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With increasing data availability, causal effects can be evaluated across different data sets, both
randomized controlled trials (RCTs) and observational studies. RCTs isolate the effect of the
treatment from that of unwanted (confounding) co-occurring effects but they may suffer from un-
representativeness, and thus lack external validity. On the other hand, large observational samples
are often more representative of the target population but can conflate confounding effects with
the treatment of interest. In this paper, we review the growing literature on methods for causal
inference on combined RCTs and observational studies, striving for the best of both worlds. We
first discuss identification and estimation methods that improve generalizability of RCTs using the
representativeness of observational data. Classical estimators include weighting, difference between
conditional outcome models, and doubly robust estimators. We then discuss methods that combine
RCTs and observational data to either ensure uncounfoundedness of the observational analysis or
to improve (conditional) average treatment effect estimation. We also connect and contrast works
developed in both the potential outcomes literature and the structural causal model literature. Fi-
nally, we compare the main methods using a simulation study and real world data to analyze the
effect of tranexamic acid on the mortality rate in major trauma patients. A review of available
codes and new implementations is also provided.

Keywords: Causal effect generalization; transportability; double robustness; data fusion; heteroge-
neous data; S-admissibility.
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1 Introduction
Experimental data, collected through carefully designed and randomized protocols, are usually con-
sidered the gold standard approach for assessing the causal effect of an intervention or a treatment
on an outcome of interest. In particular, the intensive use of randomized controlled trials (RCTs)
grounds the so-called “evidence-based medicine”, a keystone of modern medicine. In an RCT, the
treatment allocation is under control, ensuring a balanced distribution of treated and control in-
dividuals; as a consequence, simple estimators can be used to measure the treatment effect, e.g.,
with the difference in mean effect between the treated and control individuals (Imbens and Rubin,
2015). Still, RCTs come with practical drawbacks such as cost and time, but also with method-
ological issues such as restrictive inclusion/exclusion criteria which can lead to a trial sample that
differs markedly from the population potentially eligible for the treatment. Therefore, the findings
from RCTs can lack generalizability to a target population of interest. This concern is related to
the aim of external validity, central in medical research (Concato et al., 2000; Rothwell, 2005; Green
and Glasgow, 2006; Frieden, 2017) policy research (Martel Garcia and Wantchekon, 2010; Deaton
and Cartwright, 2018; Deaton et al., 2019; Jeong and Namkoong, 2022), and other fields such as
advertising (Gordon et al., 2019).
In contrast, observational data – collected without systematically designed interventions, such as
disease registries, cohorts, biobanks, epidemiological studies, or electronic health records – are
promising as they are readily available, include large and representative samples, and are less cost-
intensive than RCTs. However, there are often concerns about the quality of these “big data”, given
that the lack of a controlled experimental intervention opens the door to confounding bias. This
concern is referred to as a lack of internal validity. Under assumptions such as unconfoundedness it
is possible to estimate a causal treatment effect from observational data. In practice, methods such
as matching, inverse propensity weighting (IPW), or augmented IPW (AIPW) are used (Imbens
and Rubin, 2015). Even when a confounder is unobserved, solutions exist at the price of additional
assumptions, for example the front-door criterion (Pearl, 1993), instrumental variables (Angrist
et al., 1996; Hernán and Robins, 2006; Imbens, 2014), and sensitivity analysis (Cornfield et al.,
1959; Rosenbaum and Rubin, 1983; Imbens, 2003).
Combining information gathered from experimental and observational data opens the door to new
tools for,

a) accounting for the lack of representativeness of RCT, as observational data can constitute an
external representative sample of a target population of interest;

b) making observational evidence more credible using RCT to ground observational analysis,
such as detecting a confounding bias;

c) improving statistical efficiency, for example to better estimate heterogeneous treatment effects
as RCTs are often under-powered in such settings.

As of today, there is abundant literature about the different ways and purposes of combining both
sources of information. Terms used to refer to similar problems are generalizability (Cole and Stu-
art, 2010; Stuart et al., 2011; Hernán and VanderWeele, 2011; Tipton, 2013; O’Muircheartaigh and
Hedges, 2014; Stuart et al., 2015; Keiding and Louis, 2016; Dahabreh and Hernán, 2019; Dahabreh
et al., 2019b; Buchanan et al., 2018; Cinelli and Pearl, 2020), representativeness (Campbell, 1957),
external validity (Rothwell, 2005; Stuart et al., 2018; Westreich et al., 2018), transportability (Pearl
and Bareinboim, 2011; Rudolph and van der Laan, 2017; Westreich et al., 2017), recoverability
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(Bareinboim and Pearl, 2012a; Bareinboim et al., 2014) and finally data fusion (Bareinboim and
Pearl, 2016); this review will explain the commonalities or differences between the terminologies.
They have connections to inference from non-probability samples in survey sampling (Yang et al.,
2020a; Yang and Kim, 2020) and to the covariate shift problem in machine learning (Sugiyama and
Kawanabe, 2012). This problem of data integration for causal inference is tackled by two main
bodies of literature, namely the potential outcomes (PO) framework (Neyman, 1923; Rubin, 1974),
and the work on structural causal models (SCM) using directed acyclic graphs (DAGs), pioneered
by Pearl (1995) and his collaborators.

