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With increasing data availability, treatment causal effects can be evaluated across different
dataset, both randomized trials and observational studies. Randomized trials isolate the effect of
the treatment from that of unwanted (confounding) co-occuring effects. But they may be applied
to limited populations, and thus lack external validity. On the opposite large observational samples
are often more representative of the target population but can conflate confounding effects with the
treatment of interest. In this paper, we review the growing literature on methods for causal infer-
ence on combined randomized trial and observational studies, striving for the best of both worlds.
We first discuss identification and estimation methods that improve generalizability of randomized
controlled trials (RCTs) using the representativeness of observational data. Classical estimators
include weighting, difference between conditional outcome models, and double robust estimators.
We then discuss methods that combining RCTs and observational data to improve the (conditional)
average treatment effect estimation, handling possible unmeasured confounding in the observational
data. We also connect and contrast works developed in both the potential outcomes framework and
the structural causal models framework. Finally, we compare the main methods using a simulation
study and real world data to analyse the effect of tranexamic acid on the mortality rate in major
trauma patients. Code to implement many of the methods is provided.

Keywords: Causal effect generalization; transportability; external validity; data integration; het-
erogeneous data; double robustness.



1 Introduction

Ezperimental data, collected through carefully designed experimental protocols, are usually consid-
ered the gold standard approach for assessing the causal effect of an intervention or a treatment
on an outcome of interest. Randomized interventions are widely used in many domains such as
economics, social sciences and medicine. In particular, the intensive use of randomized controlled
trials (RCTSs) in the medical area pertains to the so-called “evidence-based medicine”, a keystone of
modern medicine. Given that the treatment allocation in an RCT is under control, and that the
distribution of covariates for treated and control individuals is often balanced for a binary treatment,
simple estimators such as the difference in mean effect between the treated and control individuals
can consistently estimate the treatment effect (Imbens and Rubin, 2015). However, RCTs can come
with drawbacks. First, RCTs can be expensive, take a long time to set up, and be compromised
by insufficient sample size due to either recruitment difficulties or restrictive inclusion/exclusion
criteria. Second, these criteria for participant eligibility can lead to a narrowly-defined trial sample
that differs markedly from the population potentially eligible for the treatment. Therefore, the
findings from RCTs can lack generalizability to a target population of interest. This concern is
related to the aim of external validity central to medical research (Concato et al., [2000; [Rothwell,
2005} |Green and Glasgow, [2006; |Frieden, |2017)) and policy research (Martel Garcia and Wantchekon)
2010; |Deaton and Cartwright, |2018; Deaton et al., 2019)). Note that this concern about the need of
generalizability is not shared by all, as discussed by Rothman et al.| (2013).

In contrast, there is an abundance of observational data, collected without systematically-
designed interventions. Such data can come from different sources. For example, they can be
collected from research sources such as disease registries, cohorts, biobanks, epidemiological stud-
ies, or they can be routinely collected through electronic health records, insurance claims, admin-
istrative databases, etc. In that sense, observational data can be readily available, include large
samples that are representative of the target populations, and be less costly than RCTs. In or-
der to leverage observational data for causal effect analysis in health domains, the U.S. Food and
Drug Administration (FDA) has proposed a framework that distinguishes two types of information
levels: Real World Data (RWD) and Real World Evidence (RWE). On the one hand, RWD are
data related to individuals’ health status and/or the delivery of health care routinely collected from
a variety of sources. On the other hand, RWE is the clinical evidence derived from analysis of
RWD. However, there are often concerns about the quality of these “big data” given that the lack
of a controlled experimental intervention opens the door to confounding bias. In the absence of
unknown confounders, there exist many methods to consistently estimate a causal treatment effect
from observational data such as matching, inverse propensity weighting (IPW), or augmented IPW
(ATPW) (Imbens and Rubinl [2015)). However, the internal validity of causal claims built from ob-
servational data is still not consensual due to the impossibility of completely ruling out confounding
bias.

Combining the information gathered from experimental and observational data is a promising
avenue to build upon the internal validity of RCTs and a greater external validity of the real-world
data. In what follows, we give as examples three potential benefits in real world applications.

Using RCTs and observational data to generalize the treatment effect in a target
patient population. The FDA has recently greenlighted the extended usage of a certain drug
(Ibrance) to men with breast cancer, though clinical trials performed for authorization on the
market were performed on the female population. Breast cancer in men is a rare disease, and
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therefore fewer trials were conducted to include male patients. The approval of the extension to
the male population was based on the post-market health record and claims data, which cited the
real-world usage of Ibrance on men. To authorize such an extension is a solution to reduce the time
to approve a drug for patients who could benefit from it. But there are also concerns with such
approaches, especially cases where the target population is very different from the RCT cohort.
Method development and validation is needed to better navigate the speed-safety balance.

Comparing RCTs and observational data to validate observational methods. There are
many research questions for which it is impossible to conduct an RCT, for instance for ethical
reasons. Thus, researchers and clinicians remain compelled to take decisions based on observational
data. Having at disposal the two sources of data can be useful to benchmark and validate obser-
vational studies as there is still concern that the new methods developed to analyze observational
data could weaken standards. The Women’s Health Initiative (WHI) is a widely-cited example to
illustrate potential inconsistencies between conclusions derived from RCTs and RWD. This exten-
sive project was launched to assess whether hormone replacement therapy for healthy women could
prevent the appearance of menopausal symptoms. Two out of four interventions of the RCT ended
earlier than expected when evidence had accumulated that the health risks exceeded the benefits
for this study population (Prentice and Anderson, 2008), whereas observational data first showed a
benefit in the hormone replacement therapy. There were many discussions to understand whether
the discrepancies between the studies were due to external validity issues of the RCT or internal
validity issues of the observational data (Cole and Stuart], 2010} [Shadish et all [2002). This debate
led to a reanalysis of the data which showed that the observational data carried the same message as
the RCT, and that the differences observed were due to discrepancies in timing of start of treatment
and effect over the time (Vandenbroucke| [2009; [Frieden| 2017). Following a specific protocol can
help avoid such apparent contradictions, by ensuring comparable analyses and a well-stated causal
question. More precisely, such a protocol requires first to specify what target trial could answer the
precise causal question we are interested in, while the observational data is used in a second step
to emulate this target trial. The third part of the procedure is to perform sensitivity analysis to
investigate the remaining discrepancies (Hernan et al., 2016; [Hernanl [2018; Lodi et al. [2019).

Integrating the complementary features of RCTs and observational data to better esti-
mate treatment effects. The COVID-19 health crisis is a timely example of a pandemic where
a very rapid response is needed to assess the efficacy of various candidate treatments. In the begin-
ning of the outbreak, there are generally far more observational data than clinical trials. Knowing
how to best combine these two sources of information can be crucial, in particular to better estimate
heterogeneous treatment effect as RCTs are known to be under-powered in such settings.

There is an abundant literature on the problem of bridging the findings from an experimental
study to the target population and combining both sources of information. Similar problems have
been termed as generalizability (Cole and Stuart},|2010; |Stuart et al.,|2011; Hernan and Vander Weele
2011}, [Tiptonl [2013; [O’Muircheartaigh and Hedges| 2014} [Stuart et all 2015} [Keiding and Louis
2016} ?;[Dahabreh et al2019; [Buchanan et al.,[2018)), representativeness (Campbell, [1957), external
validity (Rothwell, 2005} Stuart et al., 2018)), transportability (Pear] and Bareinboim| 2011} Rudolph
land van der Laan| [2017; [Westreich et al.l 2017), and also data fusion (7). They have connections
to the covariate shift problem in machine learning (Sugiyama and Kawanabel 2012)). This problem
of data integration is tackled in the two main frameworks for causal inference, namely the potential




outcomes (PO) framework (Neyman, {1923} Rubin| [1974), associated with the work by Donald
Rubin, and the work on structural causal models (SCM) using directed acyclic graphs (DAGs),
much of it associated with work by Judea Pearl (Pearl, [1995) and his collaborators. Note that the
DAGs are intuitive tools to clinicians and can be used to incorporate the domain knowledge easily.

The present paper reviews available works on combining experimental data (RCTs) and obser-
vational data (RWD). It is organized as follows: In the next section, we introduce the notations in
the PO framework, as well as the design setting. The review then starts by considering in Section [3]
the case where the available data on the RCT are covariates (also known as baseline covariates
when measured at inclusion of the patient), treatment, and outcome, while on observational data,
only covariates are available. The aim is to generalize RCTs findings to the target population. To
do so, we give the identifiability assumptions and present the main estimation methods, i.e., inverse
probability of sampling weighting (IPSW) and stratification, g-formula, doubly robust estimators,
etc., that have been suggested to account for distributional shifts. In Section [, we consider the
case where observational data also contain treatment and outcome data. We consider estimators
for estimating the conditional average treatment effect using the two data sources while handling
potential unmeasured confounders. In Section [5 we present the SCM point of view which can
be used to achieve identification when there are many variables. The SCM and PO frameworks
are complementary, with different strengths discussed in [Imbens| (2019) and share many aspects
(Richardson and Robins, [2013), e.g, the transportability concept in the SCM framework is equiva-
lent to the generalization (external validity) concept in the PO framework. In Section |§|, we present
available implementations and software, which we apply using also new implementations, to simu-
lated data. In Section [7, we apply the different methods on a medical application involving major
trauma patients where the aim is to assess the effect of the drug tranexamic acid on mortality in
head trauma patients and where both an RCT (the CRASH-3 trial) and an observational database
(the Traumabase registry) are available. In this section, we also review methods for addressing data
quality issues such as missing values.

2 Problem setting

2.1 Notations, in the PO framework

We model each patient in the RCT or observational population as described by a random tuple
(X,Y(0),Y(1), A, S) drawn from a distribution P, where X is a p-dimensional vector of covariates,
A denotes the binary treatment assignment (with A = 0 for the control and A = 1 for the treated
patients), Y'(a) is the binary or continuous outcome had the subject been given treatment a (for
a € {0,1}), and S is a binary indicator for RCT eligibility (i.e., meet the RCT inclusion and
exclusion criteria) and willingness to participate if being invited to the trial (S = 1 if eligible and
also willing to participate if being invited to the trial, S = 0 if not)lﬂ

Assuming consistency of potential outcomes, we also denote by ¥ = AY (1) + (1 — A)Y(0)
the outcome realized under treatment A. We model the patients belonging to an RCT sample
of size n and in an observational data sample of size m by n 4+ m independent random tuples:
{Xi,Yi(O),Yi(l),Ai,Si}?jlm, where the RCT samples ¢ = 1,...,n are identically distributed ac-

INote that S takes several acceptations depending on research papers, for example other works use two indicators,
one for participation and one for eligibility (Nguyen et al.| 2018; |Dahabreh et al.| 2019). In such situations S = 1
denotes eligible and participating to the trial people, while S = 0 denotes ineligible or eligible but necessarily
non-participating people



cording to P(X,Y(0),Y(1),A,S | S =1), and the observational data samplesi=n+1,...,n+m
are identically distributed according to P(X,Y (0),Y (1), A, S). For simplicity of exposition, we also
denote R = {1,...,n} the index set of units observed in the RCT study, and O = {n+1,...,n+m}
the index set of units observed in the observational study.

For each RCT sample i € R, we observe (X;, A;,Y;,S; = 1), while for observational data ¢ € O, we
consider two settings:

i. We only observe the covariates X,

ii. We also observe the treatment and outcome (X;, A;,Y;).

The former case will be discussed in the next section while the latter will be detailed in Section Al
We define the conditional average treatment effect (CATE):

VeeRP, 7(x)=E[Y(1)-Y(0)|X =2],
and the population average treatment effect (ATE):
T=E[Y(1)-Y(O]=E[r(X)].

We note that in general, if the samples in the RCT and observational data do not follow the same
distribution, then the ATE is different from the RCT (or sample) average treatment effect

T#4mn, nm=E[Y(1)-Y(0)]|S=1].

We denote respectively by e(x) and e () the propensity score in the observational data and in the
RCT population:

e(r)=P(A=1|X=2), ezr)=PA=1|X=2,5=1).

We also denote by pq(z) and g 1(z) the conditional mean outcome under treatment a € {0,1} in
the observational data and in the RCT population, respectively:

to(z) =E[Y(a) | X =2], paa(x)=E[Y(a) | X =2,5=1],
and by 7g(z) the selection scoreﬂ
ms(z)=P(S=1|X=12).
Note that wg(z) is the probability of being eligible for selection in the RCT given covariates x. It is

different from the probability that an individual with covariates « known to be in the study (RCT
or observational population) is selected in the RCT:

ms(x) # mr(x), wr(z)=PFeR,X;=z|FecRUO,X,==1x).
We similarly note
o) =P(FieO0,X;=2|FeRUO,X;=2)=1—7mr(x).

Finally, we denote by a(x) the conditional odds ratio that an individual with covariates z is in the
RCT or in the observational cohort:
PileR|FIeRUO, X, =12) wr(z) mr(x)
) = P cO[HEeRUO.X,=0)  ro@)  1-mr@)’
Table [2[ summarizes the notations for convenience, and Table [1] illustrates the type of data consid-
ered.

2Also named sampling propensity score in [Tipton| (2013).



Table 1: lllustration of data structure of RCT data (Set R) and observational data (Set O) with covariates
X, trial eligibility S, binary treatment A and outcome Y. Left: with observed outcomes, Right: with potential
outcomes. Note that the S covariate can be either 0 or 1 in the observational data set (while usually unknown
from the raw data set in the non-nested design), and is always equals to 1 for observations in the RCT. In the
nested design (cf. Section @ S takes only value 0 in the observational data set.

Covariates Treatment | Outcome Covariates Treatment Outcome(s)
S| Set| X1 Xo X3 A Y S| Set | X1 X2 X3 A Y(0) Y(1)
1 1 R | 1.1 20 F 1 1 1 R | 1.1 20 F 1 NA 1
1| R -6 45 F 0 1 1| R -6 45 F 0 1 NA
n 1| R 0 15 M 1 0 1| R 0 15 M 1 NA 1

n+1 0] O 0| O
0 @] -2 52 M 0 1 0 @] -2 52 M 0 1 NA
1 @] -1 35 M 1 1 1 @] -1 35 M 1 NA 1

ntm|0| © | -2 22 M 0 0]l © ]2 2 M 0 0 NA

Table 2: List of notations.

