
HAL Id: hal-03008325
https://hal.science/hal-03008325

Submitted on 16 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep-CRM: A New Deep Learning Approach For
Capacitance Resistive Models

Abderrahmane Yewgat, Daniel Busby, Max Chevalier, Corentin J Lapeyre,
Olivier Teste

To cite this version:
Abderrahmane Yewgat, Daniel Busby, Max Chevalier, Corentin J Lapeyre, Olivier Teste. Deep-CRM:
A New Deep Learning Approach For Capacitance Resistive Models. ECMORXVII: 17 th European
Conference On The Mathematics Of Oil Recovery, Sep 2020, Online, France. �hal-03008325�

https://hal.science/hal-03008325
https://hal.archives-ouvertes.fr


 

 

 

ECMOR XVII – 17th European Conference on the Mathematics of Oil Recovery 

14-17 September 2020, Edinburgh, UK 
TOTAL Classification: Restricted Distribution 
TOTAL - All rights reserved 

Deep-CRM: A New Deep Learning Approach For Capacitance Resistive Models 

 

 

 
  Abderrahmane YEWGAT                                                   Daniel BUSBY             

                      Total R&D                                                                               Total R&D                    

Toulouse informatics research institute (IRIT)                                   daniel.busby@total.com 

      Université Toulouse Jean Jaurès 

      abderrahmane.yewgat@total.com 

                      

 

              Max CHEVALIER                                                  Corentin LAPEYRE 

Toulouse informatics research institute (IRIT)                                          Research Scientist 

 Université Toulouse III - Paul Sabatier (IRIT)                                   Coordinator of the Helios workgroup 

                   Max.chevalier@irit.fr                                                           CERFACS - COOP Team 

                                                                                                                        lapeyre@cerfacs.fr 

 

 

 

                 Olivier TESTE                                       

Toulouse informatics research institute (IRIT)                                           

 Université Toulouse II – Jean Jaurès                                    

                     Olivier.teste@irit.fr                                                            

                                                                                                                         

 

 

1- Introduction 

 

Classical reservoir simulators are built upon different underlying models:  geological models integrating 

all the knowledge of the subsurface properties, fluid flow models integrating reservoir fluid physical 

properties, wells, and surface installations. The construction of such models however is very time and 

resources consuming.  In the case of mature fields, where historical production data are available, data 

driven models can represent a suitable alternative or can be complementary to classical reservoir 

modelling as they require much less computation time and allocated resources.   

Among such models are Capacitance Resistive Models (CRMs), based on set of coupled ordinary 

differential equations representing material balance. These aim to predict flow rate in a reservoir using 

only dynamic data of production rates, water injections and Bottom Hole Pressure (BHP). In addition, 

CRMs can explain the underlying connectivity between several injectors and producers that could be a 

valuable information for dynamic synthesis and for better understanding of fluid flows in the reservoir. 

Most of the current work on CRMs optimizes a nonlinear multivariate regression of the CRM’s 

parameters. Such optimization needs a closed form solution of the CRM ODEs. which is only possible 

under conditions: constant or linear variation in injection or in BHP. Once we have optimized the 

CRM’s parameters, we can use the closed form solution to perform forecasting.  

The aim of this work is to propose a complete approach to optimize the CRM’s parameters and forecast 

future production. This approach is not based on any assumptions on injections or on producers’ BHP.  

To this end, we introduce a new approach based on a deep learning strategy: Physics-Informed Neural 

Networks (PINNs) for CRMs.  

This paper is organized as follows: first we introduce the related work on CRMs. Second, we detail the 

theory of CRMs and PINNs. Our approach, called Deep-CRMs, is presented in the third section. We 

focus on the mathematical description of Deep-CRMs and show experiments in order to compare our 

approach to the nonlinear multivariate regression of the closed form solution. These experiments are 

based on two datasets: the first is a synthetic dataset generated using ECLIPSE® and SISMAGE®, and 

the second is a real field dataset provided by one of our affiliates. 
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2- Related Work 

 

In this section we introduce the related work that we have identified and which we consider close to our 

objective which is optimizing CRMs’ parameters and forecasting the production rate. CRMs are 

material balance models capable of optimizing waterflood injection and explaining the underlying 

connectivity between injectors and producers.  In his PhD dissertation [3] and in Youssef et al. [2], 

Youssef gave a widespread introduction to CRMs from theorical backgrounds to real field applications. 

Wanderley de Holanda et al [1] presented a scientific literature review on CRMs. In Sayarpour et al [4], 

authors firstly solve the CRMs ODE analytically, in a closed form, using superposition in time and 

space, and then prefer the use of data driven methods like nonlinear multivariate regression to optimize 

the physical parameters.  

Previous CRMs applications rely exclusively on the availability of a closed form solution of CRMs’ 

ODE, by assuming that injections and productions respect some conditions. Our proposal aims to 

present a complete and fully based Deep Leaning approach capable of optimizing the CRMs’ 

parameters and forecasting rate production, without considering any assumptions on the injections and 

BHP. To do this we detail in the next section the proposed approach based on physics-informed neural 

networks.  

 

3- Our proposal: Deep-CRMs 

 

Deep learning using Artificial Neural Networks (ANNs) presents a new paradigm for learning by 

mimicking the function of the human brain. Thanks to the universal approximation theorem [5], ANNs 

can approximate any continuous function, which makes them a powerful tool to model complex 

phenomenon with strong nonlinearities, for which classical methods fail. 