The present paper reviews this literature on combining experimental and observational data. Sec-
tion 2 introduces the notations from the PO literature, as well as the common designs. Section 3
details how an observational sample can be used to generalize RCT findings to another population
point (a). We detail the corresponding identifiability assumptions and present the main estimation
methods that have been suggested to account for distributional shifts. In this section, only baseline
covariates are required in the observational data. In Section 4, we consider the case where ob-
servational data also contain treatment and outcome data. This setting in particular provides the
opportunity to tackle different scientific questions such as hidden confounding or statistical efficiency
(points (b) and (c)). In Section 5, we present the SCM literature, using different notations and
ways to formulate assumptions, thus capturing richer and more diverse identifiability scenarios. In
Section 6, we first present existing implementations and software and then we illustrate the proper-
ties of the generalization estimators on simulated data with new implementations. In Section 7, we
apply the various methods presented in Section 3 on a medical application involving major trauma
patients. The aim of this study is to assess the effect of the drug tranexamic acid on mortality
in head trauma patients. Both an RCT (the CRASH-3 trial) and an observational database (the
Traumabase registry) are available. In this section, we also review methods for addressing data
quality issues such as missing values.

2 Problem setting

2.1 Notations in the PO framework
Each individual in the RCT or observational population is described by (X,Y (0), Y (1), A, S), a
random tuple with distribution P , where X is a p-dimensional vector of covariates, A the binary
treatment assignment (with A = 0 for the control and A = 1 for the treated individuals), Y (a) is
the binary or continuous outcome had the subject been given treatment a (for a ∈ {0, 1}), and S a
binary variable indicating trial eligibility and willingness to participate1. We model the individuals
belonging to an RCT sample of size n and to an observational data sample of size m by n + m
independent random tuples: {Xi, Yi(0), Yi(1), Ai, Si}n+m

i=1 , where the RCT samples i = 1, . . . , n
are identically distributed according to P (X,Y (0), Y (1), A, S | S = 1), and the observational
data samples i = n + 1, . . . , n + m are identically distributed according to P (X,Y (0), Y (1), A, S).
The sampling mechanisms of the RCT and observational samples are assumed to be independent,
which corresponds to a so-called non-nested design as explained in Section 2.2.1. We also denote
R = {1, . . . , n} the set of indices of units observed in the RCT study, and O = {n+ 1, . . . , n+m}
the set of indices of units observed in the observational study. For each RCT sample i ∈ R, we

1Note that in the literature, S can have a slightly different meaning, for example other works use two separate
indicators, one for participation and one for eligibility (Nguyen et al., 2018; Dahabreh et al., 2019b).
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observe (Xi, Ai, Yi, Si = 1), while for observational data i ∈ O, we consider two settings: (i) we only
observe the covariates Xi (Section 3), (ii) we also observe the treatment and outcome (Xi, Ai, Yi)
(Section 4).

In this review we consider the absolute difference, and do not consider other contrast measures2.
Doing so, we denote respectively by τ(x) and τ1(x) the conditional average treatment effect (CATE)
in the observational population and the RCT population:

∀x ∈ Rp , τ(x) = E[Y (1)− Y (0) | X = x] , τ1(x) = E[Y (1)− Y (0) | X = x, S = 1] .

We also denote τ and τ1 the population average treatment effect (ATE) in the observational pop-
ulation and the RCT one:

τ = E[Y (1)− Y (0)] = E[τ(X)] , τ1 = E[Y (1)− Y (0) | S = 1] ,

where the population ATE can be different from the RCT ATE, i.e., τ 6= τ1 in general. We denote
respectively by e(x) and e1(x) the propensity score in the observational population and in the RCT
population:

e(x) = P (A = 1 | X = x) , e1(x) = P (A = 1 | X = x, S = 1) ,

where e1(x) is usually known in an RCT. We also denote by µa(x) and µa,1(x) the conditional mean
outcome under treatment a ∈ {0, 1} in the observational population and in the RCT population,
respectively:

µa(x) = E [Y (a) | X = x] , µa,1(x) = E [Y (a) | X = x, S = 1] .

