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Abstract
Considering a set of intervals on the real line, an interval graph records these intervals as nodes
and their intersections as edges. Identifying (i.e. merging) pairs of nodes in an interval graph
results in a multiple-interval graph. Given only the nodes and the edges of the multiple-interval
graph without knowing the underlying intervals, we are interested in the following questions. Can
one determine how many intervals correspond to each node? Can one compute a walk over the
multiple-interval graph nodes that reflects the ordering of the original intervals? These questions
are closely related to linked-read DNA sequencing, where barcodes are assigned to long molecules
whose intersection graph forms an interval graph. Each barcode may correspond to multiple
molecules, which complicates downstream analysis, and corresponds to the identification of nodes of
the corresponding interval graph. Resolving the above graph-theoretic problems would facilitate
analyses of linked-reads sequencing data, through enabling the conceptual separation of barcodes
into molecules and providing, through the molecules order, a skeleton for accurately assembling the
genome. Here, we propose a framework that takes as input an arbitrary intersection graph (such
as an overlap graph of barcodes) and constructs a heuristic approximation of the ordering of the
original intervals.
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1 Introduction

A well-known limitation of short-read sequencing is that it does not provide long-range
information, which is crucial to many biological endeavors, such as genome assembly and
structural variant identification. There have been several sequencing technologies developed
to overcome this limitation, such as matepair libraries, Hi-C, and long reads (PacBio &
Oxford Nanopore). Another family of approaches is linked-read sequencing, which includes
10XGenomics Chromium, stLFR [28], CPTv2-seq [32] and TELL-seq [8]. In these approaches,
DNA is cloned and cut into large molecules (10-100 kbp), which are then isolated (physically
in 10X, or virtually using beads) and sheared into shorter fragments. A barcode is attached
to each short fragment for identification of its originating molecule. Importantly, barcodes
do not uniquely identify molecules: several molecules are typically labeled with the same
barcode. The number of different barcodes differ from 150k for CPTv2 to 2 billions for
TELL-seq. Fragments are then sequenced using a standard short-read protocol (e.g Illumina).

Linked-reads have been used to assemble genomes [29], detect complex structural vari-
ants [16], and more recently assemble metagenomes [4]. A common challenge faced by most
linked-read methods is that in order to make use of the linking information, the reads within
each barcode should be first separated into their constituent molecules. More formally, for
each read r, we would like to find the identifier mi(r) of its originating molecule, given
as input an observed identifier b(mi(r)), where b(x) associates a barcode identifier to a
molecule x. Note that the image of b (all barcodes) is significantly smaller than its domain
(all molecules), hence b can be viewed as a non-invertible hash function. Currently, this
problem is being tackled, one way or another, as part of any method using linked-read
data. Switching from a read-centric view to a molecule-centric view opens the possibility
of using methodology similar to long-read overlap graphs. Finding an ordering of barcodes
that reflects the underlying order of molecules would indeed greatly facilitate and decrease
errors during the scaffolding stage of genome assembly. As noted by the authors of the
ARCS scaffolder [31], different molecules having the same barcode can induce false joins in a
scaffolding algorithm, resulting in misassemblies.

Linked-read mapping tools such as longranger or ema [25] are able to infer molecules by
clustering mapping locations of reads from the same barcode. While such reference-based
algorithms are often applicable, they do not replace the need for de novo algorithms. The
quality of reference-based algorithms is related to the quality of the assembly, since clusters
cannot be identified across different contigs. When the genome or metagenome references are
in a draft state, molecules will frequently span multiple contigs, preventing their identification.
Moreover, in many situations the reference is simply unavailable.

To the best of our knowledge, the barcode ordering problem has not been previously
studied, and the assignment of molecule identifiers to reads without a reference has only been
previously studied in [11], where it was referred to as barcode deconvolution. The authors
first constructed a bipartite graph between reads and barcodes. An edge (r, b) was added
when a k-mer of read r was found in another read of barcode b. Then a second graph was
constructed with reads as nodes, and edges indicating whether two reads were connected
to sufficiently many common barcodes in the bipartite graph. Finally, the second graph
was clustered and each cluster reflected reads from the same molecule. This algorithm was
implemented in a software called Minerva. We note that Minerva only assigns molecules
identifiers to a fraction of the reads. In our tests on a simulated E. coli dataset, Minerva
reported results for 12% of the reads, inferring around 50% of the true number of molecules.
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This raises the question of whether reference-free inference of molecules is fundamentally
unsolvable in the setting of linked-read data, or whether an adequate technique has just not
yet been found. Surely there exist corner cases where the problem is either impossible, e.g.
in an hypothetical situation where all molecules are assigned to the same barcode, or trivial,
when each molecule is assigned to a different barcode. As we will see in Section 2, while
there exist previous works in graph theory (e.g. in a setting corresponding to all barcodes
containing 2 molecules each), the general setting does not appear to have previously been
studied.

