫
v

B ·
∂Bp

∂t
dV = −

1
4π

∫
S

∂φ

∂t
B · dS +

1
4π

∫
v

∂φ

∂t
(∇ · B) dV, (47)

and

−
1

4π

∫
v

Bp ·
∂B
∂t

dV =
1

4π
η

∫
v

Bp · (∇ × (∇ × B)) dV

−
1

4π

∫
v
(u × B) · (∇ × Bp) dV

−
1

4π

∫
S

(u · Bp)B · dS

+
1

4π

∫
S

(B · Bp)u · dS .

By definition, the curl of the potential field is null, and thus the
second volume integral on the right-hand side formally vanishes.
Finally, by grouping all the terms, the time-variation of the non-
potential magnetic energy can be written as

dEj

dt
=

dEj

dt

∣∣∣∣∣∣
Diss

+
dEj

dt

∣∣∣∣∣∣
var

+ FBn, Ej + FVn, Ej (48)

+
dEj

dt

∣∣∣∣∣∣
ns

+ Fφ, Bj,

with

dEj

dt

∣∣∣∣∣∣
Diss

= −
1

4π
η

∫
v

Bj · (∇ × (∇ × B)) dV (49)

dEj

dt

∣∣∣∣∣∣
var

=
1

4π

∫
v
(u × B) · (∇ × B) dV (50)

FBn, Ej =
1

4π

∫
S

(u · Bj)B · dS (51)

FVn, Ej = −
1

4π

∫
S

(B · Bj)u · dS (52)

Fφ, Bj = −
1

4π

∫
S

∂φ

∂t
Bj · dS (53)

dEj

dt

∣∣∣∣∣∣
ns

=
1

4π

∫
v

∂φ

∂t
(∇ · Bj) dV. (54)

As expected, the decomposition we obtain is similar to the
one obtained with dEv/dt (see Eq. (37)). The dissipation term
dEj/dt|ns is null if the magnetic field is solenoidal. However, we
compute it in order to quantify the effect of purely numerical
errors.

4. Line-tied eruptive simulations

In order to comparatively analyze the evolution of helicities and
energies and to study the time-variation of the energy, we used
magnetic field data produced by parametric 3D MHD simula-
tions of eruptive events of the solar corona that were initially
presented in Zuccarello et al. (2015).

For this set of simulations, the OHM-MPI code (Aulanier
et al. 2005) solves MHD equations in the system’s nondimen-
sional units for a volume covering the domain x ∈ [−10, 10],
y ∈ [−10, 10] and z ∈ [0, 30]. The employed mesh is nonuni-
form and the smallest cell is centered at x = y = z = 0. In order
to facilitate the computation of the energies and helicities, our
study was performed on a subdomain excluding the z = 0 plane,
interpolated into a uniform Cartesian grid composed of 333 cells
in the x and y direction, and 500 cells in the z directions. The
resulting analyzed volume is x ∈ [−10, 10], y ∈ [−10, 10] and
z ∈ [0.006, 30]. As a result of the interpolation on a uniform
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Fig. 1. Applied boundary-driving motions for the four different numerical experiments. White represents the positive polarity (Bz(z = 0.006) > 0)
and black the negative polarity (Bz(z = 0.006) < 0). Orange and cyan arrows indicate the distribution of the velocity flows we applied to the
negative and positive polarity, respectively.

grid (whose cell sizes are 0.06, to be compared to the original
grid, whose cell sizes range from 0.006 to 0.32), the magnetic
field we obtained has a lower solenoidality than the initial grid.
This reduces the accuracy of the magnetic helicity and energy
computations (Valori et al. 2016).

The system is delimited by a set of boundaries subject to
“open” boundary conditions (except at z = 0). In the ana-
lyzed datasets, the bottom boundary is at z = 0.006, one mesh
point above the surface corresponding to the photospheric level
where line-tied boundary conditions were imposed in the orig-
inal numerical experiments. All the physical MHD quantities,
such as the magnetic field, can leave the simulation domain
through lateral and top boundaries during the evolution of the
system.

Four parametric simulations were performed, all starting
with a common phase that is referred to as the “shearing phase”
in Zuccarello et al. (2015, 2018). Initially, the magnetic field is
potential and generated by two unbalanced and asymmetric sub-
photospheric polarities. During the shearing phase, asymmetric
vortices centered around the local maxima of |Bz(z = 0)| slowly
evolve the initial potential magnetic field into a current-carrying
magnetic field. This shearing flow motion induces a magnetic
shear close to the PIL and at the end of this phase, creates a
current-carrying magnetic field arcade surrounded by a quasi-
potential background field. During this entire phase, the distri-
bution of Bz at the bottom boundary remains unchanged. This
phase lasts from the time t = 10tA until t = 100tA in the system
time coordinate, where tA is the reference Alfvén time used in
Zuccarello et al. (2015).

Then the four parametric simulations differ by the motion
pattern that is imposed at the bottom boundary (cf. Fig. 1). We
refer to this phase as the “pre-eruption” phase. In a first motion
profile, labeled “convergence” (Fig. 1, left panel), the veloc-
ity flows only follow the horizontal direction x and are only
applied close to the PIL. This creates a cancellation of the mag-
netic flux around the PIL but only slightly affects the periph-
ery of the active regions. Unlike the previous case, for the run
labeled “stretching” (Fig. 1, middle left panel), these horizontal
motions are also applied at the periphery of the active region. For
the other two runs, labeled “dispersion central” and “dispersion
peripheral” (Fig. 1, middle right and right panels), the motions
spread in all directions from the center. The only difference is in
the portion of the active region that is subjected to these motions.
In the dispersion peripheral run, only the periphery of the active
region is concerned, while in dispersion central, the dispersion
also occurs in the center of the polarity where the magnetic field
is strongest.