Symbol Description

X Covariates (also known as baseline covariates when measured at inclusion of the patient)

A Treatment indicator (A = 1 for treatment, A = 0 for control)

Y Outcome of interest

S Trial eligibility and willingness to participate if invited to (S = 1 for eligibility, S = 0 for non-eligibility)

n Size of the RCT study

m Size of the observational study

R Index set of units observed in the RCT study; R={1,...,n}

@] Index set of units observed in the observational study; O={n-+1,... n+m}

() Probability that a unit in R U O with covariate z is in R

To(x) Probability that a unit in R U O with covariate x is in O

o(x) Conditional odds ratio a(z) = mr(z)/7o(x)

T Population average treatment effect (ATE) defined as 7 = E[Y (1) — Y (0)]

1 Trial (or sample) average treatment effect defined as m = E[Y (1) —Y(0) | S =1]

7(z) Conditional average treatment effect (CATE) defined as 7(z) = E[Y (1) = Y (0) | X = z]

71 () Trial conditional average treatment effect defined as 71 (z) = E[Y (1) - Y(0) | X = 2,5 =1]

e(x) Propensity score defined as e(z) = P(A=1| X =x)

e1(x) Propensity score in the trial defined as e1(z) = P(A=1| X =«,5 = 1), known by design

fa () Outcome mean defined as pq(z) =E[Y(a) | X = 2] for a =0,1

Ha,1(x) Outcome mean in the trial defined as pq,1(z) =E[Y(a) | X = 2,5 =1] fora=0,1

ws(x) Selection score defined as mg(z) = P(S=1| X =z)

f(X) Covariates distribution in the target population

f(X]|S=1) Covariates distribution conditional to trial-eligible individuals (S = 1)

2.2 Study designs; nested or not

It is important to characterize the study design because the identifiability conditions and therefore
the estimators depend on and differ over the designs. Following ? and 7, the study design to obtain
the trial and observational samples can be categorized into two types: mested study designs and
non-nested study designs as illustrated on Figure[I] This categorization is similar to the classic one



in survey sampling with multiple datasets. This paper focuses on the non-nested design in the
main text but we detail identifiability and estimators for the nested case in the Appendix

Non-nested trial design involves separate sampling mechanisms for the RCT and the obser-
vational samples. The trial sample and the observational sample are obtained separately from the
target population(s). Here, we do not limit the two underlying populations for the trial and ob-
servational samples to be the same, but we assume that the target populations follow the same
superpopulation model. For example, the trial study and the observational study are conducted by
different researchers in different times or regions - with small time-specific or regional effects so that
the underlying study populations are assumed to follow the same distribution. Note the difference
between S and the sets R and O, where in the observational sample we can have both § = 1 and
S =0 (Figure . In this review, we consider the case were the observational data set is a random
sample i.i.d from the target population. The medical application that will be presented in Section
[7] corresponds to the non-nested design framework.

Nested trial design involves a two-stage sampling mechanism. First, a large sample is selected
from the target population, and then the trial sample is selected from and nested in this sample. The
rest of the sample constitutes the observational study. It corresponds to a real medical situation,
such as designs for a pragmatic trial embedded in a broader health system. For example, in
the Women Health Initiative (WHI), after the end of the initial trial period, a cohort of study
participants are followed to measure their long-term outcomes. [Olschewski and Scheurlen| (1985)
introduce the comprehensive cohort study (CCS) design for evaluating competing treatments in
which clinically eligible participants are first asked to enroll in a randomized trial and, if they
refuse, are then asked to enroll in a parallel observational study in which they can choose treatment
according to their own preference, leading to the observational data. Note that in this design,
even the causal quantity of interest can be different from the non-nested design, as we may want
to transport 71(x) in the observational population such that the causal quantity of interest is
E[Y (1) =Y (0) | S = 0] rather than E[Y' (1) — Y'(0)] in the non-nested design.

3 When observational data have no treatment and outcome
information

We start by considering the case where only the distribution of the covariates from the observational
study is available or used. Note that observational data is a random sample from the target
population.

3.1 Assumptions needed to identify the ATE on the target population

A fundamental problem in causal inference is that we can observe at most one of the potential
outcomes for an individual subject. In order to identify the ATE from RCT and observational
covariate data, we require some of the following assumptions.

3.1.1 Internal validity of the RCT
Assumption 3.1 (Consistency) ¥ = AY (1) + (1 - A) Y (0).
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Figure 1: Schematics of the nested (left) and non-nested (right) designs.

Assumption implies that the observed outcome is the potential outcome under the actual as-
signed treatment.

Assumption 3.2 (Randomization) Y(a) L A | (X,S=1) for all X and a =0, 1.

Assumption [3.2] corresponds to internal validity. It holds by design in a completely randomized
experiment, where the treatment is independent of all the potential outcomes and covariates, i.e.,
(Y(0),Y(1)) L A| S =1. It also holds by design in a stratified randomized trial based on a discrete
X, where the treatment is independent of all the potential outcomes within each stratum of X:
Y(a) L A|(X,S =1). The more general case of conditional randomization is kept.

In addition, in an RCT, it is common that the probability of treatment assignment (also called
the propensity score) ej(x) is known. In a complete randomized trial, the propensity score is fixed
as a constant, e.g., e;(z) = 0.5 for all x.

3.1.2 Generalizability of the RCT to the target population

Different assumptions on the generalizability of the RCT to the target population are proposed in
the literature, ranging from weak to stringent conditions. We now describe these assumptions and
their implications.

Assumption 3.3 (Transportability of the CATE) 7 (z) = 7(z) for all .

Assumption [3.3] requires that the CATE function is transportable from the RCT to the target
population, which is plausible if X captures all the treatment effect modifiers and there is no trial



encouragement. It means that the invitation to participate in the trial and trial participation itself
do not affect the outcome except through treatment assignment (7).

Assumption 3.4 (Mean exchangeability over treatment assignment and trial participation)
EY(a)| X=2,5=1,A=a]=E[Y(a) | X =x,S = 1] (Dahabreh et al),|2019)
aswell asE[Y(a) | X =2, =1]=E[Y(a) | X = 2] for each z and a =0, 1.

Assumption means exchangeability over treatment assignment in the trial given covariates is
expected to hold by design in the RCT.

Assumption 3.5 (Ignorability assumption on trial participation) {Y(0),Y (1)} L S | X.
(Stuart et all [2011; | Buchanan et all|2018)

Assumption means that being eligible to the RCT does not affect the potential outcomes con-
ditionally on the covariates X. In other words, it means that there are no unmeasured variables
associated with the trial sample selection and the treatment effect. This is the parallel with the
ignorability assumption on treatment assignment in causal inference with observational data (see
, but with the sample selection.

It is worth discussing the relationships among Assumptions - ranging from weak to
strong conditions. Assumption transportability of the CATE, is implied by, but does not imply,
the stronger conditions in Assumption [3.4] Assumption [3.4] mean exchangeability over treatment
assignment, is implied by, but does not imply, the stronger conditions Y (a) L A | X, S = 1 implied
by Assumption [3:2} In the same way, mean exchangeability over trial participation, also known as
mean generalizability (from trial participants to the target population), is implied by, but does not
imply, the stronger condition Y (a) L S | X in Assumption (participation in the RCT is ran-
domized within levels of X). Note that for binary S, mean exchangeability over trial participation
implies the mean transportability condition E[Y(a) | X =2,5=1] = E[Y(a) | X =2,5=0] in
Assumption [3.3] for all z such that P(S=0| X =z) > 0.

Assumption 3.6 (Positivity of trial participation) There exists a constant ¢ such that for all
x with probability 1, ng(x) >¢>0; and0 < P(A=a | X =2,5=1) <1 for all a and for all x
such that P(S=1|X =z) > 0.

Assumption [3.6] means that we require adequate overlap of the covariate distribution between the
trial sample and the target population (in other words, all members of the target population have
nonzero probability of being selected into the trial), and also between the treatment groups over
the trial sample. The positivity of treatment assignment in the trial given covariates, related to the
assumption required for causal inference in confounded settings, is expected to hold by design in
the RCT.

3.1.3 Towards identification formula

Under Assumptions (3.1 (or 3.5 , and (3 - for the regression formulation), and under Assump-
tions u - or |3.4] or [3.5)), and (for the reweigthing formulation), the ATE can be identified
based on the following formula proved in Appendix |C):

a) Reweighting formulation:

r= | s =1 =2 G - a5 0




In a fully randomized RCT where e;(x) = 0.5 for all z, this formula further simplifies to

2n
T=E ma(X)(2A Y| S
b) Regression formulation:
7 =E[p1(X) = poa(X)] - (2)

Different identification formulas motivate different estimating strategies as discussed in the next
subsection.

3.2 Estimation methods to improve generalizability of RCT analysis

As the RCT assigns treatment at random to the participants, the CATE 7 (z) = 7(z) is identifiable
(under assumptions and and can be estimated by standard estimators, such as the difference
in means solely from the RCT (see Appendix . However, in general, the covariate distribution of
the RCT sample f(X | S = 1) is different from that of the target population f(X); therefore, 7y
is different from 7 in general, and a SATE estimator using only trial data is biased for the ATE of
interest.

3.2.1 IPSW and stratification: modeling the probability of trial participation

To overcome this bias, most existing methods rely on direct modeling of the selection score previ-
ously introduced. The selection score adjustments methods include inverse probability of sampling
weighting (IPSW;|Cole and Stuart, [2010; |Stuart et al, 2011; Buchanan et al., 2018) and stratifica-
tion (Stuart et al., [2011} Tipton, |2013; |(O’Muircheartaigh and Hedges|, [2014]).

Inverse probability of sampling weighting (IPSW) The IPSW approach can be seen as the
counterpart of inverse propensity weighting (IPW) methods to estimate the ATE from observational
studies to control for confounding (see Appendix for details). Based on the identification formula
, the IPSW estimator of the ATE is defined as the weighted difference of average
outcomes between the treated and control group in the trial. The observations are weighted by the
inverse odds ratio 1/a(z) = o (x)/mr () to account for the shift of the covariate distribution from
the RCT sample to the target population. The larger 7z, the smaller the weight of the observation.
The shape of the IPSW estimator is slightly different from the shape of the IPW estimator. In the
latter, each observation is weighted by the inverse of the probability to be treated whereas in the
former it is by the inverse of the odds ratio of the probability to be in the trial sample. This is due
to the non-nested sampling design (see the estimator for the nested design ), as mentioned by
Kern et al.| (2016)) and [Nguyen et al.| (2018). The IPSW estimator can be written as follows:

1 Y, A, 1— A,
~IPSW _ 1 i i i
T (et~ e ®)

where @ is an estimate of o. In a standard RCT with ey (x) = 0.5 being fixed, this further simplifies
to

R 1 - 2Y;(24; — 1)
IPSW _ -+ i i
A =2

—~  aXy)
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The IPSW estimator is consistent when the quantity « is consistently estimated by @. The most
common method for estimating the selection score is to define it as a(x) = Tr(z)/(1 — Tr(x)),
where T is estimated by logistic regression trained to discriminate RCT from observational samples
(Stuart}, 2010), while recent works also use other methods such as random forest and GBM (Kern!
et all |2016)). Similar to IPW estimators, IPSW estimators are known to be highly unstable,
especially when the selection scores are extreme. It happens when the trial study contains units
with very small probabilities of being in the trial. Normalized weights can be used to overcome this
issue (7). Still, the major challenge is that IPSW estimators require a correct model specification of
the selection score. Avoiding this problem requires either very strong domain expertise or turning to
doubly robust methods (Section. Finally, Dahabreh et al.| (2019) propose the use of sandwich-
type variance estimators (for both nested and non-nested design) or non-parametric bootstrap
approaches, and note that the latter may be preferred in practice.

Stratification The stratification approach — also called subclassification — is introduced by Cochran
(1968)), and further detailed by |Stuart et al. (2011), Tipton| (2013), and |(O’Muircheartaigh and
Hedges| (2014)). It is proposed as a solution to mitigate the dangers of extreme weights in the IPSW
formula. The principle is to form L strata based on the covariate values via the selection score,
which in practice consists in grouping observations for which 7x are similar. Then, in each stratum
[, the average treatment effect is estimated as Y'(1), — Y (0), where Y (a), denotes the average value
of the outcome for units with treatment a in stratum [ in the RCT. Finally, the ATE estimator is
the weighted sum of the difference between means in each stratum:

L
puet =3 DUV, - Y0), ) @)
=1

where m;/m is the proportion of population cases in the stratum [ in the observational study.
Kang et al| (2007) assess performance of the stratification as opposed to the IPSW, and show
that stratification is less effective than IPSW at removing bias, but that IPSW struggle more than
stratification when the selection scores are small.

3.2.2 G-formula estimators: modeling the conditional outcome in the trial

An alternative to IPSW for generalizing RCT findings to a target population consists in leveraging
the regression formulation . The corresponding estimators, known as g-formula esti-
mators, fit a model of the conditional outcome mean among trial participants, instead of fitting a
model for the probability of trial membership. Applying these models to the covariates in the target
population, i.e., marginalizing over the empirical covariate distribution of the target population,
gives the corresponding expected outcome (Robins, [1986). This outcome model-based estimator is

then defined as:
1 n+m

= — " (A1a(Xi) = o (Xi)), (5)
1=n—+1
where [ig,1(X;) is an estimator of 11,,1(X;). In the simplest case, one can assume a linear regression
model for each treatment a, estimate it by standard ordinary least squares (OLS), on the trial sample
and apply it on the observational sample. When the model is correctly specified the estimator is
consistent. [Kern et al.| (2016]) suggest using BART to learn the regression functions.
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Dahabreh et al.| (2019) show that g-estimators are equivalent to specific IP weighting estimators
where the probability of treatment among trial participants is also modeled and when all models
are estimated by nonparametric frequency (non-smooth) estimators. Nevertheless, their method
encounters difficulties in practice, especially in high dimension, so that they suggest resorting to
double robust estimators (Section .

3.2.3 Calibration weighting: balancing covariates

Beyond propensity scores, other schemes use sample reweighting. Dong et al.| (2020) propose a
calibration weighting approach, which is similar to the idea of entropy balancing weights introduced
by |[Hainmueller| (2012)). They calibrate subjects in the RCT samples in such a way that after
calibration, the covariate distribution of the RCT sample empirically matches the target population.
Let g(X) be a vector of functions of X to be calibrated; e.g., the moments, interactions, and non-
linear transformations of components of X. In order to calibrate, they assign a weight w; to each
subject 7 in the RCT sample by solving the optimization problem:

min Z w; logw;, (6)
=1

W1 yeeny Wy 4
i

subject to w; > 0, for all 7,
n n
Zwi =1, Z w; g(X;) = g, (the balancing constraint)
i=1 i=1

where g = m ™! Z::Zj_l g(X;) is a consistent estimator of E [g(X)] from the observational sample.

The balancing constraint calibrates the covariate distribution of the RCT sample to the target pop-
ulation in terms of g(X). The objective function in (6]) is the negative entropy of the calibration
weights; thus, minimizing this criteria ensures that the empirical distribution of calibration weights
are not too far away from the uniform, such that it minimizes the variability due to heterogeneous
weights. This optimization problem can be solved using convex optimization with Lagrange multi-
pliers. For an intuitive understanding of the calibration weighting framework, consider g(X) = X.
In such a setting, the balancing constraint is forcing the means of the observational data and RCT
to be equal after reweighting. More complex constraints can for instance balance higher-order
moments. The calibration algorithm is inherently imposing a log-linear model of the sampling
propensity score and solving the corresponding parameters by a set of estimating equations in-
duced from covariate balance. This equivalence provides insights of using the penalized estimating
equation approach to select important variables for balancing.
Based on the calibration weights, the CW estimator is then

- A 1— 4
~CW __ ~ v i . 7
T ;wm {el(X,») 1—e(X5) } ' ")

The CW estimator 7V is doubly robust in that it is a consistent estimator for 7 if the selection
score of RCT participation follows a loglinear model, i.e., m5(X) = exp{ny g(X)} for some nq, or
if the CATE is linear in g(X), i.e., 7(X) = 7, g(X), though not necessarily both. The authors
suggest a bootstrap approach to estimate its variance.
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3.2.4 Doubly-robust estimators

The model for the expectation of the outcomes among randomized individuals (used in the g-
estimators in Equation (5))) and the model for the probability of trial participation (used in IPSW
estimators in Equation (3))) can be combined to form an Augmented IPSW estimator (AIPSW):

SAIPSW _ ;Z: a(l [Ai {Yi —pma (X9} (1= A){Yi = ioa (Xi)}

X)L el 1= elX)
1 m-+n
F— 3 (a0 — floa (X))}
1=n-+1

It can be shown to be doubly robust, i.e., consistent and asymptotically normal when either one
of the two models for T and [ig1(X) (a = 0,1) is correctly specified, as demonstrated by ?,
supplementary material for both the nested and non-nested designs.