In this paper, we establish theoretical grounds for studying the feasibility of inferring
molecule without a reference genome. We will not directly tackle the problem of assigning
molecule identifiers to reads (as Minerva does), but instead we look at two problems which
can be reduced, in the complexity sense, to molecule inference:

1. Molecule counting: count the number of molecules assigned to each barcode

2. Molecule ordering: reconstruct a total (or partial) order of molecules as a sequence of
barcodes

Both problems, if solved accurately, can provide useful information for barcode deconvolution
(molecule counting) and genome scaffolding (molecule ordering). Staying at the level of
barcodes and molecules instead of reads will allow to thoroughly establish expectations on
whether molecule inference is at all feasible, and how various parameters (e.g. number of
molecules, how many molecules per barcode, etc) influence its difficulty.

We first present the commononalities between the barcodes ordering problem, and
the previously-known concepts of interval graphs and multiple-interval graphs. We then
introduce the notion of barcode graph, which models overlaps between molecules across
different barcodes. We discuss its link with well-known graph classes leading to the conclusion
that solving the molecules ordering problem for a barcode graph is likely difficult. Next
we introduce another graph structure, the local clique-pairs graph, inspired of approaches
used to realise an interval graph. By identifying maximal cliques in the barcode graph,
which are then paired into structures that we call local clique-pairs, we show that the local
clique-pairs graph captures a strong signal related to the ordering of the barcodes according
to their underlying molecules. We apply this technique to synthetic interval graphs, as well as
barcode graphs constructed from simulated molecules from a real genome, and show that on
synthetic interval graphs we are able to accurately count the number of molecules per barcode,
and reconstruct an approximate but accurate molecule ordering on barcodes. Finally, we
demonstrate how to construct a barcode graph directly from linked-read sequencing data.

2 Models and Methods

We consider the problem of sequencing a single long DNA molecule (e.g. a chromosome)
using linked reads. We assume that the sequencing data were obtained by sequencing n
fragments (called molecules from now) from the chromosome, each molecule being assigned a
barcode, where several molecules can be assigned the same barcode; for a molecule m we
denote by b(m) its barcode. We denote by B the barcode alphabet and by |B| = µ its size, i.e.
the total number of observed barcodes; for a barcode b we denote by m(b) the molecules it
labels (the barcode size). Let F = maxb∈B |m(b)|. Finally, we assume that no two molecules
do start at the same coordinate, which implies that molecules can be totally ordered by their
start coordinates.

WABI 2020
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2.1 Barcode graphs and families of interval graphs.
The sequenced molecules can be seen as intervals along the real line if the sequenced
chromosome is linear, or arcs around a circle if it is circular; their intersection graph is
the graph whose vertices are the n molecules and two vertices are linked by an edge if the
corresponding intervals do intersect. Intersection graphs of intervals on the real line (resp.
arcs around a circle) form the class of interval graphs (resp. circular-arc graphs). It is
well-known that deciding if a graph is an interval graph or an arc-circular graph can be
done in linear time [6, 23], and many algorithmic problems that are computationally hard in
general graphs are tractable in these graph classes [15].

However, the result of the sequencing experiment with linked reads does not provide direct
knowledge of the sequenced molecules and of their intersections, as the reads originating from
molecules having the same barcode b are all labeled by b and, as discussed in introduction, the
problem of separating reads with the same barcodes into clusters corresponding to molecules
is non-trivial. Nevertheless, we assume here first that it is possible to infer, from the barcoded
reads if, for a given pair of barcodes b1, b2 there exists molecules m1 and m2 such that
b(m1) = b1, b(m2) = b2 and and m1 and m2 do intersect: we then say that barcodes b1 and
b2 do intersect. We assume here moreover that we do not observe two intersecting molecules
m1 and m2 such that b(m1) = b(m2)1.

I Definition 1. The exact barcode graph of a set of barcoded molecules is the graph with
vertex set B and edges between pairs of intersecting barcodes.

In the case of a linear chromosome, exact barcode graphs generalize the class of interval
graphs and form another well-studied graphs class, multiple-interval graphs [12]. Moreover
if we assume that each barcode labels exactly f molecules, exact barcode graphs form
the class of f -interval graphs; finally, under the additional assumption that all sequenced
molecules have exactly the same length, exact barcode graphs are equivalent to the class
of unit f-interval graph. We are not aware of any study of the equivalent graph classes for
circular chromosomes, i.e. arcs around a circle, and from now on we concentrate on the case
of linear chromosomes. We describe below the formulation of several algorithmic problems
related to barcode graphs and how they translate into problems on the aforementioned graph
classes. Note that an exact barcode graph can be a multi-graph (a graph where multiple
edges may have the same endpoints) in the case where there exist molecules m1,m2,m3,m4
with b(m1) = b(m3), b(m2) = b(m4) and m1,m2 (resp. m3,m4) do intersect.
Recognizing exact barcode graphs. The link with unit f -interval graph, although it assumes
an unrealistic uniformity in the sequencing process (uniform molecules length and uniform
number of molecules per barcode) sheds a light on the computational hardness of analyzing
barcoded sequencing data. Indeed, recognizing 2-interval graphs is NP-complete [30], while
the complexity of recognizing unit f -interval graphs is still open, the only positive recognition
result being for depth-2 unit f -interval graphs [18], corresponding to the case where no
chromosome base is covered by more than two molecules, an unrealistic assumption for
sequencing experiments. To the best of our knowledge, given a graph on a barcode alphabet
whose edges represent possible molecules intersections, deciding if it is an exact barcode
graph, even in the setting of molecules of uniform length and barcodes of uniform size, is
open.