The four runs all present a cancellation of magnetic flux at
the PIL that is permitted by a finite photospheric diffusion. The
sheared-arcade configuration at the end of the shearing phase
evolves into a bald-patch topology, and the magnetic reconnec-
tion process leads to the formation of a flux rope. The system
then evolves until it reaches the instant where it becomes unsta-
ble and erupts (cf. Aulanier et al. 2009, for a description of the
eruption process). The onset of the eruption, that is, the time
t1 of the onset of the instability, is accurately determined by a
series of relaxation runs for each simulation (Zuccarello et al.
2015). It occurs at t1 = 196, 214, 220 and 164tA for the conver-
gence, stretching, dispersion peripheral, and dispersion central
runs, respectively.

To ensure the numerical stability of the code, a finite resis-
tivity η and a pseudo-viscosity ν are necessary (Zuccarello et al.
2015). During the common shearing phase until t < 100tA and
during the pre-eruption phase, the coronal diffusivity is ηcor =
4, 8 × 10−4 and the pseudo-viscosity is fixed to ν′ = 25. After
the eruption, during a phase referred to as eruption phase, ηcor
is 2, 1 × 10−3 and ν′ is 41, 7. To allow later flux cancellation
at the PIL, a photospheric resistivity ηphot = ηcor = 4, 8 × 10−4

is imposed only during the pre-eruption phase. The photospheric
resistivity is set to zero in the shearing phase and before the erup-
tion. The change in resistivity follows a ramp-down time profile
during the time t1 − 5tA < t < t1 + 5tA. This transitional period
is called “eruption onset phase” and is represented as the yellow
band in all the figures. We note that the time t1 corresponds to
the middle of the ramp-down time profile, therefore the bound-
ary flows are null only at t > t1 + 5tA. In this paper, we removed
the first mesh point in the z-direction, which corresponds to the
bottom boundary level. We therefore have a uniform resistivity
throughout the domain in order to facilitate the calculation of the
so-called “nonideal” terms.

5. Energy and helicity evolutions

In this section we first introduce the method for numerically
computing the energies and helicities in our set of simulations.
Then, we discuss the computation of the time-variations.

5.1. Energy and helicity estimations

In order to compute the different helicities and energies at each
time tA, we used the method of Valori et al. (2012). The dat-
acubes of the magnetic field B, of the plasma-velocity field u,
and of the plasma thermodynamic quantities allowed us to com-
pute all the quantities that appear in Eqs. (8), (19), (48), and (42).
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Fig. 2. Evolution of the different magnetic helicities (top panels), from left to right: relative magnetic helicity (Hv, Eq. (4)), volume-threading
helicity (Hp j, Eq. (7)), and current-carrying helicity (Hj, Eq. (6)). Time evolution of the different magnetic energies (bottom panel), from left to
right: total magnetic energy (Ev, Eq. (32)), potential energy (Ep, Eq. (31)), and free energy (Ej, Eq. (31)). The different simulations are dispersion
central (red line), dispersion peripheral (green line), stretching (yellow line) and convergence (blue line). The yellow vertical band corresponds to
the onset phase of the eruption.

First the scalar potential φ(t) of the potential magnetic field
Bp(t) was obtained from a numerical solution of the Laplace
Eq. (3). The numerical methods we employed to solve this equa-
tion required an uniform grid and thus led to the interpolation
of the initial grid, as mentioned in Sect. 4. The potential vectors
A(t) and Ap(t) were computed according to Eq. (14) in Valori
et al. (2012) and follow the DeVore-Coulomb gauge defined in
Pariat et al. (2015):

∇ · Ap = 0 (55)

Az(x, y, z, t) = Ap,z(x, y, z, t) = 0. (56)

This choice of gauge was complemented by the following rela-
tionship inherent in the integration method:

A(x, y, z = ztop, t)⊥ = Ap(x, y, z = ztop, t)⊥, (57)

where ⊥ means the normal component. It corresponds to the
1D integration of magnetic fields starting at the top boundary
of the domain at height ztop. Finally, we obtained the helicities
and energies from Eqs. (5) and (30). In Fig. 2 we plot the time
evolution of these quantities for the different runs. In order to
facilitate the comparison between the different runs, the time is
plotted with a modified time variable t − t1 in each figure, where
t1 is the onset time defined in Sect. (4) and is different for each
of the four simulations.

Unlike Zuccarello et al. (2018), we are interested here
in the evolution of the quantities after the common shearing
phase, including the eruption phase (which was not studied by
Zuccarello et al. 2018). We also recall that the domain studied
here is slightly different from the one studied in Zuccarello et al.
(2018) (cf. Sect. 4). Figure 2 shows that the dynamics of energies
and helicities are qualitatively similar from one simulation to the

other during the three different phases. The different boundary-
forcing mainly affects the magnitude of the different quantities,
but not the quality of their dynamical behaviors.

We also note that the dynamic of helicities and energies
changes during the eruption. For the current-carrying helicity,
Hj, and the free energy, Ej, we observe an overall increase dur-
ing the pre-eruption phase, followed by a decrease during the
eruption phase. The quantities related to the potential magnetic
fields, Ep and Hp j, both decrease in the pre-eruption phase. In
the eruption phase Ep remains constant while Hp j continues to
decrease, although at a lower rate than in the pre-eruption phase.

Because both Hj and Hp j decrease, the relative helicity Hv
also decreases in the eruption phase. The total energy, Ev, has a
dynamics similar to Hv: the system loses energy throughout the
simulation, but at a different rate before and after the eruption.