More recently, Dong et al.| (2020) propose an augmented calibration weighting (ACW) estimator,
given by

e1(X;) L —en(Xi)
1 m4+n (8)
- > {a(X:) = foa(Xi)}

i=n+1

~ACW _ i@i {Ai {Yi —ma(Xo)} (1= A){Yi — fioa(Xi)}
i=1

They show that 7ACW achieves double robustness and local efficiency, i.e., its asymptotic variance
achieves the semiparametric efficiency bound (the variance is smaller than the asymptotic variance
of 7¢W in equation @ Moreover, the ACW estimator enables the use of double machine-learning
estimation of nuisance functions (estimates of both) while preserving the root-n consistency of the
ACW estimator. Other doubly robust estimators include targeted maximum likelihood estimators
(TMLE) (Rudolph and van der Laan| [2017). They provide a semiparametric efficiency score for
transporting the ATE from one study site to another, where one site is regarded as a popula-
tion. ? propose double/debiased machine learning methods to consistently estimate the ATE by
using flexible machine learning methods for the nuisance parameters estimation to avoid model
mis-specification. Their approach uses Neyman-orthogonal scores to reduce sensitivity of ATE esti-
mation with respect to nuisance parameters. In addition, they use cross-fitting (Zheng and van der
Laan|, 2011} ?) to provide an efficient and unbiased form of data-splitting.

Dahabreh et al.| (2020) perform a simulation study when all hypothesis are met to compare
IPSW, g-estimators and doubly robust ones. It confirms that when all models are correctly specified
all estimators are approximately unbiased, with the outcome-model based estimator showing
the lowest variance. Note that they do not explicitly simulate under model’s mis-specification.

We must add the caveat that all methods assume the transportability condition: given the
covariates x the treatment effect must be the same in the observational data as in the trial. It
could be broken if some treatment effect modifiers are not captured in the data. However, if the
observational data provide additional treatment and outcome information, some key assumptions
may be testable. In the next section, we review methods developed in the context of combining
RCT and full observational data.
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4 When observational data contain treatment and outcome
information

In Section [3] we have studied the use of the covariate distribution of the observational sample to
adjust for selection bias of the RCT sample. Now we consider the setting where we have access to
additional treatment and outcome information (Y, A) from the observational sample. Many studies
involve both RCT and observational data with comparable information, e.g., the study we detail in
Section [7] with the Traumabase and the CRASH-3 datasets. In this context, the question of interest
becomes how to leverage both data sources for efficient estimation of the ATE and CATE.

4.1 Causal inference on observational data

Under classical identifiability assumptions, it is possible to estimate the ATE and CATE based only
on the observational data. The classical ones are the following.

Assumption 4.1 (Unconfoundedness) Y(a) L A| X fora=0,1.

Assumption (also called ignorability assumption) states that treatment assignment is as good
as random conditionally on the attributes X. In other words, all confounding factors are measured.
Unlike the RCT, in observational studies, its plausibility relies on whether or not the observed
covariates X include all the confounders that affect the treatment as well as the outcome.

Assumption 4.2 (Overlap) There exists a constant n > 0 such that for almost all x, n < e(x) <
1—n.

Assumption (also called positivity assumption) states that the propensity score e(-) is bounded
away from 0 and 1 almost surely.

Under Assumptions [I.1] and [.2] the ATE can be identified based on the following formula from
the observational data:

a) Reweighting formulation:

e(X) 1-e(x)]’ )

b) Regression formulation:
T=E[r(X)] = E [ (X) = po(X)].- (10)

The identification formulas motivate IPW (Appendix , regression estimators or doubly robust
estimators based solely on the observational data. There are many methods also available to
estimate the CATE 7(-) based on the observational data such as causal forests (Wager and Athey),
2018), causal Bayesian additive trees (BART) (Hill, [2011; Hahn et al 2020), causal boosting (?),
or causal multivariate adaptive regression splines (MARS) (?). There are also meta-learners such
as the S-Learner (Kiinzel et al., 2018)), T-learner (Kiinzel et all [2018]), X-Learner (Kiinzel et al.|
2019)), MO-Learner (Rubin and van der Laan| 2007; Kiinzel et al., 2018)), and R-learner (Nie and
Wager,, 2017)), which build upon any base learners for regression or supervised classification such as
random forests (Breiman) 2001)) and BART (Hill, 2011]).
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4.2 Dealing with unmeasured confounders in observational data

The ATE is useful to inform about the treatment effect over a target population on average. Al-
ternatively, the CATE informs how treatment effect varies over individual characteristics. Under
Assumptions [3.5] and [£.1] the CATE can be estimated based on the RCT and observational study,
and therefore the two data sources can be pooled to improve estimation efficiency. In this case,
the covariate shift problem for the RCT does not bias the estimator of the CATE; furthermore, we
do not require the covariate distribution to overlap between the RCT and observational data. In
practice, observational data may violate the desirable assumption for combining, e.g., that there
are no unmeasured confounders. The design benefit of RCTs can be used to overcome this lack of
internal validity. Hence, the next questions are whether we should include observational data into
our analysis and how we should use it. At a general level, we face a case where we want to combine
an unbiased but high-variance estimator (due to the small sample size of the RCT) and a biased
but low-variance estimator from the observational study.

To answer the first question, [Yang et al.| (2020) derive a statistical test to gauge the reliability
of the observational data compared to the gold-standard RCT data. The test outcome determines
whether or not to use the observational data in an integrative analysis. Their strategy leads to
an elastic test-based integrative estimator that uses the optimal combining rule for estimation if
the violation test is not significant and retains only the RCT counterpart if the violation test is
significant. This guarantees the consistency of the CATE estimator regardless of whether or not
the observational data meet the criteria for combining. The elastic integrative estimator gains
efficiency over the RCT alone estimator and gains robustness to unmeasured confounding over the
naive combining estimator.

Other approaches exist to handle unmeasured confounders. [Kallus et al.[(2018]) consider a setting
where the ignorability on the trial assumption (Assumption holds but where the observational
data does not fully overlap with the RCT. They suggest the following estimation strategy. First,
using confounded observational data {(X;, A;,Y;): j € O}, they estimate the conditional treat-
ment effect with classical methods such as causal forest (Wager and Athey, [2018]), denoted by @(x).
Due to possible unmeasured confounding, &(z) may be biased for 7(z). To correct for this bias,
they write the bias as n(x) = 7(x) —w(z). Given that @(z) is obtained from the observational data,
one can learn the bias term 7 using unconfounded RCT data, {(X;, A4;,Y;,5;=1): i € R}. Fur-
thermore, they assume that the bias can be well approximated by a function with low complexities:
e.g., a linear function of x: n(x) = 7 2. This assumption guarantees the validity of the framework
even if the observational data does not fully overlap with the experimental data as the bias can be
well estimated by extrapolating. Lack of overlap could be an issue if the bias is approximated using
nonparametric models such as random forests because their ability to extrapolate may be weak.
Kallus et al. (2018) then use the transformed outcome Y;* = [e(X;) ™" A; — {1 —e(X;)} 1 (1— 4,)]Y;
which is unbiased for 7(X;), E[Y* | X;] = 7(X;) and estimate the bias as 7j(z) = 7z where:

g = argming Z {Y; -o(X5) - 9TX1}2 .
i=1

Finally, 7(x) = @(x) + 7(x) is the estimated conditional average treatment effect. They prove that
under conditions of parametric identification of 1), they recover a consistent estimate of 7(z) at a
rate which is governed by the rate of estimating w by @.

In clinical settings, parametric models for the CATE are desirable due to their easy interpreta-
tions. [Yang et al.| (2020) consider a structural model assumption for the CATE, e.g., for continuous

15



outcomes, a linear CATE function of the form 7,,(z) = 2"¢¢ with ¢ € RP*, and for binary out-
comes, a CATE function of the form 7, (z) = {exp(z" o) —1}/{exp(z"¢o) +1} ranging from —1 to
1. Furthermore, to accommodate the possible unmeasured confounders in the observational data,
they assume that a confounding function summarizes the impact of unmeasured confounders on
the difference in the potential outcome between the treated and untreated groups, accounting for
the observed covariates. In particular, they consider

AMz)=E[Y(0)|A=1,X =2] —~E[Y(0) | A=0,X = 1]

for the observational data. In the absence of unmeasured confounding A(z) = 0 for any = € RP?,
while if there is unmeasured confounding, A(x) # 0 for some z. Similar to the CATE, [Yang et al.
(2020) impose a structural model assumption for A(z) = Ag,(x) with ¢ € RP2 The confounding
function is unidentifiable based only on the observational data. Coupling the RCT and observational
data, [Yang et al| (2020) show that the CATE and confounding function are identifiable. The key
insight is to define the random variable

Hyy =Y =750 (X)A = (1 = 5)Age (X){A — e(X)}, (11)

where o = (¢, ¢5)" € RP (p = p1 + p2) is the full vector of model parameters in the CATE and
confounding function. By separating the treatment effect 7,,(X)A and (1 — S)Ag, (X){A —e(X)}
from the observed Y, Hy,, mimics the potential outcome Y (0). They then derive the semiparametric
efficient score of vy:

8T¢0(X)
Swo(v) = ( 8/\%(}?)@(01 - 8) ) {Ug(X)}_l(HdJo - E[H¢o | X, S]){A - €(X)}, (12)
9o

where 0%(X) = V[Y(0) | X,S]. A semiparametric efficient estimator of 1)y can be obtained by
solving the estimating equation based on . If the predictors in 7,,(X) and Ay, (X) are not
linearly dependent, they show that the integrative estimator of the CATE is strictly more efficient
than the RCT estimator. As a by-product, this framework can be used to generalize the ATEs from
the RCT to a target population without requiring an overlap covariate distribution assumption
between the RCT and observational data.

Methods mentioned above are applicable for general cases of integrative analysis, other ap-
proaches have been tailored for special applications. |[Peysakhovich and Lada (2016]) propose a
method for integrative analysis when observational data are time series. First, one can use ob-
servational time series data to estimate a mapping from observed treatments to unit-level effects.
This estimate is biased due to potential unobserved confounders. Then, one can use experimental
data to identify a monotonic transformation from biased estimates to real treatment effects. To use
this method, unit-level time series data are needed for the first step and assume the bias preserves
unit-level relative rank ordering. |Athey et al.[(2020) combine RCT and observational data to obtain
credible estimates of the causal effect on a primary outcome in a setting where both observational
and RCT samples contain treatment, features, and a secondary (often short-term) outcome, but
the primary outcome is observed only in the non-randomized sample, the rational being that the
treatment effect on the secondary outcome and that on the primary outcome should be similar. If
this is not the case, they assume that it is because of unobserved confounders in the observational
sample. Their method consists in adjusting the estimates of the treatment effects on the primary
outcome using the differences observed on the secondary outcome. They suggest three methods,
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namely, i) imputing the missing primary outcome in the RCT, i) weighting the units in the ob-
servational sample to remove biases and 4i) using control function methods. The key assumption
for identifiability is a latent unconfoundedness Y;"'(a) L W; | Y;°(a), X;,i € O, i.e., unobserved
confounders that affect both treatment assignment and the secondary outcome in the observational
study are the same unobserved confounders that affect both the treatment assignment and primary
outcome. Their assumptions also imply that the missing data in the potential outcomes are missing
at random (Rubin, [1976]).

5 Structural causal models

The PO framework and the associated methods reviewed in the previous sections rely on the implicit
assumption that we know which variable — the treatment assignment — is susceptible to causally
affect another variable — the outcome — and which variables could confound this effect — the con-
founders. It also assumes that we know which variables are responsible for trial allocation. Conse-
quently, the PO framework deals with identifiability of the resulting treatment effect by postulating
assumptions about the data generating process (ignorability, overlap, treatment consistency, etc.)
and extensively discusses its estimation. In certain applications, systems are too complex or involve
too many covariates to assume a complete a priori knowledge about these different components.
The Structural Causal Models (SCM) framework offers an alternative for identifiability assessment
by proposing a different formalization of the problem. This formalization allows to identify sets of
relevant variables to rule out different types of biases, while still incorporating all available domain
knowledge, and to establish identifiability of the treatment effect as we will see in the following.

In this section, we review the SCM framework for combining RCTs and observational data,
focusing particularly on the recent work by ? and |Hiinermund and Bareinboim| (2019) as they
summarize this line of work (see reference therein). The authors propose a unified framework
called data fusion which accounts for the heterogeneity of data, i.e., the fact that “not all data
are created equally”. More precisely, they propose a general framework, illustrated in Figure
that simultaneously takes into account confounding issues of observational data, sample selection
issues, as well as extrapolation of causal claims across heterogeneous settings, in a non-parametric
setting. Most of their work focuses on identifiability issues to determine whether a query @, often the
treatment effect, can be estimated from the available information. Links with the PO framework are
underlined. Finally, we discuss the connection and complementarity between the SCM framework
and the PO framework. Of note, the exposition here relies on so-called structural equation models
with independent errors and their representation using directed acyclic graphs (DAGs), including
DAGs with selection nodes (?); an alternative approach for generalizability and integrative analyses
of trials and observational studies (Dahabreh et al., [2019, [2020) using structural equation models
under weaker error assumptions and represented using single world intervention graphs (Richardson
and Robins|, 2013)) has also been proposed but will not be examined in detail here.

5.1 Data fusion: a unified framework for combining observational data
and RCT

Note that we adapt the notations of the SCM framework to fit with those introduced in previous
sections. Specifically, we denote Y an outcome, A a treatment variable, X observed covariates, U
unobserved variables and S a sample selection indicator. We provide a short introduction to SCM
and do-calculus (Pearl, 2009) in Appendix
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Given a target quantity to estimate (mostly P(y | do(a))), ? and [Hiinermund and Bareinboim
(2019) introduce a generalized framework which identifies when the target quantity is estimable
using available data including for instance purely observational data (giving P(a,x,y)), other inter-
ventional data, and nonexperimental studies (giving P(a,z,y,| S = 1)). The framework relies on
defining assumptions and conditions under which the iterative application of do-calculus rules can
lead to the reduction of the target quantity onto an estimable expression (containing only standard
probabilities, i.e., do-less expressions).

Figure [2] gives a schematic illustration of the proposed framework. In what follows, we sum-
marize the conditions and identifiability results proposed by the authors for the cases of handling
confounding bias, selection bias, and generalizability of RCT results to a target population.

(1) Query

Q = Causal effect at target population ]

(2) Model

X

Solution

Causal Inference Engine:

Ae— oY |_y.| Three inference rules of exists? ' Yes) ;
do-calculus : expression (Q

Estimable

(3) Available Data

- Obervational: P(v) No
- Experimental: P(v | do(x)) :

o \/
- Selection-biased: P(v | S = 1) Assumptions need to be strengthened
+

P( | do(a), S =1) —

(imposing shape restrictions , distributional
assumptions , etc)
- From different populations:
P(saurce)(v | do(a))
+
observational studies

Figure 2: Schematic illustration of the data fusion process. The causal inference engine provided by do-calculus
takes three inputs: (1) a causal effect query @, (2) a model G, and (3) the type of data, P(v | .), that is available. It
is guaranteed to return a transformation of @), based on G, that is estimable with the available data, whenever such
a solution exists.