1 We justify this assumption as such molecules could be seen as a single molecule defined by the union of
m1 and m2; moreover, simulations with realistic sequencing parameters show that this situation occurs
rarely and most often with molecules that share a small intersection.
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Realizing an exact barcode graph. A barcode sequence is a sequence b1 . . . bn over the barcode
alphabet. Given a barcode graph BG, a barcode sequence realizes BG if every edge of BG
can be assigned to two barcodes of the sequence in such a way that if bj is covered by an
edge between bi and bk (i.e. i < j < k) then there are also edges between bi and bj and
between bj and bk. The molecules ordering problem applied to an exact barcode graph BG
is then equivalent to finding a barcode sequence realizing BG. This problem is tractable in
the case of interval graphs (F = 1); note that if intervals lengths are also fixed, then the
problem becomes NP-complete [24], while it solvable in polynomial time if additionally the
intersection lengths are provided [19]. We are not aware of similar tractability results for
multiple-interval graphs. However, existing algorithms to realize interval graphs are mainly
based on the property that such a realization can be obtained by a sequence of overlapping
maximal cliques. While maximal cliques are easy to find in an interval graph, it is not the case
in multiple-interval graph, as the problem of finding the maximum clique in multiple-interval
graphs is NP-complete, even for unit 2-interval graphs [13], although approximation and
parameterized algorithms do exist [7, 12]. Moreover a structural property of interval graphs
that is important toward the realization through maximal cliques, the existence of a vertex
whose neighbourhood is a clique, does not hold for multiple interval graphs [2]. Finally, it is
easy to see that a maximal clique of size c in an exact barcode graph might not correspond
to a set of c pairwise intersecting molecules. This leads us to conjecture that realizing an
exact barcode graph is difficult.
Handling inexact barcode graphs. Constructing an exact barcode graph implies to detect
intersecting barcodes from sequenced barcoded reads and it is thus likely unrealistic to expect
perfectly obtaining such a graph from sequencing data. It follows that solving the molecules
ordering problem would then implicitly assumes to solve a graph modification problem,
aimed at transforming a graph into a multiple-interval graph, with additional constraints
about the number of occurrences of barcodes in a realization. Graph modification problems
that aim to minimize the number of modifications are generally hard, even in the case of
interval graph, [10], and so for multiple-interval graphs; note however that it was recently
shown to be fixed-parameter tractable [27, 5, 10]. Such problems naturally translates into
vertex ordering optimization problems (also known as graph layout problems) that can, in
principle, be addressed with combinatorial optimization techniques such as Integer Linear
Programming (ILP). However, ILP approaches to vertex ordering currently do not scale to
the size of instances corresponding to sequencing experiments [9].

From the link we described above between barcode graphs and multiple-interval graphs,
and the current state-of-the art in multiple-interval graphs algorithms, it does not appear that
the problem of realizing a barcode graph can be addressed by existing algorithms, and we
actually conjecture that this problem is difficult, whether the provided barcode graph is exact
or not. Nevertheless, toward application to real sequencing data, additional assumptions
about the sought realization, such as the expected length of intervals or the expected size
of the barcodes, lead to specific open problems of interest in the field of multiple-interval
graphs algorithms that deserves further research.

2.2 The Local Clique-Pairs Graph
In this section, we assume that we are given a barcode graph BG. The barcode graph needs
not be perfect: it might contain additional (wrong) edges that do not correspond to true
overlaps between molecules of two barcodes, or even have missing edges. We will describe
the construction of another graph based on the BG: the local clique-pairs (lcp) graph. We
will then use the lcp graph to identify a sequence of barcodes that reflects the true order of
molecules.

WABI 2020
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The idea behind the lcp graph will be that, similarly to interval graphs, a realization of
an exact barcode graph can be described as a succession of overlapping maximal cliques.
Intuitively, these maximal cliques correspond to a set of barcodes that each contain at least
one molecule coming from a common genomic region. The task is made more difficult by
the fact that not all maximal cliques in a barcode graph satisfy this property. We observed
that one can identify and skip such ’wrong’ maximal cliques by instead considering a slightly
more advanced object: pairs of co-localized maximal cliques, that we name local clique-pairs.

I Definition 2. Let c be a vertex of a barcode graph BG. A neighbour of c is a vertex
adjacent to c. The neighbourhood of c is the subgraph induced by the set of neighbours of
c. A local clique-pair (lcp) is a triplet (c;C1, C2) where C1 and C2 are maximal cliques in
the neighbourhood of c. If there are k edges between vertices of C1 and vertices of C2 and d
is the maximum number of vertices in either C1 or C2, the weight of the lcp (c, C1, C2) is
defined by w(c;C1, C2) = |d(d− 1)/2− k|. 2

The definition of the weight of an lcp follows from the following observation: when
molecules are all of the same length and are evenly spaced along the chromosome, if both
cliques C1 and C2 are of size d and do indeed correspond to the d barcodes of the molecules
preceding (resp. following) the molecule of barcode c, then one expects to observe d(d− 1)/2
edges between them in the barcode graph. So the weight measures the divergence between
the observed number of edges between C1 and C2 and the expected number of edges in the
case of uniform sequencing (see Fig. 1).