Overall, the behavior of the helicities is similar to their
energy counterparts, for example, Hv to Ev, Hj to Ej, Hp j to Ep.
This is particularly visible for the current-carrying helicity and
the free energy: when Hj increases (decreases), Ej also increases
(decreases). In the next sections we focus more on the reasons of
these trends by studying the fluxes of the different quantities.

5.2. Time-variation estimation

After all the vectors were calculated, we computed the instan-
taneous time-variations of energies and helicities obtained from
Eqs. (8), (19), (48), and (42). The surface integrals were calcu-
lated systematically as the sum of the contributions from the six
boundaries. A study focusing on the contribution of the lower
boundary alone is conducted in Sect. 9.3.

Linan et al. (2018) validated the time-variations equations
established for the volume-threading helicity, Hp j, and the
current-carrying helicity, Hj. The accuracy of the computation
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Fig. 3. Left panel: time evolution of the instantaneous time-variation, dEv/dt (dashed black curves, Eq. (37)), and of the sum, dEj/dt + dEp/dt
(continuous blue curves, Eqs. (8) and (19)) for the dispersion peripheral run. Right panel: time evolution of the instantaneous time-variation,
dHv/dt (dashed black curves, Eq. (23) in Pariat et al. 2015, and of the sum, dHj/dt + dHp j/dt (continuous blue curves, Eqs. (8) and (19)) for the
dispersion peripheral run. The yellow bands correspond to the eruption onset phase.

is related to difference factors such as the discretization and the
remapping of the data, spatial and temporal, as well as to nonex-
plicit numerical diffusive terms that are not accounted for in our
analytical resistive MHD model. In our study, we present a com-
plementary test by comparing the time-variation of the relative
helicity, dHv/dt computed from Eq. (23) in Pariat et al. (2015),
with the sum of the time-variations of nonpotential and volume-
threading helicities, dHj/dt + dHp j/dt from (8) to (19). In this
way, both sides are computed with the same temporal accuracy.

The result of this comparison is presented in the right panel
of Fig. 3. In this figure we plot dHv/dt and dHj/dt + dHp j/dt for
the dispersion peripheral simulation. For the other runs, the dif-
ference is on the same order of magnitude and varies in a similar
way. We therefore do not plot this here. The difference is very
low, with an average deviation smaller than 0.1%. This confirms
the robustness of our calculation method as well as the validity
of our analytical equations.

In the same way, we compare in Fig. 3 (left panel) the time-
variation of the total magnetic energy, dEv/dt, computed from
Eq. (37), with the sum of the time-variations of free and poten-
tial energies, dEj/dt + dEp/dt, from Eqs. (42) to (48). Here, the
difference is not negligible, with an average relative difference
of 27%. The cause of this difference is likely mainly the non-
solenoidality of the magnetic field. As mentioned Sect. 3, with
a finite level of non-solenoidality, the equality of Eq. (45) is not
fully accurate because Ev , Ej,s + Ep (see Sect. 3.1).

In order to estimate the artificial non-solenoidal energy con-
tributions, Valori et al. (2013) introduced the following decom-
position:

Ev = Ej,s + Ep,s + Ep,ns + Ej,ns + Emix, (58)

where Ej,s and Ep,s are the energies of the current-carrying and
potential solenoidal magnetic field. Ej,ns and Ep,ns are the non-
solenoidal components, whereas Emix corresponds to all the
remaining cross terms. For a solenoidal field we have Ej,ns =
Ep,ns = Emix = 0, Ej,ns = Ej, Ep,ns = Ep, and therefore
dEj/dt + dEp/dt = dEv/dt.

The finite non-solenoidality (∇ · B , 0) affects the pre-
cision of the helicity and energy computations, as studied by
Valori et al. (2016). Following Valori et al. (2013, 2016),
Thalmann et al. (2019), we used the energy criteria Ediv/Ev
to quantify the non-solenoidality effect. The divergence-based
energy is defined as

Ediv = Ep,ns + Ej,ns + |Emix|. (59)

For the four simulation analyzed in this paper we find an aver-
age of Ediv/Ev ' 2%. According to Valori et al. (2016), this
value for the average of non-solenoidality leads to a precision of
≤6% for our helicity computations, which is much lower than
the 27% discrepancy found in Fig. 3. One possible cause of
non-solenoidality is our interpolation of the original data from a
highly nonuniform mesh onto a uniform grid, which can increase
the nondivergence of the magnetic field. Different tests have
been made to degrade and also improve the interpolation to give
a rough estimate of the effect. Finer interpolations, however,
have required considering only a fraction of the whole numer-
ical domain to keep the number of grid points manageable. The
outcome of these tests is that neither presented results that dif-
fered significantly from our baseline interpolation. In particu-
lar, Ediv/Ev always remained on the order of 2%, which means
that this error therefore seems intrinsic to the numerical mod-
els. The level of interpolation chosen in our study therefore is
a good compromise between the required computed power and
the quality of our data. In addition, it is worth noting that vari-
ous terms in our equations depend on time variations, so that the
accuracy of our flux computations can also be limited by a rela-
tive coarseness of the time outputs of the available data. Testing
for this would require recalculating the simulations with a higher
cadence for its outputs, which is beyond the scope of this paper.

6. Helicity transfer

As mentioned in the introduction (see Sect. 1), Linan et al.
(2018) showed for two different eruptive simulations that the
exchange between Hp j and Hj is controlled by the gauge-
invariant transfer term dHj/dt|Transf (see Eq. (10)), which there-
fore plays a key role in evolving these helicities. In order to
confirm these different results in the particular case of our line-
tied simulations, we plot in Fig. 4 the gauge-invariant terms of
dHj/dt (see Eq. (17)), and dHp j/dt (see Eq. (28)) for the conver-
gence and the dispersion peripheral runs.