Finally, we denote by α(x) the conditional odds that an individual with covariates x is in the RCT
or in the observational sample:

α(x) =
P(i ∈ R | ∃i ∈ R ∪O, Xi = x)

P(i ∈ O | ∃i ∈ R ∪O, Xi = x)
=
πR(x)

πO(x)
=

πR(x)

1− πR(x)
,

where πR(x) (resp. πO(x)) is the probability that an individual with covariates x known to be
in the concatenated data (RCT sample and observational sample) is in the RCT (resp. in the
observational sample). In the literature another widely used quantity is the selection score – or
sampling propensity score (in particular this name was proposed by Tipton (2013)) – denoted πS(x)
and defined as

πS(x) = P(S = 1 | X = x) .

Because πS(x) is the probability of being sampled in the trial given covariates values x, it is different
from πR(x). πS(x) is often used with a nested design (see Section 2.2.1 for a definition), but is not
of interest in our setup (non-nested design) because it cannot be identified. Indeed,

πS(x) = P(S = 1)× P(X = x | S = 1)

P(X = x)
= P(S = 1)× P(Xi = x | i ∈ R)

P(Xi = x | i ∈ O)
= P(S = 1)︸ ︷︷ ︸

Not known

× n
m

πR(x)

πO(x)︸ ︷︷ ︸
= α(x)

.

Detailed derivations can be found in the appendix (see Section C). The quantity P(S = 1) is
unknown because, individuals in the target population could have participated in the RCT or not:
S can be equal to 1 and 0 in the observational sample but this information is not known. Table 1
illustrates the considered type of data, and Table 2 summarizes the notations.

2Considering other measures such as the ratio or odds ratio can have an impact on the assumptions considered, for
example in generalization (Huitfeldt et al., 2019). As the large majority of the literature is focused on the absolute
difference, this review reflects the practices, and therefore considers the absolute difference.
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Table 1: Illustration of data structure of RCT data (Set R) and observational data (Set O) with covariates
X, trial eligibility S, binary treatment A and outcome Y . Left: with observed outcomes, Right: with potential
outcomes. Note that the S covariate can be either 0 or 1 in the observational data set (it is unknown in the
non-nested design, hence the NA for not available), and is always equal to 1 for observations in the RCT. In the
nested design (cf. Appendix E), S = 0 for all individuals in the observational data set.

Covariates Treatment Outcome
S Set X1 X2 X3 A Y

1 1 R 1.1 20 F 1 1
1 R -6 45 F 0 1

n 1 R 0 15 M 1 0
n+ 1 NA O . . . . . . . . .

NA O -2 52 M 0 1
NA O -1 35 M 1 1

n+m NA O -2 22 M 0 0

Covariates Treatment Outcome(s)
S Set X1 X2 X3 A Y (0) Y (1)
1 R 1.1 20 F 1 NA 1
1 R -6 45 F 0 1 NA
1 R 0 15 M 1 NA 1
NA O . . . . . . . . . . . .
NA O -2 52 M 0 1 NA
NA O -1 35 M 1 NA 1
NA O -2 22 M 0 0 NA

Table 2: List of notations.

Symbol Description
X Covariates (also known as baseline covariates when measured at inclusion of the patient)
A Treatment indicator (A = 1 for treatment, A = 0 for control)
Y Outcome of interest
S Trial eligibility and willingness to participate if invited to (S = 1 for eligibility, S = 0 for non-eligibility)
n Size of the RCT study
m Size of the observational study
R Index set of units observed in the RCT study; R={1,. . . ,n}
O Index set of units observed in the observational study; O={n+1,. . . ,n+m}
πR(x) Probability that a unit in R∪O with covariate x is in R, defined as πR(x) = P(i ∈ R | ∃i ∈ R ∪O, Xi = x)

πO(x) Probability that a unit in R∪O with covariate x is in O, defined as πO(x) = 1− πR(x)

α(x) Conditional odds α(x) = πR(x)/πO(x)

τ Population average treatment effect (ATE) defined as τ = E [Y (1)− Y (0)]

τ1 Trial (or sample) average treatment effect defined as τ1 = E [Y (1)− Y (0) | S = 1]

τ(x) Conditional average treatment effect (CATE) defined as τ(x) = E [Y (1)− Y (0) | X = x]

τ1(x) Trial conditional average treatment effect defined as τ1(x) = E [Y (1)− Y (0) | X = x, S = 1]

e(x) Propensity score defined as e(x) = P(A = 1 | X = x)

e1(x) Propensity score in the trial defined as e1(x) = P (A = 1 | X = x, S = 1), known by design
µa(x) Outcome mean defined as µa(x) = E [Y (a) | X = x] for a = 0, 1

µa,1(x) Outcome mean in the trial defined as µa,1(x) = E [Y (a) | X = x, S = 1] for a = 0, 1