Barcode graph

Local clique-pair around node c

Clq 1 Clq 2

Clique edges

Central node edges

Linking edges

c

c

Figure 1 (Top) linear representation of a barcode graph obtained from 7 molecules of uniform
length. (Bottom) The local clique-pair associated to c. In black, the edges from the side cliques of
the unit 3-graph. In blue, the edges between the central nodes and the other nodes. In red, the
edges between the cliques.

To motivate the introduction of lcps, we ran an experiment described in Appendix 5.1,
showing that the rate of lcps that actually encode the barcodes of consecutive molecules is
higher than the rate of maximal cliques having the same property (Table A1).

We now present our algorithm to compute lcps. Given a barcode c, there can be many
maximal cliques among nodes in its neighbourhood, especially cliques that involve the two
barcodes that respectively precede and follow c in the true barcode sequence. Given the

2 The weight is presented for an ideal case where no node is shared between the cliques. If C1 and C2
share nodes, there are two modifications. For each node shared, 1 is added to the weight because the
shared node is due to a barcode collision. Each shared edge between C1 and C2 counts for 2 additional
points in the score instead of 1, because 2 edges can be merged inside.



Y. Dufresne, C. Sun, P. Marijon, D. Lavenier, C. Chauve, and R. Chikhi 11:7

set of all maximal cliques C in the neighbourhood of c, we thus need to extract a matching
defining pairs of cliques C1 and C2 forming lcps. To do so, we consider the complete graph of
size |C| whose vertices are maximal cliques and edges are putative lcps. Edges are weighted
by the previously-defined lcp weights. Let W be the maximum observed edge weight. We
replace the weight w of each lcp by W −w and apply a maximum-weight matching to clique
pairs in order to obtain the set of lcps associated to c (Algorithm 1, illustrated in Fig. 2).

Algorithm 1 Determination of a set of lcps centered at a barcode c.

1: procedure compute_Lcp(c,BG) . c: barcode, BG: barcode graph
2: LCP ← Ø
3: ngbs← BG.neighbours(c) . Neighbours of c
4: subgraph← BG.induced_subgraph(ngbs) . Neighbourhood of c
5: cliques← subgraph.max_cliques() . Enumerate maximal cliques
6: CG← clique_graph(cliques)
7: m = CG.maximum_weight_matching()
8: for (C1, C2) ∈ m do
9: LCP ← LCP ∪ new_lcp(c, C1, C2) . Add the new lcp
10: return LCP

2

4

C

631

5

2

31 4

5

64

5

3

2

3 4

A B C D

A

B C

D

00

55

50

05

23

23

Max
Cliques

Maximum
Weight
Matching

max clique

n weight

n replaced weight

selected pairs 
by MWM

Figure 2 Top left: barcode graph; bottom left: max-cliques of the barcode graph; right: max-clique
graph construction and maximum weight matching to construct lcps. The resulting maximum-weight
matching is the edge A-D, yielding a single lcp with clique-pair (A, D).

The time complexity of enumerating all maximal cliques of a graph is exponential [26],
while computing a maximum-weight matching is polynomial-time solvable [14]. We imple-
mented Algorithm 1 in Python using the output-sensitive cliques enumeration and maximum-
weight matching methods implemented in the Networkx library [17]. Its complexity is
O(max(C3,M(n)C)) with n the number of graph nodes, C the number of maximal cliques
in the graph, and M(n) the cost of multiplying two n× n matrices.

Local search for linked cliques are akin to local graph community detection. Soft
clustering is being performed with maximal clique detection, i.e. a node may belong to
multiple communities. This property leads to a lcp detection algorithm that, intuitively, is
resilient to the situation where a barcode corresponds to two or more molecules. Yet it is not
perfect: some of the generated lcps may not reflect a collection of overlapping molecules (due
to additional artifactual maximal cliques); and also, missing edges in the barcode graph may
lead to missing lcps. In the ideal case, lcps can be totally ordered according to their overlaps.
But because of artefactual and missing lcps, a total order is not always self-evident.

WABI 2020
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Figure 3 Left: barcode graph (3k nodes and 98k edges) of a simulated interval graph. Right:
Resulting lcp graph (13k nodes and 23k edges). Graphs are drawn using Gephi, ForceAtlas 2
layout [3].

I Definition 3. Let BG be a barcode graph and V a set of lcps obtained from BG. The
lcp graph lcp(BG) is the weighted graph with V for vertex set and where there is an edge
between two lcps (b;B1, B2) and (c;C1, C2) such that some barcode belongs to both one of
the Ci cliques and one of the Bi cliques. The weight of an edge is the size of the symmetric
differences of the barcodes content of (b;B1, B2) and (c;C1, C2).