In the convergence case (see Fig. 4, top left panel), the con-
version of helicity from Hp j to Hj and the boundary flux have
similar amplitudes during the pre-eruption phase. Both contribu-
tions are positive, thus Hj increases (e.g., dHj/dt is positive). The
transfer term, dHj/dt|Transf , dominates the evolution of Hj when
it is close in time to the eruption. Meanwhile, Hp j decreases
mainly because of the strong helicity transfer (cf. Fig. 4, top right
panel), that is, dHj/dt|Transf is the dominating term of dHp j/dt. In
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Fig. 4. Time evolution of the helicity variation rates, dHj/dt and dHp j/dt (dashed black curves; Eqs. (8) and (19)), of the helicity transfer term,
dHj/dt|Transf and dHp j/dt|Transf (solid red curves; Eqs. (10) and (21)), of the own terms, dHj/dt|Own and dHp j/dt|Own (solid blue curves; Eqs. (18)
and (29)), and of the dissipation terms, dHj/dt|Diss and dHp j/dt|Diss (solid green curves; Eqs. (9) and (20)) for the convergence simulation (top
panels) and for the dispersion peripheral simulation (bottom panels). Left and right panels: evolution of the current carrying helicity, Hj, and
volume-threading helicity Hp j, respectively.

comparison, the flux of Hp j related to the own term, dHp j/dt|Own,
is very low. This means that the injection of Hp j is not enough to
compensate for its conversion to Hj.

Moreover, as with the flux emergence simulations presented
in Linan et al. (2018), the eruption is accompanied by a sharp
decrease of the transfer term. However, unlike in Linan et al.
(2018), the sign of dHj/dt|Transf does not change here during
the onset phase of the eruption. During the eruption phase,
the dissipation terms, dHj/dt|Diss and dHp j/dt|Diss, dominate the
variation of the helicities. This is related to the increase in
resistivity η imposed in the numerical experiment during that
period.

In the dispersion peripheral simulation (see Fig. 4, bot-
tom panels), the variations of Hj and Hp j during the pre-
eruption phase are noticeably dominated by the boundary fluxes,
dHj/dt|Own and dHp j/dt|Own. The transfer terms are significantly
less intense than the injection of Hj and Hp j, except close to
the eruption. During the eruption phase, the dynamics is mostly
dominated by the resistive dissipation terms, dHj/dt|Diss and
dHp j/dt|Diss.

We thus observe that while the trends of Hj and Hp j are
similar for the convergence and the dispersion peripheral sim-
ulations, as discussed in Sect. 5, these variations are in fact
due to noticeably different dynamics of the helicity fluxes. For
instance, the decrease of Hp j in the pre-eruption phase is due to
an intense conversion of helicity (high values of dHp j/dt|Transf)

for the dispersion peripheral simulation, whereas in the conver-
gence run, a similar evolution of Hp j is explained by an intense
negative boundary flux, dHp j/dt|Own during that period.

Finally, as has been noted in Linan et al. (2018), for both the
simulations analyzed here but also for the two others, the transfer
terms cannot be neglected. We confirm that the estimations of
boundary fluxes are not sufficient to follow the dynamics of Hj
and Hp j. However, unlike with the flux emergence and solar jet
simulations studied in Linan et al. (2018), the precise mechanism
of the buildup of Hj and Hp j does depend on the simulations
during the pre-eruption phase. Studying this dependence is the
goal of the next section.

7. Distinguishing between simulations in terms of
helicity dynamics

In the previous section, we described that the magnitude of the
different gauge-invariant helicity variation terms could be sig-
nificantly different in the dispersion peripheral and in the con-
vergence simulations. This demonstrates that even if the general
trends of Hp j and Hj are similar (see Sect. 5), their dynamics can
be significantly different.

In order to estimate the effect of the different boundary driver,
Fig. 5 displays the different gauge-invariant variation terms for
the four different numerical simulations: the boundary fluxes
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Fig. 5. Time evolution of the different gauge invariant terms of dHj/dt (top panels), from left to right: dissipation term (dHj/dt|Diss, Eq. (9)), own
term (dHj/dt|Own, Eq. (18)), and helicity transfer term (dHj/dt|Transf , Eq. (10)). Time evolution of the different gauge invariant terms of dHp j/dt
(bottom panels), from left to right: dissipation term (dHp j/dt|Diss, Eq. (20)), and own term (dHp j/dt|Own, Eq. (29)). Each curve color corresponds
to a particular simulation: dispersion central (red line), dispersion peripheral (green line), stretching (yellow line), and convergence (blue line).
The yellow band corresponds to the onset phase of the eruption.

dHj/dt|Own and dHp j/dt|Own; the transfer term, dHj/dt|Transf ; and
the dissipations terms dHj/dt|Diss and dHp j/dt|Diss.

The dissipations terms (cf. Fig. 5, left panels) are not signif-
icantly different from one simulation to the other. The sudden
increase in absolute values of the dissipations terms, observed
during the eruption onset phase, is related to the imposed
numerical increase in resistivity. The variations in magnitude,
particularly in the pre-eruption phase, are minor compared to the
variations in other gauge-invariant terms.

The boundary flux term dHj/dt|Own is also very similar from
one simulation to another, except for the dispersion central run,
for which more nonpotential helicity is markedly injected dur-
ing the pre-eruption phase (see Fig. 5, middle top panel). Unlike
dHj/dt|Own, the boundary flux of Hp j, dHp j/dt|Own, is strongly
sensitive to the boundary-driving pattern (see Fig. 5, bottom
left panel). Tthe sign and magnitude of dHp j/dt|Own depend on
the simulation. For the dispersion simulations, there is a sig-
nificant injection of negative Hp j, whereas in the convergence
and stretching case, the flux is significantly weaker, if not of the
opposite sign.

