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With increasing data availability, causal effects can be evaluated across different data sets, both randomized controlled trials (RCTs) and observational studies. RCTs isolate the effect of the treatment from that of unwanted (confounding) co-occurring effects but they may suffer from unrepresentativeness, and thus lack external validity. On the other hand, large observational samples are often more representative of the target population but can conflate confounding effects with the treatment of interest. In this paper, we review the growing literature on methods for causal inference on combined RCTs and observational studies, striving for the best of both worlds. We first discuss identification and estimation methods that improve generalizability of RCTs using the representativeness of observational data. Classical estimators include weighting, difference between conditional outcome models, and doubly robust estimators. We then discuss methods that combine RCTs and observational data to either ensure uncounfoundedness of the observational analysis or to improve (conditional) average treatment effect estimation. We also connect and contrast works developed in both the potential outcomes literature and the structural causal model literature. Finally, we compare the main methods using a simulation study and real world data to analyze the effect of tranexamic acid on the mortality rate in major trauma patients. A review of available codes and new implementations is also provided.

Introduction

Experimental data, collected through carefully designed and randomized protocols, are usually considered the gold standard approach for assessing the causal effect of an intervention or a treatment on an outcome of interest. In particular, the intensive use of randomized controlled trials (RCTs) grounds the so-called "evidence-based medicine", a keystone of modern medicine. In an RCT, the treatment allocation is under control, ensuring a balanced distribution of treated and control individuals; as a consequence, simple estimators can be used to measure the treatment effect, e.g., with the difference in mean effect between the treated and control individuals [START_REF] Imbens | Causal Inference in Statistics, Social, and Biomedical Sciences[END_REF]. Still, RCTs come with practical drawbacks such as cost and time, but also with methodological issues such as restrictive inclusion/exclusion criteria which can lead to a trial sample that differs markedly from the population potentially eligible for the treatment. Therefore, the findings from RCTs can lack generalizability to a target population of interest. This concern is related to the aim of external validity, central in medical research [START_REF] Concato | Randomized, controlled trials, observational studies, and the hierarchy of research designs[END_REF][START_REF] Rothwell | External validity of randomised controlled trials: "to whom do the results of this trial apply?[END_REF][START_REF] Green | Evaluating the relevance, generalization, and applicability of research issues in external validation and translation methodology[END_REF][START_REF] Frieden | Evidence for health decision making -beyond randomized, controlled trials[END_REF] policy research [START_REF] Martel Garcia | Theory, external validity, and experimental inference: Some conjectures[END_REF][START_REF] Deaton | Understanding and misunderstanding randomized controlled trials[END_REF][START_REF] Deaton | Randomized controlled trials in the field of development: A critical perspective[END_REF][START_REF] Jeong | Assessing External Validity Over Worst-case Subpopulations[END_REF], and other fields such as advertising [START_REF] Gordon | A Comparison of Approaches to Advertising Measurement: Evidence from Big Field Experiments at Facebook[END_REF]. In contrast, observational data -collected without systematically designed interventions, such as disease registries, cohorts, biobanks, epidemiological studies, or electronic health records -are promising as they are readily available, include large and representative samples, and are less costintensive than RCTs. However, there are often concerns about the quality of these "big data", given that the lack of a controlled experimental intervention opens the door to confounding bias. This concern is referred to as a lack of internal validity. Under assumptions such as unconfoundedness it is possible to estimate a causal treatment effect from observational data. In practice, methods such as matching, inverse propensity weighting (IPW), or augmented IPW (AIPW) are used [START_REF] Imbens | Causal Inference in Statistics, Social, and Biomedical Sciences[END_REF]. Even when a confounder is unobserved, solutions exist at the price of additional assumptions, for example the front-door criterion [START_REF] Pearl | Bayesian Analysis in Expert Systems]: Comment: graphical models, causality and intervention[END_REF], instrumental variables [START_REF] Angrist | Identification of causal effects using instrumental variables[END_REF][START_REF] Hernán | Instruments for causal inference: An epidemiologist's dream?[END_REF][START_REF] Imbens | Instrumental variables: an econometrician's perspective[END_REF], and sensitivity analysis [START_REF] Cornfield | Smoking and Lung Cancer: Recent Evidence and a Discussion of Some Questions[END_REF][START_REF] Rosenbaum | Assessing the sensitivity to an unobserved binary covariate in an observational study with binary outcome[END_REF][START_REF] Imbens | Sensitivity to exogeneity assumptions in program evaluation[END_REF]. Combining information gathered from experimental and observational data opens the door to new tools for, a) accounting for the lack of representativeness of RCT, as observational data can constitute an external representative sample of a target population of interest; b) making observational evidence more credible using RCT to ground observational analysis, such as detecting a confounding bias; c) improving statistical efficiency, for example to better estimate heterogeneous treatment effects as RCTs are often under-powered in such settings.

As of today, there is abundant literature about the different ways and purposes of combining both sources of information. Terms used to refer to similar problems are generalizability [START_REF] Cole | Generalizing evidence from randomized clinical trials to target populations: The ACTG 320 trial[END_REF][START_REF] Stuart | The use of propensity scores to assess the generalizability of results from randomized trials[END_REF][START_REF] Hernán | Compound treatments and transportability of causal inference[END_REF][START_REF] Tipton | Improving generalizations from experiments using propensity score subclassification: Assumptions, properties, and contexts[END_REF][START_REF] O'muircheartaigh | Generalizing from unrepresentative experiments: a stratified propensity score approach[END_REF][START_REF] Stuart | Assessing the generalizability of randomized trial results to target populations[END_REF][START_REF] Keiding | Perils and potentials of self-selected entry to epidemiological studies and surveys[END_REF]Dahabreh and Hernán, 2019;Dahabreh et al., 2019b;[START_REF] Buchanan | Generalizing evidence from randomized trials using inverse probability of sampling weights[END_REF][START_REF] Cinelli | Generalizing experimental results by leveraging knowledge of mechanisms[END_REF], representativeness [START_REF] Campbell | Factors relevant to the validity of experiments in social settings[END_REF], external validity [START_REF] Rothwell | External validity of randomised controlled trials: "to whom do the results of this trial apply?[END_REF][START_REF] Stuart | Generalizability of randomized trial results to target populations: Design and analysis possibilities[END_REF][START_REF] Westreich | Target Validity and the Hierarchy of Study Designs[END_REF], transportability [START_REF] Pearl | Transportability of causal and statistical relations: A formal approach[END_REF][START_REF] Rudolph | Robust estimation of encouragement design intervention effects transported across sites[END_REF][START_REF] Westreich | Transportability of trial results using inverse odds of sampling weights[END_REF], recoverability (Bareinboim and Pearl, 2012a;[START_REF] Bareinboim | Recovering from selection bias in causal and statistical inference[END_REF] and finally data fusion [START_REF] Bareinboim | Causal inference and the data-fusion problem[END_REF]; this review will explain the commonalities or differences between the terminologies. They have connections to inference from non-probability samples in survey sampling (Yang et al., 2020a;Yang and Kim, 2020) and to the covariate shift problem in machine learning [START_REF] Sugiyama | Machine Learning in Non-stationary Environments: Introduction to Covariate Shift Adaptation[END_REF]. This problem of data integration for causal inference is tackled by two main bodies of literature, namely the potential outcomes (PO) framework [START_REF] Neyman | Sur les applications de la thar des probabilities aux experiences Agaricales: Essay de principle. English translation of excerpts by Dabrowska, D. and Speed[END_REF][START_REF] Rubin | Estimating causal effects of treatments in randomized and nonrandomized studies[END_REF], and the work on structural causal models (SCM) using directed acyclic graphs (DAGs), pioneered by [START_REF] Pearl | Causal diagrams for empirical research[END_REF] and his collaborators.

The present paper reviews this literature on combining experimental and observational data. Section 2 introduces the notations from the PO literature, as well as the common designs. Section 3 details how an observational sample can be used to generalize RCT findings to another population point (a). We detail the corresponding identifiability assumptions and present the main estimation methods that have been suggested to account for distributional shifts. In this section, only baseline covariates are required in the observational data. In Section 4, we consider the case where observational data also contain treatment and outcome data. This setting in particular provides the opportunity to tackle different scientific questions such as hidden confounding or statistical efficiency (points (b) and (c)). In Section 5, we present the SCM literature, using different notations and ways to formulate assumptions, thus capturing richer and more diverse identifiability scenarios. In Section 6, we first present existing implementations and software and then we illustrate the properties of the generalization estimators on simulated data with new implementations. In Section 7, we apply the various methods presented in Section 3 on a medical application involving major trauma patients. The aim of this study is to assess the effect of the drug tranexamic acid on mortality in head trauma patients. Both an RCT (the CRASH-3 trial) and an observational database (the Traumabase registry) are available. In this section, we also review methods for addressing data quality issues such as missing values.

2 Problem setting

Notations in the PO framework

Each individual in the RCT or observational population is described by (X, Y (0), Y (1), A, S), a random tuple with distribution P , where X is a p-dimensional vector of covariates, A the binary treatment assignment (with A = 0 for the control and A = 1 for the treated individuals), Y (a) is the binary or continuous outcome had the subject been given treatment a (for a ∈ {0, 1}), and S a binary variable indicating trial eligibility and willingness to participate 1 . We model the individuals belonging to an RCT sample of size n and to an observational data sample of size m by n + m independent random tuples: {X i , Y i (0), Y i (1), A i , S i } n+m i=1 , where the RCT samples i = 1, . . . , n are identically distributed according to P (X, Y (0), Y (1), A, S | S = 1), and the observational data samples i = n + 1, . . . , n + m are identically distributed according to P (X, Y (0), Y (1), A, S). The sampling mechanisms of the RCT and observational samples are assumed to be independent, which corresponds to a so-called non-nested design as explained in Section 2.2.1. We also denote R = {1, . . . , n} the set of indices of units observed in the RCT study, and O = {n + 1, . . . , n + m} the set of indices of units observed in the observational study. For each RCT sample i ∈ R, we observe (X i , A i , Y i , S i = 1), while for observational data i ∈ O, we consider two settings: (i) we only observe the covariates X i (Section 3), (ii) we also observe the treatment and outcome (X i , A i , Y i ) (Section 4).

In this review we consider the absolute difference, and do not consider other contrast measures2 . Doing so, we denote respectively by τ (x) and τ 1 (x) the conditional average treatment effect (CATE) in the observational population and the RCT population:

∀x ∈ R p , τ (x) = E[Y (1) -Y (0) | X = x] , τ 1 (x) = E[Y (1) -Y (0) | X = x, S = 1] .
We also denote τ and τ 1 the population average treatment effect (ATE) in the observational population and the RCT one:

τ = E[Y (1) -Y (0)] = E[τ (X)] , τ 1 = E[Y (1) -Y (0) | S = 1] ,
where the population ATE can be different from the RCT ATE, i.e., τ = τ 1 in general. We denote respectively by e(x) and e 1 (x) the propensity score in the observational population and in the RCT population: e(x) = P (A = 1 | X = x) , e 1 (x) = P (A = 1 | X = x, S = 1) , where e 1 (x) is usually known in an RCT. We also denote by µ a (x) and µ a,1 (x) the conditional mean outcome under treatment a ∈ {0, 1} in the observational population and in the RCT population, respectively:

µ a (x) = E [Y (a) | X = x] , µ a,1 (x) = E [Y (a) | X = x, S = 1]
. Finally, we denote by α(x) the conditional odds that an individual with covariates x is in the RCT or in the observational sample:

α(x) = P(i ∈ R | ∃i ∈ R ∪ O, X i = x) P(i ∈ O | ∃i ∈ R ∪ O, X i = x) = π R (x) π O (x) = π R (x) 1 -π R (x)
,

where π R (x) (resp. π O (x)) is the probability that an individual with covariates x known to be in the concatenated data (RCT sample and observational sample) is in the RCT (resp. in the observational sample). In the literature another widely used quantity is the selection score -or sampling propensity score (in particular this name was proposed by [START_REF] Tipton | Improving generalizations from experiments using propensity score subclassification: Assumptions, properties, and contexts[END_REF]) -denoted π S (x) and defined as π S (x) = P(S = 1 | X = x) . Because π S (x) is the probability of being sampled in the trial given covariates values x, it is different from π R (x). π S (x) is often used with a nested design (see Section 2.2.1 for a definition), but is not of interest in our setup (non-nested design) because it cannot be identified. Indeed, π S (x) = P(S = 1) × P(X = x | S = 1) P(X = x) = P(S = 1) × P(

X i = x | i ∈ R) P(X i = x | i ∈ O) = P(S = 1) Not known × n m π R (x) π O (x) = α(x)
.

Detailed derivations can be found in the appendix (see Section C). The quantity P(S = 1) is unknown because, individuals in the target population could have participated in the RCT or not: S can be equal to 1 and 0 in the observational sample but this information is not known. Table 1 illustrates the considered type of data, and Table 2 summarizes the notations.

Table 1: Illustration of data structure of RCT data (Set R) and observational data (Set O) with covariates X, trial eligibility S, binary treatment A and outcome Y . Left: with observed outcomes, Right: with potential outcomes. Note that the S covariate can be either 0 or 1 in the observational data set (it is unknown in the non-nested design, hence the NA for not available), and is always equal to 1 for observations in the RCT. In the nested design (cf. Appendix E), S = 0 for all individuals in the observational data set. 

Covariates

Treatment Outcome S Set X 1 X 2 X 3 A Y 1 1 R 1.1 20 F 1 1 1 R -6 45 F 0 1 n 1 R 0 15 M 1 0 n + 1 NA O . . . . . . . . . NA O -2 52 M 0 1 NA O -1 35 M 1 1 n + m NA O -2 22 M 0 0 Covariates Treatment Outcome(s) S Set X 1 X 2 X 3 A Y (0) Y (1) 1 R 1.1 20 F 1 NA 1 1 R -6 45 F 0 1 NA 1 R 0 15 M 1 NA 1 NA O . . . . . . . . . . . . NA O -2 52 M 0 1 NA NA O -1 35 M 1 NA 1 NA O -2 22 M 0 0 NA
π R (x) Probability that a unit in R ∪ O with covariate x is in R, defined as π R (x) = P(i ∈ R | ∃i ∈ R ∪ O, X i = x) π O (x) Probability that a unit in R ∪ O with covariate x is in O, defined as π O (x) = 1 -π R (x) α(x) Conditional odds α(x) = π R (x)/π O (x) τ Population average treatment effect (ATE) defined as τ = E [Y (1) -Y (0)] τ 1
Trial (or sample) average treatment effect defined as

τ 1 = E [Y (1) -Y (0) | S = 1] τ (x) Conditional average treatment effect (CATE) defined as τ (x) = E [Y (1) -Y (0) | X = x] τ 1 (x)
Trial conditional average treatment effect defined as

τ 1 (x) = E [Y (1) -Y (0) | X = x, S = 1] e(x)
Propensity score defined as e(x)

= P(A = 1 | X = x) e 1 (x)
Propensity score in the trial defined as e 1 (x) = P (A = 1 | X = x, S = 1), known by design µa(x) Outcome mean defined as µa

(x) = E [Y (a) | X = x] for a = 0, 1 µ a,1 (x)
Outcome mean in the trial defined as µ a,1

(x) = E [Y (a) | X = x, S = 1] for a = 0, 1 π S (x) Selection score defined as π S (x) = P (S = 1 | X = x) f (X)
Covariate distribution in the target population

f (X|S = 1)
Covariate distribution conditional to trial-eligible individuals (S = 1)

Study designs and goals

Nested and non-nested study designs

Following Dahabreh et al. (2019a) and Dahabreh and Hernán (2019), the study design to obtain the trial and observational samples can be categorized into two types: nested study designs and nonnested study designs as illustrated on Figure 1. Designs imply different identifiability conditions and therefore estimators. This review focuses on what is called the non-nested design, as the trial sample and the observational sample are obtained separately. On the contrary the nested design involves a two-stage nested sampling. For example it can correspond to an embedded trial in a broader health system. As a concrete example one can mention the Women Health Initiative, or the recent study on Medicaid where part of the participants are randomized [START_REF] Degtiar | Conditional cross-design synthesis estimators for generalizability in medicaid[END_REF]. In this situation, data are not really combined as the overall data comes from one initial sampling in which two treatment assignment regimes (randomized or not) coexist. The nested design estimators are detailed in Appendix E.

Step1: Get a total sample of size n+m from the target population

Step2:

-select a subsample for trial -remaining sample used in parallel observational study . . 

Transportability, generalizability, and recoverability

Several terms are currently present in the literature to describe the process of predicting the effect of the treatment from an RCT to another population: generalization [START_REF] Stuart | The use of propensity scores to assess the generalizability of results from randomized trials[END_REF][START_REF] Buchanan | Generalizing evidence from randomized trials using inverse probability of sampling weights[END_REF]Dahabreh et al., 2019b), transportability [START_REF] Hernán | Compound treatments and transportability of causal inference[END_REF][START_REF] Bareinboim | Causal inference and the data-fusion problem[END_REF][START_REF] Westreich | Transportability of trial results using inverse odds of sampling weights[END_REF], or recoverability [START_REF] Bareinboim | Recovering from selection bias in causal and statistical inference[END_REF]. Differences in the definitions can be found in the literature, underlying a specific design such as the existence of a common superpopulation or assumptions such as the support overlap between different populations. For example, Dahabreh et al. (2020a) highlights that several definitions are given,

We use the term generalizability when the target population coincides or is a subset of the trial-eligible population and transportability when the target population includes at least some individuals who are not trial-eligible (and who, by definition, cannot be trial participants) (others have proposed different definitions).