5.1.1 Confounding bias

In order to estimate the causal effect P(y | do(a)) using only available observational data, following
the observational distribution P(a, z,y), the idea is to identify—on the basis of the causal graph—a
set of admissible variables such that measuring and adjusting for these variables removes any bias
due to confounding. The backdoor criterion defined below provides a graphical method for selecting
admissible sets for adjustment.
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Definition 1 (Admissible sets - the backdoor criterion) Given an ordered pair of treatment
and outcome variables (A,Y) in a causal DAG G, a set X is backdoor admissible if it blocks every
path between A and Y in the graph Ga, with G 5 the graph that is obtained when all edges emitted
by node A are deleted in G.

The backdoor criterion can be seen as the counterpart of unconfoundedness in Assumption If
a set X of variables satisfies the backdoor condition relative to (A4,Y), then Y(a) L AT X.
Identifying backdoor admisible variables is important because it allows to estimate causal effects
from observational data as follows:

Theorem 5.1 (Backdoor adjustment criterion) If a set of variables satisfies the backdoor cri-
terion relative to (A,Y), the causal effect of A on'Y can be identified from observational data by
the adjustment formula P(y | do(a)) =", P(y | a,z)P(x).

The adjustment formula can be seen as the counterpart of the identifiability formula in Equation

The backdoor criterion is one of the graphical methods for identifying admissible sets. In cases
where it is not applicable, an extended definition called the frontdoor criterion can be applied using
mediators in the graph. Figure [3] provides a summary of the identifiability conditions when the
available data is either observational data or data from surrogate experiments.

Observational data alone .
P(a, x, y, w) Yes Condition: No
Y Backdoor criterion
Yes
. e Yes —
No Q is identifiable ﬂr criterion
Yes No
Condition . . -
Obser.vational and (z-identifibility) Q is not identifiable
Experimental data Yes A intercepts all directed
| paths from Xto Y No
. P(a, x, y, w) and
P(y | do(a)) is identifiable
P(y | do(a)) in Gy

Figure 3: Summary of identifiability results to control for confounding bias: If there exists a set of observed
variables that satisfies the backdoor criterion, then the causal effect of A on Y can be identified using nonexperimental
data alone. In the case where no set of observed variables satisfies the backdoor condition but the effect of A can be
mediated by an observed variable M (mediator), if there exists a set of observed variables that satisfies the frontdoor
criterion, then the causal effect if also identifiable from observational data alone. If none of these conditions holds,
the query is not identifiable. If, in addition to observational data, RCTs through surrogate experiments are available,
the z-identifiability condition is sufficient to determine if the query is identifiable or not.
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5.1.2 Sample selection bias

To tackle sample selection bias, i.e., preferential selection of units, the authors consider an indicator
variable S such that S = 1 identifies units in the sample. The data at hand can be seen as
P(a,y,x | S = 1) and the target is P(y | do(a)). Figure [4] (b) presents a case where the selection

. : @) @ (©
Figure 4: Cases with sample se- W X
1

lection bias: A is the treatment W,

and Y the outcome, S is the selec- Y A oY ‘/I
tion process and the aim is to esti- A /
mate P(y | do(a)) when data avail- A *Y

able come from P(a,y | S = 1) in

(a) and (b).

process is d-separated (definition in Appendix [E) from Y by A, then P(y | a) = P(y | a,S = 1);
since A and Y are unconfounded, P(y | do(a)) = P(y | a) so that the experimental distribution is
recoverable from observed data. This is not the case for Figure [4] (a) without further assumptions.
When both confounding bias and selection bias are present in the data (Figure (¢)), the graphical
framework can help selecting among the list of adjustment sets, {Wy, Wa}, {Wy, Wa, X}, {W1, X},
{W3, X}, and X, (these sets control for confounding), the one that can be used as available from
biased data; here it will be X as it is the only one separated from S, leading to P(y | do(a)) =
> . Ply|axS=1)P|S=1). This ability to select relevant covariates for identifiability is
presented as an important advantage of the SCM framework.

Combined bias and unbiased data. Note that the previous examples in Figure [] concern only
one set of data but the approach is extended to combine data, biased (with a selection) data, and
unbiased data (for instance covariates from the target population) as follows. To do so, ? define
the S-backdoor admissible criterion which is a sufficient condition but not necessary. It states
that if X is backdoor admissible, A and X block all paths between S and YV, ie. ¥ L S| A, X,
and that X is measured in both population-level data and biased data, then, the causal effect can
be identified as

P(y | do(a)) = ZP(y |a,z,S =1)P(x).

This expression shows that one can generalize what is observed on the selected sample by
reweighthing or recalibrating by P(z) that is available from the target population (unbiased data).
More complex setting can be handled, such as dealing with post-treatment variables. In such a
case, they show that generalizibility can be obtained by another weighting strategy (not by P(x)),
which can also be seen as a benefit of this framework.

5.1.3 Transportability: extrapolating causal knowledge across domain

Finally, ? tackle the issue of transportability, which consists in extrapolating causal knowledge
across domain while settings’ populations and environments differ both in their distributions and in
their inherent causal characteristics. For example, transportability could help answering questions
such as: “If a program worked for poor rural women in Africa, will it work for middle-income urban
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men in South Asia?”. This range of questions address the external validity issue presented in the
introduction.

? introduce a formal representation called “selection diagrams” to express the differences and
commonalities between two samples as represented in Figure [} Causal diagrams are augmented
with a set S of “selection variables”, where each member of S corresponds to a mechanism by
which the two samples are different (either in the distribution of background factors (U) or due to
divergent causal mechanisms f defined in Appendix. Note that there is a square for S instead of
a nested circle for selection bias like in Figure [ Note that S is emitting arrows, whereas selection
nodes indicating preferential inclusion into the sample only receive incoming arrows.

Let us consider two domains, S = s* and S = s, in the graph of Figure [5| (a) and focus on
the aim of transporting causal knowledge from s to s*. More precisely, the available information
is P(y | do(a),X = x,S = s), P(y,z,a | S =s) and P(y,a,z | S = s*), and the aim is to recover
P(y | do(a), S = s*). The transport formula, which we prove in Annex addresses this task as
follows.

Figure 5: Illustration of selection diagrams depicting differences between source and target populations:
In (a), the two populations differ by their X distributions (so S points to X). In (b), the populations differ in how
X depends on an unmeasured variable, represented by the open circle and the unmeasured variable distributions are
the same. In (c), the populations differ in how X depends on A. In (d), the unmeasured confounder (bidirected
arrow) between X and Y precludes transportability.

Theorem 5.2 (Transport formula) The causal effect P(y | do(a),S = s*) can be transported
from a population 11 to a target population 1%, if there exists a set X of observed pretreatment
covariates that is S-admissible, i.e., when X blocks all paths from S to Y after deleting from the
graph all arrows into A, that is, S satisfies (S LY | X)q,. Gz represents the diagram after
removing all arrows pointing at A. The transport formula is given by the weighting:

P(y | do(a),S =s*) = ZP(y | do(a), X =2, =s)P(zx|S=s"). (13)

Note that S-admissibility can be seen as the graphical mirror of S-ignorability of Assumption
Then, the transport formula can be seen as the counterpart of the identifiability formula (see
(14)). Indeed, in our example, the trial data corresponds to S = s and is unconfounded so that
P(y | do(a),z,S =s) =P(y|a,z,S =s).

In more complicated graphs, for instance involving post-treatment variables (selection biases) as
illustrated in Figure 4| (c), domains may differ due to variables that are themselves causally affected
by the treatment. The transport formula can then be different (weighting by P*(x | a) instead
of P*(z)). In complex setting, some automatic algorithmic solutions are available to determine if
(non-parametric) identifiability holds (Correa et al.l |2018; Tikka et al., 2019).
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5.2 Complementarity of the PO and SCM frameworks

It appears that there is an imbalance in the focus of the two frameworks: identifiability is dealt
with in two paragraphs in the PO framework and requires several pages in the SCM framework;
as for the estimation, it takes a large part in the PO framework and is non-existent in the SCM
framework.

In classical problems, both formulations lead to the same identifiability expressions, as we high-
lighted in this section: the backdoor criterion in Theorem and the transport formula (13
correspond respectively to identifiability formulae and in the PO framework. Equation
is useful to make the connection between the PO and SCM frameworks, because with a discrete X,

becomes:
E [:u'a,l(Xﬂ = Z,u'a,l(X)P(X = ). (14)

Nevertheless, in more complex settings, the SCM framework with its elegant way of formalizing the
problem, helps establishing identifiability. In addition, one important practical advantage of using
SCMs is, subject to a good knowledge of the graph, to be able to select sets of variables that are
sufficient to establish identifiability and, above all, to exclude variables that would bias the analysis.
As we will see in Section [7] the DAGs offer a very convenient tool to discuss with clinicians and
explicitly lay out conditional independences.

However, the SCM framework does not provide yet the user with a ready-to-use solution to
estimate the causal effect and does not detail the properties of the associated estimators. For
instance, to estimate the causal effect using the the transport formula , one can naturally
use the g-estimator in , where the conditional mean of outcome on treatment and covariates
are estimated based on the RCT data and then average over the covariate distribution from the
observational data. But other estimators are available and not mentionned. In addition, the SCM
framework related work does not cover the topics discussed in Section[d] which focuses on estimating
the CATE and combining biased and unbiased estimators.

6 Software for combining RCT and observational data

6.1 Review of available implementations

A decisive point to bridge the gap between theory and practice is the availability of softwares.
Practitioners use the methods with easily-available implementations, even when these methods have
some shortcomings. In recent years, there have been more and more solutions for users interested in
causal inference and causation, see|Tikka and Karvanen| (2017);/Guo et al.| (2018); Yao et al.| (2020)
for surveys. Omne can mention the toolboxes doWhy (Sharma et al.| |2019), econML (Research|
2019)), causalToolbox (Kiinzel et all |2018]). There are also many standalone packages. However,
one can regret that many implementations are ‘one-shots’, i.e., associated with a single article and
not pushed further.

Regarding the specific subject of this article, we present in Table [3]the implementations available
about both identifiability and estimators. The implementations found are mostly research-dedicated
tools made public rather than user-friendly packages. Note that no implementation of stratification
(4) was found. Most implementations do not handle categorical variables, or handle only con-
tinuous outcome for example. In addition, the available implementations are often dedicated to
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specific sampling designs and estimators are different from nested and non-nested framework. As a
consequence, a new user has to pay attention to all of these practical — but fundamental — details.

Table 3: Inventory of publicly available code for generalization (top: software for identification; bottom: software
for estimation).

Name Method - Setting Source & Reference

Identification and transportation of
causaleffect causal effects, e.g., conditional
causal effect identification algorithm

R package on CRAN,
|Tikka and Karvanen| q2017D

Identification of causal effects

from arbitrary observational and R package on CRAN,
experimental probability distributions |Tikka et al. ()

via do-calculus

Identifiability in data fusion Browser beta version upon request
framework, (Section ?

dosearch

Causal Fusion

IPWS equation ,

. g-formula equation - Nested R code on GitHub,
Extendinglnferences AIPSW (§7) - Nested Dahabreh et al] (2020)
Continuous outcome
neraliz IPSW equation (3)), R package on GitHub
generalize TMLE (Section 3.2.4) |Ackerman et al.[ (2020)

IPSW equation - Nested, .
genRCT calibration weighting (Section [3.2.4) R package available

Continuous and binary outcome upon request (2020)

R package on GitHub,

IntegrativeHTE Integrative HTE (Section [4.2]) Yang ct al] (2020)

Includes confounding functions R package on |GitHub,

IntegrativeHTEcf (Section

SCM with probabilistic graphical
generalizing model for Bayesian inference
Binary outcome

R package on GitHub,
[Cinelli and Pearl (2020)

Unmeasured confounder R package on GitHub)

RemovingHiddenConfounding (Section Kallus et al (2018)

6.2 Example of usage

In this part we detail an identifiability question. Implementation examples for the nested case are

presented in examples [D.3.1] and [D-3.2}
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Identifiability queries The R packages causaleffect (Tikka and Karvanen|2017)) and dosearch
(Tikka et al., 2019) can be used for causal effect identification, with the later handling transporta-
bility, selection bias and missing values (bivariates) issues simultaneously. In this package, the
dosearch function takes the observable distributions, a query, and a semi-Markovian causal graph
as the input and outputs a formula for the query over the input distributions, or decides that it
is not identifiable. It is based on a search algorithm that directly applies the rules of do-calculus.
Their general identification procedure is not necessary complete given an arbitrary query and an
arbitrary set of input distributions In order to retrieve the backdoor criterion in theorem [5.1] one
can write:

data <- "P(Y, X,Z)"
query <- "P(Yldo(X))"
graph <- "X -> Y
Zz -> X
Z -> "
dosearch(data, query, graph)

$identifiable

[1] TRUE

$formula

[1] "[sum_{Z} [p(Z)*p(YIX,Z)11"

6.3 Simulation study of the main approaches

This part presents simulations results to illustrate the different estimators introduced and their
behavior under several mis-specifications patterns. The code to reproduce the results is available
on Gitlalﬂ Note that except for the calibration weighting, all the estimators are implemented by
the authors to correspond exactly to the formulae introduced in the review (IPSW and IPSW.norm
(13), stratification , g-formula , and ATPSW (§g])).

Well-specified models We consider the framework of Section 3| where the observational study
contains neither outcome nor treatment and the aim is to estimate the causal effect on the target
population. We use similar simulations as in|Dong et al.| (2020)), where four covariates are generated
independently as with X; ~ A(1,1) for each j = 1,...,4. The trial selection scores are defined
using a logistic regression model:

logit {ms(X)} = —-25—-0.5X; — 0.3 X2 — 0.5 X3 — 0.4 X. (15)
The outcome is generated according to a linear model:
Y(a) = =100+ 27.4a X1 + 13.7 X + 13.7 X3 + 13.7 X4 + € with e ~ N(0,1). (16)

This outcome model implies a target population ATE of 7 = 27.4E[X;] = 27.4. Note that the
sample selection (S = 1) in is biased toward lower values of X; and consequently toward lower
treatment effect.

To generate a non nested trial, we proceed as followed. First a sample of size 50,000 is drawn
from the covariate distribution. From this sample, the selection model is applied which leads

Shttps://gitlab.inria.fr/misscausal/combine-rct-rud-review
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to an RCT sample of size n ~ 1000. Then, the treatment is generated according to a Bernoulli
distribution with probability equals to 0.5, ej(z) = e; = 0.5. Finally the outcome is generated
according to . The observational sample is obtained by drawing a new sample of size m = 10, 000
from the distribution of the covariates.

Figure [6] presents estimated ATE with the inverse propensity of sampling weighting with and
without weights normalization (IPSW and IPSW.norm; Section7 stratification (with 10 strata;
Section7 g-formula (Section, calibration weighting (CW; Section. , and augmented
IPSW (AIPSW; Section over 100 simulations. All estimators are implemented by the au-
thors, except for the CW implementation which comes from [Dong et al| (2020). The true ATE is
represented with a dash line. The ATE estimated only with the RCT sample is also displayed as
a baseline. As expected it is biased downward (its mean is equal to 14.24) as the distribution of
the covariates and in particular the treatment effect modifiers such as X is not the same in the
trial sample and in the population (as illustrated in Table in Appendix . Note that all the
estimators are unbiased which is expected. The variability of the two ISPW estimators are larger
than the others. The number of strata in the stratification estimator plays an important role. As
shown in Figure [I§] the results are biased when the number of strata is smaller than 10.