πS(x) Selection score defined as πS(x) = P (S = 1 | X = x)

f(X) Covariate distribution in the target population
f(X|S = 1) Covariate distribution conditional to trial-eligible individuals (S = 1)

2.2 Study designs and goals
2.2.1 Nested and non-nested study designs

Following Dahabreh et al. (2019a) and Dahabreh and Hernán (2019), the study design to obtain the
trial and observational samples can be categorized into two types: nested study designs and non-
nested study designs as illustrated on Figure 1. Designs imply different identifiability conditions
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and therefore estimators. This review focuses on what is called the non-nested design, as the trial
sample and the observational sample are obtained separately. On the contrary the nested design
involves a two-stage nested sampling. For example it can correspond to an embedded trial in a
broader health system. As a concrete example one can mention the Women Health Initiative, or
the recent study on Medicaid where part of the participants are randomized (Degtiar et al., 2021).
In this situation, data are not really combined as the overall data comes from one initial sampling in
which two treatment assignment regimes (randomized or not) coexist. The nested design estimators
are detailed in Appendix E.

Step1:
Get a total sample of size n+m
from the target population

Step2:
- select a subsample for trial
- remaining sample used
in parallel observational
study

.

.

Figure 1: Schematics of the nested (left) and non-nested (right) designs, a similar schematic can be found in Josey
et al. (2021).

2.2.2 Transportability, generalizability, and recoverability

Several terms are currently present in the literature to describe the process of predicting the effect
of the treatment from an RCT to another population: generalization (Stuart et al., 2011; Buchanan
et al., 2018; Dahabreh et al., 2019b), transportability (Hernán and VanderWeele, 2011; Bareinboim
and Pearl, 2016; Westreich et al., 2017), or recoverability (Bareinboim et al., 2014). Differences in
the definitions can be found in the literature, underlying a specific design such as the existence of a
common superpopulation or assumptions such as the support overlap between different populations.
For example, Dahabreh et al. (2020a) highlights that several definitions are given,

We use the term generalizability when the target population coincides or is a subset of
the trial-eligible population and transportability when the target population includes at
least some individuals who are not trial-eligible (and who, by definition, cannot be trial
participants) (others have proposed different definitions).
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Due to different definitions in the literature, several terms can be found to describe the same
scientific goal. In this review, we call generalization the task that extends the RCT result to its
larger population, where it was sampled with a bias (detailed in Section 3). The SCM literature also
uses different terminologies corresponding to different assumptions –and corresponding diagrams– as
detailed in Section 5. For example what is called transportability refers to two distinct populations,
and not necessarily about different covariate supports as suggested by Dahabreh et al. (2020a).
In particular, in this literature the task that we study in Section 3 is termed recoverability from
a sampling bias, rather than generalization. This terminology has the merit of indicating that
generalization can have a much broader coverage, including other types of problems. Note that
granting some assumptions about a common support or non-zero probability to be sampled, then
the two problems – namely recovering from a sampling bias and transportability – rely on the same
estimators and procedure, as highlighted in Section 3.1.3 and in Pearl (2015).

3 When observational data have no treatment and outcome
information

We start by considering the case where only the covariates from the observational study are available
or used. We consider the observational data as a random sample from the target population.
Considering this set-up, the question tackled in this section is how to generalize or transport the
trial findings toward a target population of interest. Applied examples can be found in Lee et al.
(2021); Lesko et al. (2016); Tipton et al. (2016); Li et al. (2021a); Yang and Wang (2022). In
particular He et al. (2020) review current practice, revealing that generalization’s implementation
is still at the stage of prototyping without real usage for clinical and public health decisions yet.

3.1 Assumptions needed to identify the ATE on the target population
A fundamental problem in causal inference is that we can observe at most one of the potential
outcomes for an individual subject. In order to identify nonetheless the ATE from RCT and
observational covariate data, we require some of the following assumptions.

3.1.1 Internal validity of the RCT

Assumption 1 (Consistency). Y = AY (1) + (1−A)Y (0).

Assumption 1 implies that the observed outcome is the potential outcome under the actual assigned
treatment.

Assumption 2 (Randomization). {Y (0), Y (1)} ⊥⊥ A | S = 1, X

Assumption 2 corresponds to internal validity. It holds by design in a completely randomized
experiment, where the treatment is independent of all the potential outcomes and covariates. The
more general case of conditional randomization is assumed throughout this review.
If Assumptions 1 and 2 hold, then the RCT is said to be compliant. In addition, in an RCT, it is
common that the probability of treatment assignment, e1(x), is known. In a complete randomized
trial, the propensity score is fixed as a constant, and usually e1(x) = 0.5 for all x.
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3.1.2 Assumptions ensuring generalizability of the RCT to the target population

The literature proposes different assumptions to generalize trial’s findings to a target population.