 

Reservoir modelling deals with complex phenomena, resulting from different factors (geology, fluid 

flow…). Some of these phenomena satisfy given partial differential equations, making it crucial to 

incorporate theses PDEs in any modelling of the reservoir to enhance interpretability. Indeed, while 

ANNs are powerful function approximators that can achieve high accuracy, in the context of reservoir 

modelling this cannot come at the cost of interpretability. The physical constraints, in the form of PDEs, 

must be accounted for, not only to enhance prediction, but also to give ANNs more physical meaning 

than simple mathematical approximations. In this context a new approach called Physics Informed 

Neural Networks was recently introduced [6,7] using the power of ANNs to model and solve complex 

PDEs. Promising results were proven for several PDEs from various domains, e.g. Navier-Stokes [10], 

Darcy flow problem [9], and 1D & 2D Coupled Burgers’ Equation [8]. In these papers it is shown that 

PINNs could provide better or similar quality results than classical solvers in these various application 

domains with generally less computational time.  

 

Using ANNs as a physical phenomenon estimator, by incorporating prior physical knowledge is not a 

new idea. Psichogios et al.[16] investigated the use of ANNs to model a fedbatch bioreactor. Since then 

several works have used ANNs to address different physical phenomena. Raissi et al.[17] recently 

modelled fluid motions using Navier-Stokes equations and ANNs. In the prementioned works, ANNs 

are trained on two types of data: observation points, representing discrete observations of the physical 

phenomenon, and collocation points, representing points of the domain where PDE should be satisfied. 

Zabaras et al [9] discuss PINNs framework where ANNs are trained only on collocation points and 

starting from the initial solution.  

 

This study focuses on applying PINNs to CRMs. Before introducing how PINNs and CRMs can be 

coupled, we detail separately the mathematics of each of these models.  

 

3.1- The Mathematics of Capacitance Resistive Models 

 

The name CRMs came from the similarity between the CRMs Ordinary Differential Equation (ODE) 

and the governing equations of electrical capacitor resistors models. CRMs consist in modelling the 

variation of the rate production over time 𝒒(𝒕) for each producer, given the injections 𝑰(𝒕) of all 
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injectors and the producer bottom hole pressure  𝒑𝒘𝒇(𝒕). CRMs are based on differential equations: the 

material balance equation (1) and the deliverability equation (2). 

 

                                                  𝑪𝒕𝑽𝒑
𝒅𝒑̅

𝒅𝒕
= 𝑰(𝒕) − 𝒒(𝒕)  (1) 

 

                                                 𝒒(𝒕) = 𝑱 (𝒑̅(𝒕)  − 𝒑𝒘𝒇(𝒕))  (2) 

 

where 𝑪𝒕 is total compressibility, 𝑽𝒑 is the control volume,  𝒑̅ is the volume averaged pressure,  𝑰(𝒕) is 

the total injection at time 𝒕, and 𝒒(𝒕) is the rate at time 𝒕.  
 𝒑𝒘𝒇 is the bottom hole pressure, and 𝑱 is the productivity index of the given producer. Replacing (2) in 

(1) yields the following CRMs ODE equation:  

 

                                  𝝉
𝒅𝒒(𝒕)

𝒅𝒕
+ 𝒒(𝒕) = 𝑰(𝒕) − 𝝉 ∗ 𝑱 ∗

𝒅𝒑𝒘𝒇(𝒕)

𝒅𝒕
 (3) 

 

Where 𝝉 is the time constant defined as:  

 

                                                               𝝉 =
𝑪𝒕𝑽𝒑

𝑱
 (4) 

 

 

 

 

 

 

Let us consider 𝑵 injectors and 𝑴 producers, then (3) can be written as:  

 

         ∀𝒋 ∈ [𝟏. .𝑴], 𝝉𝒋
𝒅𝒒𝒋(𝒕)

𝒅𝒕
+ 𝒒𝒋(𝒕) =  ∑ 𝒇𝒊𝒋𝑰𝒊(𝒕)

𝑵
𝒊=𝟏 − 𝝉𝒋 ∗ 𝑱𝒋 ∗

𝒅𝒑𝒋(𝒕)

𝒅𝒕
 (5) 

 

From (5)  𝒇𝒊𝒋 represents the connectivity between the injector 𝒊  and the producer 𝒋. for each injector we 

have: 

                                                                       ∑ 𝒇𝒊𝒋 ≤ 𝟏
𝑴
𝒋=𝟏  (6) 

 

then we can rewrite (5):   

 

 

             

∀𝒋 ∈ [𝟏. .𝑴],        𝝉𝒋
𝒅𝒒𝒋(𝒕)

𝒅𝒕
+ 𝒒𝒋(𝒕) =  ∑ 𝒇𝒊𝒋𝑰𝒊(𝒕)

𝑵
𝒊=𝟏 − 𝝉𝒋 ∗ 𝑱𝒋 ∗

𝒅𝒑𝒋(𝒕)