Mis-specification of sampling propensity score or outcome model To study the impact of
mis-specification of the sampling propensity score model, we generate the RCT selection according
to the model

logit {ms(X)} = 2.5 — 0.5 —0.3e*2 —0.5¢%3 —0.4e%4 + 3,
and outcome according to the model

Y(a) = —100 +27.4a X, X5 4+ 13.7 X5 + 13.7 X3 + 13.7 X4 + €.
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The analysis is then performed using classical logistic and linear estimators. As shown in Figure [7]
when the sampling propensity score model is mis-specified, the IPSW estimators are biased; whereas
when the outcome model is mis-specified, the g-estimator is biased. In both settings, the double
robust estimator (AIPSW) is unbiased and robust to mis-specification. In the case where both
models are mis-specified, all estimators are biased except the CW estimator. This demonstrates
some robust properties of calibration against slight model mis-specification.

Stronger distributional shift The above sampling propensity score mdoel implies a weak co-
variate shift between the RCT sample and the observational sample. A stronger shift can be
obtained, at least on covariate X7, swapping the coefficient —0.5X; with —1.5X;. Figure [§] shows
that the variance of the weighted and CW estimators have increased in the setting with a stronger
covariate shift.

Impact of the treatment-effect modifiers In this part, we consider a heterogeneous treatment
effect setting where X; impacts the RCT sampling while also being a treatment effect modifier. We
consider the IPSW estimator and its variations without using X; (labeled as IPSW.without.X1)
and using only X; (labeled as IPSW.X1). As shown in Figure [9] IPSW.X1 is still unbiased when
using only X; in the sampling propensity score estimation, as it is the only covariate being the
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treatment effect modifier. However, if X; is missing, the resulting estimator IPSW.without.X1 is
strongly biased. Therefore, it is important to include all variables that affect both sampling and
outcome to adjust for bias. We also conjecture that including outcome predictors that do not affect
sampling may increase the efficiency of the estimator.

Note also that if the treatment effect was homogeneous (does not depend on X7), then the
estimated ATE on the RCT would be unbiased (as shown Figure [19]in Appendix so in this
setting there is no need to use the observational data and associated methods to transport the ATE
from the trial to the target population.

7 Application: Effect of Tranexamic Acid

To illustrate the methodological question of combining experimental and observational data and
demonstrate how to apply some of the previously discussed methods, we consider a currently open
medical question about major trauma patients. Major trauma denotes injuries that endanger the
life or the functional integrity of a person. The World Health Organization (WHO) has recently
shown that major trauma including road-traffic accidents, interpersonal violence, falls, etc. remains
a world-wide public-health challenge and major source of mortality and handicap (Leigh et al.|
2018). We focus on trauma patients suffering from a traumatic brain injury (TBI). TBI is a sudden
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damage to the brain caused by a blow or jolt to the head and can lead to intracranial bleeding that
can be observed on a computed tomography (CT) scan. Ongoing intracranial bleeding can lead
to raised intracranial pressure, brain herniation, and death. Over 10 million people are killed or
hospitalized worldwide because of TBI each year (Dewan et al.,|2012). Tranexamic acid (TXA) is an
antifibrinolytic agent that limits excessive bleeding, commonly given to surgical patients. Previous
clinical trials showed that TXA decreases mortality in patients with traumatic eztracranial bleeding
(Shakur-Still et al] [2009). Such prior result raises the possibility that it might also be effective in
TBI, because intracranial hemorrhage is common in TBI patients. Therefore the question here is
to assess the potential decrease of mortality in patients with intracranial bleeding when using TXA.

To answer this question, we have at disposal both a RCT, named CRASH-3, and an observational
study, the Traumabase. Both data have previously been analyzed separately in (2019); ?
(for the RCT) and inMayer et al.|(2020)) (for the observational study) and the medical teams of both
studies want to share their respective data to answer both medical and methodological questions.
Such initiatives allow to confront and combine the evidence obtained from the observational data
set using causal inference estimators with the evidence obtained from the CRASH-3 randomized
controlled trial. In particular it allows to:

e Benchmark the observational study with the RCT. As the treatment effect was estimated
with a recent doubly robust estimator handling missing data, its adoption by the community
could be reinforced using the RCT’s result to validate the estimated effect.

e Assess the generalizability and transportability methods, considering the Traumabase as the
target population, and confront the estimators presented in this review to a real situation.

We will first present the two data sources, treatment effect analyses and findings from these,
before turning to the combined analysis in Section [7.3] The code to reproduce all analyses for this
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application is available on GitLalfL even if the medical data cannot be publicly shared for privacy
reasons.

7.1 The observational data: Traumabase

To improve decisions and patient care in emergency departments, the Traumabasel group, which
comprises 23 French Trauma centers, collects detailed clinical data from the scene of the accident
to the release from the hospital. The resulting database, called the Traumabase, comprises 23,000
trauma admissions to date, and is continually updated. The data are of unique granularity and size
in Europe. However, they are highly heterogeneous, with both categorical — sex, type of illness,
...— and quantitative — blood pressure, hemoglobin level, ...— features, multiple sources, and many
missing data (in fact 98% of the individuals have missing values). The cause of missing information
is also coded, such as technical hurdles with the measurement, or impossibility due to the severity of
the patient’s state. The Traumabase currently comprises around 8,270 patients suffering from TBI.
A first study was performed to assess the effect of TXA on mortality for traumatic brain injury
patients from this observational registry (Mayer et al.,[2020). More precisely, the treatment variable
is the administration of TXA during pre-hospital care or on admission to a Trauma Center’] and
considered to have occurred within three hours of the initial trauma. In the current Traumabase,
TXA is administered to roughly 8.2% of patients suffering from TBI, and 20% die before the end of
their hospital stay. Notably, mortality is much higher among patients who receive TXA than those
who do not (30% vs. 14%). This situation is a classical example of confounding bias: the effect
arises because patients who appear to be in more severe state are more likely to be administered
TXA and are also more likely to die, with or without the treatment.

Before turning to the causal analysis on these data, we first discuss an important practical
aspect, namely missing values, and how we handle them in the subsequent analyses.

7.1.1 Missing values

The problem of missing values is ubiquitous in data-analysis practice and particularly present with
observational data, as they are not necessarily collected for research purposes. The Traumabase is
a high-quality dataset but, nevertheless, missing values occur. Figure [I0] represents the percentage
of missing values for the covariates selected by the medical doctors from the Traumabase. It varies
from 0 to nearly 60% for some features. In addition, there are different codes for missing values
giving hints on the reason of their occurrence, resp not available (NA), impossible (imp), not made
(NM), etc. Some of these values can be seen as missing completely at random (MCAR), the
information has not been recorded simply because the form was not filled out, but they can be
informative and missing not at random (MNAR), for instance when the state of the patient is such
that it was impossible to take a measurement.

4https://gitlab.inria.fr/misscausal/combine-rct-rwd-review
5More precisely, to the resuscitation room of a hospital equipped to treat major trauma patients.
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Figure 10: Missing values Percentage of missing values for a subset of Traumabase variables relevant for traumatic
brain injury. Different encodings of missing values are available such as: NA (not available), but also not informed,
not made, not applicable, impossible.

There is an abundant literature available to deal with missing values in a general context and
Mayer et al.| (2019) identify more than 150 R (R Core Team, [2018) packages available on the topic.
Missing values add a layer of complexity to conducting causal analyses as they require coupling
conventional hypotheses of causal-effect identifiability in the complete case with hypotheses about
the mechanism that generated the missing data , or defining new hypotheses, to
establish conditions of causal effect identifiability with missing data. Mayer et al| (2020) survey
available works, classify the methods in three families that differ with respect to the different
assumptions and provide associated estimators to estimate the ATE from an observational data set
with missing values in the covariates. More precisely, they advocate the use of multiple imputation
(van Buuren| [2018) by IPW or doubly robust estimators when missing values can be considered
to be missing (completely) at random (M(C)AR) and the classical unconfoundedness assumption
(Assump. holds (Seaman and White, 2014). As an alternative, they recommend using a doubly
robust estimator adapted to missing values, i.e., that makes use of random forests with a missing
incorporate in attributes splitting criterion (Twala et al., [2008; Josse et al) 2019) to estimate
the generalized propensity scores (Rosenbaum and Rubinl [1984) and the regression function with
missing Valuesﬁ; this approach does not require a particular missing values mechanism but an
adapted unconfoundedness hypothesis with missing data. Finally, when covariates can be seen as
noisy incomplete proxies of true confounders, latent variable models can be a solution to estimate
causal effect with missing values (Kallus et al., 2018} [Louizos et al., 2017)).

6This doubly robust method is implemented in the R package grf (, 2019)).
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7.1.2 Covariate adjustment

Since the Traumabase is an observational registry, straightforward treatment effect estimation on
these data is not possible due to confounding. The causal graph in Figure [I1] is the result of
a two-stage Delphi method (Linstone and Turoff, [1975) in which six anesthetists and resuscita-
tors specialized in critical care—and therefore familiar with the allocation process for TXA—first
selected covariates related to either treatment or outcome or both, and second classified these covari-
ates into confounders and predictors of only treatment or outcome. Even though it is not possible
to test for unobserved confounding, this Delphi procedure is an attempt to gather as much expert
knowledge about the studied question as possible to manually identify possible confounders and
qualitatively assess the plausibility of the unconfoundedness assumption. Note that this approach
is an explicit example where we leverage the advantages of the SCM and PO frameworks: the causal
graph helps to select relevant variables during the conception phase of the study, and the treatment
effect analysis uses different estimation methods from the PO framework.
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Figure 11: Causal graph representing treatment, outcome, confounders and other predictors of outcome (Figure
generated using DAGitty (Textor et al)|2011)); NAs indicates variables that have missing values).

7.1.3 Results

We adjust for confounding using the identified confounders and use additional predictors for the
outcome model (Figure7 to estimate the direct causal effect of TXA on 28-day intra-hospital TBI-
related mortality and on all cause intra-hospital mortality among traumatic brain injury patients
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(for the latter seeMayer et al.| (2020)). The two methods presented here for handling missing values
are multiple imputation via chained equations (MICE) (van Buuren| 2018) and missing incorporated
in attributes (MIA) (Twala et al., [2008)); the treatment effect estimation is then performed using
either logistic regressions or generalized random forests (Athey et al., 2019), denoted respectively
by GLM and GRF in Table The doubly robust results (AIPW) in Table [4] show that from
this study there is no evidence for an effect of TXA on mortality of TBI patients. However,
when considering the IPW estimations, the conclusion differs in that they indicate a deleterious
effect of the drug for almost all subgroups considered, for both definitions of the outcome. These
findings might be due to inaccurate estimations of the propensity scores used for the reweighting,
for instance due to possible model mis-specification for the parametric approach and to insufficient
sample sizes or machine learning regulation bias for the non-parametric random forest approach.
In the non-parametric case, the doubly robust approach can compensate the slow convergence of
the non-parametric propensity model estimations with the outcome model estimations and correct
for the regularization bias that comes from fitting predictive models using machine learning, while
there is no such bias correction for the IPW approach and in case of insufficient the latter would
also require additional samples to estimate the propensity scores sufficiently well. Additionally, note
the large variability of the parametric IPW and ATPW estimators (GLM ) which could also support
the remark on possible model mis—speciﬁcationﬁ In such a situation, the possibility to transport
the treatment effect from the RCT is also a step to comfort the results.

The AIPW findings on the data—obtained prior to the publication of CRASH-3—are consistent
with the main conclusion of the CRASH-3 study (no effect). Results are presented in Table [4). As
patients can be stratified on the trauma severity, analysis on sub-strata can also be performed, but
are only reported in the Appendix [G]

Table 4: ATE estimations from the Traumabase for TBl-related 28-day mortality. Red cells conclude on
deteriorating effect, white cells conclude on no effect. Additional results can be found in Table[7]in the Appendix

g

Multiple imputation (MICE) MTA Unad-
IPW AIPW IPW ATPW justed
(95% CI) (95% CI) (95% CI) | (95% CI) ATE
%102 x102 %102 %102 %102
GLM GRF GLM GRF
‘ Total 15 11 3.4 -0.1 9.3 -0.4 16
(n = 8248) | (6.8,23) | (6.0,16) | (-9.0, 16) | (-4.7,4.4) | (4.0,15) | (-5.2, 4.4)

7.2 The RCT: CRASH-3

A total of 175 hospitals in 29 different countries participated to the randomized and placebo-
controlled trial, called CRASH-3 (Dewan et al.| 2012)), where adults with TBI suffering only from
intracranial bleeding, i.e., without major extracranial bleeding, were randomly administrated TXA
(CRASH-3| 2019 ?). The inclusion criteria of the trial are patients with a Glasgow Coma Scale

"Note that another method for handling the missing values could theoretically be used, namely EM for logistic
regression (Jiang et al.,|2020). In this application however, this method is not (yet) adapted due to the large number
of mixed covariates.

8Larger variance of the IPW is often observed when comparing to AIPW, independently of the nuisance parameter
approach.
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(GCS)H score of 12 or lower or any intracranial bleeding on CT scan, and no major extracranial
bleeding, leading to 9202 patients (which is uncommonly large for a medical RCT). We provide a
DAG summarizing the trial selection and addition regressors present in CRASH-3 of the outcome

in Figure [12]

DelaySincelnjury

/ﬁlivit}'

Y P

N 4 \Z
systolicBloodPressure

Figure 12: Causal graph representing treatment, outcome, inclusion criteria with S and other predictors of outcome
(Figure generated using the Causal Fusion software presented in Section |§| from 7).

The primary outcome studied is head-injury-related death (not simply death) in hospital within
28 days of injury in patients treated within 3 hours of injury. Six covariates are present at baseline,
with age, sex, time since injury, systolic blood pressure, Glasgow Coma Scale score (GCS), and
pupil reaction. The study concludes that the risk of head-injury-related death was 18.5% in the
TXA group versus 19.8% in the placebo group (855 vs 892 events; risk ratio [RR] 0.94 [95% CI 0.86
- 1.02]), i.e, there is no effect of TXA on mortality when considering the total sample. The rest of
the data analysis focuses on the effect on the total sample as well.

7.3 Transporting the ATE on the observational data

With the two separate analyses in mind, we are now ready to tackle the combined analysis, namely
the generalization from the RCT results to the target population defined by the observational
Traumabase data.

7.3.1 Common covariates description

In the following, we discuss common variables definition, outcome, treatment, and designs in order
to leverage both sources of information. We recall the causal question of interest: “What is the
effect of the TXA on brain-injury death on patients suffering from TBI?” This part is important
for the harmonization of the study protocol.

Treatment exposure. The treatment protocol of CRASH-3 frames the timing and mean of
administration precisely (a first dose given by intravenous injection shortly after randomization,

9The Glasgow Coma Scale (GCS) is a neurological scale which aims to assess a person’s consciousness. The lower
the score, the higher the gravity of the trauma.
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i.e., within 8 (resp. 3) hours of the accident, and a maintenance dose given afterwards (Dewan
et al.,[2012))). For consistency with the original CRASH-3 study described above, we also only keep
observations from the RCT with administration within 3 hours. The Traumabase study being a
retrospective analysis, this level of granularity concerning TXA is not available. Neither the exact
timing, nor the type of administration are specified for patients who received the drug. However,
the expert committee agreed that the assumption of treatment within 3 hours of the accident is
very likely since this drug is administered in pre-hospital phase or within the first 30 minutes at
the hospital.

Outcome of interest. The CRASH-3 trial defined its primary outcome as head injury-related
death in hospital within 28 days of injury. For the Traumabase data we also look at death in
hospital within 28 days but with a wider range of possible causes of death, namely TBI, brain
death, multiple organ failure, brain death, or withdrawal of life-sustaining therapy. This slightly
different definition for the Traumabase outcome allows to obtain medically similar outcomes despite
different data collection processes.