Due to different definitions in the literature, several terms can be found to describe the same scientific goal. In this review, we call generalization the task that extends the RCT result to its larger population, where it was sampled with a bias (detailed in Section 3). The SCM literature also uses different terminologies corresponding to different assumptions -and corresponding diagrams-as detailed in Section 5. For example what is called transportability refers to two distinct populations, and not necessarily about different covariate supports as suggested by Dahabreh et al. (2020a).

In particular, in this literature the task that we study in Section 3 is termed recoverability from a sampling bias, rather than generalization. This terminology has the merit of indicating that generalization can have a much broader coverage, including other types of problems. Note that granting some assumptions about a common support or non-zero probability to be sampled, then the two problems -namely recovering from a sampling bias and transportability -rely on the same estimators and procedure, as highlighted in Section 3.1.3 and in [START_REF] Pearl | Generalizing experimental findings[END_REF].

When observational data have no treatment and outcome information

We start by considering the case where only the covariates from the observational study are available or used. We consider the observational data as a random sample from the target population.

Considering this set-up, the question tackled in this section is how to generalize or transport the trial findings toward a target population of interest. Applied examples can be found in [START_REF] Lee | Improving trial generalizability using observational studies[END_REF]; [START_REF] Lesko | The effect of antiretroviral therapy on all-cause mortality, generalized to persons diagnosed with HIV in the USA, 2009-11[END_REF]; [START_REF] Tipton | Implications of small samples for generalization: Adjustments and rules of thumb[END_REF]; [START_REF] Li | Generalizing trial evidence to target populations in non-nested designs: Applications to aids clinical trials[END_REF]; Yang and Wang (2022). In particular [START_REF] He | Clinical trial generalizability assessment in the big data era: A review[END_REF] review current practice, revealing that generalization's implementation is still at the stage of prototyping without real usage for clinical and public health decisions yet.

Assumptions needed to identify the ATE on the target population

A fundamental problem in causal inference is that we can observe at most one of the potential outcomes for an individual subject. In order to identify nonetheless the ATE from RCT and observational covariate data, we require some of the following assumptions.

Internal validity of the RCT

Assumption 1 (Consistency). Y = A Y (1) + (1 -A) Y (0).
Assumption 1 implies that the observed outcome is the potential outcome under the actual assigned treatment.

Assumption 2 (Randomization).

{Y (0), Y (1)} ⊥ ⊥ A | S = 1, X
Assumption 2 corresponds to internal validity. It holds by design in a completely randomized experiment, where the treatment is independent of all the potential outcomes and covariates. The more general case of conditional randomization is assumed throughout this review.

If Assumptions 1 and 2 hold, then the RCT is said to be compliant. In addition, in an RCT, it is common that the probability of treatment assignment, e 1 (x), is known. In a complete randomized trial, the propensity score is fixed as a constant, and usually e 1 (x) = 0.5 for all x.

Assumptions ensuring generalizability of the RCT to the target population

The literature proposes different assumptions to generalize trial's findings to a target population.

Assumption 3 (Ignorability assumption on trial participation). {Y (0), Y (1)} ⊥ ⊥ S | X. [START_REF] Hotz | Predicting the efficacy of future training programs using past experiences at other locations[END_REF][START_REF] Stuart | The use of propensity scores to assess the generalizability of results from randomized trials[END_REF][START_REF] Tipton | Improving generalizations from experiments using propensity score subclassification: Assumptions, properties, and contexts[END_REF][START_REF] Hartman | From sample average treatment effect to population average treatment effect on the treated: combining experimental with observational studies to estimate population treatment effects[END_REF][START_REF] Buchanan | Generalizing evidence from randomized trials using inverse probability of sampling weights[END_REF][START_REF] Degtiar | A review of generalizability and transportability[END_REF][START_REF] Egami | Covariate selection for generalizing experimental results: Application to large-scale development program in uganda[END_REF] A parallel can be made with the strong ignorability condition in causal inference with observational data (see Assumption S1 in Appendix), but applied to the sample selection rather than treatment assignment. In other words, these assumptions require to control for all covariates being shifted and predictive of Y . We call shifted covariates, all the baseline covariates along which the two populations -trial and target -do not follow the same distribution. A weaker version of Assumption 3 can be found in Dahabreh et al. (2019bDahabreh et al. ( , 2020a)):

Assumption 4 (Mean exchangeability). E[Y (a) | X = x, S = 1] = E[Y (a) | X = x]
(mean exchangeability over trial participation), for all x and a = 0, 1.

Another assumption can be found, relying on the transportability of treatment effect rather than the potential outcomes.

Assumption 5 (Sample ignorability for treatment effects - [START_REF] Kern | Assessing methods for generalizing experimental impact estimates to target populations[END_REF]; [START_REF] Nguyen | Sensitivity analyses for effect modifiers not observed in the target population when generalizing treatment effects from a randomized controlled trial: Assumptions, models, effect scales, data scenarios, and implementation details[END_REF]).

Y (1) -Y (0) ⊥ ⊥ S | X.
A weaker version can be found:

Assumption 6 (Transportability of the CATE). τ 1 (x) = τ (x) for all x.

To meet these last two assumptions, one requires variables that are both treatment effects modifiers and shifted. Epidemiologists often use the term "effect modification" to indicate that the treatment effect varies across strata of baseline covariates, such baseline covariates being treatment effect modifiers. These assumptions are implied by Assumption 3, but this is not reciprocal as all covariates predictive of the outcome are not necessarily treatment effect modifiers. Note that a treatment effect modifier depends on the chosen scale, here we focus on the absolute difference, but if we had considered a risk ratio the variables being treatment effects modifiers would not be the same. Mathematical definitions of a treatment effect modifier are hard to find, but we quote one from VanderWeele and [START_REF] Vanderweele | Four types of effect modification: a classification based on directed acyclic graphs[END_REF] for the absolute scale.

Definition 1 (Treatment effect modifier). We say that a variable X is a treatment effect modifier for the causal risk difference of A on Y if X is not affected by A and if there exist two levels of A, a 0 and a 1 , such that E Y

(a1) | X = x -E Y (a0) | X = x is not constant in x.
In this work, we only rely on Assumption 5 for identification formula. Finally a last assumption is needed, the positivity of trial participation assumption.

Assumption 7 (Positivity of trial participation, also called overlap). There exists a constant c > 0 such that, almost surely, P(S = 1 | X) ≥ c.

Assumption 7 requires adequate overlap of the covariate distribution between the trial sample and the target population (in other words, all members of the target population have non-zero probability of being selected into the trial). Other formulation of this assumption can be found under the assumption of the target population's support included in the trial sample support [START_REF] Nie | Covariate balancing sensitivity analysis for extrapolating randomized trials across locations[END_REF][START_REF] Colnet | Reweighting the rct for generalization: finite sample analysis and variable selection[END_REF] 

Identifications formulas

Under Assumptions 1, 2, 6, and 7 the ATE can be identified based on the following formulas (derivations in Appendix C): a) Reweighting formulation:

τ = E n mα(X) τ 1 (X) | S = 1 = E n mα(X) A e 1 (X) - 1 -A 1 -e 1 (X) Y | S = 1 . (1)
Note that Equation 1 can be understood as a transportability problem considering two distributions P 1 and P , and transporting evidence from population P 1 to population P ,

τ = E P [τ (X)] = X τ (x) f (x) dx Integral on P = X τ 1 (x) f (x) f 1 (x) f 1 (x) dx Integral on P1 = X τ 1 (x) n m 1 α(x) f 1 (x) dx,
noting that α(x) = P (i∈R|∃i∈R∪O,Xi=x) P (i∈O|∃i∈R∪O,Xi=x) = P (i∈R) P (i∈O) × P (Xi=x|i∈R)

P (Xi=x|i∈O) = n m × f1(x) f (x)
, and using the transportability assumption (see Assumption 6) stating that τ (x) = τ 1 (x). b) Regression formulation:

τ = E [µ 1,1 (X) -µ 0,1 (X)] = E [τ 1 (X)] . (2) 
Different identification formulas motivate different estimation strategies as discussed next. These strategies are illustrated in Figure 2.

Estimation methods to generalize trial findings to a target population of interest

All along this review, estimators are indexed with the number of observations used for estimation. For example, τn indicates that the finite sample estimator only relies on the RCT individuals, or τn,m if it depends on both data sets.

IPSW and stratification: modeling the probability of trial participation

To overcome the bias due to covariate shift between populations, most existing methods rely on direct modeling of the selection score previously introduced. The selection score adjustment methods include IPSW [START_REF] Cole | Generalizing evidence from randomized clinical trials to target populations: The ACTG 320 trial[END_REF][START_REF] Stuart | The use of propensity scores to assess the generalizability of results from randomized trials[END_REF][START_REF] Lesko | Generalizing study results: a potential outcomes perspective[END_REF][START_REF] Buchanan | Generalizing evidence from randomized trials using inverse probability of sampling weights[END_REF][START_REF] Colnet | Reweighting the rct for generalization: finite sample analysis and variable selection[END_REF] and stratification [START_REF] Stuart | The use of propensity scores to assess the generalizability of results from randomized trials[END_REF][START_REF] Tipton | Improving generalizations from experiments using propensity score subclassification: Assumptions, properties, and contexts[END_REF][START_REF] O'muircheartaigh | Generalizing from unrepresentative experiments: a stratified propensity score approach[END_REF].

Inverse probability of sampling weighting (IPSW). The IPSW approach can be seen as the counterpart of IPW methods for estimating the ATE from observational studies by controlling for confounding (see Appendix B for details on IPW). Based on the identification formula (1), the IPSW estimator of the ATE is defined as the weighted difference of average outcomes between the treated and control group in the trial. The observations are weighted by the inverse odds 1/α(x) = π O (x)/π R (x) to account for the shift of the covariate distribution from the RCT sample

IPSW G-formula

Figure 2: Illustrative schematics for the estimation strategies: On this drawing the trial findings τ1,n would over-estimate the target treatment effect τ (on an absolute scale). On the left, the IPSW (Definition 2) strategy, relying on weighting the RCT observations; on the right, the plug-in g-formula (Definition 4) strategy, relying on modeling the response using the RCT observations. Notations are the same as introduced in Table 2, i.e., f X (f X|S=1 ) denotes the density of the target (resp. trial) population, and μa,n(•) denotes the fitted response surface using the n trial observations.

to the target population. The larger α(X i ), the smaller the weight of the observation i (as illustrated on Figure 2). The shape of the IPSW estimator is slightly different from the shape of the IPW estimator. In the latter, each observation is weighted by the inverse of the probability to be treated whereas in the former it is weighted by the inverse of the odds of the probability to be in the trial sample. This is due to the non-nested sampling design (see the IPSW estimator for the nested design (S5)), as highlighted by [START_REF] Kern | Assessing methods for generalizing experimental impact estimates to target populations[END_REF] and [START_REF] Nguyen | Sensitivity analyses for effect modifiers not observed in the target population when generalizing treatment effects from a randomized controlled trial: Assumptions, models, effect scales, data scenarios, and implementation details[END_REF].

Definition 2 (Inverse probability of sampling weighting -IPSW). The IPSW estimator is defined as follows:

τIPSW,n,m = 1 n n i=1 n m Y i αn,m (X i ) A i e 1 (X i ) - 1 -A i 1 -e 1 (X i ) ,
where αn,m is an estimate of the odds of the indicatrix of being in the RCT.

The IPSW estimator is consistent when the quantity α is consistently estimated by αn,m [START_REF] Buchanan | Generalizing evidence from randomized trials using inverse probability of sampling weights[END_REF]Colnet et al., 2022a). In practice, various methods are used to estimate α: for e.g. by logistic regression [START_REF] Stuart | Matching methods for causal inference: A review and a look forward[END_REF], while recent works rely on non-parametric methods such as random forest and Gradient boosting [START_REF] Kern | Assessing methods for generalizing experimental impact estimates to target populations[END_REF] or Hájek-style estimator to target the density ratio [START_REF] Huang | Leveraging population outcomes to improve the generalization of experimental results[END_REF][START_REF] Nie | Covariate balancing sensitivity analysis for extrapolating randomized trials across locations[END_REF]. Similar to IPW estimators, IPSW estimators are known to be highly unstable, especially when the weights are extreme. This can occur if the observational study contains units with very small probabilities of being in the trial. Normalized weights can be used to overcome this issue (Dahabreh and Hernán, 2019). Still, the major challenge remains that IPSW estimators require a correct model specification of the weights. Avoiding this problem requires either very strong domain expertise or turning to doubly robust methods (Section 3.2.4). Current theoretical guarantees and theorems are detailed in Appendix (see Section D). For example [START_REF] Buchanan | Generalizing evidence from randomized trials using inverse probability of sampling weights[END_REF] propose a derivation of the asymptotic variance under parametric assumptions in the nested case, while [START_REF] Zivich | Delicatessen: M-estimation in python[END_REF] extends this to a non-nested design. Dahabreh et al. (2019b) propose the use of sandwich-type variance estimators (for both nested and non-nested design) or non-parametric bootstrap approaches, and note that the latter may be preferred in practice. Colnet et al. (2022a) has formalized consistency results for any consistent estimator of α, including non-parametric estimators.

Assumption 8 (Consistency assumptions for α). Denoting by n m αn,m(x) the estimated weights on the set X, the following conditions hold,

• sup x∈X | n m αn,m(x) -f X (x) f X|S=1 (x) | = n,m a.s.
-→ 0 , when n, m → ∞,

• for all n, m large enough E[ε 2 n,m ] exists and E[ε 2 n,m ] a.s.

-→ 0 , when n, m → ∞,

• Y is square integrable. [START_REF] Cochran | The effectiveness of adjustment by subclassification in removing bias in observational studies[END_REF]).

In the trial, for each strata l one has to compute the average effect on this strata defined as Y (1) l -Y (0) l , where Y (a) l denotes the average value of the outcome for units with treatment a in stratum l in the RCT. The generalized ATE is defined by the aggregation of the treatment effect estimates on each strata l weighted by the proportion of the strata in the target population m l m , where m l is the number of individuals in strata l in the target sample.

Definition 3 (Stratification). The stratification estimator denoted τstrat,n,m is defined as,

τstrat,n,m = L l=1 m l m Y (1) l -Y (0) l from RCT
. [START_REF] Buchanan | Generalizing evidence from randomized trials using inverse probability of sampling weights[END_REF] has proposed asymptotic normality result for this estimator. Theoretical results for the stratification estimator are detailed in the appendix (Section D).

Plug-in g-formula estimators: modeling the conditional outcome in the trial

Other estimators to generalize RCT findings to a target population leverage the regression formulation (2), in the inspiration of [START_REF] Robins | A new approach to causal inference in mortality studies with a sustained exposure period-application to control of the healthy worker survivor effect[END_REF]. Known as plug-in g-formula estimators, they fit a model of the conditional outcome mean among trial participants, rather than modeling the probability of trial participation (as illustrated on Figure 2). Then a marginalization is done over the empirical covariate distribution of the target population.

Definition 4 (Plug-in g-formula). The plug-in g-formula (or outcome model-based) estimator is then defined as:

τG,n,m = 1 m n+m i=n+1 (μ 1,1,n (X i ) -μ0,1,n (X i )) ,
where μa,1,n (X i ) is an estimator of µ a,1 (X i ) fitted using the RCT data.

In practice, any model can be use to fit µ a,1 (X i ), for e.g. standard ordinary least squares (OLS). Dahabreh et al. (2020a) announce3 consistency of the plug-in g-formula for parametric estimator of the response model µ a (X). Note that derivations are made in the context of a nested design but said to extend to a non-nested design. They also recommend the use of sandwich-type variance for confidence intervals estimation when correctly specified parametric models are used. Machinelearning algorithms such as random forests can also be used to estimate µ a,1 (X i ) [START_REF] Kern | Assessing methods for generalizing experimental impact estimates to target populations[END_REF].

As shown by Colnet et al. (2022a) if the model is correctly specified (see Assumption 9 below), the estimator is consistent.

Assumption 9 (Consistency of surface response estimators). Denote μ0,n (respectively μ1,n ) an estimator of µ 0 (respectively µ 1 ). Let D n the RCT sample, so that

For a ∈ {0, 1}, E [|μ a,n (X) -µ a (X)| | D n ] p → 0 when n → ∞, For a ∈ {0, 1}, there exist C 1 , N 1 so that for all n N 1 , a.s., E[μ 2 a,n (X) | D n ] C 1 .
Theorem 2 (Consistency of the plug-in g-formula - Colnet et al. (2022a)). Under causal assumptions (Assumptions 1, 2, 6, 7), and Assumption 9 the plug-in g-formula converges toward

τ in L 1 norm, τG,n,m L 1 -→ n,m→∞ τ.

Calibration weighting: balancing covariates

Beyond propensity scores, other schemes use sample reweighting. [START_REF] Lee | Improving trial generalizability using observational studies[END_REF] propose a calibration weighting approach, similar to the idea of entropy balancing weights introduced by Hainmueller (2012). They calibrate subjects in the RCT sample in such a way that after calibration, the covariate distribution of the RCT sample empirically matches the target population.