The lcp graph is a framework for determining which lcps are consecutive, also enabling to
identify lcps that are not overlapping with others. Figure 3 shows a simulated barcode graph
where the corresponding lcp graph has a linear structure, similar to the original interval
graph among molecules. This makes the task of finding a suitable path within the lcp graph,
which reflects the ordering of molecules, easier than in the barcode graph. In the following,
we will describe how we determine a barcode ordering based on finding a path in the lcp
graph.

2.3 Finding a suitable path in the lcp graph

Recall that the molecule counting problem amounts to finding how many molecules were
merged in each barcode. The molecule ordering problem asks for a sequence of barcodes
that reflects the order of molecules. As these two problems are centered on barcodes and
not lcps, we need a way to convert a lcp path into an ordered list of barcodes. We do this
as follows: i) each lcp in the path is replaced by its central barcode, ii) an edge reduction
step is applied to the lcp graph, and finally iii) a path is found using a branch-and-bound
algorithm. Formally, the algorithmic problem we address heuristically in this section is to
find a path in the lcp graph that maximizes the sum of the weight of the selected lcps and
of the selected edges between lcps, under the constraint that the union of the selected lcps
covering sets contains all edges of the initial barcode graphs.

lcp graph simplification

We simplify the lcp graph by performing transitive reduction over triplets. Given an edge
(a, b) of weight wab, we remove this edge from the graph if there exist 2 edges (a, c) of weight
wac and (b, c) of weight wbc such that wab 6 wac + wbc. This operation does not change the
node set (lcps) but reduces the number of possible paths to explore. Intuitively, requiring to
go through lcp c when going from lcp a to lcp b forces to select two higher-confidence lcp
overlaps instead of one lower-confidence overlap between two lcps.
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lcp path construction

Assuming the barcode graph has been obtained by merging nodes of an exact interval graph
defined by the molecules intersections, every edge of the barcode graph corresponds to one
(or potentially several) edges of the interval graph; we show in Section 3.3 that barcode
graphs created from reads have nearly all correct edges corresponding to such molecules
intersections. This observation motivates to require that a walk in the lcp graph that reflects
the true order of molecules should be composed of lcps that contain most of the edges of
the original barcode graph. Each lcp is an induced subgraph of the barcode graph, and we
associate to it a covering set defined as the set of edges of the barcode graph it contains. We
will seek a path such that the union of covering sets over all its constituent lcps is as close as
possible to the set of all edges of the barcode graph.

Our lcp path construction strategy is a local branch & bound algorithm. Assuming we
have already constructed a path of lcps p = l1, . . . , li, we consider as candidates for li+1 all
the neighbours of li in the lcp graph such that li+1 /∈ p. Those neighbours are sorted by
priority over three criteria: first if one or more lcp(s) cover at least one uncovered edge of
the original barcode graph, we prioritize those lcps. For the second sorting criterion, we
sort the candidate li+1’s by increasing lcp weight (Def. 3). Last, if multiple candidates have
equal clique pair weights, we sort them by increasing li → li+1 edge weight in the lcp graph.
Selecting the first element in the sorted neighbours at each step defines a greedy heuristic for
the path computation.

The above algorithm might result in a short path due to tips in the lcp graph, i.e. nodes
of degree 1. In order to address this issue, we use a local branch and bound algorithm and
backtrack a few nodes when a dead end is reached. This can result in several paths and
we use the size of the union of covering sets in the path as a score to keep only the best
solutions according to that score.

The last part of the algorithm is the selection of the first node l1 of the path. We initially
select a l1 at random among all lcps, and compute a path using the above procedure which
ends at some node le. We then discard this path and restart again our algorithm from l′1 = le
to create a new path, where le has a higher chance to be an endpoint of the true lcp path
than l1.

We will show in the next section that despite this heuristic being very simple and likely
leaving room for improvement, it does work very well on simulated data, suggesting the lcp
graph does actually capture a robust signal toward recovering the correct barcode sequence.

3 Results

3.1 Overview

Simulated data

We will examine three types of barcode graphs ordered by increasing level of realism. They
will be generated from either:
1. entirely synthetic sets of intervals (i.e. interval graphs) with randomly identified vertices,
2. intersections of molecules sampled from a genome,
3. directly from simulated linked-read sequencing data.
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Analysis pipeline
Our complete analysis pipeline performs the following steps:
1. Generate all the lcps from the barcode graph (Algorithm 1)
2. Generate the lcp graph
3. Simplify the graph by transitive reduction of the triplets (Section 2.3)
4. Generate the lcp path using the hybrid greedy/branch and bound algorithm (Section 2.3)
5. Replace all the lcp by their central barcodes
6. Evaluate the accuracy of the resulting barcode sequence

In the remaining of the Results sections, all the graphs and paths are generated by
the above pipeline, implemented using Snakemake [20] and available at https://gitlab.
pasteur.fr/ydufresne/linkedreadsmoleculeordering.