Assumption 3 (Ignorability assumption on trial participation). {Y (0), Y (1)} ⊥⊥ S | X. (Hotz
et al., 2005; Stuart et al., 2011; Tipton, 2013; Hartman et al., 2015; Buchanan et al., 2018; Degtiar
and Rose, 2022; Egami and Hartman, 2021b)

A parallel can be made with the strong ignorability condition in causal inference with observational
data (see Assumption S1 in Appendix), but applied to the sample selection rather than treatment
assignment. In other words, these assumptions require to control for all covariates being shifted
and predictive of Y . We call shifted covariates, all the baseline covariates along which the two pop-
ulations – trial and target – do not follow the same distribution. A weaker version of Assumption 3
can be found in Dahabreh et al. (2019b, 2020a):

Assumption 4 (Mean exchangeability). E[Y (a) | X = x, S = 1] = E[Y (a) | X = x] (mean
exchangeability over trial participation), for all x and a = 0, 1.

Another assumption can be found, relying on the transportability of treatment effect rather than
the potential outcomes.

Assumption 5 (Sample ignorability for treatment effects - Kern et al. (2016); Nguyen et al. (2018)).
Y (1)− Y (0) ⊥⊥ S | X.

A weaker version can be found:

Assumption 6 (Transportability of the CATE). τ1(x) = τ(x) for all x.

To meet these last two assumptions, one requires variables that are both treatment effects mod-
ifiers and shifted. Epidemiologists often use the term “effect modification” to indicate that the
treatment effect varies across strata of baseline covariates, such baseline covariates being treatment
effect modifiers. These assumptions are implied by Assumption 3, but this is not reciprocal as all
covariates predictive of the outcome are not necessarily treatment effect modifiers. Note that a
treatment effect modifier depends on the chosen scale, here we focus on the absolute difference, but
if we had considered a risk ratio the variables being treatment effects modifiers would not be the
same. Mathematical definitions of a treatment effect modifier are hard to find, but we quote one
from VanderWeele and Robins (2007) for the absolute scale.

Definition 1 (Treatment effect modifier). We say that a variable X is a treatment effect modifier
for the causal risk difference of A on Y if X is not affected by A and if there exist two levels of A,
a0 and a1, such that E

[
Y (a1) | X = x

]
− E

[
Y (a0) | X = x

]
is not constant in x.

In this work, we only rely on Assumption 5 for identification formula. Finally a last assumption is
needed, the positivity of trial participation assumption.

Assumption 7 (Positivity of trial participation, also called overlap). There exists a constant c > 0
such that, almost surely, P(S = 1 | X) ≥ c.

Assumption 7 requires adequate overlap of the covariate distribution between the trial sample
and the target population (in other words, all members of the target population have non-zero
probability of being selected into the trial). Other formulation of this assumption can be found
under the assumption of the target population’s support included in the trial sample support (Nie
et al., 2021; Colnet et al., 2022b)
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3.1.3 Identifications formulas

Under Assumptions 1, 2, 6, and 7 the ATE can be identified based on the following formulas
(derivations in Appendix C):

a) Reweighting formulation:

τ = E
[

n

mα(X)
τ1(X) | S = 1

]
= E

[
n

mα(X)

(
A

e1(X)
− 1−A

1− e1(X)

)
Y | S = 1

]
. (1)

Note that Equation 1 can be understood as a transportability problem considering two
distributions P1 and P , and transporting evidence from population P1 to population P ,

τ = EP [τ(X)] =

∫
X
τ(x) f(x) dx︸ ︷︷ ︸

Integral on P

=

∫
X
τ1(x)

f(x)

f1(x)
f1(x) dx︸ ︷︷ ︸

Integral on P1

=

∫
X
τ1(x)

n

m

1

α(x)
f1(x) dx,

noting that α(x) = P (i∈R|∃i∈R∪O,Xi=x)
P (i∈O|∃i∈R∪O,Xi=x) = P (i∈R)

P (i∈O) ×
P (Xi=x|i∈R)
P (Xi=x|i∈O) = n

m ×
f1(x)
f(x) , and using the

transportability assumption (see Assumption 6) stating that τ(x) = τ1(x).

b) Regression formulation:

τ = E [µ1,1 (X)− µ0,1 (X)] = E [τ1 (X)] . (2)

Different identification formulas motivate different estimation strategies as discussed next. These
strategies are illustrated in Figure 2.

3.2 Estimation methods to generalize trial findings to a target popula-
tion of interest

All along this review, estimators are indexed with the number of observations used for estimation.
For example, τ̂n indicates that the finite sample estimator only relies on the RCT individuals, or
τ̂n,m if it depends on both data sets.