Finally, Fig. 5 (top right panel) shows that the helicity trans-
fer rate, dHj/dt|Transf , is higher for the convergence and stretch-
ing simulations than for the dispersion cases in the pre-eruption
phase. Unlike with the other cases where the transfer term is
almost constant during an early period, in the dispersion central
run dHj/dt|Transf increases from the first moments of the simula-
tion.

In summary, we observed that during the pre-eruption phase,
the increase of Hj and reciprocally the decrease of Hp j (cf. Fig. 5)
are not explained by the same physical process in the different
simulations. We observe three significantly different dynamics:

– The convergence and stretching simulations present a similar
dynamics for their fluxes of helicity. They are characterized

by a relatively weak boundary flux of Hp j counterbalanced
by a strong transfer from Hp j to Hj. The own term of Hj is
positive, involving an injection of current-carrying helicity.
Its magnitude is almost identical in these two runs.

– For the dispersion peripheral run, Hp j decreases mostly
because of the boundary flux, unlike with the previous cases.
In comparison to the boundary flux, the transfer from Hp j to
Hj is less important. The flux of Hj is similar to the conver-
gence and stretching runs.

– The dispersion central shares some similarities with the dis-
persion peripheral run regarding the variations of Hp j. How-
ever, this simulation is characterized by a high boundary flux
of Hj that is distinct and significantly higher than the three
other cases.

Finally, simulations with the largest injection of helicities due to
their own terms (whether Hj or Hp j) have the lowest magnitude
of the transfer term. Inversely, a strong exchange between Hj and
Hp j is accompanied by lower fluxes through the surfaces. Both
lead to a similar trend for the relative helicity Hv. This shows
that the boundary fluxes of Hj or Hp j as well as the volume term,
dHj/dt|Transf , are directly related to the morphology and the evo-
lution of the magnetic field at the bottom boundary. In Sect. 9.3
we discuss that a specific boundary-driven pattern may influence
the different physical mechanisms of the evolution of the mag-
netic helicities.

8. Distinguishing between simulations in terms of
energy dynamics

As shown in Sect. 5, the evolutions of Hj and Ej are very similar.
Likewise, Hp j and Ep j evolve in the same way during the pre-
eruption phase. The main difference appears after the eruption,
where Hp j still decreases while Ep j remains constant. However,
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Fig. 6. Left and middle panel: time evolution of the potential energy variation term (dashed black line; dEp/dt; Eq. (42)) and the different terms
constituting the instantaneous time-variation of Ep (Eq. (42)): Fφ,Bz (blue line; Eq. (43)), and dEp/dt|ns (orange line; Eq. (44)). Left and middle
panels: evolution for the convergence and dispersion central simulation, respectively. Right panel: time evolution of Fφ,Bz for the four simulations
dispersion central (red line), dispersion peripheral (green line), stretching (yellow line), and convergence (blue line). The yellow band corresponds
to the onset phase of the eruption.

the similar overall behaviors of Hp j and Hj hide very different
physical mechanisms, depending on the simulation, as shown in
the previous section. We identified three types of evolution for
the dynamics of the helicities. In this section we focus on the fol-
lowing questions: how do Ep j and Ej evolve? Does the dynamics
of the energy fluxes also distinguish between the different simu-
lations, as the helicity dynamics do?

For this purpose, we present in Fig. 6 all the flux that appear
in the decomposition of dEp/dt (see Eq. (42)) for the conver-
gence (Fig. 6, left panel) and the dispersion central simulations
(Fig. 6, middle panel). In both simulations, the nonideal term is
almost null because of a very low non-solenoidality of the poten-
tial field, for instance, ∇ · Bp ' 0. The evolution of the potential
energy therefore depends only on Fφ,Bz , which results from the
evolution of the magnetic field at the boundaries. During the pre-
eruption phase, the magnitude of Fφ,Bz as the relative change of
the magnetic field at the boundary becomes weaker. Then, during
the eruption onset phase, Fφ,Bz decreases strongly before becom-
ing null during the eruption phase. The magnetic field is indeed
kept fixed at the bottom boundary during that period.

From comparing Fφ,Bz in the different simulations, we note
that Fφ,Bz presents the same evolution for all simulations except
for the dispersion central (see Fig. 6, right panel). This indicates
that except for the dispersion central simulation, the differences
in boundary-driven motions do not affect the injection of the
potential energy (cf. the discussion in Sect. 9.3). However, this
run has the same functional form as the other, is only more effi-
cient, and therefore quicker, in achieving the eruption.

Regarding Ep, only the dispersion central run presents a dif-
ferent behavior. The same conclusion was obtained for the fluxes
of Hj, for instance, dHj/dt|Own (see Fig. 5, middle top panel),
but not for dHp j/dt|Own (cf. Fig. 5l). First, Fφ,Bz is negative for
the entire simulation, while the sign dHp j/dt|Own depends on the
simulation. This confirms that there is no direct link between the
dynamics of Ep and the injection of Hp j.

In Fig. 7 we observe the different terms of dEj/dt (Eq. (48))
for the four simulations. Unlike dHj/dt and dHp j/dt, the trends
and dominant terms of dEj/dt are similar in the simulations.
Only the magnitude of each term may differ. Before the eruption,
dEj/dt is dominated by the emergence term FBn,Ej despite a sig-
nificant magnitude of the dissipation term, dEj/dt|Diss. Then, dur-
ing the eruption, FBn,Ej becomes null as a result of the interrup-
tion of the boundary-driving flows. During the eruption phase,
dEj/dt is negative and dominated by dEj/dt|Diss. The free energy
mainly decreases because it is dissipated and not ejected out of
the volume.