Quality metrics
We design quality metrics that are applicable to both barcode graphs and lcp graphs. To do
so, in lcp graphs we identify each lcp to its central barcode. We consider three metrics over
the graphs: accuracy, sensitivity and longest correct path. The first two metrics are estimated
by randomly sampling paths having l ∈ {2, 4, 10, 100} edges from the graph. To measure
accuracy, a path having barcodes (b0, b1, . . . , bl) is considered to be correct if there exists
m0,m1, . . . ,ml overlapping (but not necessarily consecutive) molecules such that mi ∈ m(bi),
0 ≤ i ≤ l. Accuracy is then defined as the number of correct paths over the total number of
sampled paths. To measure sensitivity, we determined for all (l+1)-tuples mi,mi+1, . . . ,mi+l

of consecutive molecules in the genome, whether there exist a path b(mi), b(mi+1), . . . , b(mi+l)
in the graph. Sensitivity is then the ratio of such paths that are found in the graph. Finally,
the Longest Correct path (LC) metric is defined as the longest path that can be found in the
lcp graph that is correct, i.e. corresponding to a barcode sequence equal to the barcodes of a
sequence of overlapping molecules. This measure is not informative on barcode graphs; it
measures the conservation of molecule overlap information in a lcp graph.

Two additional quality metrics are defined on lcp paths found by our branch-and-bound
algorithm: Undercounted/Overcounted (U/O) molecules and Longest Common Subsequence
(LCS). The U/O metric is computed by recording two counters, U and O initialized at 0.
Given each barcode b that appears within a lcp path, we compare the number of occurrences
of b to Mb, the true number of molecules having barcode b. If b occurs in the lcp path strictly
more (resp. less) thanMb times, U (resp. O) is incremented by the absolute difference. U and
O should both be as close to zero as possible, and they indicate how well we solve the molecule
counting problem. For the LCS metric, we compute the longest common subsequence between
central nodes of the lcp path and the molecule path where each molecule is replaced by its
barcode. The LCS reflects how well we solve the molecule ordering problem.

3.2 Simulated data from interval graphs

Dataset generation
At first we focus on purely synthetic interval graphs, where a genome is conceptually a
real line and molecules are intervals on this line. We make the simplifying assumption that
molecules all have the same size, and are evenly distributed along the genome. To simulate
barcode graphs, we start from an intersection graph of molecules and perform so-called merges
of molecules. A merge is defined as follows: given two nodes a and b that will be merged,

https://gitlab.pasteur.fr/ydufresne/linkedreadsmoleculeordering
https://gitlab.pasteur.fr/ydufresne/linkedreadsmoleculeordering
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create a new node c; for all neighbours v of either a or b, create edges (c, v), and finally
delete a and b. Merging two nodes in the graph is equivalent to replacing two molecules by
one barcode corresponding to those two molecules. A succession of merge operation creates
an exact barcode graph as defined in Section 2.

We created 8 synthetic test datasets, using the following grid of parameters: 5, 000 or
10, 000 molecules, average number of merges (i.e. molecules per barcode) of 2 or 3, standard
deviation in the number of merges of 0 or 1.

Quality of lcp graphs

Table 1 shows the accuracy and sensitivity of barcode graphs and their corresponding lcp
graphs. Recall that accuracy measures whether a random path in the graph has a correct
order of barcodes. As expected, paths in the barcode graph are mostly inaccurate, as one
may jump from one genome location to another due to barcode merges. Conversely paths in
the lcp graph are very accurate (100% for nearly all l = 10 paths), with a slight decrease
at l = 100 (95%− 100%). The sensitivity metric measures how much of the true barcode
ordering is present in short paths of the graph. It is (unsurprisingly) high for barcode
graphs, as they indeed record all overlaps between molecules. Note that some merges collapse
consecutive molecules by chance, hence the sensitivity of barcode graphs can sometimes be
lower than 1. On lcp graphs, sensitivity is high for short paths (> 93% for l = 10) and drops
for long ones (54%− 98% for l = 100). Nevertheless, this shows that at least partial molecule
order can be inferred through looking at central nodes of lcps in the lcp graph, and that
the lcp graph shows a better balance between accuracy and sensitivity than the barcode
graph. Note that central nodes are not the only way to infer molecule order, as one could
also extract information from clique-pairs, yet we leave this direction for future work.

Overall, lcp graphs are clearly more informative than barcode graphs for reconstructing
accurate barcode orderings. The hardest instances, in terms of accuracy and sensitivity on
lcp graphs, are when the number of molecules is low and the number of merges is high.

Quality of lcp paths

Table 2 reports additional metrics on lcp graphs and lcp paths constructed using the branch-
and-bound algorithm, over the same 8 datasets. All lcp graphs have a high longest correct
path (LC), confirming the theoretical possibility of reconstructing over 99% of the true
barcode order, through central nodes of a suitable path of lcps. The last two metrics of Table
2 are computed on lcp paths found by the algorithm described in Section 2.3. On 10,000
molecules graphs, the longest common subsequence (LCS) of the computed lcp path is 90%
of the true barcode order, indicating that we nearly recovered the correct barcode order.
The 5,000 molecules graphs appear to be more challenging to process as, smaller graphs are
more sensitive to information loss by the merging process, yet LCS values remain above 79%.
The U/O metric reports the ability to count the number of molecules that are present in
each barcode, though counting the number of times each barcode occurs in the computed lcp
path. Overall, lcp paths tend to undercount molecules (higher U metric than O), yet both U
and O metrics are around or below 10% of the number of molecules, indicating that lcp path
provides a reliable estimation of the number of molecules per barcode.
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Table 1 Accuracy and sensitivity of randomly sampled paths of lengths 2, 4, 10 and 100 edges in
lcp graphs generated from merged interval graphs, compared to sampled paths of the same lengths
in barcode graphs (Gb) as a base-line.