Definition 5 (Calibration weighting -CW). Let g(X) be a vector of functions of X to be calibrated, e.g., the moments, interactions, and non-linear transformations of components of X. Then, assign a weight ω i to each subject i in the RCT sample by solving the following optimization problem: )] from the observational sample. Based on the calibration weights, the CW estimator is then

min ω1,...,ωn n i=1 ω i log ω i , subject to ω i ≥ 0, for all i, n i=1 ω i = 1, n i=1 ω i g(X i ) = g, (the balancing constraint) where g = m -1 m+n i=n+1 g(X i ) is a consistent estimator of E[g(X
τCW,n,m = n i=1 ωn,m (X i )Y i A i e 1 (X i ) - 1 -A i 1 -e 1 (X i ) ,
where ωn,m (.) is the estimated ω(.) using the RCT and observational data.

The optimization problem in Definition 5 corresponds to the negative entropy of the calibration weights; thus, minimizing this criterion ensures that the empirical distribution of calibration weights is not too far away from the uniform distribution. This aims at minimizing the variability due to heterogeneous weights. This optimization problem can be solved using convex optimization with Lagrange multipliers. For an intuitive understanding of the calibration weighting framework, consider g(X) = X. In such a setting, the balancing constraint is forcing the means of the observational data and of the RCT to be equal after reweighting. More complex constraints can enforce balance on higher-order moments. The calibration algorithm is inherently imposing a log-linear model on the sampling propensity score and solving the corresponding parameters by a set of estimating equations induced by covariate balance. Other objective functions of the weights correspond to different models for the sampling propensity score [START_REF] Chu | Targeted optimal treatment regime learning using summary statistics[END_REF]. [START_REF] Wu | Transfer learning of individualized treatment rules from experimental to real-world data[END_REF] propose a cross-validation procedure to select the calibration weights that target at the smallest mean squared error of the resulting estimator. The CW estimator τCW,n,m is doubly robust in that it is a consistent estimator for τ if the selection score of RCT participation follows a log-linear model, i.e., π S (X) = exp{η 0 g(X)} for some η 0 , or if the CATE is linear in g(X), i.e., τ (X) = γ 0 g(X), though not necessarily both. The authors suggest a bootstrap approach to estimate its variance.

Doubly-robust estimators

The model for the expectation of the outcomes among randomized individuals (used for the plug-in g-formula estimator in Definition 4) and the model for the probability of trial participation (used in the IPSW estimator in Definition 2) can be combined to form an Augmented IPSW estimator (AIPSW).

Definition 6 (Augmented IPSW -AIPSW). The augmented IPSW estimator, denoted τAIPSW,n,m , is defined as

τAIPSW,n,m = 1 n n i=1 n m αn,m (X i ) A i (Y i -μ1,1,n (X i )) e 1 (X i ) - (1 -A i ) (Y i -μ0,1,n (X i )) 1 -e 1 (X i ) + 1 m m+n i=n+1 (μ 1,1,n (X i ) -μ0,1,n (X i )) ,
where μa,1, are estimated on the RCT sample (see Definition 4), and αn,m (see Definition 2) on the concatenated RCT and observational samples.

It can be shown that this estimator is doubly robust, i.e., consistent when either one of the two models for αn,m (•) and µ a,1 (•) (a = 0, 1) is correctly specified. Dahabreh et al. (2020a) has proposed a proof in the nested-case (see their appendix, Section A) said to follow the same principle in the non-nested design (Section B page 25). In the plain text we recall the results from Colnet et al. (2022a).

Assumption 10 (Consistency assumptions -AIPSW). The nuisance parameters are bounded, and more particularly

• There exists a function α 0 bounded from above and below (from zero), satisfying

lim m,n→∞ sup x∈X n mα n,m (x) - 1 α 0 (x) = 0,
• There exist two bounded functions ξ 1 , ξ 0 : X → R, such that ∀a ∈ {0, 1},

lim n→+∞ sup x∈X |ξ a,1 (x) -μa,1,n (x)| = 0.
Theorem 3 (AIPSW consistency - Colnet et al. (2022a)). Assuming causal assumptions (Assumptions 1, 2, 6, 7), and Assumption 10 (consistency), and considering that estimated surface responses μa,1,n (.) where a ∈ {0, 1} are obtained following a cross-fitting estimation, then if Assumption 9 or Assumption 8 also holds then, τAIPSW,n,m converges toward

τ in L 1 norm, τAIPSW,n,m L 1 -→ n,m→∞ τ.
This estimator is also shown to be asymptotically normal when both the outcome mean and conditional odds model are consistently estimated at least at rate n 1/4 in Dahabreh and Hernán (2019) and Li et al. (2021b). Note that machine-learning tools are tempting to avoid model misspecification when estimating nuisance parameters. Still, this practice requires specific caution, such as using cross-fitting, due to overfitting and regularization. These issues are well described in the situation of a single observational data set. We refer to [START_REF] Chernozhukov | Double/debiased machine learning for treatment and structural parameters[END_REF] for a detailed explanation, and to [START_REF] Zhong | Aipw: An r package for augmented inverse probability weighted estimation of average causal effects[END_REF]; [START_REF] Bach | DoubleML -An object-oriented implementation of double machine learning in R[END_REF][START_REF] Bach | DoubleML -An object-oriented implementation of double machine learning in Python[END_REF] for implementations.

More recently, [START_REF] Lee | Improving trial generalizability using observational studies[END_REF] propose an augmented calibration weighting (ACW) estimator.

Definition 7 (Augmented CW -ACW). The ACW estimator, denoted τACW,n,m , is defined as

τACW,n,m = n i=1 ωn,m (X i ) A i (Y i -μ1,1,n (X i )) e 1 (X i ) - (1 -A i ) (Y i -μ0,1,n (X i )) 1 -e 1 (X i ) + 1 m m+n i=n+1 (μ 1,1,n (X i ) -μ0,1,n (X i )),
where the estimation of ωn,m (.) is detailed in Definition 5, and where μa,1,n are estimated on the RCT sample (see Definition 4).

They show that τACW,n,m achieves double robustness and local efficiency, i.e., its asymptotic variance achieves the semiparametric efficiency bound when both the calibration weights and the outcome mean model are correctly specified. Moreover, the convergence rate of the ACW estimator corresponds to the product of the convergence rates of the nuisance estimators, enabling the use ofmachine-learning estimation of nuisance functions while preserving the √ n-consistency of the ACW estimator, when both the outcome mean and calibration weights model are consistently estimated at rate n 1/4 [START_REF] Lee | Improving trial generalizability using observational studies[END_REF]. Furthermore, [START_REF] Lee | Doubly robust estimators for generalizing treatment effects on survival outcomes from randomized controlled trials to a target population[END_REF] and [START_REF] Lee | Transporting survival of an HIV clinical trial to the external target populations[END_REF] extend the framework for handling survival outcomes.

Practical issues: non-parametric estimation, overlap and unobserved covariates

Lack of overlap. The overlap assumption (see Assumption 7) is restrictive because RCT inclusion and exclusion criteria can be strict as the goal of RCTs (at least in early stages) is to show a clear effect even on a restricted population. Whenever Assumption 7 does not hold, it is still possible to generalize on a different target population, such as the subset of the target population for which eligibility criteria of the trial are ensured. This has also been suggested before, for e.g. by Tipton (2013) (p.245). The question asked would rather be "What would have been the estimated treatment effect in a situation where the trial has sampled individuals from the target population who meet the trial eligibility criteria?". Another approach has been proposed by [START_REF] Chen | A generalizability score for aggregate causal effect[END_REF]. Similarly to the idea of trimming propensity scores for dealing with limited overlap between treated and control groups, they propose a generalizability score: a function of participation probability and propensity score, to select subpopulations from the observational data for causal generalization when the overlap is limited.

Unobserved treatment effect modifiers. Finally, we point out the important caveat that all methods assume the ignorability conditions (see Assumptions 3, 4, 5, or 6): given the covariates X, the conditional treatment effect must be the same in the observational data and the RCT. In particular, this assumption could be violated if some shifted treatment effect modifiers are not captured in the concatenated data, which is a plausible scenario given that data are seldom collected jointly and thus typically measure different covariates. In case of a richer set of covariates in the RCT than in the observational study (which doesn't necessarily mean that a sufficient set of pre-treatment covariates can be chosen, see for e.g. M-bias, see [START_REF] Pearl | Causality: Models, Reasoning, and Inference[END_REF], page 186), [START_REF] Egami | Covariate selection for generalizing experimental results: Application to large-scale development program in uganda[END_REF] propose a method to select a sufficient set of covariates. But in the case of a low number of common covariates, standard practice is to consider the subset of covariates present in both data sets, but this violates the identifiability condition. Recently, sensitivity analyses have been proposed to mitigate the consequences of missing covariates in the RCT, or in the observational sample or even in both data sets [START_REF] Nguyen | Sensitivity analysis for an unobserved moderator in rct-to-target-population generalization of treatment effects[END_REF][START_REF] Andrews | A simple approximation for evaluating external validity bias[END_REF][START_REF] Nguyen | Sensitivity analyses for effect modifiers not observed in the target population when generalizing treatment effects from a randomized controlled trial: Assumptions, models, effect scales, data scenarios, and implementation details[END_REF][START_REF] Dahabreh | Sensitivity analysis using bias functions for studies extending inferences from a randomized trial to a target population[END_REF]Colnet et al., 2022a;[START_REF] Nie | Covariate balancing sensitivity analysis for extrapolating randomized trials across locations[END_REF][START_REF] Huang | Sensitivity analysis in the generalization of experimental results[END_REF].

When observational data contain treatment and outcome information

Section 3 studied how to correct RCT selection bias (with respect to the target population) while leveraging covariate distribution of an observational sample. When the observational sample also contains treatment and outcome information (Y, A), efficiency improvements can be obtained [START_REF] Huang | Leveraging population outcomes to improve the generalization of experimental results[END_REF]. But beyond the generalization question, such additional covariates enable different questions of interest. These questions are the purpose of Section 4. Indeed, RCTs can make causal conclusions from the observational sample more trustworthy, either by removing confounding bias (detailed in Section 4.1) or via more efficient estimation (detailed in Section 4.2). For completeness, we recall in Appendix B how to perform causal inference from purely observational data.

Dealing with unmeasured confounders in observational data

Motivation. Unmeasured confounding implies that {Y (1), Y (0)} ⊥ ⊥ A | X, where X are the observed covariates. In such situations, standard causal inference estimators τ O m (x) (resp. τ O m ) of the CATE τ (X) (resp. ATE τ ), that are designed for purely observational data of size m, face a so-called hidden confounding bias for these quantities, i.e.,

lim m→+∞ τ O m (x) = τ (x), and lim m→+∞ τ O m = τ.
In practice, former RCTs can be used as negative controls4 , to ensure the observational study does not suffer from confounding. For example, in a recent observational study on a COVID-19 vaccine, [START_REF] Dagan | Bnt162b2 mrna covid-19 vaccine in a nationwide mass vaccination setting[END_REF] use such approachto ensure that previous trial results conclusion could be retrieved. When confounding remains, solutions such as sensitivity analysis have been developed to handle such situations [START_REF] Rosenbaum | Sensitivity to hidden bias[END_REF][START_REF] Imbens | Sensitivity to exogeneity assumptions in program evaluation[END_REF], but they typically rely on sensitivity parameters which are difficult to set. Including additional experimental data brings interesting promises to handle such identification bias. Recent works described below propose to use an RCT to ground the observational analysis and debias the estimator that would be obtained on purely confounded observational data.

Using an assumption on secondary outcomes or surrogates. The use of surrogate outcomes arises in different contexts, for example in clinical studies [START_REF] Prentice | Surrogate endpoints in clinical trials: definition and operational criteria[END_REF][START_REF] Begg | On the use of surrogate end points in randomized trials[END_REF], where it may be difficult to observe long-term outcomes, e.g., the effect of early childhood medical or economic interventions. Athey et al. (2020a,b) observe that the effect of class size reduction leads to a decrease in children 3 rd grades in the observational data, while a famous RCT, the Tennessee Student/Teacher Achievement Ratio (STAR) study [START_REF] Krueger | Experimental estimates of education production functions[END_REF], concludes on a positive effect. This difference could come from the fact that the two populations are different, but they assume the apparent difference can be entirely explained by confounding5 . In their set-up, they consider two outcomes, a primary long-term outcome Y 1 st (8 th grades) and a secondary short-term outcome Y 2 nd (3 rd grades). The RCT contains information on the surrogate but not the long-term outcome while this is the opposite for the observational sample. Their central assumption to recover identifiability is called latent unconfoundedness, i.e.,

A ⊥ ⊥ Y 1 st (a) | Y 2 nd (a), i ∈ R, , for a = 0, 1,
which corresponds to the assumption that hidden confounders violating identification of the effect on Y 1 st are the same than for Y 2 nd . In other words, their method consists in adjusting the estimates of the treatment effects on the primary outcome using the differences observed on the secondary outcome. Their assumptions can be understood as a missing data problem, i.e., the missing data in theprimary outcomes are missing at random in the concatenated data [START_REF] Rubin | Inference and missing data[END_REF]. For estimation, they suggest three methods, namely, i) imputing the missing primary outcome in the RCT, ii) weighting the units in the observational sample, and iii) using control function methods.

Deconfound using the bias/confounding function. [START_REF] Kallus | Removing hidden confounding by experimental grounding[END_REF] propose to use an RCT sample to deconfound the CATE estimated on a single observational data set, denoted τ O m (x). Due to possible unmeasured confounding, τ O m (x) may be biased for τ (x), that is η(x) = 0 where η(x) := τ (x) -τ O m (x) is the bias function. To correct for this bias, they assume they have at hand a narrow RCT (as it is usually the case with strict eligibility criteria in trial) with high internal validity, and with covariate support included in the observational sample support. Given that τ O m (x) is obtained from the observational data, one can estimate η(•) on the common support between the RCT and the observational data using the (unconfounded) RCT data. Another assumption is required, being that the bias can be well approximated by a function with low complexity, e.g., a linear function of the covariates x: η(x) = θ T x. [START_REF] Kallus | Removing hidden confounding by experimental grounding[END_REF] then propose to estimate the bias as ηm,n (x) = θT m,n x by solving the following minimization:

θm,n = argmin η n i=1 Y * i -τ O m (X i ) -η(X i ) 2 = argmin θ n i=1 Y * i -τ O m (X i ) -θ T X i 2 ,
where

Y * i = e(X i ) -1 A i -{1 -e(X i )} -1 (1 -A i ) Y i , which satisfies E[Y * i | X i ] = τ (X i ).
Note that the linear assumption guarantees the validity of the framework even if the observational data does not fully overlap with the experimental data as the bias, i.e, the confounding error is assumed to be extrapolable. Finally, τm,n (x) = τ O m (x) + ηm,n (x) is the estimated conditional average treatment effect. They prove that under conditions of parametric identification of η, τm,n (x) is a consistent estimate of τ (x) which converges at a rate governed by the rate of estimating [START_REF] Yang | Improved inference for heterogeneous treatment effects using real-world data subject to hidden confounding[END_REF] proposed another approach. Rather than η(x), they consider what they call the confounding function λ(x),

E[τ O m (x)] by τ O m (x). More recently,
λ(x) = E[Y (0) | A = 1, X = x] -E [Y (0) | A = 0, X = x] ,
summarizing the impact of unmeasured confounders on the potential outcome distribution between the treated and untreated patients. In the absence of unmeasured confounding, λ(x) is zero for any x ∈ X , while if there is unmeasured confounding, λ(x) = 0 for some x. Assuming a parametric model assumption for the CATE τ (x) := τ ϕ0 (x) with ϕ 0 ∈ R p1 , and for λ(x) := λ φ0 (x) with φ 0 ∈ R p2 , the coupling of RCT and observational data allows identifiability of τ (x) and λ(x). The key insight is to introduce the following random variable

H ψ0 = Y -τ ϕ0 (X)A -(1 -S)λ φ0 (X){A -e(X)} ,
where ψ 0 = (ϕ T 0 , φ T 0 ) T is the full vector of model parameters in the CATE and confounding function, and where here S = 1 (resp. S = 0) denotes trial participation (resp. observational study participation). By separating the treatment effect τ ϕ0 (X)A and (1 -S)λ φ0 (X){A -e(X)} from the observed Y , H ψ0 mimics the potential outcome Y (0). They then derive the semiparametric efficient score of ψ 0 :

S ψ0 (V ) = ∂τϕ 0 (X) ∂ϕ0 ∂λ φ 0 (X) ∂φ0 (1 -S) σ 2 S (X) -1 (H ψ0 -E [H ψ0 | X, S]) (A -e(X)) , (3) 
where

σ 2 S (X) = V[Y (0) | X, S].
A semiparametric efficient estimator of ψ 0 can be obtained by solving the estimating equation based on (3). If the predictors in τ ϕ0 (X) and λ φ0 (X) are not linearly dependent, they show that the integrative estimator of the CATE is strictly more efficient than the RCT estimator. As a by-product, this framework can be used to generalize the ATEs from the RCT to a target population without requiring an overlap covariate distribution assumption between the RCT and observational data. Wu and Yang (2022a) propose an integrative R-learner that extends the framework of [START_REF] Yang | Improved inference for heterogeneous treatment effects using real-world data subject to hidden confounding[END_REF] to allow flexible machine learning methods for approximating CATE, confounding function, and nuisance functions.