𝒅𝒕

∀𝒊 ∈ [𝟏. . 𝑵], ∑ 𝒇𝒊𝒋 ≤ 𝟏
𝑴
𝒋=𝟏

∀𝒊 ∈ [𝟏. . 𝑵], ∀𝒋 ∈ [𝟏. .𝑴], 𝒇𝒊𝒋 ≥ 𝟎, 𝝉𝒋 ≥ 𝟎, 𝑱𝒋 ≥ 𝟎

   (7) 

 

 

Example. Figure 1 represents a case with N = 4 injectors and M = 1 producer, where the edges are 

weighted by the amount of injection. 𝐼𝑖(𝑡) represents the total injection of injector 𝑖 at time 𝑡. 𝑓𝑖𝑗 

represents the connectivity between injector 𝑖 and producer 𝑗. 
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                     Figure 1 Example of producers-injectors connectivity 

 

In [4] the authors show that in case of constant injection and linear variation of BHP, (5) can be solved 

analytically:  

 

𝒒𝒋(𝒕𝒏) =  𝒒𝒋(𝒕𝟎)𝒆
(−
𝒕𝒏−𝒕𝟎
𝝉𝒋

)
+ ∑ {𝒆

(−
𝒕𝒏−𝒕𝒌
𝝉𝒋

)
(𝟏 − 𝒆

−𝚫𝒕𝒌
𝝉𝒋 ) [∑[𝒇𝒊𝒋𝑰𝒊

(𝒌)
] − 𝝉𝒋 ∗ 𝑱𝒋

𝚫𝒑𝒘𝒇,𝒋
(𝒌)

𝚫𝒕𝒌

𝑵

𝒊=𝟏

]}

 

𝒏

𝒌=𝟏

   (𝟖) 

 

where  𝒒𝒋(𝒕𝒏) is the rate of the producer 𝒋 at time 𝒕𝒏. 𝑰𝒊
(𝒌)

 is the rate of the injector 𝒊 for the 𝒌 time 

interval. In the case of linear injection, and linear BHP we have the following solution: 

 

𝒒𝒋(𝒕𝒏) =  𝒒𝒋(𝒕𝟎)𝒆
(−
𝒕𝒏−𝒕𝟎
𝝉𝒋

)
+ ∑[𝒇𝒊𝒋 (𝑰𝒊(𝒕𝒏) − 𝒊𝒊(𝒕𝟎)𝒆

(−
𝒕𝒏−𝒕𝟎
𝝉𝒋

)
 )] 

𝑵

𝒊=𝟏

 

+ ∑ {𝝉𝒋 ∗ 𝒆
(−
𝒕𝒏−𝒕𝒌
𝝉𝒋

)
(𝟏 − 𝒆

−𝚫𝒕𝒌
𝝉𝒋 ) [∑[𝒇𝒊𝒋

𝚫𝒊𝒊
𝒌

𝚫𝒕𝒌
]  +  𝑱𝒋

𝚫𝒑𝒘𝒇,𝒋
(𝒌)

𝚫𝒕𝒌

𝑵𝒊

𝒊=𝟏

]}

 

𝒏

𝒌=𝟏

    (𝟗) 

 

Knowing the closed form solution, and having available observations, the parameters of the CRMs can 

be obtained using a nonlinear multivariate regression: 

 

(𝒇𝒊𝒋, 𝝉𝒋 , 𝑱𝒋)𝒋=𝟏…𝑴,   𝒊=𝟏…𝑵 = 𝒂𝒓𝒈𝒎𝒊𝒏(∑∑(𝒒𝒋(𝒕𝒏) − 𝒒𝒋(𝒕𝒏)
⏞  )

𝟐
𝑻

𝒏=𝟏

𝑴

𝒋=𝟏

   (𝟏𝟎) 

 

where 𝒒𝒋(𝒕𝒏)
⏞   is the observed rate of the 𝒋 producer at time 𝒕𝒏.  

 

 

3.2- The Mathematics of Physics informed Neural Networks Theory 

 

Let 𝑢 be our quantity of interest (QOI) satisfying the following ODE:  

 

𝓝𝒕(𝒖(𝒕)) = 𝒇(𝒕), 𝒕 ∈ 𝓓    (𝟏𝟏) 
 

Where 𝒩𝑡 is a differential operator, 𝒟 is the time domain and 𝑓(𝑡) is a known function. The aim of 

PINNs is to solve (11) by approximating the QOI using ANNs.  

 

ANNs are a computational method, composed of many neurons connected to each other. Each neuron 

carries out a part of the total computation. Thanks to such connections ANNs can learn complex 

nonlinear functions.  
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ANNs can be seen as a direct acyclic graph 𝑮 = (𝑽, 𝑬) whose nodes are the neurons, and each edge 

connects the output of a neuron to the input of another neuron. Each neuron applies a simple function 

on the weighted sum of its inputs (12 and 13). This function 𝝈 ∶  ℝ → ℝ also called the activation 

function is chosen from a set of predefined functions; e.g. Rectified Linear Unit (RELU)  𝝈(𝒕) =

𝐦𝐚𝐱 (𝐭, 𝟎) or Sigmoid 𝝈(𝒕) =  
𝟏

𝟏+𝐞𝐱𝐩 (−𝒕)
. More practically neurons can be stacked into layers by 

decomposing the set of neurons 𝑽 = ⋃ 𝑽𝒏
𝑳
𝒏=𝟎 . We denote 𝒗𝒏,𝒊 the 𝒊𝒕𝒉 neuron of the 𝒏𝒕𝒉 layer and  