Graph l=2 l=4 l=10 l=100
# mols Merges Type Acc Sens Acc Sens Acc Sens Acc Sens

5,000 2 ± 0 Gb 0.48 1.00 0.09 1.00 0.00 0.99 0.00 0.94
lcp 1.00 1.00 1.00 0.99 1.00 0.98 1.00 0.88

5,000 2 ± 1 Gb 0.46 1.00 0.09 1.00 0.00 1.00 0.00 0.98
lcp 1.00 1.00 1.00 0.99 1.00 0.98 0.99 0.84

5,000 3 ± 0 Gb 0.31 1.00 0.03 1.00 0.00 0.99 0.00 0.88
lcp 1.00 0.99 1.00 0.98 0.99 0.95 0.99 0.60

5,000 3 ± 1 Gb 0.33 1.00 0.03 1.00 0.00 1.00 0.00 0.96
lcp 1.00 0.99 1.00 0.97 0.99 0.93 0.95 0.54

10,000 2 ± 0 Gb 0.48 1.00 0.10 1.00 0.00 1.00 0.00 1.00
lcp 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98

10,000 2 ± 1 Gb 0.47 1.00 0.09 1.00 0.00 1.00 0.00 0.97
lcp 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.93

10,000 3 ± 0 Gb 0.31 1.00 0.02 1.00 0.00 1.00 0.00 1.00
lcp 1.00 1.00 1.00 0.99 1.00 0.99 1.00 0.87

10,000 3 ± 1 Gb 0.31 1.00 0.03 1.00 0.00 1.00 0.00 0.97
lcp 1.00 0.99 1.00 0.99 1.00 0.97 0.99 0.78

Table 2 Experiments on synthetic barcode graphs. The dataset is described on the first part of
the columns (Number of molecules in the molecule graph, number of merges, resulting number of
barcodes in the barcode graph). The LC column is the length of the longest correct path in the lcp
graph. The U/C column is the number of undercounted and overcounted molecules per barcode
in our computed lcp path, and the LCS column is the length of the longest common subsequence
between the lcp path and the correct barcode order.

# mols Merges # barcodes LC U/O Counts LCS

5,000 2 ± 0 2500 4990 227/56 4748
5,000 2 ± 1 2428 4991 405/109 4512
5,000 3 ± 0 1667 4985 549/240 4282
5,000 3 ± 1 1682 4975 498/665 3972
10,000 2 ± 0 5000 9992 268/68 9667
10,000 2 ± 1 4889 9993 418/129 9531
10,000 3 ± 0 3334 9981 593/184 9309
10,000 3 ± 1 3341 9987 753/201 9140
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Table 3 Accuracy and sensitivity of randomly sampled paths of lengths 2, 4, 10 and 100 edges in
lcp graphs, compared to sampled paths of the same lengths in barcode graphs (Gb) as a base-line,
with 15 kbp E. coli molecules, 50X coverage, minimal molecule overlap lengths of 7000.

l=2 l=4 l=10 l=100
Graph Acc Sens Acc Sens Acc Sens Acc Sens

Gb, m = 1 1 1 1 1 1 1 1 1
lcp, m = 1 1 1 1 0.99 1 0.99 1 0.84
Gb, m = 2 0.50 1 0.12 0.99 0.001 0.99 0 0.99
lcp, m = 2 0.99 0.99 0.99 0.99 0.99 0.99 0.94 0.84
Gb, m = 3 0.34 1 0.04 1 0 1 0 1
lcp, m = 3 0.99 0.99 0.99 0.99 0.98 0.99 0.88 0.88
Gb, m = 4 0.26 1 0.02 0.99 0 0.99 0 0.99
lcp, m = 4 0.99 0.99 0.99 0.99 0.98 0.99 0.83 0.87

3.3 Genome graphs
Quality of genome LCP graphs
We designed experiments to evaluate the quality of lcp graphs constructed from the barcode
graphs that originate from real molecules. We created a synthetic E.coli molecule graph by
simulating molecules of length 15 kbp using wgsim, corresponding to sequences of the E. coli
genome, at 50x coverage of the genome and with no sequencing errors. Overlaps between all
pairs of molecules were computed using minimap2 using default parameters, and we selected
overlaps of lengths greater than 7000 using fpa [22].

Table 3 shows the accuracy and sensitivity on our constructed lcp graphs versus the
average number of merges, i.e. average number of molecules per barcode. As in Section 3.2,
barcode graphs have poor accuracy, which is expected due to the glueing of molecules, and
near-perfect sensitivity as all molecule overlaps are found. In contrast, lcp-graphs manage to
keep both near-perfect accuracy and sensitivity (> 0.98) for short paths (< 10) and have a
decrease in accuracy (0.83− 0.94) and sensitivity (0.84− 0.87) for paths of length 100.