Toward more efficient estimation

Under Assumptions 1, 2, and 6, the CATE can be estimated based on the RCT, while under the classical unconfoundedness assumption (see Appendix S1), the CATE can be estimated using the observational sample. Therefore when both sets of assumptions are met, the two data sources can be pooled to improve estimation efficiency. Toward this end, Yang et al. (2022) use the semiparametric efficiency theory to derive the semiparametrically efficient integrative estimator of ϕ 0 for the CATE τ ϕ0 (X). However, if the unconfoundedness assumption is violated, integrating the observational sample would bias the CATE estimation. Leveraging the design advantage of RCTs, Yang et al. (2022) derive a preliminary test statistic for the comparability and reliability assessment of the observational data and decide whether to use it in an integrative analysis. Denote the efficient score based solely on the RCT and observational data as S rct,ϕ0 (V ) and S os,ϕ0 (V ), respectively, where V is a full vector of variables. Their basic idea is to derive an RCT estimator ϕ rct for ϕ 0 and construct the preliminary test statistics based on S os, ϕrct (V ). The rationale is that if the observational sample is comparable to the RCT sample for estimating ϕ 0 , S os, ϕrct (V ) is expected to be close to zero; otherwise, S os, ϕrct (V ) is expected to deviate from zero. This thought process leads to the test statistics

T = n -1/2 n+m i=n+1 S os, ϕrct (V i ) T Σ -1 SS n -1/2 n+m i=n+1 S os, ϕrct (V i ) , (4) 
where Σ SS is a consistent estimator for the asymptotic variance of n -1/2 n+m i=n+1 S os, ϕrct (V i ). Under H 0 that the observational sample is comparable to the RCT sample, T → χ 2 p , a Chi-square distribution with degrees of freedom dim(ϕ 0 ), as n → ∞. This result serves to detect the violation of the assumption required for the observational data. Yang et al. (2022) propose the elastic integrative estimator by solving

n i=1 S rct,ϕ (V i ) + I(T < c γ ) n+m i=n+1 S os,ϕ (V i ) = 0, (5) 
where c γ is the 100(1 -γ)th percentile of χ 2 p , serving as a switch to decide combining or not. The methodological contribution of Yang et al. (2022) is to derive a data-adaptive selection of c γ such that the resulting estimator has the smallest mean squared error and thus performs at least similar to the RCT-only estimator, if not better. Moreover, the elastic integrative estimator is nonregular and belongs to pre-test estimation by construction. The theoretical contributions of Yang et al. (2022) include characterizing the distribution of the elastic integrative estimator under local alternatives, which better approximates the finite-sample behaviors, and providing data-adaptive confidence intervals that are uniformly valid.

Other use cases

Beyond generalizability or overcoming confounding, there are other purposesmotivating the combination of experimental and observational data. We provide a brief list of these purposes and methodologies. A detailed or exhaustive survey is beyond the scope of this review.

Using hybrid controls. A hybrid control arm is a control arm constructed from a combination of randomized patients and patients receiving usual care in standard clinical practice, as introduced by [START_REF] Pocock | The combination of randomized and historical controls in clinical trials[END_REF] and pursued by [START_REF] Hobbs | Commensurate Priors for Incorporating Historical Information in Clinical Trials Using General and Generalized Linear Models[END_REF]; [START_REF] Schmidli | Robust meta-analytic-predictive priors in clinical trials with historical control information[END_REF]. Recently the FDA has detailed their usage in the regulatory purposes (FDA, 2018). Using hybrid controls has the potential to decrease the cost of randomized trials, and to reduce ethic constraints on control groups.

Case-control studies. In certain applications, e.g., in epidemiology, the observational data at hand comes from a case-control study where the selection of observations is driven by the outcome of interest Y . Thus, the RCT and observational data differ in terms of the outcome distribution, typically a preferential selection on the outcome for the observational data set. Several solutions have been proposed to handle this type of selection bias. [START_REF] Robins | Marginal structural models versus structural nested models as tools for causal inference[END_REF] and [START_REF] Hernán | Structural accelerated failure time models for survival analysis in studies with time-varying treatments[END_REF] propose marginal structural model approaches to eliminate this bias given sufficient knowledge of the selection model given treatment. [START_REF] Guo | Multi-source causal inference using control variates[END_REF] propose a control variates technique [START_REF] Tan | A distributional approach for causal inference using propensity scores[END_REF][START_REF] Yang | Combining multiple observational data sources to estimate causal effects[END_REF] identifying and estimating an estimand that is sufficiently correlated with the target estimand of interest for the observational cohort.

Encouragement design intervention An encouragement design intervention is a design in which some individuals or groups are randomly assigned to receive encouragement to take up the program. (Rudolph and van der Laan, 2017) provide a semiparametric efficiency score for transporting the ATE from one study following an encouragement design, to another population. Due to the design, their set-up is a variant of the generalization work from Section 3, but with treatment allocation information in the target population.

Structural causal models (SCM) and transportability

Within the SCM framework [START_REF] Pearl | Causal diagrams for empirical research[END_REF][START_REF] Pearl | Causality[END_REF], [START_REF] Bareinboim | Causal inference and the data-fusion problem[END_REF] have proposed answers for transportability and combination of different data-sources -also called data fusion. This section is split off from the previous section as it builds on additional concepts. Let us first briefly introduce the SCM framework, using as much as possible the notations of Section 2.1 that we introduced for the PO framework (Appendix F gives a more general primer on the SCM framework, and in particular the do-operator). The covariates X, treatment A, and response Y are modeled in the SCM framework as random variables with joint distribution P (X, A, Y ). Each intervention, such as setting A to a = 0 or a = 1, defines an alternative distribution over (X, A, Y ) that can be systematically deduced from the no-intervention (or observational) distribution P using the SCM model, and which is written P (X, A, Y | do(A = a)). In this framework, the CATE is written:

τ (x) = E [Y | do(A = 1), X = x] -E [Y | do(A = 0), X = x] ;
and the ATE:

τ = E [Y | do(A = 1)] -E [Y | do(A = 0)] .
These expressions mirror the corresponding expressions in the PO framework (Table 2) when one identifies the variable Y (a) in the PO framework to the variable Y under the intervention do(A = a) in the SCM framework, namely when we set P (Y (a), X) = P (Y, X | do(A = a)). In fact this analogy is valid in the sense that any theorem that holds for SCM counterfactuals holds in the PO framework, and vice-versa (Pearl, 2009b, Chapter 7;Pearl, 2009a, Chapter 4). In spite of this formal equivalence, the two frameworks differ in how they allow practitioners to express causal assumptions, and to derive corresponding estimands of causal effects. The SCM framework provides a convenient graphical representation known as causal diagram to encode potentially complex causal assumptions between variables, and provides a complete language known as do-calculus to express causal effects (i.e., some expectation under the do(A = a) probability) as a function of observational data (i.e., some expectation under the no-intervention distribution) [START_REF] Pearl | Causal diagrams for empirical research[END_REF][START_REF] Pearl | Causality[END_REF]. When this reduction is possible, the causal effect is called identifiable. In addition, the do-calculus is complete in the sense that a causal effect is identifiable if and only if it can be reduced to a function of observational data using do-calculus [START_REF] Huang | Pearl's calculus of intervention is complete[END_REF][START_REF] Shpitser | Identification of joint interventional distributions in recursive semimarkovian causal models[END_REF]. Interestingly, this provides a variety of formulas to correctly infer causal effects even in the presence of unmeasured confounders, which cannot be handled by the PO framework (without additional structural and modeling assumptions), such as the front-door adjustment formula [START_REF] Pearl | Causal diagrams for empirical research[END_REF].

Formulating transportability in the SCM framework

The SCM literature and do-calculus naturally cover the problem of generalizing an RCT experiment to a different target population. Following our notations in the PO setting (Section 2.1), we again denote by S a binary random variable that indicates which individuals can be in the RCT. The RCT population then follows the distribution P (X, Y, A | S = 1), and by design the RCT allows estimating the conditional distributions P (Y | do(A = a), X, S = 1) for a = 0, 1. The problem of generalization to the target population in this setting is then to deduce the distributions of P (Y | do(A = a), X) for a = 0, 1 from these two distributions and the observed distribution of the covariates P (X) in the target distribution (as in Section 3), or of the covariates, treatments and responses P (X, A, Y ) in the target population (as in Section 4). If this deduction (using docalculus) is possible, then the causal effect on the target population is identifiable, and the deduction provides a formula for the causal effect that can then be estimated from a finite population using some consistent estimator. Interestingly, this formalism covers two important situations: (i) the sample selection bias problem, when the RCT population is a subset of the target population that fulfills some eligibility criterion6 , and (ii) the transportability problem, where the RCT population differs more drastically from the target, e.g., when one wants to generalize an RCT conducted in one country to a population in another country [START_REF] Pearl | Generalizing experimental findings[END_REF]. To model sample selection bias, on the one hand, one typically adds a node S with incoming edges to a causal graph in order to capture the eligibility conditions that may depend on pre-or post-treatment variables. It is then possible to derive conditions under which one can recover from selection bias when the probability of selection is available [START_REF] Cooper | Causal discovery from data in the presence of selection bias[END_REF][START_REF] Lauritzen | Discussion of mccullagh: Sampling bias and logistic models[END_REF][START_REF] Geneletti | Adjusting for selection bias in retrospective, case-control studies[END_REF] or when no quantitative knowledge is available about probability of selection [START_REF] Didelez | Graphical Models for Inference Under Outcome-Dependent Sampling[END_REF]Bareinboim and Pearl, 2012a). We provide examples of such conditions in Appendix F.1.2. To model transportability to a different population, on the other hand, the node S has typically no incoming edge, and instead points to variables that differ between the RCT and the target population, either in their functional dependency to their parents in the causal graph, or in the distribution of their exogenous variables. The resulting graph is called a selection diagram and allows to encode graphically detailed assumptions about the differences between populations [START_REF] Pearl | Transportability of causal and statistical relations: A formal approach[END_REF][START_REF] Bareinboim | Transportability of causal effects: Completeness results[END_REF][START_REF] Pearl | External Validity: From Do-Calculus to Transportability Across Populations[END_REF]Bareinboim and Pearl, 2013). Note that even if the two situations imply different causal diagrams, the problem of selection bias "has some unique features, but can also be viewed as a nuance of the transportability problem, thus inheriting all the theoretical results of transportability" [START_REF] Pearl | Generalizing experimental findings[END_REF]; this remark is connected to the discussion from Section 2.2. The SCM approach thus provides powerful machinery to generalize causal effect across populations, and entails a detailed description of the causal assumptions between variables in the selection diagram, including the selection variable S. The two selection diagrams of Figure 3 represent for example transportability problems with a distributional change of covariates X between the RCT and target populations (with an arrow from S to X), and where the interventional nature of the RCT versus the target population is also represented with an arrow from S to A. In addition, in Figure 3 In that case, one easily deduces by simple conditioning on X that the distribution of Y under intervention on the whole population is given by

P(Y | do(A = a)) = x P(Y | do(A = a), X = x, S = 1) RCT P(X = x)
Obs.

.

This transport formula, also known as re-calibration, re-weighting or post-stratification formula [START_REF] Pearl | Generalizing experimental findings[END_REF], thus combines experimental results obtained in the RCT population and the observational description of the target population to estimate the causal effect in the target population.

In particular, we easily deduce the ATE on the target population by integrating (6) in Y to get

τ = x τ 1 (x) RCT P(X = x)
Obs.

,

where τ 1 (x) is by design identifiable by conditioning on treatment in the RCT population. This formula ( 7) is equivalent to the regression formula (2) in the PO framework, which is valid under Assumption 6. Interestingly, [START_REF] Pearl | Transportability of causal and statistical relations: A formal approach[END_REF] show that the transport formula (6) holds more generally as soon as X is a set of pre-treatment variables which is S-admissible, i.e., if S ⊥ ⊥ Y | X, do(A = a) for a = 0, 1. Graphically, S-admissibility holds whenever X blocks all paths from S to Y after deleting from the graph all incoming arrows into A. We note that Sadmissibility implies the mean exchangeability assumption (Assumption 4) and is equivalent to the S-ignorability assumption S ⊥ ⊥ Y (a) | X (Assumption 3) used in the PO literature when X and S are pre-treatment variables, and entails similar transport formula in that situation. However, the two notions differ for treatment-dependent selection and covariates, as discussed by [START_REF] Pearl | Generalizing experimental findings[END_REF],

where several examples illustrate how the S-admissibility assumption can lead to different transport formulas when both pre-and post-treatment variables are leveraged. Such an example is presented on Figure 4, where the covariate X is a post-treatment variable, for example a biomarker, believed to mediate between treatment and outcome. Here, X is S-admissible but not S-ignorable, and the corresponding transport formula is

P (Y | do(A = a)) = x P (Y | do(A = a), X = x, S = 1)P (X = x | A = a)
, where it invokes an unconventional average of the CATE weighted by a conditional probability in the target population. This example is taken from [START_REF] Pearl | Generalizing experimental findings[END_REF].

Here, we presented how Assumptions 2, 3 and 4 are translated in the SCM literature and how another scenario with post-treatment covariates can be identified. More identifiability scenarios have been discussed in the SCM literature [START_REF] Huang | Pearl's calculus of intervention is complete[END_REF]Bareinboim et al., 2013;[START_REF] Pearl | Generalizing experimental findings[END_REF]Lee et al., 2020b), and to our knowledge we have found no similar identifiability scenario in the PO literature. It is worth mentioning that the transportation problem discussed so far, to export a causal effect estimated in an RCT to a general population is only one specific instance of the more general problem of data fusion [START_REF] Pearl | Transportability of causal and statistical relations: A formal approach[END_REF]Bareinboim andPearl, 2012b, 2016;[START_REF] Hünermund | Causal inference and data-fusion in econometrics[END_REF]Lee et al., 2020a), which simultaneously accounts for confounding issues of observational data, sample selection issues, as well as extrapolation of causal claims across heterogeneous environments. The SCM framework, with its elegant way of formalizing the problem, helps practitioners formulate and discuss causal assumptions across variables and environments. In particular, subject to a good knowledge of the graph, it helps selecting sets of variables that are sufficient to establish identifiability and exclude variables that would bias the analysis. As we will see in Section 7, already in the early phase of a study, the causal and selection diagrams offer a very convenient tool to discuss with clinicians and explicitly lay out conditional independence assumptions. Once a diagram encodes assumptions about a system, algorithmic solutions implementing the do-calculus are available to determine whether non-parametric identifiability holds, and to provide correct formula if it holds [START_REF] Correa | Generalized adjustment under confounding and selection biases[END_REF][START_REF] Tibshirani | grf: Generalized Random Forests. R package version 1[END_REF].

While the SCM literature provides powerful and versatile sets of concepts and tools to identify causal effects, practical estimators with publicly available implementations and detailed consistency, convergence rates or robustness results are still scarce. Some recent work has proposed solutions for this estimation task in the context of either experimental or observational data by extending weightingbased methods developed for the back-door case to more general settings (Jung et al., 2020a,b), or extending the double/debiased machine learning (DML) approach proposed by [START_REF] Chernozhukov | Double/debiased machine learning for treatment and structural parameters[END_REF] under ignorability assumption to any identifiable causal effect [START_REF] Jung | Estimating identifiable causal effects through double machine learning[END_REF]. In the same spirit, [START_REF] Karvanen | Do-search -a tool for causal inference and study design with multiple data sources[END_REF] propose combination of data from a survey and a meta-analysis of 34 trials, where identifiability and transport formula are the output of the algorithm do-search (see Section 6), and estimation is performed with the real data at hand.Additionally, even if a causal effect is not identifiable, partial-identifiability techniques have been proposed for deriving bounds for the causal effect [START_REF] Tian | Probabilities of causation: Bounds and identification[END_REF][START_REF] Dawid | Bounding causes of effects with mediators[END_REF]. [START_REF] Cinelli | Generalizing experimental results by leveraging knowledge of mechanisms[END_REF] give an example illustrating partial identifiability on real data, with experiments assessing the effect of the Vitamin A supplementation. In this setting the existence of experimental data from one source population leads to identify bounds on the transported causal effect, but the availability of two trials instead of one leads to a point estimate. Finally, Dahabreh et al. (2019bDahabreh et al. ( , 2020b) ) propose an alternative approach for generalizability and integrative analyses of trials and observational studies using structural equation models under weaker error assumptions and represented using single world intervention graphs [START_REF] Richardson | Single world intervention graphs (swigs): A unification of the counterfactual and graphical approaches to causality[END_REF].

6 Software for combining RCT and observational data

Review of available implementations

An important point to bridge the gap between theory and practice is the availability of software. In recent years, there have been more and more solutions for users interested in causal inference and causation, see [START_REF] Tikka | Identifying causal effects with the R package causaleffect[END_REF]; [START_REF] Guo | A survey of learning causality with data: Problems and methods[END_REF]; [START_REF] Yao | A survey on causal inference[END_REF] for surveys and [START_REF] Mayer | Cran task view: Causal inference[END_REF] for a task view of R implementations. Regarding the specific subject of this article, we present in Table 3 the implementations available about both identifiability and estimators. The available implementations are often dedicated to specific sampling designs and, as mentioned, estimators are different from nested and non-nested framework. As a consequence, a new user has to pay attention to all of these practical -but fundamental -details.