3.2.1 IPSW and stratification: modeling the probability of trial participation

To overcome the bias due to covariate shift between populations, most existing methods rely on
direct modeling of the selection score previously introduced. The selection score adjustment meth-
ods include IPSW (Cole and Stuart, 2010; Stuart et al., 2011; Lesko et al., 2017; Buchanan et al.,
2018; Colnet et al., 2022b) and stratification (Stuart et al., 2011; Tipton, 2013; O’Muircheartaigh
and Hedges, 2014).

Inverse probability of sampling weighting (IPSW). The IPSW approach can be seen as
the counterpart of IPW methods for estimating the ATE from observational studies by controlling
for confounding (see Appendix B for details on IPW). Based on the identification formula (1), the
IPSW estimator of the ATE is defined as the weighted difference of average outcomes between
the treated and control group in the trial. The observations are weighted by the inverse odds
1/α(x) = πO(x)/πR(x) to account for the shift of the covariate distribution from the RCT sample

9



IPSW G-formula

Figure 2: Illustrative schematics for the estimation strategies: On this drawing the trial findings τ̂1,n would
over-estimate the target treatment effect τ (on an absolute scale). On the left, the IPSW (Definition 2) strategy,
relying on weighting the RCT observations; on the right, the plug-in g-formula (Definition 4) strategy, relying on
modeling the response using the RCT observations. Notations are the same as introduced in Table 2, i.e., fX
(fX|S=1) denotes the density of the target (resp. trial) population, and µ̂a,n(·) denotes the fitted response surface
using the n trial observations.

to the target population. The larger α(Xi), the smaller the weight of the observation i (as illustrated
on Figure 2). The shape of the IPSW estimator is slightly different from the shape of the IPW
estimator. In the latter, each observation is weighted by the inverse of the probability to be treated
whereas in the former it is weighted by the inverse of the odds of the probability to be in the trial
sample. This is due to the non-nested sampling design (see the IPSW estimator for the nested
design (S5)), as highlighted by Kern et al. (2016) and Nguyen et al. (2018).

Definition 2 (Inverse probability of sampling weighting - IPSW). The IPSW estimator is defined
as follows:

τ̂IPSW,n,m =
1

n

n∑
i=1

n

m

Yi
α̂n,m(Xi)

(
Ai

e1(Xi)
− 1−Ai

1− e1(Xi)

)
,

where α̂n,m is an estimate of the odds of the indicatrix of being in the RCT.

The IPSW estimator is consistent when the quantity α is consistently estimated by α̂n,m (Buchanan
et al., 2018; Colnet et al., 2022a). In practice, various methods are used to estimate α: for e.g. by
logistic regression(Stuart, 2010), while recent works rely on non-parametric methods such as ran-
dom forest and Gradient boosting (Kern et al., 2016) or Hájek-style estimator to target the density
ratio (Huang et al., 2021; Nie et al., 2021). Similar to IPW estimators, IPSW estimators are known
to be highly unstable, especially when the weights are extreme. This can occur if the observational
study contains units with very small probabilities of being in the trial. Normalized weights can
be used to overcome this issue (Dahabreh and Hernán, 2019). Still, the major challenge remains
that IPSW estimators require a correct model specification of the weights. Avoiding this problem
requires either very strong domain expertise or turning to doubly robust methods (Section 3.2.4).
Current theoretical guarantees and theorems are detailed in Appendix (see Section D). For example
Buchanan et al. (2018) propose a derivation of the asymptotic variance under parametric assump-
tions in the nested case, while Zivich et al. (2022) extends this to a non-nested design. Dahabreh
et al. (2019b) propose the use of sandwich-type variance estimators (for both nested and non-nested
design) or non-parametric bootstrap approaches, and note that the latter may be preferred in prac-
tice. Colnet et al. (2022a) has formalized consistency results for any consistent estimator of α,
including non-parametric estimators.
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Assumption 8 (Consistency assumptions for α). Denoting by n
mα̂n,m(x) the estimated weights on

the set X, the following conditions hold,

• supx∈X | n
mα̂n,m(x) −

fX(x)
fX|S=1(x) | = εn,m

a.s.−→ 0 , when n,m→∞,

• for all n,m large enough E[ε2
n,m] exists and E[ε2

n,m]
a.s.−→ 0 , when n,m→∞,

• Y is square integrable.

Theorem 1 (IPSW consistency - Colnet et al. (2022a)). Under causal assumptions (Assump-
tions 1, 2, 6, 7), (identifiability), and Assumption 8 (consistency), then, τ̂IPSW,n,m converges
toward τ in L1 norm,

τ̂IPSW,n,m
L1

−→
n,m→∞

τ.

More recently Colnet et al. (2022b) has proposed a finite sample characterization of IPSW when X
only contains categorical covariates.