𝒐𝒏,𝒊(𝒕) its output for a given input 𝒕.  
Suppose we have calculated the output of layer 𝒏, then the output of the layer 𝒏 + 𝟏 is as follows:  

 

                          𝒂𝒏+𝟏,𝒊(𝒕) =  ∑ (((𝒗𝒏,𝒌, 𝒗𝒏+𝟏,𝒊)))𝒐𝒏,𝒌(𝒕)𝒌:(𝒗𝒏,𝒌,𝒗𝒏+𝟏,𝒊)∈𝑬     (12) 

 

                                                   𝒐𝒏+𝟏,𝒊(𝒕) =  𝝈 (𝒂𝒏+𝟏,𝒊(𝒕))     (13) 

 

The 𝒎 final outputs of the ANNs are given by: 

 

𝒉𝒘,𝒊(𝒕) =  𝒂𝑳,𝒊(𝒕),   𝒊 = 𝟏. .𝒎      (𝟏𝟒) 

 

Without any loss of generality, we can assume that 𝒎 = 𝟏 yielding: 

 

𝒉𝒘(𝒕) =  𝒂𝑳(𝒕)       (𝟏𝟓) 

 

Figure 2 shows an example of ANNs with one input 𝒕 (representing time in this case) and one output 

𝒒𝒋(𝒕) (representing the production of producer 𝒋 at time 𝒕). The ANNs has 6 hidden layers and 5 neurons 

per hidden layer.  

 

                              
          Figure 2 Example of Artificial Neural Network with 6 hidden layers and 5 neurons per layer 

 

 

The weight function is 𝒘:𝑬 →  ℝ. Suppose we have 𝒏 inputs and 𝒎 outputs and a given weight function 

𝒘, we denote the function calculated by the networks as 𝒉𝒘:ℝ
𝒏 → ℝ𝒎. We define 𝚫(𝒉𝒘(𝒕), 𝒚) the loss 

for predicting 𝒉𝒘(𝒕) when the true (or target) value is 𝒚. 𝚫 is a norm function, e.g. 𝒍𝟏, 𝒍𝟐… for a given 

𝓗 examples, the total loss of the networks is:  

 

                                                        𝓛𝓗(𝒘) =  𝚬(𝒕,𝒚)∈𝓗[𝚫(𝒉𝒘(𝒕), 𝒚)]    (16) 

 

In the rest of this paper 𝓛𝓗 will be called the Multi-Layer-Perceptron (MLP) loss.  

The output of the ANNs, approximating the QOI, should also satisfy the ODE (11) resulting in the next 

physical loss function:  
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𝓛𝓓(𝒘) = 𝓝𝒕(𝒉𝒘(𝒕)) − 𝒇(𝒕) = 𝟎, ∀ 𝒕 ∈ 𝓓       (𝟏𝟕) 

 

Thus, the final loss to minimize to get the optimal ANNs weight function 𝒘 is:  

 

𝓛(𝒘) =  𝓛𝓗(𝒘) + 𝓛𝓓(𝒘)      (𝟏𝟖) 

 

3.3-  CRMs + PINNs = Deep-CRMs  

 

In order to integrate CRMs into PINNs, we propose a new architecture (Figure 3) composed of small 

architectures corresponding to each producer. All these small architectures have the same input which 

is the time 𝒕. In Figure 3 we can identify two ANNs, representing the producer BHP and the producer 

rate. Indeed, we decided to add one ANNs for producer BHP in addition to the one that approximates 

the producer rate. The interest of using these additional ANNs is twofold:  

 

-   ANNs naturally smooths the data. It is important for reducing the noise which can exist 

particularly in raw data (e.g. outliers). 

 

- In the CRMs (7) we need to compute the derivative of the BHP over time. This latter value can 

directly be obtained thanks to the additional ANNs that approximates the BHP. 

  

 

 

 

 
                                               Figure 3 Deep-CRMs Architecture 
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The proposed architecture (Figure 3) allows us to compute the physical loss function for all the 

producers which is detailed in (19). 

 

𝓛𝓓(𝒘𝟏, 𝒘𝟐, … ,𝒘𝑴) =∑𝜠(𝒕)∈ 𝓓𝒋  [ 𝝉𝒋
𝒅𝒒𝒋(𝒕)

𝒅𝒕
+ 𝒒𝒋(𝒕) − ∑𝒇𝒊𝒋 ∗ 𝑰𝒊(𝒕)

𝑵

𝒊=𝟏

+ 𝝉𝒋 ∗ 𝑱𝒋 ∗
𝒅𝒑𝒋(𝒕)

𝒅𝒕
]

𝑴

𝒋=𝟏

      (𝟏𝟗) 

 

Where 𝒘𝒋 is the weight function of the 𝒋𝒕𝒉 producer ANNs for  𝒋 = 𝟏, . . ,𝑴.  𝓓𝒋 represents the set of 

points (time) where the 𝒋𝒕𝒉 producer CRMs ODE should be satisfied.  

 

At the same time, we compute for each producer the MLP loss for the ANNs dedicated to 𝒒𝒋 , 𝒋 = 𝟏. .𝑴  

resulting in the global MLP loss defined in (20). 