Multi-centered design. Both studies are multi-centered, but while the Traumabase is a French
registry with 20 participating Trauma Centers, the CRASH-3 trial enrolled patients in various
countries on different continents. While this large spectrum of participating centers is likely to
contribute to external validity of the CRASH-3 trial, it should be noted that more than 65%
of the patients included were from developing countries; regions of the world that differ from
developed countries by a prolonged pre-hospital care period, limited access to brain imaging tests
and neurosurgery within short periods of time, and the absence of expert centers for heavy trauma
and neuro-intensive care. Thus, on top of the restrictive inclusion criteria of the RCT, this aspect
of large heterogeneity in the participating Trauma centers motivates the combination both studies
to estimate the effect for a population with access to a specific high level of care, here represented
by the French Trauma centers.

Covariates accounting for trial eligibility. In total, four criteria depending on five variables
determined inclusion in the CRASH-3 trial: age (only adults were eligible), presence of TBI (defined
as presence of intracranial bleeding on the CT scan, or a GCS of less than 13 in the case of
no available CT scan), absence of major extracranial bleeding (defined explicitly in CRASH-3
and defined via the number of packed red blood cells transfused in the first 6 hours of admission
or by colloid injection in the Traumabase), and delay of less than 8 hours (later reduced to 3
hours) between the injury and the randomization. The necessary variables are also available in the
Traumabase, either exactly or in form of proxies, which allows the estimation of the trial inclusion
model on the combined data.

Additional covariates. Note that other covariates are available in both data sets, while not re-
sponsible of trial inclusion according to CRASH-3 investigators. But as this could still be covariates
moderating the outcome and treatment effect, we included them. According to the two data sets,
we could add three of them: sex (binary), systolic blood pressure (continuous), and pupils reactivity
(categorical, ranging from 0 to 2, being the number of active pupils). Note that this three covariates
are all mentioned in the baseline of CRASH3 results (CRASH-3| 2019)), arguing that they should
impact the outcome.
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7.3.2 Descriptive analyses

Missing values. First, note that the RCT contains almost no missing values, whereas the vari-
ables for determining eligibility in the observational data contains important fractions of missing
values, as shown in Table [} while the sample sizes of the two data are similar, see Table [} This
requires a modification of the methods introduced in this review and illustrated in the simulations
section in order to account for these missing values. For correctly estimating the trial inclusion
model and the outcome models (Section [3.2), we need to handle the missing values in the covari-
ates, especially in the observational dathis modification consists in two alternative estimation
strategies for fitting the trial inclusion and outcome models:

e Logistic regression with incomplete covariates using an expectation maximization (Dempster
et al., [1977). A computationally efficient variant of this method using stochastic approxima-
tion is implemented in the R package misaem (Jiang et al., [2020).

e Generalized regression forest with missing incorporated in attributes (Twala et al., 2008} |Josse
et al., 2019). This method is implemented in the R package grf (Tibshirani et al., [2020).

Table 5: Percentage of missing values in each covariates for the Traumabase and CRASH-3.

MajorExtracranial | Age | Glasgow initial | SystolicBloodPressure | Sex Pupil Reactivity
CRASH-3 0 0 0.69 0.25 <0.1 <0.1
Traumabase | 0 0.27 | 2.0 29 0.76 2.0

Table 6: Sample sizes for both studies.

Traumabase CRASH-3
m #treated | #death n #treated | #death
[ Total (within 3 hours) | 8248 683 1411 9168 4632 1745

Distribution shift. There are different ways of assessing the shift between the distributions of
the two studies, for instance by univariate comparisons. We provide a simplified comparison of the
means of the covariates between the treatment groups of the two studies in Figure This graph
illustrates again the fundamental difference between the two studies, namely the treatment bias in
the observational study and the balanced treatment groups in the RCT. Another representation of
the distribution shift is presented in the Appendix |G| with histograms (Figures .

10T we assumed the missing values being missing completely at random (MCAR), we could “throw away” the in-
complete observations and perform the analyses on the complete observations, but this would reduce the total sample
size by 917. And as explained in Section @ the MCAR assumption is not plausible for the present observational
data, thus such a complete case analysis would be biased.

35




Control.Observational d

Treated.Observational ¢

Control.RCT

Treated.RCT

Figure 13: Distributional shift and difference in terms of univariate means of the trial inclusion criteria (red:
group mean greater than overall mean, blue: group mean less than overall mean, white: no significant difference with
overall mean, numeric values: group mean resp proportion for binary variables). Graph obtained with the catdes

function of the FactoMineR package (Lé et al| m

7.3.3 Analyses

Notations and estimator details. We use two consistent ATE estimators from the solely
CRASH-3 data:

e Difference_in_mean: the difference in mean estimator (Section [A);

e Difference_in_condmean_ols the difference in conditional mean fitting an outcome model
with an OLS.

To transport the ATE to the target population, we apply the estimators discussed in this review
(with the additional handling of the missing values as outlined in the previous section), namely:

e IPSW : with sampling propensities estimated via logistic regression (EM_IPSW_glm) or via
generalized random forest (MIA_IPSW_grf);

e normalized IPSW : with sampling propensities estimated via logistic regression
(EM_IPSW.norm_glm) or via generalized random forest (MIA_IPSW.norm_grf);

o G-formula : with outcome models estimated via logistic regression (EM_G-formula_glm)
or via generalized random forest (MIA_G-formula_grf);

o ATPSW : with sampling propensities and outcome models estimated via logistic regression
(EM_AIPSW_glm) or via generalized random forest (MIA_AIPSW_grf).

The confidence intervals of those estimators are computed with a stratified bootstrap in the RCT
and the observational data set in order to maintain the ratio of relative size of the two studies (with
100 bootstrap samples). Note that the Calibration Weighting (CW) estimators are not used in this
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analysis as it would require a specific adaptation in the case of the missing values. Propensity score
methods and outcome modelling methods are more straightforward to adapt to the missing data
situation with off-the-shelf computational tools. Since this topic combines missing data assumptions
with the specific assumptions for the goal of generalization, the specific validity domain for each
estimator remains an open-research work.

We also present the estimators for the observational study applied solely on the Traumabase
data. For details about the derivation and properties of these estimators applied on incomplete
observations we refer to Mayer et al.| (2020):

e ATPW with nuisance parameters via logistic regression (AIPW_glm),
o ATPW with nuisance parameters via generalized random forest (AIPW_grf).

Since ATPW combined with either missing incorporated in attributes (MIA) or multiple imputation
(MICE) is recommended when analyzing observational data, these are the estimators kept in this
analysis. These estimators are built upon the unconfoundedness assumption and as outlined in
Section[7.1] the list of identified confounders comprises 17 variables, complemented with 21 variables
predictive of the outcome but not related to the treatment. Hence the results of the observational
study depend on these 38 variables while the generalization results are using a different set of
variables, namely three of the five variables that determine treatment eligibilityE and the additional
three baseline covariates susceptible to moderate outcome and treatment effect.

Final results. As we can observe on Figure [[4] the generalization from the RCT to the target
population using all the observations from both data sets, presents certain discrepancies with respect
to the two previous studies. On the one hand, half the generalization estimators support the
CRASH-3 conclusion about the treatment effect: no significant effect. On the other hand, some
estimators support a deleterious treatment effect (corresponding to a positive ATE). Note that
the AIPW ATE estimations from the solely Traumabase data do not reject the null hypothesis of
no treatment effect. The analysis can also be performed on a imputed Traumabase data set, the
corresponding results are presented in appendix on Figure Note that these results are to be
interpreted carefully due to the potential impact of missingness on the performance of the chosen
estimators. For instance, note the large confidence intervals for the GRF estimators that are likely
to be due to the imbalanced proportions of missing values in the RCT and the observational data.

Here we present the results transported onto the total TBI Traumabase population, but the
CRASH-3 study focuses on subgroups of patients (mild and moderate patients) for which a positive
effect of the tranexamic acid is measured. The generalization of the CRASH-3 findings onto this
subgroup in the Traumabase raises multiple methodological issues that still need to be addressed
in future works and that we detail in the Appendix [G]

Overall this data analysis highlights practical limitations that can be encountered when combin-
ing two different data sets: the need for a good understanding of the common covariates, exposure,
and outcome of interest before combining the data sets, different missing data patterns, and poor
overlap when considering specific target (sub-)populations.

11We filter the CRASH-3 population using the remaining two variables, TBI and delay between injury and ran-
domization, therefore these variables are removed for the remainder of the analysis.
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Figure 14: Juxtaposition of different estimation results with ATE estimators computed on the Traumabase
(observational data set), on the CRASH-3 trial (RCT), and transported from CRASH-3 to the Traumabase target
population. All the observations are used. Number of variables used in each context is given in the legend.

8 Summary, recommendations, and shortcomings

Combining observational data and RCTs can improve many aspects of causal inference, from in-
creased statistical power to better external validity. Questions on external validity arise as soon
as there are heterogeneities in the populations under study, whether these be heterogeneities of
a treatment effect or simply heterogeneities of outcome. And yet, most effects of interest have
some form of heterogeneity: mortality rates increase with age, different populations are exposed
to different risks, have different comorbidities, etc. Generalization challenges may arise even for
homogeneous treatment effects, as developed by |Cinelli and Pearl| (2020) in a thought experiment
on the Russian Roulette: its treatment is homogeneous —for every game, there is one chance out
of six of dying— but the average treatment effect may differ in across populations is the chance of
dying of other, independent, reasons differ. To come to clear conclusions, an RCT is often run on
a more homogeneous subpopulation. The definition of the corresponding inclusion criteria is then
crucial. Observational data can help defining these inclusion criteria, and the methods reviewed in
the present paper, combining the RCT and observational data, can extrapolate the results of the
RCT to different populations, supplementing other RCTs with different inclusion criteria. These
statistical methods are crucial to explore potential heterogeneities left aside in the RCT. A plethora
of settings is associated with a variety of identifiability criteria and estimators. Yet, whether in
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the potential-outcomes or in the structural causal models framework, the number of methods for
combining experimental and observational data with treatment and outcome is still limited.

Identifiability: which data to answer our question? Domain expertise can be used to
postulate a causal graph: a directed acyclic graph representing the mechanisms (as|Figure 12)). The
SCM framework is then convenient to see whether the question at hand can be formulated in an
identifiable way. It offers a principled way of selecting variables needed for identification of the
causal effect and to avoid biased causal effects, such as conditioning on the wrong covariates.

Without such an approach, identifiability claims are limited and the recommendation is often
to include as many as possible to be sure to avoid violation of any assumption: “it is probably best
to include as many outcome predictors as possible in regression models for the expectation of the
outcome or the probability of trial participation” (7).

Selecting a small number of covariate can help reducing the variance of estimators. Some devel-
opments in the broad settings of causal inference —and not dedicated to fusion of experimental and
observational data— use causal graphs to select between different adjustment sets to get estimators
with smaller variance (Rotnitzky and Smucler, 2019 |Witte et al.l |2020; |(Guo and Perkovié, 2020).

Challenges in the SCM framework. A challenge in the use of the SCM framework is that, to
fully exploit its potential, it requires a graph, much more detailed than the one we could establish
for the Traumabase analysis. The consortium of clinicians managed to formulate groups of variables
to identify confounders but not the precise links between all (or a set of) these variables.

Also, the current developments of the SCM framework do not mention treatment effect het-
erogeneity neither explicitly the differences between nested and non-nested designs. Finally, the
corresponding literature is typically useful to the practitioner for variable selection, but lacks es-
timators that can be readily instantiated on the data —with the notable exception of |[Cinelli and
Pearl| (2020) in a Bayesian setting.

Estimation: what are the treatment effects in wider populations? For causal effects
on a combination of experimental and observational data, available estimators mostly lie in the
potential outcome framework. Estimation typically relies on a propensity score —modeling trial
participation— or outcome-regression models. Weakly-parametric models such as machine-learning
estimators or estimators coping with missing values can be used both, enabling a large class of
functional forms. A different approach is that of calibration weighting, which rather relies on
balancing the functions of the covariates. Theoretical properties of different estimators, and their
behavior in our experimental study, outline practical recommendations. Calibration weighting and
doubly-robust methods (AIPSW) are more robust to misspecification. Calibration weighting is more
robust than doubly-robust methods which break down if both the propensity-score and the outcome
regression model are mis-specified (Figure . But, on the other hand, calibration weighting suffers
more variance in case of large shifts of the causal effect between the RCT and the observational
data (Figure |8) and is expected to break down with large dimension of covariates when there is
no natural function to match. Modeling the probability of trial participation via stratification
can help if this probability takes very high or very low value; however definition of the strata —in
particular their number— can be important. Too little biases towards the RCT (Figure , akin
to a typical bias-variance compromise. Any model of trial participation must capture correctly the
treatment-effect modifier, in the sense of heterogeneous treatment effect (Figure E[) Conversely it
can be to capture its effect, ignoring other covariates. As a consequence, the data collection and
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modeling should focus of on covariate likely to modulate the treatment effect. For reliable causal
conclusions, a good knowledge of the data and the mechanisms at hand is crucial. Indeed, not only
is it important to formulate good models of the response or the selection biases, but also different
settings, i.e, the nested and non nested design, lead to different estimators (this is often implicit in
the publications). A few estimators are readily-available, but they must be used for the particular
design they were conceived for.

Challenges to handle missing values. We saw the need to account for missing values. Missing
values occur more often in observational data since RCT typically deploy significant efforts to avoid
them, but they are not immune to participants missing scheduled visits or completely dropping
out from the study. The literature for RCT mainly focuses on missing outcome data and calls
for sensitivity analysis giving that available strategies (weighting, multiple imputation) rely on
untestable assumptions on the missing values mechanism (Carpenter and Kenward, [2007; |Little
et al.l 2012} Kenward} 2013; |O’Kelly and Ratitch, |2014; [Li and Stuart,, |2019; (Cro et al.| 2020). In
observational studies, many methods are available relying on different assumptions either on the
missing values mechanism or on the identifiability conditions of the causal effect (Mayer et al.l
2020)).

Missing values may lead to subtle biases in the inferences, as they are seldom uniformly dis-
tributed across both datasets—missing more in one than in the other. Further research is needed
on identifiability conditions and estimators in these setting, to better understand the scope of each
estimator. Given its good properties in the complete data case, it could be interesting to study the
calibration estimator with missing values.

An extreme case of missing information arises from the fact that observational data and clinical
trials are seldom collected to be analyzed jointly. As such, they typically measure different covari-
ates. The common practice to analyze these data jointly consists in only considering the covariates
present in both data. However, throwing away covariates leads to lost opportunities to characterize
better confounding effects and variables responsible for trial eligibility. Nguyen et al.| (2017) and
Nguyen et al|(2018) use extra covariates present in the experimental data to assess the sensitivity
of the estimated treatment effect to an unobserved treatment effect moderator that interacts with
treatment in influencing the outcome when generalizing from an RCT to a target population.