Simulation study ofgeneralization estimators

This part presents simulations results to illustrate the different estimators introduced in Section 3 and their behavior under several mis-specifications patterns. The code to reproduce the results is available on Github7 . We implement in R (R Core Team, 2021) our own version of the estimators to match exactly the formulas introduced in the review (IPSW and IPSW.normd see Definition 2, stratification; Definition 3, plug-in g-formula; Definition 4, and AIPSW; Definition 6), except for the CW and ACW estimators (Definitions 5) and 7) for which we use the genRCT package.

Scenario 1: well-specified models. Similarly to [START_REF] Lee | Improving trial generalizability using observational studies[END_REF], We generate non-nested trial settings as follow. First, we draw a sample of size 50, 000 from a covariate distribution with four covariates are generated independently as with X j ∼ N (1, 1) for each j = 1, . . . , 4. From this sample, we then select an RCT sample of size n ∼ 1000 with trial selection scores defined using a logistic regression model:

logit {π S (X)} = -2.5 -0.5 X 1 -0.3 X 2 -0.5 X 3 -0.4 X 4 . (8) 
Then, we generate the treatment according to a Bernoulli distribution with probability equals to 0.5, e 1 (x) = e 1 = 0.5 and the outcome according to a linear model:

Y (a) = -100 + 27.4 a X 1 + 13.7 X 2 + 13.7 X 3 + 13.7 X 4 + with ∼ N (0, 1).

This outcome model implies a target population ATE of τ = 27.4, and E [X 1 ] = 27.4. Finally, we generate an observational sample by drawing a new sample of size m = 10, 000 from the distribution of the covariates. Figure 5 presents estimated ATE over 100 simulations. The true ATE is represented with a dash line. The ATE estimated only with the RCT sample is also displayed as a baseline. As expected it is biased downward (its mean is equal to 14.24) as the distribution of the covariates and in particular the treatment effect modifiers such as X 1 is not the same in the trial sample and in the population (as illustrated in Table 14 in Appendix G). Note that in this simulation all the estimators are unbiased. The variability of the two IPSW estimators are larger than the others. The number of strata in the stratification estimator plays an important role. As shown in Figure 16 in Appendix G, the results are biased when the number of strata is smaller than 10. and outcome according to the model Y (a) = -100 + 27.4 a X 1 X 2 + 13.7 X 2 + 13.7 X 3 + 13.7 X 4 + .

The analysis is then performed using classical logistic and linear estimators on the four covariates.

As shown in Figure 6, when the sampling propensity score model is mis-specified, the IPSW estimators are biased; whereas when the outcome model is mis-specified, the plug-in g-estimator is biased. In both settings, the double robust estimator (AIPSW) is unbiased and robust to misspecification. In the case where both models are mis-specified, all estimators are biased except the CW and ACW estimators. This demonstrates some robust properties of calibration against slight model mis-specification. Appendix G investigates the effect of a missing covariate, homogeneous treatment effect, and the impact of a stronger covariate shift, i.e., poorly satisfied Assumption 7.

Application: Effect of Tranexamic Acid

To illustrate the methodological question of combining experimental and observational data and demonstrate some of the previously discussed methods, we consider an open medical question about major trauma patients. We focus on trauma patients suffering from a traumatic brain injury (TBI): brain damage caused by a blow or jolt to the head. Tranexamic acid (TXA) is an antifibrinolytic agent that limits excessive bleeding, commonly given to surgical patients. Previous clinical trials showed that TXA decreases mortality in patients with traumatic extracranial bleeding [START_REF] Shakur-Still | Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): A randomised, placebo-controlled trial[END_REF]. Such prior result raises the possibility that it might also be effective in TBI, because intracranial hemorrhage is common in TBI patients, with risks of raised intracranial pressure, brain herniation, and death. Therefore the aim here is to assess the potential decrease of mortality in patients with intracranial bleeding when using TXA. To answer this question, we have at our disposal both an RCT, CRASH-3, and an observational study, the Traumabase. Both data have previously been analyzed separately in CRASH-3 (2019); Cap (2019) (for the RCT) and in [START_REF] Mayer | Doubly robust treatment effect estimation with missing attributes[END_REF] (for the observational study) and the medical teams of both studies want to share their respective data to answer both medical and methodological questions. Such initiatives allow to: (1) collate the results from the observational study with the RCT findings;

(2) assess the generalizability methods, considering the Traumabase as the target population, and assess the estimators presented in this review in a real application. We first present the two data sources, treatment effect analyses and findings from these, before turning to the combined analysis in Section 7.3. The code to reproduce all these analyses is available on Github8 , however the medical data cannot be publicly shared for privacy concerns.

7.1 The observational data: Traumabase

Context

The Traumabase regroups 23 French Trauma centers that collect detailed clinical data from major trauma patients from the scene of the accident to hospital discharge in form of a registry. The data, currently counting over 30,000 patient records, are of unique granularity and size in Europe. However, they are highly heterogeneous, with both categorical -sex, type of illness, ...-and quantitative -blood pressure, hemoglobin level, ...-features, multiple sources, and many missing data (98% of the records are incomplete). Here, we use 8,270 patients suffering from TBI extracted from the Traumabase. [START_REF] Mayer | Doubly robust treatment effect estimation with missing attributes[END_REF] performed a first, purely observational, study to assess the effect of TXA on mortality for traumatic brain injury patients from this data: the treatment variable is the administration of TXA during pre-hospital care or on admission to a Trauma Center9 within three hours of the initial trauma. The Traumabase analysis contains many missing values (see Appendix H.1), which implies additional assumptions to perform causal inference.

Purely-observational results from two different estimation strategies

The direct causal effect of TXA on 28-day intra-hospital TBI-related mortality and on all cause intra-hospital mortality among traumatic brain injury patients is estimated by adjusting for confounding using 17 confounding variables. In addition, 21 variables predictive of the outcome but not related to the treatment are included (see [START_REF] Mayer | Doubly robust treatment effect estimation with missing attributes[END_REF] for the detailedadjustment set). We recall the results from this study which put a focus on how to estimate treatment effects in the presence of incomplete data. The presented methods rely either on logistic regressions or generalized random forests [START_REF] Athey | Generalized random forests[END_REF] for the nuisance components, denoted respectively by GLM and GRF in Table 4. The doubly robust results (AIPW) in Table 4 show that from this study there is no evidence for an effect of TXA on mortality of TBI patients. These findings -obtained prior to the publication of CRASH-3-are consistent with the main conclusion of the CRASH-3 study. However, the results from IPW conclude on a possible deleterious effect. In such a situation, the possibility to generalize the treatment effect from the RCT is also a step to comfort the results. In Appendix H.4, we additionally recall results on sub-groups obtained by stratifying along trauma severity. 
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7.2 The RCT: CRASH-3

Context

CRASH-3 is a multi-centric randomized and placebo-controlled trial launched over 175 hospitals in 29 different countries [START_REF] Dewan | CRASH-3: Tranexamic acid for the treatment of significant traumatic brain injury: study protocol for an international randomized, double-blind, placebo-controlled trial[END_REF]. This trial recruited 9,202 adults -unusually large for a medical RCT-, all suffering from TBI with only intracranial bleeding, i.e., without major extracranial bleeding. All participants were randomly administrated TXA (CRASH-3, 2019;[START_REF] Cap | Crash-3: a win for patients with traumatic brain injury[END_REF]. The primary outcome studied is head-injury-related death in hospital within 28 days of injury in patients included and randomized within 3 hours of injury. The study concludes that the risk of head-injury-related death is 18.5% in the TXA group versus 19.8% in the placebo group. The causal effect, measured as a Risk Ratio (RR) was not significant (RR = 0.94 [95% CI 0.86 -1.02])). Note that CRASH-3 revealed a positive effect of TXA only when considering mild and moderate cases. In the Appendix H.4, we provide a complementary analysis to study this sub-group.

RCT selection

Six covariates are present at baseline, being age, sex, time since injury, systolic blood pressure, Glasgow Coma Scale score (GCS)10 , and pupil reaction. The inclusion criteria of the trial are patients with a GCS score of 12 or lower or any intracranial bleeding on CT scan (computed tomography), and no major extracranial bleeding. We provide a DAG summarizing the trial selection and predictors of the outcome present in CRASH-3 in Figure 7.

Transporting the ATE on the observational data

With the two separate analyses in mind, we can now turn to the combined analysis, more specifically, the generalization from the RCT results to the target population defined by the observational Traumabase registry. Before any analysis aiming to compare and combine two data sets an important step is to assess that baseline covariates, treatment, and outcome are the same (for details, see Appendix H.2). 2016)).

Descriptive analyses

Missing values. The RCT contains almost no missing values, whereas the variables for determining eligibility in the observational data contain important fractions of missing values, ranging from 0.27 to 29 %. Thus the methods discussed in this review must be adapted to account for missing values 11 In order to estimate the nuisance components, i.e., the conditional odds and the outcome model(s), despite the missing data, we explore two alternative strategies: (1) logistic regression with incomplete covariates using an expectation maximization algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the em algorithm[END_REF], a computationally efficient variant of this method using stochastic approximation is implemented in the R package misaem [START_REF] Jiang | Logistic regression with missing covariates-parameter estimation, model selection and prediction within a joint-modeling framework[END_REF]; (2) generalized regression forest with missing incorporated in attributes [START_REF] Twala | Good methods for coping with missing data in decision trees[END_REF][START_REF] Josse | On the consistency of supervised learning with missing values[END_REF], this method is implemented in the R package grf [START_REF] Tibshirani | grf: Generalized Random Forests. R package version 1[END_REF].

Distribution shift. Simple comparisons of the means of the covariates between the treatment groups of the two studies -Figure 8-reveal the fundamental difference between the two studies, namely the treatment assignment bias in the observational study and the balanced treatment groups in the RCT. In Appendix H.3.1 we further explore the distribution shift with univariate histograms (Figures 21-25).

Analyses

Notations and estimator details. We use two consistent ATE estimators from the CRASH-3 data, namely the difference in mean estimator (Difference in means; Section A) and the difference in conditional mean relying on OLS (Difference in conditional means). We also present the results from the purely observational study outlined earlier: AIPW coupled with multiple imputation (MI AIPW) and AIPW based on nuisance parameters estimated via generalized random forest (GRF AIPW) that can directly handle missing values when needed with missing incorporated in attribute strategy.

To generalize the ATE to the target population, we apply the estimators discussed in this review while implementing strategies to handle the missing values. [START_REF] Lê | FactoMineR: A package for multivariate analysis[END_REF].

in Table 6. 

Missing values strategy

Logistic regression with missing values Generalized random forests (grf) -MIA τn,m

IPSW EM IPSW GRF IPSW Plug-in g-formula EM Plug-in g-formula GRF Plug-in g-formula AIPSW EM AIPSW GRF AIPSW
The confidence intervals of these estimators are computed with a stratified bootstrap in the RCT and the observational data set in order to maintain the ratio of relative size of the two studies (with 100 bootstrap samples). Note that the Calibration Weighting estimators (CW and ACW) are not used in this analysis as they would require a specific adaptation to the case of the missing values.

Results of the combined analysis. Figure 9 gives the generalization from the RCT to the target population using all the observations from both data sets, showing certain discrepancies with respect to the separate analysis results. On the one hand, one half of the generalization estimators support the CRASH-3 conclusion about the treatment effect: no significant effect. On the other hand, some estimators point towards a deleterious treatment effect. Recall that the AIPW ATE estimations from the purely observational data study do not reject the null hypothesis of no treatment effect. Note that these results are to be interpreted carefully due to the potential impact of missing values on the performance of the chosen estimators. For example, the large confidence intervals for the GRF estimators when used to estimate weights are likely to be due to the imbalanced proportions of missing values in the RCT and the observational data. Indeed, the variance is much smaller using the plug-in g-formula with GRF. Here we present the results transported onto the total TBI Traumabase population, but the CRASH-3 study highlights a specific subgroup of patients (mild and moderate patients) for which a positive effect of the tranexamic acid is measured. The generalization of the CRASH-3 findings onto this subgroup in the Traumabase raises multiple methodological issues that still need to be addressed in future works (detailed in Appendix H.4.3).

Overall this data analysis highlights the interest of combining two different data sets, but also some challenges: the need for a good understanding of the common covariates, exposure, and outcome of interest before combining the data sets, different missing data patterns, and poor overlap when considering specific target (sub-)populations.

Conclusion

Combining observational data and RCTs can improve many aspects of causal inference, from increased statistical power to better external validity. A large part of this review is dedicated to generalizability and transportability of RCT from one population to another. The corresponding rich and prolific literature answers a real practical concern: external validity. Indeed, questions about external validity arise as soon as there are treatment effect heterogeneities in the populations under study. We find that, as any growing scientific field, the ideas are in flux: notations differ, implementations are scattered, and the proposed methods proposed still lack real-world benchmarks, generated hand in hand with practitioners. In addition, many open questions still remain as detailled below.

Discrepancies between RCTs and observational data. The application on tranexamic acid effect hinted to moderate external validity of the RCT as the generalized ATE is concordant with the findings from the RCT, at least for half of the estimators. Additionally, the purely observational data study also supports the results from the RCT. Determining which analysis to trust depends on the assumptions we are willing to make -either related to transportability or unconfoundedness -as well as the suitability of the selected variables. Beyond these assumptions, caution is needed when interpreting the results, as observing the methods in action reveals threats to validity. The target population of interest and overlap also raise concerns. Considering certain strata revealed violated positivity, which leads to a non-transportable treatment effect on the strata of interest: mild and moderate patients. Therefore, further discussions and analyses with the medical expert committee are necessary to re-define a target population of interest on which generalization is possible and medically relevant. As it is generally the case, beyond methodological and theoretical guarantees, a major step to be taken before applying a set of methods is to clearly state the causal question and estimand(s) and the associated identifiability requirements. This task is even more complex when combining data sets. A primary and fundamental concern is whether outcome, treatment, and covariates are comparable in the two studies [START_REF] Lodi | Effect estimates in randomized trials and observational studies: Comparing apples with apples[END_REF].

Right choice of covariates to answer the question. Domain expertise can be used to postulate a causal graph: a directed acyclic graph representing the mechanisms (as Figure 7). The SCM framework is then convenient to assess whether the question of interest can be formulated in an identifiable way. This approach offers a principled way of selecting variables needed for identification of the causal effect and to avoid biased causal effect estimates. Without such an approach, identifiability claims are limited. A common practical recommendation is to include as many variables as possible to avoid violation of any assumption as proposed for e.g. by [START_REF] Stuart | Generalizing treatment effect estimates from sample to population: A case study in the difficulties of finding sufficient data[END_REF]; [START_REF] Ling | A critical review of methods for real-world applications to generalize or transport clinical trial findings to target populations of interest[END_REF] and Dahabreh and Hernán (2019): "it is probably best to include as many outcome predictors as possible in regression models for the expectation of the outcome or the probability of trial participation". On the contrary, a recent work alerts about the bad consequences of adding covariates that are shifted between the two populations while not being treatment effect modifiers, resulting in variance inflation [START_REF] Colnet | Reweighting the rct for generalization: finite sample analysis and variable selection[END_REF]. In its current state, the field probably lacks work on covariate selection and its impact on bias and variance. Some recent works propose the use of causal graphs to select optimal adjustment sets that allow the reduction of the variance of the final estimation [START_REF] Rotnitzky | Efficient adjustment sets for population average treatment effect estimation in non-parametric causal graphical models[END_REF][START_REF] Witte | On efficient adjustment in causal graphs[END_REF][START_REF] Guo | Efficient least squares for estimating total effects under linearity and causal sufficiency[END_REF], but such methods have not yet been developed for generalization or data fusion.

Challenges in handling missing values. In our data analysis, we have seen the need to account for missing values, and in particular different missing value patterns between data sources. Missing values typically occur more often in observational data since in RCTs, investigators typically deploy significant efforts to avoid them. RCTs may however suffer from participants missing scheduled visits or completely dropping out from the study. The literature for RCT mainly focuses on missing outcome data and calls for sensitivity analysis given that available strategies to handle such missing data (weighting, multiple imputation) rely on untestable assumptions about the missing values mechanism [START_REF] Carpenter | Missing data in randomised controlled trials: a practical guide[END_REF]National Research Council, 2012;[START_REF] Kenward | The handling of missing data in clinical trials[END_REF][START_REF] O'kelly | Clinical trials with missing data: a guide for practitioners[END_REF][START_REF] Li | Best (but oft-forgotten) practices: missing data methods in randomized controlled nutrition trials[END_REF][START_REF] Cro | A four-step strategy for handling missing outcome data in randomised trials affected by a pandemic[END_REF]. Missing values may lead to subtle biases in the inferences, as they are seldom uniformly distributed across both data setsoccurring more in one than in the other. While a recent research work proposes an assessment of the effect of different missing data patterns [START_REF] Mayer | Generalizing treatment effects with incomplete covariates: identifying assumptions and multiple imputation algorithms[END_REF], further research is needed to clarify identifiability conditions and estimators in this setting in order to better understand the scope of each method.