 

𝓛𝓗(𝒘𝟏, 𝒘𝟐, … ,𝒘𝑴) =  ∑𝚬(𝒕,𝒚𝒋)∈𝓗𝒋 [𝚫 (𝒉𝒘𝒋(𝒕), 𝒚𝒋(𝒕))] 

𝑴

𝒋=𝟏

    (𝟐𝟎) 

 

𝓗𝒋 contains the observations of the 𝒋𝒕𝒉 producer, for 𝒋 = 𝟏…𝑴. 

 

In the global architecture, we train the producers’ BHP ANNs at the same time as the producers ANNs. 

This is done by incorporating the MLP loss for producers BHPs (21) in the global loss (22): 

 

𝓛𝓗𝒑(𝒛𝟏, 𝒛𝟐, … , 𝒛𝑴) =  ∑𝚬(𝒕,𝒑̆𝒋)∈𝓗𝒑𝒋
[𝚫 (𝒉𝒛𝒋(𝒕), 𝒑̆𝒋(𝒕))] 

𝑴

𝒋=𝟏

   (𝟐𝟏) 

 

𝒛𝒋, 𝒋 = 𝟏. .𝑴 represents the weight function of the 𝒋𝒕𝒉 producer BHP and  𝓗𝒑𝒋 its corresponding set of 

observations. 

                                               

At the same time, the producers should also respect the different constraints on the physical parameters 

(23), after we can define the global loss of Deep-CRMs:  

 

𝓛𝑫𝒆𝒆𝒑−𝑪𝑹𝑴𝒔(𝒘, 𝒛, 𝒇, 𝝉, 𝑱) =  𝓛𝓗(𝒘) + 𝓛𝓓(𝒘) + 𝓛𝓗𝒑(𝒛) + 𝓛𝒊𝒏𝒋𝒆𝒄𝒕𝒐𝒓(𝒇) + 𝓛𝑪𝒐𝒏𝒏𝒆𝒄𝒕𝒗𝒊𝒕𝒚(𝒇)

+ 𝓛𝒕𝒊𝒎𝒆 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕(𝝉) + 𝓛𝒊𝒏𝒅𝒆𝒙 𝒐𝒇 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒗𝒊𝒕𝒚(𝑱) 
  (𝟐𝟐) 

 

Where  𝒇 = (𝒇𝒊𝒋)(𝒊,𝒋)∈𝟏..𝑵×𝟏..𝑴 , 𝝉 =  (𝝉𝒋)𝒋=𝟏…𝑴 𝐚𝐧𝐝 𝑱 = (𝑱𝒋)𝒋=𝟏…𝑴. 

 

After defining   𝓛𝑫𝒆𝒆𝒑−𝑪𝑹𝑴𝒔 we need to define an optimizer to minimize it giving us though the best 

weight functions and the best physical parameter (connectivity, time constant and index of 

productivity). 
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𝓛𝒊𝒏𝒋𝒆𝒄𝒕𝒐𝒓 = ∑𝒎𝒂𝒙(𝟎,∑𝒇𝒊𝒋

𝒎

𝒋=𝟏

− 𝟏)

𝑵

𝒊=𝟏

𝓛𝑪𝒐𝒏𝒏𝒆𝒄𝒕𝒗𝒊𝒕𝒚 = ∑∑𝒎𝒂𝒙(𝟎, 𝒇𝒊𝒋)

𝑴

𝒋=𝟏

𝑵

𝒊=𝟏

𝓛𝒕𝒊𝒎𝒆 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 = ∑𝒎𝒂𝒙(𝟎, 𝝉𝒋)

𝑴

𝒋=𝟏

𝓛𝒊𝒏𝒅𝒆𝒙 𝒐𝒇 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒗𝒊𝒕𝒚 = ∑𝒎𝒂𝒙(𝟎, 𝑱𝒋)

𝑴

𝒋=𝟏

   (𝟐𝟑) 

 

In our work we have used RMSprop a gradient based method to minimize 𝓛𝑫𝒆𝒆𝒑−𝑪𝑹𝑴𝒔(𝑤, 𝑧, 𝑓, 𝜏, 𝐽). 

 

4- Experiments 

 

The objective of the experimentations is to validate the efficiency and the robustness of our model on a 

synthetic dataset as well as on a real dataset. Section 4.1 describes the two datasets. Section 4.2 details 

the experimental protocol and gives the objectives. Finally, in section 4.3 the results are discussed.  

 

4.1 Datasets  

 

The two datasets are rescaled in order to make the learning faster and avoid the networks optimizer 

from stacking in local optima. Moreover, the real dataset has been smoothed in order to reduce noise 

and remove outliers from the dataset.  

 

4.1.1 Synthetic Dataset 

 

The synthetic dataset called Sondous was simulated using SIMAGE® and ECLIPSE® (see Figure 4 

and Figure 5). It contains 97 observations irregularly distributed between 1/1/1988 and 16/11/1998.  

Figure 4 represents the field in 3D picture. We can observe the presence of a fault in the middle of the 

field (black line). The scale of colour corresponds to the net-to-gross (NTG). Figure 5 illustrates the 

same field in a 2D view, where the 3 producers (P1, P2 and P3) and 2 injectors (I1 and I2) are positioned. 