Stratification. The stratification approach – or subclassification – is introduced by Cochran
(1968) for a single observational data set, and has been further extended by Stuart et al. (2011),
Tipton (2013), and O’Muircheartaigh and Hedges (2014) for the generalization’s context. It is
proposed as a solution to mitigate the risks of extreme weights in the IPSW formula. First, one has
to estimate the conditional odds α̂n,m in the same manner as for the IPSW detailed above. Then,
based on the values of the conditional odds obtained, L strata are defined (usually 5 as reported
in (O’Muircheartaigh and Hedges, 2014), following the empirical seminal work of (Cochran, 1968)).
In the trial, for each strata l one has to compute the average effect on this strata defined as
Y (1)l − Y (0)l, where Y (a)l denotes the average value of the outcome for units with treatment a in
stratum l in the RCT. The generalized ATE is defined by the aggregation of the treatment effect
estimates on each strata l weighted by the proportion of the strata in the target population ml

m ,
where ml is the number of individuals in strata l in the target sample.

Definition 3 (Stratification). The stratification estimator denoted τ̂strat,n,m is defined as,

τ̂strat,n,m =

L∑
l=1

ml

m

(
Y (1)l − Y (0)l

)
︸ ︷︷ ︸

from RCT

.

Buchanan et al. (2018) has proposed asymptotic normality result for this estimator. Theoretical
results for the stratification estimator are detailed in the appendix (Section D).

3.2.2 Plug-in g-formula estimators: modeling the conditional outcome in the trial

Other estimators to generalize RCT findings to a target population leverage the regression formu-
lation (2), in the inspiration of(Robins, 1986). Known as plug-in g-formula estimators, they fit a
model of the conditional outcome mean among trial participants, rather than modeling the prob-
ability of trial participation (as illustrated on Figure 2). Then a marginalization is done over the
empirical covariate distribution of the target population.

11



Definition 4 (Plug-in g-formula). The plug-in g-formula (or outcome model-based) estimator is
then defined as:

τ̂G,n,m =
1

m

n+m∑
i=n+1

(µ̂1,1,n(Xi)− µ̂0,1,n(Xi)) ,

where µ̂a,1,n(Xi) is an estimator of µa,1(Xi) fitted using the RCT data.

In practice, any model can be use to fit µa,1(Xi), for e.g. standard ordinary least squares (OLS).
Dahabreh et al. (2020a) announce3 consistency of the plug-in g-formula for parametric estimator
of the response model µa(X). Note that derivations are made in the context of a nested design but
said to extend to a non-nested design. They also recommend the use of sandwich-type variance
for confidence intervals estimation when correctly specified parametric models are used. Machine-
learning algorithms such as random forests can also be used to estimate µa,1(Xi) (Kern et al., 2016).
As shown by Colnet et al. (2022a) if the model is correctly specified (see Assumption 9 below), the
estimator is consistent.

Assumption 9 (Consistency of surface response estimators). Denote µ̂0,n (respectively µ̂1,n) an
estimator of µ0 (respectively µ1). Let Dn the RCT sample, so that

For a ∈ {0, 1}, E [|µ̂a,n(X)− µa(X)| | Dn]
p→ 0 when n→∞,

For a ∈ {0, 1}, there exist C1, N1 so that for all n > N1, a.s., E[µ̂2
a,n(X) | Dn] 6 C1.

Theorem 2 (Consistency of the plug-in g-formula - Colnet et al. (2022a)). Under causal assump-
tions (Assumptions 1, 2, 6, 7), and Assumption 9 the plug-in g-formula converges toward τ in L1

norm,

τ̂G,n,m
L1

−→
n,m→∞

τ.

3.2.3 Calibration weighting: balancing covariates

Beyond propensity scores, other schemes use sample reweighting. Lee et al. (2021) propose a
calibration weighting approach, similar to the idea of entropy balancing weights introduced by
Hainmueller (2012). They calibrate subjects in the RCT sample in such a way that after calibration,
the covariate distribution of the RCT sample empirically matches the target population.

Definition 5 (Calibration weighting - CW). Let g(X) be a vector of functions of X to be calibrated,
e.g., the moments, interactions, and non-linear transformations of components of X. Then, assign
a weight ωi to each subject i in the RCT sample by solving the following optimization problem:

min
ω1,...,ωn

n∑
i=1

ωi logωi,

subject to ωi ≥ 0, for all i,
n∑
i=1

ωi = 1,

n∑
i=1

ωi g(Xi) = g̃, (the balancing constraint)

3see their Appendix, Section A, pages 6-7.
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where g̃ = m−1
∑m+n
i=n+1 g(Xi) is a consistent estimator of E[g(X)] from the observational sample.

Based on the calibration weights, the CW estimator is then

τ̂CW,n,m =

n∑
i=1

ω̂n,m(Xi)Yi

(
Ai

e1(Xi)
− 1−Ai

1− e1(Xi)

)
,

where ω̂n,m(.) is the estimated ω(.) using the RCT and observational data.