τIPW,m = 1 m m i=1 A i Y i e(X i ) - (1 -A i )Y i 1 -e(X i ) , (S4) 
where e(x) = P (A = 1 | X = x) is the propensity score, i.e., the probability to be treated given the covariates. The rationale of IPW is to upweight treated observations with a small propensity score (and the other way around) to balance the two groups, treated and non treated, with respect to their covariates. These identification formula motivate also the regression estimators or doubly robust estimators based solely on the observational data. Efficient estimation of the ATE with one single observational data set and non-parametric models is detailed in [START_REF] Laan | Targeted Learning: Causal Inference for Observational and Experimental Data[END_REF]; [START_REF] Kennedy | Semiparametric theory and empirical processes in causal inference[END_REF]; [START_REF] Chernozhukov | Double/debiased machine learning for treatment and structural parameters[END_REF] There are also many available methods to estimate the CATE, based on the observational data such as causal forests [START_REF] Wager | Estimation and inference of heterogeneous treatment effects using random forests[END_REF], causal BART [START_REF] Hill | Bayesian nonparametric modeling for causal inference[END_REF][START_REF] Hahn | Bayesian regression tree models for causal inference: regularization, confounding, and heterogeneous effects[END_REF], causal boosting [START_REF] Powers | Some methods for heterogeneous treatment effect estimation in high dimensions[END_REF], or causal multivariate adaptive regression splines (MARS) [START_REF] Powers | Some methods for heterogeneous treatment effect estimation in high dimensions[END_REF]. There are also meta-learners such as the S-Learner [START_REF] Künzel | Causaltoolbox-estimator stability for heterogeneous treatment effects[END_REF], T-learner [START_REF] Künzel | Causaltoolbox-estimator stability for heterogeneous treatment effects[END_REF], X-Learner [START_REF] Künzel | Metalearners for estimating heterogeneous treatment effects using machine learning[END_REF], MO-Learner [START_REF] Rubin | A doubly robust censoring unbiased transformation[END_REF][START_REF] Künzel | Causaltoolbox-estimator stability for heterogeneous treatment effects[END_REF], modified covariate method (MCM) [START_REF] Tian | A simple method for estimating interactions between a treatment and a large number of covariates[END_REF][START_REF] Chen | A general statistical framework for subgroup identification and comparative treatment scoring[END_REF], modified covariate method with efficiency augmentation (MCM-EA) [START_REF] Tian | A simple method for estimating interactions between a treatment and a large number of covariates[END_REF][START_REF] Chen | A general statistical framework for subgroup identification and comparative treatment scoring[END_REF], and R-learner [START_REF] Nie | Quasi-oracle estimation of heterogeneous treatment effects[END_REF], which build upon any base learners for regression or supervised classification. [START_REF] Knaus | Machine learning estimation of heterogeneous causal effects: Empirical monte carlo evidence[END_REF] and [START_REF] Powers | Some methods for heterogeneous treatment effect estimation in high dimensions[END_REF] conduct comprehensive simulation studies to compare these methods.

C Identification formula

This part focuses on the non-nested design only, as it corresponds to the central design of this review.

Identification by the g-formula or regression formula in the target population

Proof.

E[Y (a)] = E [E[Y (a) | X]] Law of total expectation = E [E[Y (a) | X, S = 1]] Assump. 4 = E [E[Y (a) | X, S = 1, A = a]] Assump. 2 = E [E[Y | X, S = 1, A = a]] Assump. 1
This last quantity can be expressed as a function of the distribution of X in the target population:

E [Y (a)] = E[Y | X = x, S = 1, A = a]df (x) ,
where f (X) denotes the distribution of X in the target population.

Identification by weighting

Proof.

τ = E [τ (X)] Law of total expectation = E [τ 1 (X)] Assump. 6 = E f (X) f (X | S = 1) τ 1 (X) | S = 1 Assump. 7.
Using Bayes' rule, we note that

f (x) f (x | S = 1) = P (S = 1) P (S = 1 | X = x) = P (S = 1) π S (x) .
In this expression, however, it is important to notice that neither π S (x) nor P (S = 1) can be estimated from the data, because we do not observe the S indicator in the observational study (Figure 1). On the other hand, the conditional odds α(x) can be estimated by fitting a logistic regression model that discriminates RCT versus observational samples, and Bayes' rule gives:

α(x) = P(i ∈ R | ∃i ∈ R ∪ O, X i = x) P(i ∈ O | ∃i ∈ R ∪ O, X i = x) = P(i ∈ R) P(i ∈ O) × P(X i = x | i ∈ R) P(X i = x | i ∈ O) = n m × f (x | S = 1) f (x) ,
and therefore

τ = E n mα(X) τ 1 (X) | S = 1 .
This quantity can be further developed, underlying τ 1 (X) identification as presented in the following proof C.

Proof.

τ 1 (x) = E [Y (1) -Y (0) | X = x, S = 1] = E [Y (1) | X = x, S = 1] -E [Y (0) | X = x, S = 1] = E [A | X = x, S = 1] E [Y (1) | X = x, S = 1] e 1 (x) - E [1 -A | X = x, S = 1] E [Y (0) | X = x, S = 1] 1 -e 1 (x) = E [AY (1) | X = x, S = 1] e 1 (x) - E [(1 -A)Y (0) | X = x, S = 1] 1 -e 1 (x) Assump. 2 = E [AY | X = x, S = 1] e 1 (x) - E[(1 -A)Y | X = x, S = 1] 1 -e 1 (x) Assump. 1 = E A e 1 (x) Y - 1 -A 1 -e 1 (x) Y | X = x, S = 1 .
D Sources of formal statements of estimators described in Section 3.2

This section proposes formal statements on the statistical properties of the exposed estimators in the form of theorems. As part of a review work, this section only reports results that are stated along a Theorem environment and with explicit proof in the original papers.

D.1 Inverse Propensity of Sampling Weighting

Beyond the result from Colnet et al. (2022a) recalled in plain document, other theoretical results on the IPSW can be found in:

• Egami and Hartman (2021a), which provides finite sample unbiasedness, consistency and asymptotic normality of an oracle version of the IPSW, that is an estimator where the true α is known (see their appendix, Section SM-2).

• [START_REF] Buchanan | Generalizing evidence from randomized trials using inverse probability of sampling weights[END_REF], which provides consistency and asymptotic normality assuming that theconditional odds are well approached by a parametric model (for e.g. a logistic regression).

Results are detailed both in the main paper (p.7) and in appendix for detailed derivations. Note that they also obtain asymptotic normality and consistency for an oracle version of the IPSW. Their proof rely on M-estimation methods [START_REF] Stefanski | The calculus of m-estimation[END_REF][START_REF] Lunceford | Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study[END_REF], writing the estimation problem as a stacked equation, with the specificity that the observations are not necessarily identically distributed. The authors retrieve a wellknown result in causal inference: estimating the weights leads to a gain in variance. Note that the proof is done in the context of a nested design, which is not exactly the purpose of the review. Without stating theoretical results, [START_REF] Zivich | Delicatessen: M-estimation in python[END_REF] extends this work to non-nested design showing how to compute the sandwich type confidence intervals. [START_REF] Buchanan | Generalizing evidence from randomized trials using inverse probability of sampling weights[END_REF] also propose sandwich-type estimation of variance, while noting that estimation of the variance of the oracle version of IPSW would provide conservative but valid confidence intervals.

• Dahabreh et al. (2020a), which announces consistency of the IPSW for parametric estimator of the RCT selection model α(X), and sketches the proof in Appendix for both a normalized and non-normalized version of the IPSW (see Section A). Note that derivations are made in the context of a nested design but said to extend to a non-nested design.

• Colnet et al. (2022a), which provides consistency (i.e. asymptotically unbiased) for any consistent parametric or non-parametric method to estimate α.

• [START_REF] Colnet | Reweighting the rct for generalization: finite sample analysis and variable selection[END_REF], which provides finite and large sample bias and variance when the adjustment set is constituted of categorical covariates. The consistency is a by-product of their results. To our knowledge, their results is the only one characterizing different variance regimes depending on the size of the two data sample (RCT and observational). They also recommend to estimate the probability to be treated in the trial e 1 (X) to decrease the asymptotic variance.

D.2 Stratification

• O'Muircheartaigh and Hedges (2014) provide a formula of the variance under the situation where the strata estimates are assumed independent and the estimation of the strata proportion m l /m is without error (i.e. infinite target sample).

• [START_REF] Buchanan | Generalizing evidence from randomized trials using inverse probability of sampling weights[END_REF] provide asymptotic normality for the stratification estimator, assuming that the estimator is the average of L independent, within-stratum, treatment effect estimators [START_REF] Lunceford | Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study[END_REF][START_REF] Tipton | Improving generalizations from experiments using propensity score subclassification: Assumptions, properties, and contexts[END_REF]. They propose a formula for the asymptotic variance.

D.3 Calibration Weighting

Lee et al. ( 2021) provide regularity conditions and theoretical properties of the CW and ACW estimators in terms of consistency, asymptotic normality, and inference procedures. The proof can be found in the supplementary material of [START_REF] Lee | Improving trial generalizability using observational studies[END_REF].

E Nested study design

The nested trial design has different impacts on the estimators expressions previously introduced, and even on the causal quantity of interest. In a nested trial design the randomized trial is embedded in a cohort (e.g. a large cohort -considered as a sample from the target population -in which eligible people are proposed to participate in the trial, but if they refuse they are still included in the cohort study). As a consequence, S is the binary indicator for trial participation, with S = 1 for participants and S = 0 for non-participants. Therefore the sampling probability of nonrandomized individuals is known in nested trial designs [START_REF] Lesko | Generalizing study results: a potential outcomes perspective[END_REF][START_REF] Buchanan | Generalizing evidence from randomized trials using inverse probability of sampling weights[END_REF]Dahabreh et al., 2019a). Mathematically it means that the quantity P (S = 1) is identifiable.

In addition, two causal quantities can be identified:

E [Y (1) -Y (0)] and E [Y (1) -Y (0) | S = 0].
It is important to note that the second quantity can have a scientific interest in order to better understand heterogeneities within the cohort, and variables that influence the sampling selection and/or the treatment effect on the outcome.

E.1 When observational data have no outcome and treatment information

Main estimators, such as IPSW, g-formula, and doubly-robust estimators are presented for the specific case of nested trial design.

E.1.1 IPSW

In this design the weights in the IPSW estimators are different, because the quantity π S can be estimated directly from the observed data as the indicator S is observed. This allows the IPSW formula to be closer to the classic IPW expression without the need to use the odds to weight data. The IPSW expression is the following:

τIPSW-nested,n,m = 1 n n i=1 n n + m A i Y i πS,n,m (X i )e 1 (X i ) - 1 n n i=1 n n + m (1 -A i )Y i πS,n,m (X i )(1 -e 1 (X i ))
. (S5)

E.1.3 Doubly-robust estimator

Similarly to the doubly-robust estimation in the non-nested case (Section 3.2.4), the g-formula and the IPSW methods can be leveraged into a doubly-robust estimator. The AIPSW expression for the nested case is the following:

τAIPSW-nested,n,m = 1 n + m n+m i=1 S i A i πS,n,m (X i )e 1 (X i ) (Y i -µ 1,1,n (X i )) - 1 n + m n+m i=1 S i (1 -A i ) π S,n,m (X i )(1 -e 1 (X i )) (Y i -μ0,1,n (X i )) + 1 m + m m+n i=1 {μ 1,1,n (X i ) -μ0,1,n (X i )} . (S9)
E.2 Combining treatment-effect estimates from both sources of data Under Assumptions 1, 2 and 3 for the RCT and Assumptions S1 and S2 for the observational data, separate estimators of the ATEs from the two data sources can be constructed. [START_REF] Lu | Causal inference for comprehensive cohort studies[END_REF] considered the ATEs for the comprehensive cohort studies (CCS) which include participants who would like to be randomized, constituting the RCT, and participants who would like to choose the treatment by their preference, constituting the observational sample. In particular, they considered the ATE over the CCS study population τ 2 and the ATE over the trial population τ 1 . Note that τ 2 is different from τ in our setting because τ 2 is defined with respect to the combined RCT and observational sample; while τ is defined with respect to the observational sample only. In order to construct improved estimators by combining study-specific estimators, they derived the optimal influence functions for τ 1 and τ 2 , which suggest that the efficient estimators of τ 1 and τ 2 can be obtained by

τ 1,eff = 1 n n+m i=1 π S (X i )A i Y i e(X i ) + S i - A i π S (X i ) e(X i ) µ 1 (X i ) - π S (X i )(1 -A i )Y i 1 -e(X i ) -S i - (1 -A i ) π S (X i ) 1 -e(X i ) µ 0 (X i ) , τ 2,eff = 1 n + m n+m i=n A i {Y i -µ 1 (X i )} e(X i ) - (1 -A i ){Y i -µ 0 (X i )} 1 -e(X i ) + { µ 1 (X i ) -µ 0 (X i )},
where e 1 (X i ), µ 0,1 (X i ), and µ 1,1 (X i ) for units in the RCT are simplified as e(X i ), µ 0 (X i ), and µ 1 (X i ).

E.3 Softwares: Examples of implementations

This part completes Section 6 and proposes specific examples of implementations, such as identifiability questions with the package causaleffect, the beta version of causalfusion, and implementation examples for the nested case. The output is:

1 print ( IOW1_ate ) 2 > ate SE 3 > -0.16961 0.02751

E.3.4 G-formula for the nested case

The G-formula can also be implemented in the nested design using the available code from Dahabreh et al. (2019b). It takes a similar entry as the IPSW previously presented. The variance is estimated with the geex library [START_REF] Saul | The calculus of m-estimation in R with geex[END_REF] through the m_estimate function which computes the empirical sandwich variance estimator. The output is:

1 > ate SE 2 > -0.1934 0.0300
F Additional information on the SCM framework

F.1 Notations and Assumptions

This supplementary introduction aims to provide an introduction to the whole SCM framework, and introduce the graphical representation, along with the do-calculus concepts and notations. Structural Causal Models. Formally (Pearl, 2009b, p.203), an SCM is a 4-tuple M = (U, V, F, P ) where:

a) U is a set of background or exogenous variables, which are not explicitly modeled but which can affect relationships within the model.

b) V = {V 1 , . . . , V n } is a set of endogenous variables, that are deterministically determined by variables in U ∪ V ; in the setting of this paper, one typically chooses V = {X, A, Y } or V = {X, A, Y, S} to respectively model covariates, treatment, outcome and selection.

c) F is a set of functions {f 1 , .., f n } such that each f i uniquely determines the value of V i ∈ V by the so-called structural equation v i = f (pa i , u i ), where P A i ⊂ V \{V i } are called the parents of V i and U i ⊂ U . d) P is a probability distribution for U .

The causal diagram corresponding to an SCM is a graph with V as vertices, directed edges from each parent to its children, and undirected dotted edges between vertices V i and V j such that U i ∩ U j = ∅. Alternatively, the U can be explicitly represented, with directed dotted edges from U i to V i , as in Figure 10(a) which represents the SCM with V = (X, A, Y ), U = (U x , U a , U y ), and structural equations:

x ← f x (u x ) a ← f a (x, u a ), y ← f y (a, x, u y ).
Often, no parametric assumptions is made on F or P . The distribution P (U ) induces a distribution P M (V ) through V = F (U ), and in the case where the causal diagram is a directed acyclic graph and variables in U are independent, then the distribution P M (V ) is a Bayesian network. In particular, the causal diagram encodes the conditional independence relationships among variables in V .

Interventions. At the core of the SCM framework is the do-operator which enables the use of structural equations to represent causal effects and counterfactuals. The do(A = a 0 ) operation marks the replacements of the mechanism f a with a constant a 0 , while keeping the rest of the model unchanged, resulting in the following post-treatment model for our toy example:

x ← f x (u x )

Figure 11: Application of the backdoor criterion in large graphs. Based on the admissible set definition 10, (S10) present all the following sets that are admissible and can be used for adjustment. For example, the set {W 2 , W 3 } blocks all backdoor paths between A and Y . W 2 block the path

A ← W 2 → W 3 → W 5 → Y .
is identifiable. The language of do-calculus is proved to be complete for queries in the form

Q = P (Y = y | do(A = a), X = x)
meaning that if no reduction can be obtained using these rules, Q is not identifiable.

The application of previous rules and the backdoor criterion in the graph of Figure 11 allows to list all possible admissible adjustment sets for identifying P (y | do(a)):

X = {W 2 }, {W 2 , W 3 }, {W 2 , W 4 }, {W 3 , W 4 }, {W 2 , W 3 , W 4 }, {W 2 , W 5 }, {W 2 , W 3 , W 5 }, {W 4 , W 5 }, {W 2 , W 4 , W 5 }, {W 3 , W 4 , W 5 }, {W 2 , W 3 , W 4 , W 5 } (S10)
The analyst can select from this list which is preferable. Note that conditioning on W 1 would induce bias as it is a collider.

F.1.1 Confounding bias

In order to estimate the causal effect P (Y | do(A = a)) using only available observational data, following the observational distribution P (A, X, Y ), the idea is to identify-on the basis of the causal graph-a set of admissible variables such that measuring and adjusting for these variables removes any bias due to confounding. The backdoor criterion defined below provides a graphical method for selecting admissible sets for adjustment.

Definition 10 (Admissible sets -the backdoor criterion). Given an ordered pair of treatment and outcome variables (A, Y ) in a causal DAG G, a set X is backdoor admissible if it blocks every path between A and Y in the graph G A , with G A the graph that is obtained when all edges emitted by node A are deleted in G.

The backdoor criterion can be seen as the counterpart of unconfoundedness in Assumption S1: If a set X of variables satisfies the backdoor condition relative to (A, Y ), then Y (a) ⊥ ⊥ A | X.