We can notice the presence of the fault separating the producer one (P1) from the rest of producers (P2 

and P3) and injectors (I1 and I2). In Figure 5 the colour scale represents the reservoir pressure BHP of 

the producers.  
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                         Figure 4 Sondous Field NTG scale 

 

 

 

 
 

Figure 5 Sondous Injectors and producers pressure scale. 

 

Figure 6 shows the liquid rates for the three producers, while Figure 7 shows the injection rate for the 

two injectors. We can observe that curve of P1 is significantly lower than those of P2 and P3. In Figure 

7 we also note that the injection curves are piecewise constant.  

 

 

 
Figure 6 Producers 

 

 
Figure 7 Injectors 

 

 

4.1.2 Real Dataset 

 

The real dataset provided by one of our affiliates, represents an offshore oil field. It contains 6 producers 

and 5 injectors (see Figure 8). Some connections between injectors and producers have already been 

proven by our affiliate as shown in Table 1. Different techniques were used by our affiliate to study 

connection between injectors and producers e.g. interference test, pressure response at producer wells 

when injection is on/off, salinity test, tracer test and 4D seismic images. In Table 1 green colour 

indicates proven or probable connection whereas red colour proves non-existence connection. Since all 

cases have not been studied by our affiliate; we cannot conclude on other “No Information” 

connectivity.  
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In the Figure 8 (a), (b) et (c) we show the daily production rates of the 6 producers over 700-time daily 

observations starting from April 30th, 2013 to June 12th, 2015. In comparison to the synthetic data (see 

Figure 6) we have more noisy data in the real dataset.  

 

 
 

Producer 1 Producer 2 Producer 3 Producer 4 Producer 5 Producer 6 

Injector 1 No 

Information 

No 

Information 

No 

Information 

Proven No Information No 

Information 

Injector 2 No 

Information 

Probable No 

Information 

No 

Information 

No Information No 

Information 

Injector 3 Proven Non-

existence 

Proven 

No 

Information 

No 

Information 

No Information Probable 

Injector 4 No 

Information 

No 

Information 

No 

Information 

Proven Proven Proven 

Injector 5 Proven Proven No 

Information 

No 

Information 

No Information Proven 

 

                                                        Table 1 Real Dataset Connectivity Table 

 

(a)  

 

 
 

 

(b) 
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(c) 

 
Figure 8 Real Dataset producers 

 

   4.1.3 Data Preparation  

 

Data preparation represents the different transformations applied to the raw data, before presenting it to 

the model. First, a rescaling is needed to improve the training process by making the datasets 

comparable within the same scale. Secondly, in real dataset we often have numerous outliers, that need 

to be removed. It is important to remove the noise from the data by applying smoothing principles; in 

our case we have used ANNs to smooth the real dataset.  

 

Data rescaling. Before applying Deep-CRMs we have rescaled the injections and the rates production 

by the maximum rate production computed over all the producers; the pressure was rescaled with 

respect to the maximum pressure. Rescaling the data aims at making the learning faster and avoids the 

network from stacking in local optima. 

 



 

 

 

ECMOR XVII – 17th European Conference on the Mathematics of Oil Recovery 

14-17 September 2020, Edinburgh, UK 
TOTAL Classification: Restricted Distribution 
TOTAL - All rights reserved 

Data Smoothing with ANNs. Data smoothing techniques are usually independent from the learning 

model. In our case data smoothing is performed at the same time as the data training process. We directly 

used the ANNs of Deep-CRMs to smooth the producer bottom hole pressure (BHP). 

This is done by incorporating in the global model loss (22) the ANNs loss of the BHP ((21), 

𝓛𝓗𝒑(𝒛𝟏, 𝒛𝟐, … , 𝒛𝑴), is incorporated in the (22) of the global loss). An interesting consequence of this 

idea is that we do not need to compute manually the BHP gradients (as in classical approaches); in our 

case the gradients can be computed directly from the ANN approximation of BHP. 

Moreover, ANNs smoothing facilitate the gradient computation thanks to the automatic differentiation 

and the derivability of the ANNs.  

 

In the same way, the liquid rate is smoothed implicitly by the ANNs of Deep-CRMs (the formula 

𝓛𝓗(𝒘) and  𝓛𝓓(𝒘) are incorporated in (22)).  

 

For instance, in Figure 9 we illustrate the BHP of producer 1 before smoothing (a) and after ANNs 

smoothing (b). We superpose the cases before and after on the same figure in (c). The red curve is 

directly obtained after training Deep-CRMs. 

 

(a) Raw pressure 

 

 

(b) Smoothed pressure 

 

 
(c) Comparison between raw pressure (red) and 

smoothed pressure (blue) 

 

 

 

Figure 9 Real dataset pressure for producer 1 (a) before and (b) after filtering. A comparison between 

raw and smoothed pressure is illustrated in (c) 
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4.2 Objectives and Protocols  

 

Deep-CRMs have dual objectives, first discovering the underlaying connectivity between injectors and 

producers and secondly performing forecasting giving the amount of injected water and the bottom hole 

pressure BHP of each producer. In these experiments we are interested in those dual objectives. At the 

same time, it is also interesting to compare Deep-CRMs to classical optimizer relying on the closed 

form solution. 