The dissipation term, dEj/dt|Diss does not vary much between
the simulations (see Fig. 8, bottom right panel). Similarly, the
differences of FVn,Ej and dEj/dt|Var are small between the runs
during the pre-eruption phase. Only FBn,Ej (see Fig. 7, top left
panel) presents significant differences in the simulations that
affect the evolution of the free energy, Ej. The dispersion central
simulation presents a distinctive trend. The magnitude of FBn,Ej

starts very high and then decreases to values similar to the other
runs during the onset phase of the eruption.

Unlike the evolution of the helicities, Hj and Hp j, only the
dispersion central simulation stands out from the other runs. This
simulation is characterized by a higher decrease of the potential
field (see Fig. 6, right panel) and by a higher initial injection of
Ej caused by FBn,Ej (see Fig. 8, top left panel). Before the erup-
tion, another difference with the helicities is that the variations of
the trend of Ej and Ep are purely related to the boundary fluxes.
Finally, one key outcome of our study is that the dynamics of the
energy fluxes do not distinguish between the simulations, unlike
the helicity fluxes.

This shows that even if volume helicities and energies follow
similar trends (cf. Fig. 2), the physical mechanisms that drive
their dynamics are very different. First, the evolution of free
energy, Ej, and potential energy, Ep, are independent, while the
current-carrying helicity, Hj, evolves in a correlated way with the
volume-threading helicity, Hp j. Additionally, different bound-
ary forcing only affects the magnitude of the energy fluxes. The
dynamics of the helicity is more complex and varies drastically
from one simulation to another. One group of simulations (dis-
persion central and peripheral) is dominated by the flux through
the surfaces, while a second group (convergence and stretching)
is controlled by volume exchange within the domain. We con-
clude that energy, helicity, and their decompositions have dis-
tinct properties whose analysis should be complementary for the
study of the eruptivity of active regions.

9. Discussion

9.1. Summary

In Sect. 2 we introduced the formulation of the magnetic rela-
tive helicity, Hv, as well as the formulation of its decomposition
into the current-carrying helicity, Hj, and the volume-threading
helicity, Hp j. We also recalled the analytical equations of their
time-variations obtained in Linan et al. (2018). Similarly, we
introduced the decomposition of magnetic energy, Ev, into the
sum of the potential energy, Ep, and the free energy, Ej. Then,
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Fig. 7. Time evolution of the free-energy variation rate (dashed black line; dEj/dt; Eq. (48)) and the different terms constituting the instantaneous
time-variation of Ej (Eq. (48)): dEj/dt|Diss (blue line; Eq. (49)), dEj/dt|Var (orange line; Eq. (50)), FBn,Ej (green line; Eq. (51)), FVn,Ej (red line;
Eq. (52)), and dEj/dt|ns (purple line; Eq. (54)). Each panel corresponds to a different simulation: convergence (top left), stretching (top right),
dispersion peripheral (bottom left), and dispersion central (bottom right). The yellow band corresponds to the onset phase of the eruption.

we obtained the time-variation of Ev (see Eq. (37)), Ep (see
Eq. (42)), and Ej (see Eq. (48)) by analytically deriving their time
derivative (see Sect. 3). These formulae are valid for any gauge
choices and in the presence of finite level of non-solenoidality
for the magnetic field.

Our numerical study of time-variations of energies and
helicities is based on a series of four eruptive numerical MHD
simulations of solar active regions (see Sect. 4) that have been
investigated in Zuccarello et al. (2015). The evolution of each sim-
ulation is characterized by different boundary forcing (line-tied)
until the eruption (see Sect. 4). After the same shearing phase,
four driving photospheric flows were considered: convergence,
stretching, and peripheral and central dispersion flows. In this
study we were particularly interested in the fluxes of energies and
helicities during the flux rope formation, during the eruption onset
phase, when the torus instability occurs, and during a short time
interval after the eruption onset, called the eruption phase.

Initially, the magnetic energy, Ev, decreases as a result of
the decrease in the potential magnetic field, Ep, despite the
increase in free energy, Ej. At the same time, the decrease in
volume-threading helicity, Hp j, compensates for the injection of
the current-carrying helicity, Hj, which leads to a quasi-constant
evolution of the relative helicity Hv (see Sect. 5). The relative
helicity was mostly injected during the earlier shearing phase.

The fluxes of free and potential energies, Ej and Ep (see
Sect. 8) showed that the effectiveness of the buildup of free
energy within the domain is purely related to the magnitude of
one surface term. Similarly, the evolution of potential energy is
fully linked with its boundary fluxes.

We also used these simulations to investigate the importance
of the exchange between Hj and Hp j, which was previously
highlighted by Linan et al. (2018). The exchange of helicity

between Hj and Hp j is controlled by a gauge-invariant term,
dHj/dt|Transf (cf. Eq. (10)). As in Linan et al. (2018), we observed
that this term plays a key role in the dynamics of both Hj and Hp j,
in particular during the buildup phases where the transfer terms,
dHp j/dt|Transf , dominate the evolution of dHp j/dt for the runs
convergence and stretching. In the dispersion simulations, the
evolutions of dHj/dt and dHp j/dt are dominated by their bound-
ary fluxes, dHp j/dt|Own and dHp j/dt|Own (cf. Eqs. (18) and (29)),
even though the magnitude of the transfer term remains signif-
icant. This means that neither Hj nor Hp j evolve as a result of
boundary fluxes alone. This conclusion is consistent with the
results of Linan et al. (2018) that were obtained for different
numerical experiments. Specifically, Hj and Hp j cannot be esti-
mated in observed active solar active regions by time integra-
tion of its flux through the solar photosphere, but rather with a
volume-integration method (Valori et al. 2016). This approach
requires a 3D reconstruction of the coronal magnetic field from
the 2D photospheric measurement with coronal field extrapola-
tion techniques (Wiegelmann & Sakurai 2012; Wiegelmann et al.
2014). A more detailed discussion of the effect of the transfer
term on the estimation of Hj and Hp j can be found in the conclu-
sion of Linan et al. (2018).