Identifying backdoor admisible variables is important because it allows to estimate causal effects from observational data as follows: {W 1 , W 2 , X}, {W 1 , X}, {W 2 , X}, and X, (these sets control for confounding), the one that can be used as available from biased data; here it will be X as it is the only one separated from S, leading to P (y | do(a)) = x P (y | a, x, S = 1)P (x | S = 1). This ability to select relevant covariates for identifiability is presented as an important advantage of the SCM framework.

Combined biased and unbiased data. Note that the previous examples in Figure 13 concern only one set of data but the approach is extended to combine data, biased (with a selection) data, and unbiased data (for example covariates from the target population) as follows. To do so, [START_REF] Bareinboim | Causal inference and the data-fusion problem[END_REF] define the S-backdoor admissible criterion which is a sufficient condition but not necessary. It states that if X is backdoor admissible, A and X block all paths between S and Y , i.e. Y ⊥ ⊥ S | A, X, and that X is measured in both population-level data and biased data, then, the causal effect can be identified as

P (Y | do(A = a)) = x P (Y | do(A = a), X = x, S = 1)P (X = x),
where P (X = x) denotes the probability in the target population. If the set X contains posttreatment covariates, then this formula is generally wrong. Indeed S-ignorability is rarely satisfied in that case, as illustrated with several examples by [START_REF] Pearl | Generalizing experimental findings[END_REF]. This formula is called the post-stratification formula, to define this action of re-calibrate or re-weight [START_REF] Pearl | Generalizing experimental findings[END_REF]. This expression shows that one can generalize what is observed on the selected sample by reweighting or recalibrating by P (X = x) that is available from the target population (unbiased data). More complex setting can be handled, such as dealing with post-treatment variables. In such a case, they show that generalizibility can be obtained by another weighting strategy (not by P (X = x)), which can also be seen as a benefit of this framework.

F.2 Proof of the transport formula (6)

We compute: 

P (Y | do(A = a)) = x P (Y | do(A = a), X = x)P (X = x | do(A = a)) = x P (Y | do(A = a), X = x, S = 

G.2 Stratification

Within the weighted estimators, the stratification estimator (Section 3.2.1) supposes to choose an additional parameter being the number of strata used. Simulations are launched with the number of strata varying from 3 to 15, and the results are presented on Figure 16. We observed that the number of strata has an impact on the results, the higher the number of strata used, the better the prediction.

G.3 Impact of a hidden treatment effect modifier

In this part, we consider a heterogeneous treatment effect setting where X 1 impacts the RCT sampling while also being a treatment effect modifier. We consider the IPSW estimator and its variations without using X 1 (labeled as IPSW.without.X1) and using only X 1 (labeled as IPSW.X1).

As shown in Figure 17, IPSW.X1 is still unbiased when using only X 1 in the sampling propensity score estimation, as it is the only covariate being the shifted treatment effect modifier. However, if

Figure 16: Effect of strata number Estimated ATE obtained while varying the number of strata L ∈ {3, 5, 7, 9, 11, 13, 15} with 100 repetitions each time. All others simulation parameters being the same as the standard case described in 6.2 and in Figure 5.

X 1 is missing, the resulting estimator IPSW.without.X1 is strongly biased. Therefore, by including all variables that affect both sampling and outcome one can ensure identifiability.A recent work suggests to add non-shifted treatment effect modifier for precision [START_REF] Colnet | Reweighting the rct for generalization: finite sample analysis and variable selection[END_REF]. Note also that if the treatment effect were homogeneous (does not depend on X 1 ), then the estimated ATE on the RCT would be unbiased (as shown Figure 18 in the section below, Section G.4) so in this setting there is no need to use the observational data and associated methods to transport the ATE from the trial to the target population as the causal effect investigated is on the absolute different scale.

G.4 Homogeneous treatment effect

It is always interesting to note that in the case of an homogeneous treatment effect the RCT sample contains all the information to estimate the population ATE, in other words τ 1 is a consistent estimator of the ATE. We performed simulation with an homogeneous treatment effect (results are presented on Figure ( 18)) such as:

Y (a) | X = -100 + X 1 + 13.7X 2 + 13.7X 3 + 13.7X 4 + 27.4a +

Impact of the treatment-effect modifiers Estimated ATE when IPSW estimator includes all covariates, only X 1 , or all covariates except X 1 (IPSW; Section 3.2.1), with g-formula (Section 3.2.2) presented as a control, over 100 simulations. Simulations are still performed with (8) for RCT eligibility and (9) for outcome modeling.

Figure 18: Homogeneous treatment effect Estimated ATE with a homogeneous treatment effect Y (a) | X = -100 + X 1 + 13.7X 2 + 13.7X 3 + 13.7X 4 + 27.4a + . All others simulation parameters being the same as the standard case described in (6.2) and in Figure 5.

H Supplementary information on Traumabase and CRASH-3

H.1 Additional information on the Traumabase

H.1.1 Missing values

The problem of missing values is ubiquitous in data analysis practice and particularly present in observational data, as they are not necessarily collected for research purposes. The Traumabase is a high-quality data set but, nevertheless, missing values occur. Figure 19 represents the percentage of missing values for the covariates selected by the medical doctors from the Traumabase. It varies from 0 to nearly 60% for some features. In addition, there are different codes for missing values giving hints on the reason of their occurrence, e.g., not available (NA), impossible (imp), not made (NM), etc. Some of these values can be seen as missing completely at random (MCAR), e.g., the information has not been recorded simply because the form was not filled out, but they can be informative and missing not at random (MNAR), e.g., when the state of the patient is such that it was impossible to take a measurement. There is an abundant literature available on how to deal with missing values in a general context and [START_REF] Mayer | R-miss-tastic: a unified platform for missing values methods and workflows[END_REF] identify more than 150 R (R Core Team, 2021) packages available on the topic. Missing values add a layer of complexity to conducting causal analyses as they require coupling conventional hypotheses of causal effect identifiability in the complete case with hypotheses about the mechanism that generated the missing data [START_REF] Rubin | Inference and missing data[END_REF], or defining new hypotheses, to establish conditions of causal effect identifiability with missing data. [START_REF] Mayer | Doubly robust treatment effect estimation with missing attributes[END_REF] survey available works, classify the methods in three families that differ with respect to the different assumptions and provide associated estimators to estimate the ATE from an observational data set with missing values in the covariates. More precisely, they advocate the use of multiple imputation (van Buuren, 2018) by IPW or doubly robust estimators when missing values can be considered to be missing (completely) at random (M(C)AR) and the classical unconfoundedness assumption (Assump. S1) holds [START_REF] Seaman | Inverse probability weighting with missing predictors of treatment assignment or missingness[END_REF]. As an alternative, they recommend using a doubly robust estimator adapted to missing values. More specifically an estimator that makes use of random forests with a missing incorporate in attributes splitting criterion [START_REF] Twala | Good methods for coping with missing data in decision trees[END_REF][START_REF] Josse | On the consistency of supervised learning with missing values[END_REF] to estimate the generalized propensity scores [START_REF] Rosenbaum | Reducing bias in observational studies using subclassification on the propensity score[END_REF] and the regression function with missing values12 ; this approach does not require a particular missing values mechanism but an adapted unconfoundedness hypothesis with missing data. Finally, when covariates can be seen as noisy incomplete proxies of true confounders, latent variable models can be a solution to estimate causal effect with missing values (Kallus et al., 2018a;[START_REF] Louizos | Causal effect inference with deep latent-variable models[END_REF]. Note that for the generalization task, IPSW weights are also computed after imputation in [START_REF] Susukida | Assessing sample representativeness in randomized control trials: Application to the national institute of drug abuse clinical trials network[END_REF].

H.1.2 Covariate adjustment

Since the Traumabase is an observational registry, straightforward treatment effect estimation on these data is not possible due to confounding. The causal graph in Figure 20 is the result of a two-stage Delphi method [START_REF] Linstone | The Delphi Method: Techniques and Applications[END_REF] in which six anesthetists and resuscitators specialized in critical care-and therefore familiar with the allocation process for TXA-first select covariates related to either treatment or outcome or both, and second classify these covariates into confounders and predictors of only outcome. Even though it is not possible to test for unobserved confounding, this Delphi procedure is an attempt to gather as much expert knowledge about the studied question as possible to manually identify possible confounders and qualitatively assess the plausibility of the unconfoundedness assumption. Note that this approach is an explicit example where we leverage the advantages of the SCM and PO frameworks: the causal graph helps to select relevant variables during the conception phase of the study and to assess identifiability of the target estimand, and the treatment effect analysis uses different estimation methods from the PO framework.

H.2 Common covariates description between CRASH-3 and Traumabase

In the following, we discuss definitions of common variables, outcome, treatment, and designs in order to leverage both sources of information. We recall the causal question of interest: "What is the effect of the TXA on head-injury related death in patients suffering from TBI?" This part is important for the alignment of the study protocol.

Treatment exposure. The treatment protocol of CRASH-3 precisely frames the timing and mean of administration (a first dose given by intravenous injection shortly after randomization, i.e., within 3 hours of the accident, and a maintenance dose given afterwards [START_REF] Dewan | CRASH-3: Tranexamic acid for the treatment of significant traumatic brain injury: study protocol for an international randomized, double-blind, placebo-controlled trial[END_REF]).

For consistency with the original CRASH-3 study described above, we also only keep observations from the RCT with administration within 3 hours. The Traumabase study being a retrospective analysis, this level of granularity concerning TXA is not available. Neither the exact timing, nor the type of administration are specified for patients who received the drug. However, the expert committee agreed that the assumption of treatment within 3 hours of the accident is plausible since this drug is administered in pre-hospital phase or within the first 30 minutes at the hospital.

Outcome of interest. The CRASH-3 trial defines its primary outcome as head injury related death in hospital within 28 days of injury. For the Traumabase data we also look at death in hospital within 28 days but with a wider range of possible causes of death, namely TBI, brain death, multiple organ failure, brain death, or withdrawal of life-sustaining therapy.

Multi-centered design. Both studies are multi-centered, but while the Traumabase is a French registry with over 20 participating Trauma Centers, the CRASH-3 trial enrolled patients in various countries on different continents. This large spectrum of participating centers is likely to contribute to external validity of the CRASH-3 trial, it should nevertheless be noted that more than 65% of the patients included are from developing countries; regions of the world that differ from developed countries by a prolonged pre-hospital care period, limited access to brain imaging tests and neurosurgery within short periods of time, and the absence of expert centers for major trauma and neuro-intensive care. Thus, on top of the restrictive inclusion criteria of the RCT, this aspect of large heterogeneity in the participating Trauma centers motivates the combination of both studies to estimate the effect for a population with access to a specific high level of care, here represented by the French Trauma centers.

Covariates accounting for trial eligibility. In total, four criteria depending on five variables determined inclusion in the CRASH-3 trial: age (only adults were eligible), presence of TBI (defined as presence of intracranial bleeding on the CT scan, or a GCS of less than 13 in the case of no available CT scan), absence of major extracranial bleeding (defined explicitly in CRASH-3 and defined via the number of packed red blood cells transfused in the first 6 hours of admission or by colloid injection in the Traumabase), and delay of less than 8 hours (later reduced to 3 hours) between the injury and the randomization. The necessary variables are also available in the Traumabase, either exactly or in form of close proxies, which allows the estimation of the trial inclusion model on the combined data.

Additional covariates. Note that other covariates are available in both data sets, while not directly related to trial inclusion according to CRASH-3 investigators. But as they could be covariates moderating the treatment effect, we include them. According to the two studies, we can add three of them: sex (binary), systolic blood pressure (continuous), and pupils reactivity (categorical, ranging from 0 to 2, being the number of active pupils). Note that these three covariates are all mentioned as baselines for the CRASH3 study (CRASH-3, 2019), where the authors argue that they are likely to impact the outcome.

H.3 Additional analysis

This part proposes additional analysis to the data analysis part (Section 7). We first propose additional visualization of the distributional shift between CRASH-3 and the Traumabase, then we present a principal component analysis of the combined database. Propensity scores obtained either with the logistic regression or the forest are analyzed with histograms and scatter plots. Finally, a focus on the different patients strata, based on the severity of the injury, is presented.

H.3.1 Distributional shift between CRASH-3 and Traumabase

Distributional shift between CRASH-3 and the Traumabase data can be illustrated with histograms. Figures 21 -25 presents the empirical distribution shift between the Traumabase and CRASH-3 for age, Glasgow score, systolic blood pressure, sex and pupils reactivity (respectively). Differences can be observed, and for example the fact that the CRASH-3 study contains more young patients, while the Traumabase contains more moderate case (corresponding to a high Glasgow score). It is interesting to notice that the overlaps assumption seems to hold in our situation. 

H.3.2 Principal component analysis

A principal component analysis is performed on the combined data set for the Traumabase and the CRASH-3 data using the FactoMineR package [START_REF] Lê | FactoMineR: A package for multivariate analysis[END_REF], results are presented on Figure 26.

As expected the Glasgow coma scale score and the pupils reactivity are related (paralysis of the cranial nerves leading to pupillary anomalies being closely related to the presence of an intracranial lesion, itself linked to the state of consciousness encoded in the Glasgow.). Additionally, the link between age and systolic blood pressure can be explained by the fact that atherosclerosis of the arteries is the source of an increase in blood pressure and is related to age. 
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Figure 1 :

 1 Figure 1: Schematics of the nested (left) and non-nested (right) designs, a similar schematic can be found in Josey et al. (2021).

Figure 3 :

 3 Figure 3: Illustration of selection diagrams depicting differences between source and target populations: In (a) and (b), the two populations differ by covariate distributions (indicated by S pointing to X) and the two populations differ in their interventional nature (S pointing to A). Assumption 6 (transportability assumption) is assumed on (b), but not on (a) (since S points to Y in (a)). These two examples are inspired by[START_REF] Pearl | Transportability of causal and statistical relations: A formal approach[END_REF].

  (a) the arrow from S to Y indicates that the conditional distribution of Y given X and A differs between the two populations, which in general prevents any transportability of causal effect, while the lack of arrow from S to A in Figure3(b) encodes the independence assumption P(Y | X, A) = P(Y | X, A, S = 1), which implies the transportability assumption P(Y | do(A = a), X, S = 1) = P(Y | do(A = a), X) (which itself implies Assumption 6 in the PO framework).

Figure 4 :

 4 Figure 4: Post-treatment covariate adjustment: On this selection diagram the arrow from S to X indicates the assumption of different effect of A on X in the two populations. Here, X is S-admissible but not S-ignorable, and the corresponding transport formula is P(Y | do(A = a)) = x P (Y | do(A = a), X = x, S = 1)P (X = x | A = a), where it invokes an unconventional average of the CATE weighted by a conditional probability in the target population. This example is taken from[START_REF] Pearl | Generalizing experimental findings[END_REF].

Figure 5 :

 5 Figure 5: Well-specified model Estimated ATE with the inverse propensity of sampling weighting with and without weights normalization (IPSW and IPSW.norm; Definition 2), stratification (with 10 strata; Definition 3), plug-in g-formula (Definition 4), calibration weighting (CW; Definition 5), augmented IPSW (AIPSW; Definition 6) and ACW (Definition 7)) over 100 simulations.

Scenario 2 :Figure 6 :

 26 Figure 6: Mis-specified models Estimated ATE when selection in RCT and/or outcome models are mis-specified. Estimators used being IPSW (IPSW and IPSW.norm; Def. 2), stratification (with 10 strata; Def. 3), plug-in gformula (Def. 4), calibration weighting (CW; Def. 5), augmented IPSW (AIPSW; Def. 6), and ACW (Def. 7) over 100 simulations.

Figure 7 :

 7 Figure 7: Structural causal diagram representing treatment, outcome, inclusion criteria with S and other predictors of outcome (Figure generated using the Causal Fusion software presented in Section 6 from[START_REF] Bareinboim | Causal inference and the data-fusion problem[END_REF]).

Figure 9 :

 9 Figure 9: Juxtaposition of different estimation results with ATE estimators computed on the Traumabase (observational data set), on the CRASH-3 trial (RCT), and transported from CRASH-3 to the Traumabase target population. All the observations are used. Number of variables used in each context is given in the legend.
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  Linear regression cond . outcome mean as a function of covariates on the RCT 2 extractEST ( geex_output = OM_mest , est_name = " ate " , 13 param_start = param_start_OM )

Figure 10 :

 10 Figure 10: Left: (a) example of an SCM M and corresponding DAG; right: (b) Post-intervention graph of M for do(A = a 0 ).

Figure 13 :

 13 Figure 13: Cases with sample selection bias: A is the treatment and Y the outcome, S is the selection process and the aim is to estimate P (y | do(a)) when data available come from P (a, y | S = 1) in (a) and (b).

Figure 15 :

 15 Figure 15: Weak versus strong distributional shift between experimental and observational data with estimated ATE when RCT is weakly or strongly shifted from the target population distribution. Estimators used being IPSW (IPSW and IPSW.norm; Def. 2), stratification (with 10 strata; Def. 3), g-formula (Def. 4), calibration weighting (CW; Def. 5), augmented IPSW (AIPSW; Def. 6), and ACW (Def. 7) over 100 simulations.
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Figure 20 :

 20 Figure 20: Causal graph representing treatment, outcome, confounders and other predictors of outcome (Figure generated using DAGitty (Textor et al., 2011); NAs indicates variables that have missing values).