 

For neural networks, there is no universal configuration (optimizer, number of neurons, number of 

layers, activation function) that works for every case. Each case study is different, though we need to 

test several configurations and validate them on a validation set. From which we retain the best 

configuration providing the minimum loss. this process is called grid search. To effectively scan the 

different configurations, we define a set of values for each hyper parameter and we check all the possible 

combinations. This systematic evaluation is called a grid search. This process will be adopted in the rest 

of this paper. 

For Sondous test case, training was performed on 50% of the data, 10% of the data was used as 

validation for selecting the best model and 40% for testing. For the real dataset 60% of the dataset was 

used for training and 40% for testing.  

 

The following metrics were used for model selection and comparison with classical optimizer: 

 

 𝑴𝑺𝑬 (𝒚, 𝒚̂) =  𝔼[(𝒚 − 𝒚̂)𝟐] =  
𝟏

𝑵
∑(𝒚𝒊 − 𝒚̂𝒊)

𝟐

𝑵

𝒊=𝟏

(𝟐𝟒) 

 

The Mean Squared Error (MSE) measures the average square error of approximating 𝑦 by 𝑦̂. The bigger 

the MSE the bigger the error of approximation. When dealing with no rescaled data it is better to use 

the normalized MSE:   

 𝑵𝑴𝑺𝑬 (𝒚, 𝒚̂) =  
𝑴𝑺𝑬(𝒚, 𝒚̂)

𝐌𝐚𝐱(𝒚)
(𝟐𝟓) 

 

Another widely used metric for regression problem is the 𝑹𝟐. The close 𝑹𝟐 to 1, the close 𝒚 to 𝒚̂.   

 

𝑹𝟐(𝒚, 𝒚̂) = 𝟏 − 
∑ (𝒚𝒊 − 𝒚̂𝒊)

𝟐𝑵
𝒊=𝟏

∑ (𝒚𝒊 − 𝒚̅)
𝟐𝑵

𝒊=𝟏

(𝟐𝟔) 

 

   4.3 Results  

  

                4.3.1 Synthetic Dataset: Sondous 

 

                     4.3.1.1 First objective: forecasting 

  

The first objective of Deep-CRMs is to predict future liquid production given the historical production 

data, the injection data, and the BHP data. Deep-CRMs use those data to minimize its loss (22) by 

adjusting the ANN weights (learning the weight function). After that Deep-CRMs can forecast 

producer’s production for future time knowing the future injection and BHP.  

Figure 10 represents the evolution of Deep-CRMs main loss functions over the number of iterations. 

Training loss is the general loss (22) to minimize (blue curve), containing Physics loss (green curve) on 

the CRMs ODE, Multi-Layer Perceptron loss (red curve) on the observation points, plus the ODE 

constraints losses. We can observe that our optimizer RMSprop minimizes the different loss over the 

number of iterations. Moreover, we can see that the different loss start getting constant after the 20.000 

th iteration. Thus, we have fixed the number of iterations at 30.000. the validation loss is particularly 

important since its variation controls the generalization of the model. A very known problem in machine 
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learning is the model overfitting. It means that the model cannot generalize outside the learning dataset 

in such case the validation loss will increase although the model general loss is decreasing. In our case 

the validation loss is decreasing which indicates that our model is not overfitting and it can generalize 

outside the learning dataset.  

 

                                 
                                              Figure 10 Training loss and validation loss 

 

 

Figure 11 shows the different models, the best model (red curve), and the analytical solution (dark 

curve). Before the red vertical line, data are used for training, between the red line and the dark-olive 

line we have the validation data and after the dark-olive line we have the data used for testing the model.  

First observation is that all the different models are quite similar in terms of forecasting. Meaning that 

with 6 hidden layers and 300 neurons per hidden layer (1800 parameters) we have quite similar 

performance as with 5 neurons and 200 layers (1000 parameters). This is important because generally 

in deep learning the famous architectures are those with millions of parameters. One explanation could 

be that in classical deep learning models we are trying to capture the underlying phenomenon with only 

observations data. This is why we need a lot of observations data and a very sophisticated architecture 

(e.g. millions of parameters) without forgetting the amount of time needed to train such architecture. 

whereas in the case of PINNs we already have a modelling of the underlying phenomenon in our case 

CRMs ODE, and we are only using deep learning architecture as an approximator of the underlying 

phenomenon thus we do not need a lot of data neither a huge time of computation. Second observation 

is that the different models capture the same variation as in the real dataset. In CRMs model we assume 

that the variation of rate production comes only from its relationship with injectors and producers. Thus, 

we can see (Figure 11) that our models have learned this relationship since they can forecast future rate 

production knowing only time, corresponding injection, and corresponding BHP. The third observation 

is that Deep-CRMs does not need a huge amount of data to be trained, in our case 50% of the total data 

was sufficient to perfectly train the model.  

 

Model selection is performed on the dark part of the dataset (validation) using Normalized Mean 

Squared Error (NMSE). Table 2 shows the values of NMSE per model producer, where Model 4 is the 

best model in terms of NMSE. 
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                        Figure 11 Deep-CRMs liquid rates (STB/d) test for the 3 producers (Sondous data) 

 

 Producer 1 Producer 2 Producer 3 Total NMSE 

Model 1 1.72 10.22 1.22 13.16 

Model 2 1.46 21.3 0.79 23.55 

Model 3 1.15 26.76 1.04 28.95 

Model 4 (The Best) 0.3 12.17 0.48 12.95 

                                                            Table 2 NMSE Validation 

 

The Sondous dataset represents a synthetic particular case, where we have stepwise variation of 

injection rates and linear variation of BHP; in such conditions CRMs analytical solution is valid and 

parameter optimization can be done using a nonlinear multivariate regression.  