Discrepancies between RCTs and observational data. The analysis of real-world data al-
lows to apply the methods and to assess their feasibility. This analysis is pointing towards moderate
external validity of the RCT since the results where the ATE is generalized are not entirely concor-
dant with the RCT. Notably, the study using only the observational data supports the results from
the RCT. Which analysis to trust depends on the assumptions we are willing to make, either the
transportability assumptions or the unconfoundedness assumptions and whether the variables have
been selected appropriately. However, caution is needed when interpreting the presented results,
since the impact of the missing values when combing RCT and observational data requires further
research as mentioned above. In addition, the fact that outcome, treatment and covariates are com-
parable is of major importance (Lodi et al.|2019) and remains a challenging question when it comes
to data fusion. The observed discrepancies support a possible deleterious effect of the treatment,
and as soon as the treatment effect depends on the timing, another explanation of the difference
could come from slightly different time-to-treatment in both data sets. Such considerations, beyond
others, have to be investigated jointly with the clinicians. Finally, the results are presented for the
total population but in this application, the clinicians are more interested in assessing treatment
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effects on specific strata (see Appendix |G| for more details). However, there are issues to be solved
before answering their request. Indeed, when considering certain strata in our application we are
facing the issue of violated positivity, which leads to a non-transportable treatment effect on the
strata of interest: mild and moderate patients. Therefore, further discussions and analyses with
the medical expert committee are necessary to re-define a target population of interest on which
generalization is possible and medically relevant. As it is generally the case, beyond methodological
and theoretical guarantees, a major step before applying a set of methods is to clearly state the
causal question and estimand(s) and the associated identifiability requirements.
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A Randomized controlled trial

This section recalls assumptions and estimators for average treatment estimation in the case of a
single RCT. The assumptions for average treatment effect identifiability in RCTs are the SUTVA
assumption and assumptions (consistency) and (random treatment assignment within the
RCT). These assumptions allow the average treatment effect to be identifiable. The most intuitive
estimators coming from these assumptions is the difference-in-means estimators:

~ 1 1

0 Ao
With n; being the number of individuals in the trial that have been treated and ng the number
of individuals in the trial who have not been treated (ng + n; = n). This estimator is unbiased
and y/n-consistent if the sample selection is not moderated by the covariates. If not, it is a biased
estimation of the population average treatment effect.

B Estimation of ATE in observational data

Let us recall the IPW estimator in the case of observational data:

ew LS AY (1- A
= ; {e(Xi) T 1 e(Xy) } ’ (52)

with e(x) = P(A = 1| X = z) the propensity score, i.e., the probability to be treated given the
covariates. The rationale of IPW is to upweight treated observations with a small propensity score
(and the other way around) to balance the two groups, treated and non treated, with respect to
their covariates.

C Identification formula

This part focuses on the non-nested design only, as it corresponds to the central design of this
review.
Identification by the g-formula or regression formula in the target population

Proof S1

EY(a)]=E[E[Y(a) | X]] Law of total expectation
=EE[Y(a)| X,S =1]] Assump.
=EE[Y(a)]| X,S=1,A=d] Assump.
=EE[Y|X,5=1,A4=d] Assump. [3]]

This last quantity can be expressed as a function of the distribution of X in the target population:
B[Y(0)] = [EIY | X =25 = 1,4 = adf(o).
where f(X) denotes the distribution of X in the target population.

Identification by weighting
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Proof S2

T=E[7(X)] Law of total expectation
=E[rn(X)] Assump. [3.3
=F f(Xf|(§):1)T1(X) |S=1 Assump. [3.0

Using Bayes’ rule, we note that

f@) P(S=1 P(S=1)

flx]S=1) PS=1|X=2)  7g(x)
In this expression, however, it is important to notice that neither mg(x) nor P(S = 1) can be
estimated from the data, because we do not observe the S indicator in the observational study
(Figure . On the other hand, the conditional odds ratio a(z) can be estimated by fitting a
logistic regression model that discriminates RCT versus observational samples, and Bayes’s rule
gives:

PieR|FIeRUO,X,; =x)
)

) = P c0 3 eRUO X, =2
_PUER) P(Xi=z|ieR)
PieO) PX,=zx|i€0)
_n fl]s=1)
m fl) 7
and therefore
= ma’zX)ﬁ(X)|5:1.

This quantity can be further developed, underlying 7 (X) identification as presented in proof
531

Proof S3

Y(1)-Y(0)| X =2,8=1]
Y1) X=2,S=1-E[Y(0)| X =1285=1]
A X=2z,S=1E[Y(1)| X ==2,5 =1]
e1(x)
CEQ-A[X=12S=1EY(0) | X =1,5=1]
1—ei(x)
_EAY(1) [ X =2,8=1] E[1-A4)Y(0)|X=25=1] csum
B e1(z) 1—ei(x) 4 p- 0.3
CEAY|X=2,5=1 E[(1-AY|X=z5=1 o
B e1(x) 1—ei(x) 4 p- 21
A 1-A
—E Y Tt X =ms =t

Tl(.’E)

E
E
E
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D Nested study design

The nested trial design has different impacts on the estimators expressions previously introduced,
and even on the causal quantity of interest. In a nested trial design the randomized trial is embedded
in a cohort (e.g. a large cohort - considered as a sample from the target population - in which
eligible people are proposed to participate in the trial, but if they refuse they are still included in
the cohort study). As a consequence, S is the binary indicator for trial participation, with S = 1 for
participants and S = 0 for non-participants. Therefore the sampling probability of non-randomized
individuals is known in nested trial designs (Buchanan et all 2018} ?). Mathematically it means
that the quantity P(S = 1) is identifiable. In addition, two causal quantities can be identified:
E[Y(1)-Y(0)] and E[Y(1) =Y (0) | S=0]. It is important to note that the second quantity
can have a scientific interest in order to better understand heterogeneities within the cohort, and
variables that influence the sampling selection and/or the treatment effect on the outcome.

D.1 When observational data have no outcome and treatment informa-
tion

Main estimators, such as IPSW, g-formula, and doubly-robust estimators are presented for the
specific case of nested trial design.

D.1.1 IPSW

In this design the weights in the IPSW estimators are different, because the quantity mg can be
estimated directly from the observed data as the indicator S is observed. This allows the IPSW
formula to be closer to the classic IPW expression without the need to use the odds ratio to weigth
data. The IPSW expression is the following:

- -neste 1 - n AIYL 1 & n ].—AZY;
~IPSW-nested _ - Z _ Z ( ) (s3)

ntm7s(Xi)er(Xi) nn+mas(Xi)(1—ei(X)))

The normalized version is the following one:

?IPSW—nested norm. __ Z?:l(% (Xl)el(Xl))ilAZY’l _ Z?:l(%S(Xi)(l _ el(Xi)))il(l _ AZ)Y; (84)

Yim (Ts(Xa)er (X)) 7T A 3 (Fs(X) (1 —ea(Xi))) 71 (1 = Aj)

Proof S4
T =E[7(X)] Law of total expectation
=E[r(X)] Assump. [3.9
fX)

—E n(X)|S=1 Assump.

[f(X |S=1) =3
=E {Mn()ﬂ | S = 1:| Bayes law

ms(X)
=E { n 7s(X)TIn(X) | S = 1] PS=1)= " in the nested design
n+m n+m

Where mg can be estimated directly using the randomized and the non randomized data. 71 is further derived
as presented in proof [S3]
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D.1.2 G-formula

The g-formula formulation in the case of nested trial design depends on the causal quantity of
interest. When the target population is the causal quantity of interest, then the identification
expression is the same as in the non-nested design. But, because f # f s—o, the estimator’s
expression is slightly different:

n+m

~q— S 1 m I

Fg—ne: ted _ m Z (Ml,l(Xi) - /J071(Xi))a (S5)
i=1

In the case where the population of interest is the non-randomized one, the identification of the
causal quantity of interest is the following:
EY*|S=0=EE[Y |X,S=1,A=4d]|S=0] =E[u,1(X) — po1(X) |5 =0] (S6)

The Proof [S5] details the calculus. And the estimator is the same as presented in equation [5] as the
integration is done on the law f|5—¢.

Proof S5
E[Y(a)|S=0]=E[E[Y(a) | X]|S =0] Law of total expectation
=E[E[Y(a) | X,S=1]|S=0] Assump.
=E[E[Y(a)| X,S=1,A=a]|S =0] Assump. [3]
=EE[Y|X,S=1,A=4d]|S=0] Assump. [3]]

This last quantity can be expressed as a function of the distribution of X in the non-randomized population:
E[Y(a)] = /E[Y | X —a,5=1,A = alf(z]S = 0)da

where f(X|S = 0) denotes the density function of X in the non-randomized population.

D.1.3 Doubly-robust estimator

Similarly to the doubly-robust estimation in the non-nested case (Section [3.2.4)), the g-formula and
the IPSW methods can be leveraged into a doubly-robust estimator. The AIPSW expression for
the nested case is the following:

1 S, A,

+m = Ts(Xi)er(Xi)
1 n+m Sl(l —Al) R
Tnim ; 75X —er () i ~ o))

1 m—+n

D {a(X0) = o (X0)} -

m 4+ m =

FAIPSW-nested _ - (Y; — ﬁl,l(Xi))

_|_
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D.2 Combining treatment-effect estimates from both sources of data

Under Assumptions [3.1} [3:2] and [3.5 for the RCT and Assumptions [£.1] and [£:2] for the observational
data, separate estimators of the ATEs from the two data sources can be constructed. 7 considered
the ATEs for the comprehensive cohort studies (CCS) which include participants who would like to
be randomized, constituting the RCT, and participants who would like to choose the treatment by
their preference, constituting the observational sample. In particular, they considered the ATE over
the CCS study population 75 and the ATE over the trial population 7;. Note that 75 is different
from 7 in our setting because 79 is defined with respect to the combined RCT and observational
sample; while 7 is defined with respect to the observational sample only. In order to construct
improved estimators by combining study-specific estimators, they derived the optimal influence
functions for 7y and 79, which suggest that the efficient estimators of 7, and 75 can be obtained by

L1 [R(X)AY; AFS(X) 4y
Tieff = ; [ ) + {Sz (X)) }Ml(Xz)
o ms(X)(-A)Ys [ Q- A)Ts(Xi) | ~
e (s R ).
oo = i 3 e - BRI () ~ (),

where €1(X;), Ho1(X;), and fi1,1(X;) for units in the RCT are simplified as e(X;), fio(X;), and
fi (X5)-

D.3 Softwares: Examples of implementations

This part follows Section [6] and proposes specific examples of implementations for the nested design
in the case of IPSW and G-formula.

D.3.1 IPSW

Te IPSW estimator can be implemented using the available code from [Dahabreh et al.| (2019). It
requires as input a dataframe (here called study) which columns represent treatment, denoted by
A (binary), the RCT indicator, denoted as S (binary), the outcome as Y (continuous), and the
quantitative covariates. The current available code for 3 quantitative covariates denoted X7, Xo,
X3 is presented below. A first function generate_weights() estimates the sampling propensity
score and the propensity score as logistic regressions, and compute the according weights to each
data point. The variance is estimated with the geex library (Saul and Hudgens| [2020) through the
m_estimate function which computes the empirical sandwich variance estimator.

# Compute selection score model and propensity score in the trial (logit)
weights <- generate_weights(Smod = S”X1+X2+X3, Amod = A~X1+X2+X3, study)

# Use these scores to compute IPSW
I0OW1 <- IOW1l_est(data = weights$dat)

# Compute the empirical sandwich variance
param_start_I0OW1l <- c(coef(weights$Smod) , coef(weights$Amod),
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ml = IOW1$IOW1_1, mO = IOWI$IOW1_O, ate = IOWI$IOW1)
I0W1l_mest <- m_estimate( estFUN = IOW1_EE, data = study,
root_control = setup_root_control(start = param_start_IO0OW1))

# Format the output

I0OW1l_ate <- extractEST(geex_output = I0OWl_mest,
est_name ="ate",

param_start = param_start_IOWl)

The output is:

print (IOW1_ate)
> ate SE
> -0.16961 0.02751

D.3.2 G-formula

The G-formula can also be implemented in the nested design using the available code from [Dahabrehl
et al.| (2019). It takes a similar entry as the IPSW previously presented. The variance is estimated
with the geex library (Saul and Hudgens| 2020)) through the m_estimate function which computes
the empirical sandwich variance estimator.

# Linear regression cond. outcome mean as a function of covariates on the RCT
# Compute ATE on the observational data
OM <- OM_est(data = study)

# Compute the empirical sandwich variance
param_start_OM <- c(coef (OM$0Mimod), coef (OM$OMOmod),
m1=0M$0OM_1, mO=0M$0OM_O, ate=0M$OM)
OM_mest <- m_estimate( estFUN = OM_EE, data = study,
root_control = setup_root_control(start = param_start_0M))

# Format the output
OM_ate <- extractEST(geex_output = OM_mest, est_name = "ate",
param_start = param_start_0M)

The output is:

> ate SE
> -0.1934 0.0300

E Notations and Assumptions in the Structural Causal Model

Structural Causal Models (SCM). We define a structural causal model as a 3-tuple M =
(U,V, F) such that, U and V are sets of respectively unobserved and observed variables with dis-
tribution P(U) and P(V), and F is a set of functions {fi,.., fn} such that, for each v; € V,
v; = fi(pa;,u;), where pa; € V \ v; and u; C U. The notation pa; (denoted “parents” of v;)
represents the set of variables that directly determine the value of v;. Such equations are called
structural equations. For example, let us consider the following SCM M,

a +  folz,ug),
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Figure 15: Left: (a) example of an SCM M and corresponding DAG; right: (b) Post-intervention graph of M for
do(A = ap).

y <~ fyla,z,uy).

Often, neither parametric assumptions are made on f, and f,, nor distributional assumptions on
random variables. Each SCM defines a graph G, often a directed acyclic graph (DAG) as illustrated

in Figure [15(a)

Interventions. At the core of the SCM framework is the do-operator which enables the use of
structural equations to represent causal effects and counterfactuals. The do(A = ag) operation
marks the replacements of the mechanism f, with a constant ag, while keeping the rest of the
model unchanged, resulting in the following post-treatment model:

a < Qg
y <~ fy (aa xv Uy)
In the causal graph, this corresponds to deleting all incoming arrows in A (Figure [15(b))).

We denote @ = P(Y =y | do(A = ag)) the post-intervention distribution, i.e., the distribution
of a random variable Y after a manipulation on A. From this distribution, the ATE can be written
as:

7 = E[Y|do(A=a1)] —E[Y | do(A = ap)]
= > y(P{y|do(a)} = P{y | do(a)}).

Y

Note that the post-intervention distribution can also be denoted in counterfactual notation as P(y |
do(a)) = P(Y(a) = y). The distinction between P(Y | A =a) and P(Y | do(a)) corresponds in the
potential outcomes framework to the difference between P(Y | A = a) and P(Y (a)).

D-separation. Conditional independences between variables can be read from the DAG induced
by an SCM using a graphical criterion know as d-separation. This criterion will be useful in
identifying the causal effect.

Definition 2 (d-separation) A set X of nodes is said to block a path p if either

e p contains at least one arrow-emitting node that is in X, or
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e p contains at least one collision node that is outside X and has no descendant in X.

If X blocks all paths from set A to set Y, it is said to “d-separate A and Y” and then it can
be shown that A L Y | X. As an illustration, let us consider a path with A - D + B — C.
Since B emits arrows on that path, it blocks the path between A and C, and A L C | B. D is a
collider (two arrows incoming) and consequently it blocks the path without conditioning A 1L C;
but conditioning on D would open the path and thus would imply that A X C' | D.

Furthermore, in the SCM framework it is generally assumed that faithfulness holds, i.e., that all
conditional independences are encoded in the graph, allowing to infer dependences from the graph
structure (Peters et al. 2017)). In other words, if the Global Markov property (i.e., d-separation
implies conditional independence), and faithfulness hold, then the resulting equivalence between
conditional independences and d-separation allows to move back and forth between the graphical
and the probabilistic model.

Identifiability We are interested in answering the identifiability question: can the post-intervention
distribution @ be estimated using observed data (such as pre-intervention distribution)?