Construction of genome barcode graphs from reads
In this section we describe a method that constructs an accurate barcode graph directly from
linked-read data. This closes a gap between our theoretical results, that required to already
have a barcode graph, and experimental data which only consist of sequencing reads.

We simulated reads from the E. coli genome at 50X coverage using LRSIM[21]. We
assembled these reads using SPAdes[1] version 3.12.0 without using linked-read information
(only using paired-end information), in order to generate contigs to which linked-reads can be
mapped to using the EMA aligner[25]. We designed an algorithm3 to infer molecule overlaps
given the set of contigs and the EMA alignments. In brief, the algorithm proceeds as follows.

For each barcode, and within each contig, we collect and sort the mapping positions
of all reads associated that barcode. We define a molecule interval to be the first and last
mapping positions of a group of mapping positions that are all within a distance < Md than
each other. A barcode can be associated to multiple molecule intervals even within the same
contig. We construct the barcode graph by looking at overlapping molecule intervals from
different barcodes. If two intervals share an overlap larger than a parameter Mo, we add an
edge between the two associated barcodes.

3 Available at https://github.com/natir/mapping2barcode
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Figure 4 Quality of barcode graph construction from a set of reads and corresponding paired-end
assembly. Each square represents the F1-score given parameters Md (read mapping distance) and
Mo (minimal molecule overlap length), from purple (low F1-score) to yellow (high F1-score).

The algorithm has two key parameters: Md, the maximal distance between two reads
in an inferred molecule interval, and Mo, the minimal overlap length between molecules.
As we used simulated data, we were able to generate a ground-truth barcode graph given
that molecule intervals in the underlying genome are known for each barcode. Figure 4
shows the performance of the algorithm in terms of F1-score (combining both sensitivity
and precision, computed by comparing the edge set of the inferred barcode graph versus
the edge set of the ground truth). We observe that the best F1-score (0.953) is reached
for (Mo,Md) = (5000, 9000), with otherwise consistently high F1-scores (≥ 0.9) whenever
Mo > 2000 and Md > 7000.

4 Conclusion

In this paper, we introduced novel approaches to analyze linked-reads sequencing data.
We introduced the problem of recovering a barcode sequence from the barcode graph, and
described its link with natural algorithmic problems on multiple-interval graphs; we believe
that the potential applications in sequencing data analysis motivate further research on these
algorithmic questions. Moreover, motivated by classic algorithmic techniques in interval
graph realization, we introduced the concept of local clique pairs (lcp) and lcp graph. Our
experiments on simulated data suggests that the lcp graph exhibits a much more linear
structure than the barcode graph and is likely a relevant intermediate structure between the
barcode graph and the barcode sequence.

This work casts a spotlight on a couple open problems in graph theory, for which linked-
reads bring an additional practical application: recognizing perfect barcode graphs, realizing
multiple-interval graphs, and the complexity of recognizing unit f -interval graphs. We suspect
also that more effective algorithms than the ones proposed here may exist for constructing
lcp graphs and finding lcp paths.

While our treatment of synthetic barcode graphs demonstrates the feasibility of recovering
barcode orders, we encountered difficulties going further in our analyses of realistic instances
(e.g. real E. coli reads). First, a more advanced path(s) discovery procedure will be needed
to deal with lcp graphs constructed from real molecule intersections (Section 3.3), which have
inferior accuracy than those in Section 3.2. Second, refinements to Algorithm 1, potentially
in the form of post-processing, will be needed to avoid outputting too many artefactual lcps
in barcode graphs of high-coverage molecules, such as the one produced in Section 3.3.
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Finally, the proposed barcode graph construction approach has potential to be applied
to larger instances, but so far we only tested it on simulated data and is merely a proof of
concept. The current method relies on having sufficient assembly contiguity (longer contigs
than molecules). A potential direction that we leave for future work is to determine molecule
intervals using the structure of an assembly graph instead of contigs.
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5 Appendix

5.1 Experiment on perfect cliques versus perfect lcps
Given an interval graph with m vertices, and an integer parameter f , we repeated for each
vertex x the following process f times: pick another unmerged node y at random and merge
vertices x and y. This generates a simulated barcode graph where all barcodes correspond
to exactly f molecules. Then on this graph we computed all maximal cliques and all lcps
and call such a set of vertices perfect if it corresponds to a set of consecutive intervals in the
original interval graph.

Table A1 Average number of perfect maximal clique vs perfect lcps, averaged over 10 runs for
each setting defined by m and f .

m f cliques perfect cliques lcp perfect lcp
5000 2 5318.5 54645.2 (9.73%) 4600.2 12763 (36.04%)
5000 3 6361.8 76569.4 (8.31%) 4054.3 29924.8 (13.55%)
10000 2 10344.8 104817.5 (9.87%) 9586.2 18958.4 (50,56%)
10000 3 12070.6 130092.4 (9.28%) 9031.2 44276 (20.40%)
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