We have compared Deep-CRMs solution to the nonlinear multivariate regression with SLQP [18] 

optimizer. Table 3 shows that Deep-CRMs has an NMSE 13% lower than the analytical solution. This 

proves that even in a very simple case, where we can apply the analytical solution, Deep-CRMs can 

give better results than the analytical solution with a classical optimizer.  

 

 NMSE 

Deep-CRMs 188.37 

Nonlinear Multivariate Regression (NMR) 217.11 

                                    Table 3 NMSE comparison between Deep-CRMs vs NMR 
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   4.3.1.2 Second objective: physical parameter 

 

During the optimization process  Deep-CRMs will update the values of each parameter: function weight 

𝒘, 𝒛  and physical parameter {𝒇𝒊𝒋(𝒊=𝟏..𝑵,𝒋=𝟏..𝑴)
, 𝝉𝒋𝒋=𝟏.𝑴

}. In our case we have used RMSprop optimizer 

to obtain these parameters.  

 

In Table 4 we show the obtained values for the physical parameters: wells connectivity and time 

Constants.   

 

Connectivity  Producer 1 Producer 2 Producer 3 

Injector 1 0.07 0.21 0.22 

Injector 2  0.11 0.36 0.32 

Time Constant (days) 204.35 208.39 211.54 

                                            Table 4 Connectivity and Time Constant 

 

Table 4 shows that, connectivity between Injector 1 and Producer 1 is nearly equal to zero, and the 

connectivity between Injector 2 and Producer 1 is smaller than the connectivity of Injector 2 with other 

producers. These results could confirm the presence of a partially sealing fault separating Producer 1 

from other Injectors.  

 

             4.3.2 Real Dataset 

 

Testing Deep-CRMs on a synthetic dataset shows that Deep-CRMs can satisfy the two objectives: 

forecasting and parameter discovery. However, in real fields we do not necessarily have stepwise 

variation in injection or linear variation in BHP, plus that the rate production is often more complicated 

to model and thus to forecast. To prove the ability of Deep-CRMs we have used a real field dataset 

provided by one of our affiliates.  

 

       4.3.2.1 First objective: forecasting 

 

Figure 12 shows the results of Deep-CRMs on the real dataset. The vertical yellow line separates 60% 

of the data used for training and 40% used for testing. For Producer 3, 4 and 6 the model forecasts are 

quite similar to the real dataset. For Producer 1, Producer 2 and Producer 5 forecasts are affected by the 

high variations (complete and small shut in production rate during training data) in the training data as 

well as in injections and BHP, but still close to the real data. 
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Figure 12 Deep-CRMs 

 

 4.3.2.2 Second objective: physical parameter 

 

Table 4 presents the physical parameter (i.e. connectivity per couple producer-injector) obtained after 

Deep-CRMs optimization. If we observe these results, we can see that in the case where our affiliate 

analysis found a proven, probable, or no-existence connection our model found a coherent connection 

with (Table 1). In Table 4, we recall the conclusions of Table 1. Thus, green colour indicates proven or 

probable connection between injector and producer. The  red colour shows non-existence connection.  

We can remark that the model affects values to connection that were not studied by our affiliate. One 

explanation could be that our model has identified connections that our affiliate did not identify or 

consider not worth to be studied. We still be careful with this explanation and we are waiting the 

feedback of our affiliate to confirm or not such connections.  
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Produce 1 Produce 2 Produce 3 Produce 4  Producer 5  Producer 6 

Injector 1 0.30 0.12 0.03 0.23 0.19 0.09 

Injector 2 0.15 0.07 0.01 0.20 0.35 0.17 

Injector 3 0.21 0.05 0.15 0.0 0.15 0.25 

Injector 4 0.14 0.06 0.12 0.17 0.26 0.23 

Injector 5 0.11 0.19 0.07 0.21 0.24 0.15 

                          Table 5 Computed Connectivity between Producers and Injectors on real dataset 

 

5- Conclusions and future work  

 

In this work, we have presented a new approach called Deep-CRMs to identify CRMs’ parameters and 

to perform production rate forecasting, without the need of any prior assumptions on injections and on 

producers’ bottom hole pressure or a closed form solution as in the state-of-the-art on CRMs. Deep-

CRMs is a fully ANN-based approach, including data preparation and data modelling. Deep-CRMs was 

tested on two datasets: the first is a synthetic dataset, where we have showed that Deep-CRMs can 

explain the underlying geology (e.g. presence of a fault in SONDOUS) and perform better forecasting 

than the analytical solution with nonlinear multivariate regression with the SLSQP [18] optimizer. The 

second dataset is a real field dataset, provided by one of our affiliates, for which Deep-CRMs gave quite 

satisfactory results particularly in terms of forecasting and parameter identification. In this work, 

uncertainty was not treated and was left to future work, but different solutions can be used to get 

uncertainty with Deep-CRM such as Dropout [19] or Bayesian Neural Networks. 
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