Figure 21 :

 21 Figure 21: Distributional shift of Age between the Traumabase and the CRASH-3 studies.

Figure 22 :

 22 Figure 22: Distributional shift of the Glasgow score between the Traumabase and the CRASH-3 studies.

Figure 23 :

 23 Figure 23: Distributional shift of the systolic blood pressure between the Traumabase and the CRASH-3 studies.

Figure 24 :Figure 25 :

 2425 Figure 24: Distributional shift of the sex between the Traumabase and the CRASH-3 studies.

Figure 27 :Figure 28 :

 2728 Figure 27: Conditional odds histogram (glm) obtained with the misaem R package.

Figure 29 :

 29 Figure 29: Scatter plot of the two conditional odds obtained with glm in x-axis and grf in the y-axis. Color is set according to the systolic blood pressure covariate values (while missing values are in grey).

  

  

  

Table 2 :

 2 List of notations.

Table 4 :

 4 ATE estimations from the Traumabase for TBI-related 28-day mortality. Red cells conclude on deteriorating effect, white cells can not reject the null hypothesis of no effect. GLM stands for Generalized Linear Models and GRF for Generalized Random Forests to estimate nuisance components. Two estimators of the treatment effect are considered: IPW and AIPW, as well as two methods to deal with missing values: multiple imputation or missing incorporated in attribute (MIA) in GRF.

		Multiple imputation (MICE)	GRF-MIA	Unad-
		IPW	AIPW		IPW	AIPW	justed
		(95% CI)	(95% CI)	(95% CI)	(95% CI)	ATE
		×10 2	×10 2		×10 2	×10 2	×10 2
		GLM	GRF	GLM	GRF
	Total	15	11		
	(n = 8248)	(6.8, 23)	(6.0, 16)		

  The resulting estimators are presented Figure8: Distributional shift and difference in terms of univariate means of the trial inclusion criteria (red: group mean greater than overall mean, blue: group mean less than overall mean, white: no significant difference with overall mean, numeric values: group mean (resp. proportion for binary variables). Graph obtained with the catdes function of the FactoMineR package

		m a jo r E x t r a c r a n ia l G la s g o w . in it ia l	a g e	p u p il R e a c t _ n u m	s y s t o li c B lo o d P r e s s u r e s e x e	T B I _ D e a t h
	Control.Observational data	0.65	10.81	43.29	1.67	130.18	0.22	0.16
	Treated.Observational data	0.99	8.42	41.73	1.27	100.14	0.33	0.32
	Control.RCT	0	9.58	41.9	1.65	129.64	0.2	0.2
	Treated.RCT	0	9.62	41.75	1.64	130.41	0.19	0.18

Table 6 :

 6 Overview of generalization estimators based on different missing values handling strategies used in the data analysis.

  Dealing with missing values when generalizing a treatment effect remains an open research question.

	Difference in conditional means				
	Difference in means				
	MI AIPW				
	GRF AIPW				
	GRF IPSW.norm				
	GRF IPSW				
	GRF plug-in g-formula				
	GRF AIPSW				
	EM IPSW.norm				
	EM IPSW				
	EM plug-in g-formula				
	EM AIPSW				
	-0.2	0.0	0.2	0.4	0.6
			ATE		
		Generalization	Observational data	RCT	
		(3+3 variables)	(17+21 variables)	(0 variables)	

  Missing values Percentage of missing values for a subset of Traumabase variables relevant for traumatic brain injury. Different encodings of missing values are available such as: NA (not available), but also not informed, not made, not applicable, impossible.

	Percentage of missing values
	NA
	Not Informed
	Not Made
	Not Applicable
	Impossible
	Not Determined
	Percentage
	Variable
	Figure 19:

Note that in the literature, S can have a slightly different meaning, for example other works use two separate indicators, one for participation and one for eligibility(Nguyen et al., 

[START_REF] Van Buuren | Flexible Imputation of Missing Data[END_REF] Dahabreh et al., 2019b).

Considering other measures such as the ratio or odds ratio can have an impact on the assumptions considered, for example in generalization[START_REF] Huitfeldt | Effect heterogeneity and variable selection for standardizing causal effects to a target population[END_REF]. As the large majority of the literature is focused on the absolute difference, this review reflects the practices, and therefore considers the absolute difference.

see their Appendix, Section A, pages 6-7.

The term negative controls comes from usual routine precaution in biological laboratory experiments, where such controls are used to -at least partially -check that the experiment is not undermined. For example it can test the absence of reagents or components that are necessary for a detection of something particular. For example one of the two bars of the covid antigenic test is one of these controls. The analogy of this principle in causal inference is detailed in[START_REF] Lipsitch | Negative controls: A tool for detecting confounding and bias in observational studies[END_REF].

Assuming the bias comes from an unobserved confounder and not from inherent differences between populations can be stated as, S ⊥ ⊥ {Y (1), Y (0)} , which means that the two samples come from comparable populations (see Section 3).

This setting has been termed as generalizability in the introduction of the different study designs in Section 2.2.

https://github.com/BenedicteColnet/combine-rct-rwd-review

https://github.com/BenedicteColnet/combine-rct-rwd-review

More precisely, to the resuscitation room of a hospital equipped to treat major trauma patients.

The Glasgow Coma Scale (GCS) is a neurological scale which aims to assess a person's consciousness. The lower the score, the higher the severity of the trauma.

If we assumed the missing values being missing completely at random (MCAR), we could "throw away" the incomplete observations and perform the analyses on the complete observations, but this would reduce the total sample size to 917 observations. And as explained in Section 7.1, the MCAR assumption is not plausible for the present observational data, thus such a complete case analysis would be biased.

This doubly robust method is implemented in the R package grf[START_REF] Athey | Generalized random forests[END_REF].
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A Randomized controlled trial

This section recalls assumptions and estimators for average treatment estimation in the case of a single RCT. The assumptions for average treatment effect identifiability in RCTs are the SUTVA assumption and assumptions 1 (consistency) and 2 (random treatment assignment within the RCT). These assumptions allow the average treatment effect to be identifiable. The most intuitive estimators coming from these assumptions is the difference-in-means estimators:

With n 1 being the number of individuals in the trial that have been treated and n 0 the number of individuals in the trial who have not been treated (n 0 + n 1 = n). This estimator is unbiased and √ n-consistent if the trial is a random sample of the target population. If not, it is a biased estimation of the population average treatment effect.

B Estimation of ATE in observational data

Under classical identifiability assumptions, it is possible to estimate the ATE and CATE based only on the observational data. In what follows, we briefly recall the usual assumptions, which can be seen as an introduction to Section 4.

Assumption S1 (Unconfoundedness). Y (a) ⊥ ⊥ A | X for a = 0, 1.

Assumption S1 (also called ignorability assumption) states that treatment assignment is as good as random conditionally on the attributes X. In other words, all confounding factors are measured. Unlike the RCT, in observational studies, its plausibility relies on whether or not the observed covariates X include all the confounders that affect the treatment as well as the outcome.

Assumption S2 (Overlap).

There exists a constant η > 0 such that for almost all x, η < e(x) < 1 -η.

Assumption S2 (also called positivity assumption) states that the propensity score e(•) is bounded away from 0 and 1 almost surely.

Under Assumptions S1 and S2, the ATE can be identified based on the following formulas from the observational data: a) Reweighting formulation:

For example the identification formulas, and more particularly the reweighting formulation, motivates the Inverse Propensity Weighting (IPW) estimator [START_REF] Hirano | Efficient estimation of average treatment effects using the estimated propensity score[END_REF],

The normalized version is the following one:

Proof.

Where π S can be estimated directly using the randomized and the non randomized data. τ 1 is further derived as presented in proof C.

E.1.2 G-formula

The g-formula formulation in the case of nested trial design depends on the causal quantity of interest. When the target population is the causal quantity of interest, then the identification expression is the same as in the non-nested design. But, because f = f .|S=0 , the estimator's expression is slightly different:

In the case where the population of interest is the non-randomized one, the identification of the causal quantity of interest is the following:

The Proof E.1.2 details the calculus. And the estimator is the same as given in Definition 4 as the integration is done on the law f .|S=0 .

Proof.

This last quantity can be expressed as a function of the distribution of X in the non-randomized population:

where f (X|S = 0) denotes the density function of X in the non-randomized population.

E.3.1 R package causaleffect

The R packages causaleffect [START_REF] Tikka | Identifying causal effects with the R package causaleffect[END_REF] and dosearch [START_REF] Tibshirani | grf: Generalized Random Forests. R package version 1[END_REF]) can be used for causal effect identification, with the later handling transportability, selection bias and missing values (bivariates) issues simultaneously. In this package, the dosearch function takes the observable distributions, a query, and a semi-Markovian causal graph as the input and outputs a formula for the query over the input distributions, or decides that it is not identifiable. It is based on a search algorithm that directly applies the rules of do-calculus. Their general identification procedure is not necessary complete given an arbitrary query and an arbitrary set of input distributions In order to retrieve the backdoor criterion in theorem S4, one can write:

E.3.2 Beta version of causalfusion

The beta version of causal fusion [START_REF] Bareinboim | Causal inference and the data-fusion problem[END_REF]) can be used, with a user-friendly interface requiring no coding skills. For example, if uploading the selection diagrams from Figure 3 onto this interface, it will state that diagram (a) is not transportable, while (b) is transportable along with the correct transport formula. The authors also propose to load their diagrams from previous publications and research works, some of which have been discussed in this review.

E.3.3 IPSW for the nested case

Te IPSW estimator can be implemented using the available code from Dahabreh et al. (2019b). It requires as input a data.frame (here called study) which columns represent treatment, denoted by A (binary), the RCT indicator, denoted as S (binary), the outcome as Y (continuous), and the quantitative covariates. The current available code for 3 quantitative covariates denoted X 1 , X 2 , X 3 is presented below. A first function generate_weights() estimates the sampling propensity score and the propensity score as logistic regressions, and compute the according weights to each data point. The variance is estimated with the geex library (Saul and Hudgens, 2020) through the m_estimate function which computes the empirical sandwich variance estimator. In the causal graph, this corresponds to deleting all incoming arrows in A (Figure 10(b)). We denote Q = P (Y | do(A = a 0 )) the post-intervention distribution, i.e., the distribution of a random variable Y after a manipulation on A. From this distribution, the ATE can be written as:

Note that the post-intervention distribution can also be denoted in counterfactual notation as D-separation. Conditional independences between variables can be read from the DAG induced by an SCM using a graphical criterion known as d-separation. This criterion will be useful in identifying the causal effect.

Definition 8 (d-separation). A set X of nodes is said to block a path p if either

• p contains at least one arrow-emitting node that is in X, or

• p contains at least one collision node that is outside X and has no descendant in X. Furthermore, in the SCM framework it is generally assumed that faithfulness holds, i.e., that all conditional independences are encoded in the graph, allowing to infer dependencies from the graph structure [START_REF] Peters | Elements of causal inference[END_REF]. In other words, if the Global Markov property (i.e., d-separation implies conditional independence), and faithfulness hold, then the resulting equivalence between conditional independences and dseparation allows to move back and forth between the graphical and the probabilistic model.

Identifiability. We are interested in answering the identifiability question: can the post-intervention distribution Q be estimated using observed data (such as pre-intervention distribution)?

Definition 9 (identifiability). A causal query Q is identifiable from distribution P (y) compatible with a causal graph G, if for any two (fully specified) models M 1 and M 2 that satisfy the assumptions in G, we have

Specifically, if a causal query Q in the form of a do-expression can be reduced to an expression no longer containing the do-operator (i.e, containing only estimable expressions using nonexperimental, observed data) by iteratively applying the inference rules of do-calculus, then Q Theorem S4 (Backdoor adjustment criterion). If a set of variables satisfies the backdoor criterion relative to (A, Y ), the causal effect of A on Y can be identified from observational data by the adjustment formula:

The adjustment formula can be seen as part of the identifiability formula in Equation S3.

The backdoor criterion is one of the graphical methods for identifying admissible sets. In cases where it is not applicable, an extended definition called the frontdoor criterion can be applied using mediators in the graph. Figure 12 provides a summary of the identifiability conditions when the available data is either observational data or data from surrogate experiments. 12: Summary of identifiability results to control for confounding bias: If there exists a set of observed variables that satisfies the backdoor criterion, then the causal effect of A on Y can be identified using nonexperimental data alone. In the case where no set of observed variables satisfies the backdoor condition but the effect of A can be mediated by an observed variable M (mediator), if there exists a set of observed variables that satisfies the frontdoor criterion, then the causal effect if also identifiable from observational data alone. If none of these conditions holds, the query is not identifiable. If, in addition to observational data, RCTs through surrogate experiments are available, the z-identifiability condition is sufficient to determine if the query is identifiable or not.

F.1.2 Sample selection bias

To tackle sample selection bias, i.e., preferential selection of units, the authors consider an indicator variable S such that S = 1 identifies units in the sample. The data at hand can be seen as P (A, Y, X | S = 1) and the target is where the first equation follows by conditioning, the second one by S-admissibility assumption of X, and the third one from the fact X are pre-treatment variables.

G Additional simulation results

This section follows Section 6.2 and provides additional results for the simulations.

G.1 Distributional shift between RCT and observational samples

The simulation design proposed simulates a situation where the RCT data reveals a distributional shift with the observational sample. In the RCT all the covariates tend to have lower values than in the observational sample. Still, the overlap assumption (Assumption 7) is valid as each observation in the target sample has a non-zero probability to be included in the experimental sample. Summary statistics obtained for a simulation with ∼ 1000 observations in the RCT and 10 000 observations in the observational sample is given on Figure 14, in addition with an histogram illustrating overlaps and the distributional shift for the covariate X 1 .

Figure 14: Covariates distributions differences between experimental sample and observational sample when simulating according to (8) as detailed in Section 6.2 (left), with a focus on the X 1 distributional shift with histograms overlap for the two samples (right).

The sampling propensity score model used to generate the simulated data (8) implies a weak covariate shift between the RCT sample and the observational sample. A stronger shift can be obtained, at least on covariate X 1 , swapping the coefficient -0.5X 1 with -1.5X 1 . Figure 15 shows that the variance of the weighted and CW estimators have increased in the setting with a stronger covariate shift. 

H.3.3 Conditional odds

Theconditional odds obtained while performing the generalization from the CRASH-3 patients to the observational data are presented on Figures 27 (logistic regression) and 28 (forest). We observe that extreme coefficient values are obtained, and that the forest grf strengthens this trend. We can further investigate the differences in between the two methods to infer the propensity scores noticing that the forest method uses the NAs from the Traumabase to learn the propensity scores model. Figure 29 shows that the NAs present in the systolic blood pressure covariate are used by the random forest to predict S, leading to more extreme values at the end. This importance of different missing values patterns when combining two data sets are of importance and highlight the need for a better understanding of the impact of missing values in the present framework.

H.4 Evidence on other patient strata

The data analysis part only focuses on all the patients from the two studies CRASH-3 and Traumabase. This part proposes a focus on different patients type, based on the severity of the brain trauma (measured either with the Glasgow score or the pupils reactivity).

H.4.1 Traumabase: evidence on different strata

When stratifying along different criteria of severity as in the CRASH-3 study, namely pupil reactivity and the Glasgow Coma Scale as illustrated in Table 7 with Mild/moderate and Severe strata, the two studies provide different evidence: no average treatment effect in any of the strata for the Traumabase, while the CRASH-3 study finds a beneficial effect for mild forms of TBI.

H.4.2 CRASH-3: evidence on different strata

The CRASH-3 trial presents a significant treatment effect only on some strata (in particular on less severe injured patients). As the brain-injury gravity has an effect on the outcome-most patients with TBI with a GCS score of 3 (corresponding to a coma or unconsciousness state) and those with bilateral non-reactive pupils have a very poor prognosis regardless of treatment-, the treatment effect is likely to be biased towards the null. Therefore the CRASH-3 authors observe the maximal treatment effect and statistical strength on mild to moderate injured patients, which is what we retrieve from the data. This evidence is computed from the data, with a link between the risk ratio (RR) and the average treatment effect (ATE) on Table 8.

H.4.3 Generalizing treatment effect on patient strata

As found by the CRASH-3 study, the group with potential benefit from TXA seems to be mild to moderate TBI patients (Table 2.1), defined as patients with a Glasgow Coma Scale between 9 and 15, while the evidence obtained from the Traumabase has not found a significant treatment effect for this group. However, in this stratum, for the CRASH-3 study, none of the patients has major extracranial bleeding, leading to a constant variable for this group. Conversely, in the Traumabase, in this stratum, only four patients without major extracranial bleeding are treated (while 1867 are not treated with TXA). Since the practitioners are interested in the treatment effect transported on patients with mild to moderate TBI and with major extracranial bleeding, we cannot restrict the target population to those patients without major extracranial bleeding. The current methodology does not allow to satisfy the necessary assumptions for transporting the effect using the presented estimation strategies and defining a clinically relevant target population. Further methodological investigations are required to transport the effect on the stratified subpopulations (see Table 9 for the corresponding sample sizes). This issue does not apply to the complementary stratum of severe TBI patients (corresponding to a low Glasgow score, GCS ≤ 8). We can thus provide the results for this stratum in Figure 30.

We observe that on this strata discrepancies between the solely Traumabase estimators and the generalized estimators are presents. The generalization supports either no-effect or a deleterious effect, while the RCT and the observational estimators support the no-effect hypothesis.