The key outcome of the study is the observation that the
dynamics of the transfer and fluxes of Hj and Hp j depend on the
simulation and thus on the imposed driving motions, even though
the variations in Hj and Hp j seemed relatively independent of the
simulation setup (see Sect. 6). Despite the four boundary forcings,
the different simulations remain very similar in terms of the mag-
netic field topology. Nonetheless, the dominant terms of dHj/dt
and dHj/dt are not the same from one simulation to another.

We highlighted three distinct types of dynamics of the evo-
lution of the helicities in the simulations. In the convergence and
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Fig. 8. Time evolution of the different gauge-invariant terms of dEj/dt: FBn,Ej (top right panel, Eq. (51)), FVn,Ej (top left panel, Eq. (52)), dEj/dt|Var
(bottom left panel, Eq. (50)), and dEj/dt|Diss (bottom right panel, Eq. (49)). The different colors present one simulation: dispersion central (red
line), dispersion peripheral (green line), stretching (yellow line), and convergence (blue line). The yellow band corresponds to the onset phase of
the eruption.

stretching simulations, Hp j does not evolve as a result of bound-
ary fluxes, but because of its conversion into Hj. The opposite
is observed during the two dispersion simulations, for which the
evolution of Hp j is mainly related to its fluxes through the bound-
ary, with a weak transfer term. The dispersion central simula-
tion stands out from the others because its boundary flux of the
current-carrying helicity, Hj, is significantly higher.

Thus we were able to process several photospheric forcings
to approach the diversity of active regions that are observed at the
solar photosphere. We have come to the conclusion that the evo-
lution of helicity during the formation of a flux rope is a complex
process whose origin can be related to fluxes through the surface
as well as to volume contributions.

9.2. Buildup of the helicity ratio

Zuccarello et al. (2018) have shown that the trigger of the erup-
tions is related to a threshold in the helicity ratio Hj/Hv: this ratio
reaches the same value, |Hj/Hv|thresh, for all simulations at the
onset of the eruptions. In our runs, this threshold is 0.29 ± 0.01.
However, as discussed in Sect. 7 of Zuccarello et al. (2018), the
exact value of this threshold needs to be taken with care because
relative helicity is not simply an additive quantity. We investi-
gated how this helicity ratio is built up and eventually reached by
studying the specific dynamics of Hj and Hp j (see Sects. 6 and 7).
Despite the different boundary forcings, the simulations are very
similar, so that it might have been thought that the fluxes of Hj

and Hp j would also be similar. However, the key outcome of our
study is that the terms that dominate the evolution of dHj/dt or
dHp j/dt sensitively depend on the simulation even if the overall
trends are the same (Hj increases and Hp j decreases, see Sect. 5).

Three very distinct ways to reach the helicity eruptivity
threshold were found. We observed that the eruption was trig-
gered at a specific value of Hj/Hv independently of the dynam-
ics of Hj and Hp j to reach this threshold. Our work suggests that
active regions could reach an eruptive state, either through strong
increases of helicity fluxes or through magnetic configurations
that induce strong helicity transfer.

The different ways to reach the helicity eruptivity threshold
are not all equally effective. The eruption occurs more or less
quickly after the end of the shearing phase. The dispersion cen-
tral run is the most rapid simulation. Then we find the stretching
and convergence runs, and last the dispersion peripheral case.
The dispersion central simulation stands out from the others
because it presents higher helicity fluxes (due to dHj/dt|Own and
dHp j/dt|Own) and energy fluxes (due to Fφ,Bz and FBn,Ej ) than the
other cases.

Finally, using a set of resistive MHD simulations, we pro-
vided new knowledge of the energy and helicity properties. In
particular, our analytical and numerical work emphasizes recent
studies (Pariat et al. 2017; Zuccarello et al. 2018; Moraitis et al.
2019; Thalmann et al. 2019) that demonstrated how promising
the helicity ratio is as a marker of eruptivity. Further studies are
still needed, whether to analytically establish the link between
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Fig. 9. From top to bottom: dimensionless magnitude of (v · Aj)Bz, (v · Ap)Bz, (∂φ/∂t)(Bp), and (v · Bj)Bz viewed in the (x, y) plane at z = 0.006,
at the relative time of t − t1 = −58. Isocontours of |Bz| (dashed line for negative values, solid line for positive values) correspond to values
of |Bz| = −4.5,−2.0, 0, 2.0, and 4.5. Each column in the panels presents one simulation, from left to right: convergence, stretching, dispersion
peripheral, and dispersion central.

the helicity ratio and torus instability or to properly estimate it
from data that are measured in the solar atmosphere.

From direct observational data, the evolution of the ratio
Hj/Hv was also analyzed in three active regions with different
eruptive profiles. Moraitis et al. (2019) investigated the most
active region of cycle 24 (AR 12673), while Thalmann et al.
(2019) focused on an eruptive and a confined flare (AR 11158
and AR 12192). These recent observational analyses seem to
qualitatively confirm that the Hj/Hv ratio is tightly related to the
eruptivity of solar active regions.

9.3. Effect of the different flows on the helicity and energy
injections

A key result of our study is that the specific driving flows that
are applied at the bottom boundary are of significant importance
on the dynamics of magnetic helicities and energies. They influ-

ence the magnitude and the sign of the own terms for the helicity
as well as those of the main fluxes of dEj/dt and dEp/dt. More-
over, as mentioned in the previous section, even if the way to
reach the helicity eruptivity threshold matters less than reach-
ing the threshold, the spatial velocity and magnetic distribu-
tions at the boundary affect the time that is required to reach the
threshold.