Definition 3 (identifiability) A causal query Q is identifiable from distribution P(y) compatible
with a causal graph G, if for any two (fully specified) models My and My that satisfy the assumptions
i G, we have

Pi(v) = P(v) = Q(M)=Q(M2).

Specifically, if a causal query @ in the form of a do-expression can be reduced to an expression no
longer containing the do-operator (i.e, containing only estimable expressions using nonexperimen-
tal, observed data) by iteratively applying the inference rules of do-calculus, then @ is identifiable.
The language of do-calculus is proved to be complete for queries in the form Q = P(y | do(a), x)
meaning that if no reduction can be obtained using these rules, ) is not identifiable.

The application of previous rules and the backdoor criterion in the graph of Figure [T allows to
list all possible admissible adjustment sets for identifying P(y | do(a)):

X = {W2}7 {W27 W3}7 {W27 W4}7 {W3a W4}a {W27 W3a W4}a {WQa W5}a {WQa W37 W5}7
{Wa, Wi b, {Wa, Wy, Wi}, {W3, Wy, W5}, {Wa, W3, Wy, W5} (S7)

The analyst can select from this list which is preferable. Note that conditioning on W; would
induce bias as it is a collider.

E.1 Proof of the transport formula (Theorem (5.2))

We compute:

P(y | do(a), S = s¥)
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Figure 16: Application of the backdoor criterion in large graphs. Based on the admissible set deﬁnition
(S7) present all the following sets that are admissible and can be used for adjustment. For example, the set {Wa, W3}
blocks all backdoor paths between A and Y. Wa block the path A < Wy — W3 — W5 — Y.

= Y P(y|do(a),X =2, =s)Px|S=s").

The first equation follows by conditioning. The second line is derived by using the s-admissibility
of X. The third line results from the fact that A is a child of X and, therefore, exerts no causal
influence on X.

F Additional simulation results

This section follows Section [6.3] and provides additional results for the simulations.

F.1 Distributional shift between RCT and observational samples

The simulation design proposed simulates a situation where the RCT data reveals a distributional
shift with the observational sample. In the RCT all the covariates tend to have lower values than
in the observational sample. Still, the overlap assumption (Assumption is still valid as each
individu in the target population has a non-zero probability to be included in the experimental
sample. Quantitative results obtained for a simulation with ~ 1000 observations in the RCT and
10000 observations in the observational sample is given on Figure in addition with an histogram
illustrating overlaps and the distributional shift for the covariate X;.

F.2 Stratification

Within the weighted estimators, the stratification estimator (Section supposes to choose an
additional parameter being the number of strata used. Simulations are launched with the number
of strata varying from 3 to 15, and the results are presented on Figure [I§] We observed that the
number of strata has an impact on the results, the higher the number of strata used, the better the
prediction.
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Observational

RCT

Total

(N=10000) (N=1023) (N=11023)
x1
Mean (3D} 1.01 (0.996) 0.552 (0.980) 0.968 (1.00)
Median [Min, Max] ~ 1.01(-2.84,4.43]  0.536[-2.51,362] 0.972[-2.84, 4.43]
X2
Mean (3D} 1.00 (0.984) 0.652 (0.991) 0.970 (0.990)

Median [Min, Max]
X3

Mean (SD)

Median [Min, Max]
X4

Mean (SD)

Median [Min, Max]

0.996 [-2.48, 5.02]

1.00 (1.01)
1.01[-2.91, 5.05]

0.991 (1.00)
0,988 [2.77, 4.94]

0.679 [-2.81, 3.49]

0.485 (1.02)
0.466 [-2.32, 3.88]

0.616 (1.01)
0.615 [-2.14, 4.17)

0.963 [-2.81, 5.02]

0.954 (1.02)
0.961 [-2.91, 5.05]

0.956 (1.01)
0,960 [-2.77, 4.84]

800

600

400

200

-2.5 0.0 25 5.0
X1

Observational RCT

Figure 17: Covariates distributions differences between experimental sample and observational sample when
simulating according to as detailed in Section (left), with a focus on the X distributional shift with
histograms overlap for the two samples (right).

Figure 18: Effect of strata num-
ber Estimated ATE obtained while
varying the number of strata L &€
{3,5,7,9,11,13,15} with 100 repe-

titions each time.

All others sim-

ulation parameters being the same
as the standard case described in

@ and in Figure El
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Stratification.n.13

Stratification.n.11

Stratification.n.9

Stratification.n.7

Stratification.n.5

Stratification.n.3
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F.3 Homogeneous treatment effect
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{ E Stratification.n.3
E Stratification.n.5
$ Stratification.n.7
$ Stratification.n.9
“ ‘ Stratification.n.11
| ‘ Stratification.n.13
: ‘ Stratification.n.15

1

:

| 1

1

- - Population ATE

It is always interesting to note that in the case of an homogeneous treatment effect the RCT sample
contains all the information to estimate the population ATE, in other words 71 is a consistent
estimator of the ATE. We performed simulation with an homogeneous treatment effect (results are
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presented on Figure ) such as:

Y(a) | X =-100+ X7 +13.7X5 + 13.7X3 + 13.7X, + 27.4a + €

AIPSW |
CW .+
Figure 19: Homogeneous treat- G.formula - - Population ATE
ment effect Estimated ATE with
a homogeneous treatment effect E3 RCT
Y(a) [ X = —100 4 X1 +13.7X> + Stratification.n.10 E :ng
13.7X3 + 13.7X4 + 27.4a +e. All & Stratiﬁgg{ir:n 010
others simulation parameters being | B G.formula o
the same as the standard case de- IPSW J = CW
scribed in (6.3)) and in Figure@ -norm B3 AIPSW
IPSW :
RCT ‘|:I:|> -

20 25 30 35
Estimated ATE

G Additional analysis for Traumabase and CRASH-3

This part proposes additional analysis to the data analysis part (Section . We first propose
additional visualization of the distributional shift between CRASH-3 and the Traumabase, then
we present a principal component analysis of the combined database. Propensity scores obtained
either with the logistic regression or the forest are analyzed with histograms and scatter plots.
A complementary analysis of the results (Figure is proposed while estimating the generalized
treatment effect from an imputed Traumabase on Figure Finally, a focus on the different
patients strata, based on the severity of the injury, is presented.

G.1 Distributional shift between CRASH-3 and Traumabase

Distributional shift between CRASH-3 and the Traumabase data can be illustrated with histograms.
Figures 20| — [24] presents the empirical distribution shift between the Traumabase and CRASH-3
for age, Glasgow score, systolic blood pressure, sex and pupils reactivity (respectively). Differences
can be observed, and for example the fact that the CRASH-3 study contains more young patients,
while the Traumabase contains more moderate case (corresponding to a high Glasgow score). It is
interesting to notice that the overlaps assumption seems to hold in our situation.
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Figure 20: Distributional shift of Age between the Traumabase and the CRASH-3 studies.
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Figure 21: Distributional shift of the Glasgow score between the Traumabase and the CRASH-3 studies.
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Figure 22: Distributional shift of the systolic blood pressure between the Traumabase and the CRASH-3
studies.
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Figure 23: Distributional shift of the sex between the Traumabase and the CRASH-3 studies.
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Figure 24: Distributional shift of the pupils reactivity between the Traumabase and the CRASH-3 studies.

G.2 Principal component analysis

A principal component analysis is performed on the combined data set for the Traumabase and the
CRASH-3 data using the FactoMineR package (Lé et al., [2008), results are presented on Figure
As expected the Glasgow coma scale score and the pupils reactivity are related (paralysis of the
cranial nerves leading to pupillary anomalies being closely related to the presence of an intracranial
lesion, itself linked to the state of consciousness encoded in the Glasgow.). Additionally, the link
between age and systolic blood pressure can be explained by the fact that atherosclerosis of the
arteries is the source of an increase in blood pressure and is related to age.
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Figure 25: Principal Components Analysis (PCA) of the data set combining CRASH-3 and Traumabase data.

G.3 Sampling propensity scores

The sampling propensity scores obtained while performing the generalization from the CRASH-3
patients to the observational data are presented on Figures [26| (logistic regression) and [27] (forest).
We observe that extreme coefficient values are obtained, and that the forest grf strengthens this
trend. We can further investigate the differences in between the two methods to infer the propensity
scores noticing that the forest method uses the NAs from the Traumabase to learn the propensity
scores model. Figure 28 shows that the NAs present in the systolic blood pressure covariate are used
by the random forest to predict S, leading to more extreme values at the end. This importance of
different missing values patterns when combining two data sets are of importance and highlight the
need for a better understanding of the impact of missing values in the present framework.
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Figure 26: Sampling propensity scores histogram (glm) obtained with the misaem R package.
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Figure 27: Sampling propensity scores histogram (grf) obtained with random forests.
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Figure 28: Scatter plot of the two sampling propensity scores obtained with glm in x-axis and grf in the
y-axis. Color is set according to the systolic blood pressure covariate values (while missing values are in grey).
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G.4 Additional results with imputed Traumabase

As the Traumabase presents missing values such that the estimators introducted in this paper (such
as IPSW, G-formula, ...) have not been used directly but adapted using methods dealing missing
values such as the logistic regression in case of missing values or random forests. Another method
consist in imputing the Traumabase and then realize the analysis with estimators introduced in the
paper without further modifications. Results are presented on Figure [29] with an imputation using
mice. Similar conclusions on the treatment effect as the general case presented in Section [7] are
obtained.

Difference_in_means -
Difference_in_condmeans -
MICE_AIPW_grf e
MIA_AIPW_grf - e Context
MIA_IPSW.norm_grf k d Generalization
(3+3 variables)
MIA_IPSW_grf 4
o Observational data
MIA_G-formula_grf - » (17+21 variables)
MIA_AIPSW _grf+ F
AIPSW_gr RCT
(0 variables)
EM_IPSW.norm_glm - e
EM_IPSW_gIm - ——
EM_G-formula_gim - _—
EM_AIPSW_glm —o—
-0.4 OTO 0.4 0.8

ATE

Figure 29: Juxtaposition of different estimation results for target population corresponding for all
patients with ATE estimators computed on the imputed Traumabase (observational data set), on the CRASH-3
trial (RCT), and transported from CRASH-3 to the Traumabase target population. Number of variables used in
each context is given in the legend.

G.5 Evidence on other patients strata

The data analysis part only focuses on all the patients from the two studies CRASH-3 and Traum-
abase. This part proposes a focus on different patients type, based on the severity of the brain
trauma (measured either with the Glasgow score or the pupils reactivity).

G.5.1 Traumabase: evidence on different strata

When stratifying along different criteria of severity as in the CRASH-3 study, namely pupil reac-
tivity and the Glasgow Coma Scale as illustrated in Table With Mild/moderate and Severe strata,
the two studies provide different evidence: no average treatment effect in any of the strata for the
Traumabase, while the CRASH-3 study finds a beneficial effect for mild forms of TBI.
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Table 7: ATE estimations from the Traumabase for TBl-related 28-day mortality. Red cells conclude on
deteriorating effect, white cells conclude on no effect.

Multiple imputation (MICE) MTA Unad-
IPW AIPW IPW AIPW || justed
(95% CI) (95% CI) (95% CI) | (95% CI) || ATE
x 102 x102 x102 x102 x 102
GLM GRF GLM GRF
Total 15 11 34 0.1 9.3 04 "
(n = 8248) (6.8,23) | (6.0,16) | (-9.0,16) | (-4.7,4.4) | (4.0,15) | (-5.2, 4.4)
o moderate |7 11 15 2.1 6.8 0.1
> 8, - : : 8.7
EL: 5228) (-7.9,42) | (3.318) | (-47,77) | (-8.5,13) | (2.6,11) | (-4.9, 4.7)
Severe
10 7.7 2.2 1.3 7.1 0.3
ng:Cgsé?’ (-7.0,27) | (-66,22) | (-14,18) | (14, 11) | (-1.0, 15) | (-4.6,4.0) || P

G.5.2 CRASH-3: evidence on different strata

The CRASH-3 trial presents a significant treatment effect only on some strata (in particular on less
severe injured patients). As the brain-injury gravity has an effect on the outcome—most patients
with TBI with a GCS score of 3 (corresponding to a coma or unconsciousness state) and those with
bilateral non-reactive pupils have a very poor prognosis regardless of treatment—, the treatment
effect is likely to be biased towards the null. Therefore the CRASH-3 authors observe the maximal
treatment effect and statistical strength on mild to moderate injured patients, which is what we
retrieve from the data. This evidence is computed from the data, with a link between the risk ratio
(RR) and the average treatment effect (ATE) on Table

Table 8: Results reproduction for CRASH-3, with four possible stratifications based on the gravity level of the
injury. Results are both presented as risk ratio (in accordance with |CRASH-3(2019))) and as ATE (in accordance
with our framework, Section .

Relative risk Average Treatment Effect
RR 95% CI ATE 95% CI
Total (within 3 hours) 0.94 | (0.855, 1.02) -0.12 (—0.28, 0.004)
GCS > 3 or at least 1 pupil reacts | 0.90 | (0.78, 1.01) -0.02 | (—0.03, 0.0005)
Mild/moderate (GC'S > 8) 0.78 | (0.59, 0.98) || —0.2 | (—0.03, —0.003)
Severe (GCS < 8) 0.99 | (0.91,1.07) || —0.004 | (—0.04, 0.03)
Both pupils react 0.87 | (0.74, 1.00) -0.015 | (—0.03, —0.001)

G.5.3 Generalizing treatment effect on patient strata

As found by the CRASH-3 study, the group with potential benefit from TXA seems to be mild to
moderate TBI patients (Table 7 defined as patients with a Glasgow Coma Scale between 9 and
15, while the evidence obtained from the Traumabase has not found a significant treatment effect
for this group. However, in this stratum, for the CRASH-3 study, none of the patients has major
extracranial bleeding, leading to a constant variable for this group. Conversely, in the Traumabase,
in this stratum, only four patients without major extracranial bleeding are treated (while 1867 are
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Table 9: Sample sizes for both studies and different strata along the Glasgow Coma Scale. #maj.Ex corresponds
to the number of patients with a major extracranial bleeding.

Traumabase CRASH-3
m #treated | #death | #maj.Ex n #treated | #death | #maj.Ex
Total (within 3 hours) 8248 683 1411 5583 9168 4632 1745 5
Mild /moderate (GC'S > 8) | 5456 535 527 3392 5844 3075 600 0
Severe (GC'S < 8) 3083 596 1322 2224 3717 1985 1601 5

not treated with TXA). Since the practitioners are interested in the treatment effect transported on
patients with mild to moderate TBI and with major extracranial bleeding, we cannot restrict the
target population to those patients without major extracranial bleeding. The current methodology
does not allow to satisfy the necessary assumptions for transporting the effect using the presented
estimation strategies and defining a clinically relevant target population. Further methodological
investigations are required to transport the effect on the stratified subpopulations (see Table |§| for
the corresponding sample sizes).

This issue does not apply to the complementary stratum of severe TBI patients (corresponding
to a low Glasgow score (GC'S < 8)). We can thus provide the results for this stratum in Figure
We observe that on this strata discrepancies between the solely Traumabase estimators and the
generalized estimators are presents. The generalization supports either no-effect or a deleterious
effect, while the RCT and the observational estimators support the no-effect hypothesis.
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Figure 30: Juxtaposition of different estimation results for target population corresponding to the
severe Traumabase patients with ATE estimators computed on the Traumabase (observational data set), on the
CRASH-3 trial (RCT), and transported from CRASH-3 to the Traumabase target population (severe TBI patients).
Number of variables used in each context is given in the legend.
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