To reach an understanding of the effect of the line-tied forc-
ing, we here briefly discuss the distribution of different quanti-
ties at the bottom boundary. A more complete study is beyond
the scope of the present paper but will be performed, however.

Our goal is to present quantities that might eventually be
obtained from observed photospheric magnetograms. Figure 9
shows four quantities that are related to the energy and helicity
fluxes in a (x − y) view at z = 0.006 for all simulations at the
same modified time to the eruption (t1 − tA = −58): (v · Aj)Bz,
the integrand of FVn,Aj, for the injection of Hj (see the first row
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in Fig. 9); (v · Aj)Bz, the integrand of FVn,Ap, for the injection of
Hp j (see the second row in Fig. 9); (∂φ/∂t)Bp, the integrand of
Fφ,Bp (see the third row in Fig. 9); and (v · Bj)Bz, the integrand
of FBn,Ej (see the fourth row in Fig. 9). The modified time was
taken arbitrarily in the pre-eruption phase.

We recall that the injections of Hj or Hp j related to their own
terms cannot be simply reduced to FVn,Aj and FVn,Ap. Other terms
such as dHp j/dt|Transf must be considered. The second issue is
that neither FVn,Aj nor FVn,Ap are gauge-invariant quantities. They
are still good indicators of the spatial distribution of the helicity
injection, however, because the same gauge was used for all four
runs. Moreover, the emergence term of the relative helicity is one
quantity that has traditionally been investigated at the solar pho-
tosphere (Liu & Schuck 2012; Bi et al. 2018). The distributions
of FVn,Aj and FBn,Ej are very similar (see the first and last row
in Fig. 9). This reveals that the injection of free energy appears
to be directly connected to the injection of current-carrying
helicity.

The area where FVn,Aj and FBn,Ej are intense is along the
PIL, except for the dispersion central simulation. In the conver-
gence and stretching runs, the shear is favored because the angle
between the velocity and the magnetic field at the PIL is high.
For the dispersion peripheral case, the velocity is perpendicular
to the PIL. Thus the free energy increases more slowly than in
the other cases, and more time is needed to build up the flux rope.
We also note a low contribution of FVn,Aj related to the dispersion
of the magnetic field at the periphery of the polarities in the
stretching and dispersion peripheral runs.

As highlighted in Sect. 7, the dynamics in the dispersion
central simulation stands out from the others. Unlike the other
cases, the intense regions of FVn,Aj and FBn,Ej are located close
to the center of the polarities. The difference between this simu-
lation and the other three appears clearly for Fφ,Bp (see the third
row in Fig. 9). In Sect. 8 we observed that Fφ,Bp was distinctly
higher for the dispersion central than in the other cases. The
magnitude of Fφ,Bp is higher for the dispersion central simula-
tion because the center of the polarity, where the magnetic field
is the most intense, is displaced. The positive polarity, which
possess a higher magnetic flux than the negative polarity, con-
tributes more to Fφ,Bp. The three other cases are very similar
because the regions subjected to the flow do not influence Fφ,Bp.

The distribution of the FVn,Ap term (see the second row in
Fig. 9) is markedly different from the other quantities presented
in Fig. 9. Two different behaviors appear. For the convergence
and stretching runs, like FVn,Aj, the shear along the PIL is the
main contribution of (v · Aj)Bz. For the dispersion runs, FVn,Ap is
distributed in a symmetric quadrupole at the location where the
flow is applied. This leads to an almost null total flux, FVn,Ap.

Finally, the best way to reach the helicity threshold for
these parametric simulations is to facilitate the dispersion of the
intense magnetic field. For instance, in the dispersion central
case, this corresponds to distributing the flow from the center
of each polarity. For the other cases with lower dispersion, the
efficient ways to build up the energies and helicities are mostly
linked with flux-cancellation converging motions that contain a
shearing-flow component parallel to the PIL. The convergence
and stretching runs have more intense contributions there.

The observations made above offer only a limited insight on
the effect of the different flows on the evolution of energy and
helicity. We saw that even if the four simulations look similar
overall, some differences related to the applied motions clearly
appear in the dynamic of the helicity and energy. New investiga-
tions are required to provide a better understanding of the energy
and helicity dynamics. Our study especially provides new infor-

mation for interpreting the injection of helicity and energy in
observed active regions.

With HMI vector magnetic field data, the evolution of energy
and helicity flux has previously been studied in different active
regions (Liu & Schuck 2012). This is commonly based on the
decomposition of the flux into two components: a shear com-
ponent provided by photospheric tangential flow, and a vertical
component linked with normal flows due to emergence (Bi et al.
2018). At the same time, new methods for properly measuring
helicities in the solar corona are still being developed (Dalmasse
et al. 2013, 2014, 2018; Valori et al. 2016; Guo et al. 2017;
Moraitis et al. 2018; Gosain & Brandenburg 2019). For instance,
new analytic expressions for the helicity transport allow us to
estimate the injection of relative magnetic helicity into the solar
atmosphere over an entire solar cycle (Hawkes & Yeates 2019;
Pipin et al. 2019). However, the quality of the helicity and energy
estimations from observational data greatly depends on the accu-
racy of the magnetic field measurements. In particular, it is still
difficult to measure the tangential component of the magnetic
field. The instrumentation on board the new Solar Orbiter mis-
sion, for example, the PHI magnetogram, will help us to make
significant progress on the magnetic field measurement and con-
sequently on the helicity and energy computations. Future results
that will benefit from our study will provide new insight for a
better understanding of the solar coronal activity.
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