The optimization problem in Definition 5 corresponds to the negative entropy of the calibration
weights; thus, minimizing this criterion ensures that the empirical distribution of calibration weights
is not too far away from the uniform distribution. This aims at minimizing the variability due to
heterogeneous weights. This optimization problem can be solved using convex optimization with
Lagrange multipliers. For an intuitive understanding of the calibration weighting framework, con-
sider g(X) = X. In such a setting, the balancing constraint is forcing the means of the observational
data and of the RCT to be equal after reweighting. More complex constraints can enforce balance
on higher-order moments. The calibration algorithm is inherently imposing a log-linear model on
the sampling propensity score and solving the corresponding parameters by a set of estimating
equations induced by covariate balance. Other objective functions of the weights correspond to
different models for the sampling propensity score (Chu et al., 2022). Wu and Yang (2022b) pro-
pose a cross-validation procedure to select the calibration weights that target at the smallest mean
squared error of the resulting estimator. The CW estimator τ̂CW,n,m is doubly robust in that it is
a consistent estimator for τ if the selection score of RCT participation follows a log-linear model,
i.e., πS(X) = exp{η>0 g(X)} for some η0, or if the CATE is linear in g(X), i.e., τ(X) = γ>0 g(X),
though not necessarily both. The authors suggest a bootstrap approach to estimate its variance.

3.2.4 Doubly-robust estimators

The model for the expectation of the outcomes among randomized individuals (used for the plug-in
g-formula estimator in Definition 4) and the model for the probability of trial participation (used
in the IPSW estimator in Definition 2) can be combined to form an Augmented IPSW estimator
(AIPSW).

Definition 6 (Augmented IPSW -AIPSW). The augmented IPSW estimator, denoted τ̂AIPSW,n,m,
is defined as

τ̂AIPSW,n,m =
1

n

n∑
i=1

n

m α̂n,m(Xi)

(
Ai (Yi − µ̂1,1,n(Xi))

e1(Xi)
− (1−Ai) (Yi − µ̂0,1,n(Xi))

1− e1(Xi)

)

+
1

m

m+n∑
i=n+1

(µ̂1,1,n(Xi)− µ̂0,1,n(Xi)) ,

where µ̂a,1, are estimated on the RCT sample (see Definition 4), and α̂n,m (see Definition 2) on
the concatenated RCT and observational samples.

It can be shown that this estimator is doubly robust, i.e., consistent when either one of the two
models for α̂n,m(·) and µ̂a,1(·) (a = 0, 1) is correctly specified. Dahabreh et al. (2020a) has proposed
a proof in the nested-case (see their appendix, Section A) said to follow the same principle in the
non-nested design (Section B page 25). In the plain text we recall the results from Colnet et al.
(2022a).
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Assumption 10 (Consistency assumptions - AIPSW). The nuisance parameters are bounded, and
more particularly

• There exists a function α0 bounded from above and below (from zero), satisfying

lim
m,n→∞

sup
x∈X

∣∣∣∣ n

mα̂n,m(x)
− 1

α0(x)

∣∣∣∣= 0,

• There exist two bounded functions ξ1, ξ0 : X → R, such that ∀a ∈ {0, 1},

lim
n→+∞

sup
x∈X
|ξa,1(x)− µ̂a,1,n(x)| = 0.

Theorem 3 (AIPSW consistency - Colnet et al. (2022a)). Assuming causal assumptions (As-
sumptions 1, 2, 6, 7), and Assumption 10 (consistency), and considering that estimated surface
responses µ̂a,1,n(.) where a ∈ {0, 1} are obtained following a cross-fitting estimation, then if As-
sumption 9 or Assumption 8 also holds then, τ̂AIPSW,n,m converges toward τ in L1 norm,

τ̂AIPSW,n,m
L1

−→
n,m→∞

τ.

This estimator is also shown to be asymptotically normal when both the outcome mean and con-
ditional odds model are consistently estimated at least at rate n1/4 in Dahabreh and Hernán
(2019) and Li et al. (2021b). Note that machine-learning tools are tempting to avoid model mis-
specification when estimating nuisance parameters. Still, this practice requires specific caution,
such as using cross-fitting, due to overfitting and regularization. These issues are well described
in the situation of a single observational data set. We refer to Chernozhukov et al. (2018) for a
detailed explanation, and to Zhong et al. (2021); Bach et al. (2021, 2022) for implementations.

More recently, Lee et al. (2021) propose an augmented calibration weighting (ACW) estimator.

Definition 7 (Augmented CW - ACW). The ACW estimator, denoted τ̂ACW,n,m, is defined as

τ̂ACW,n,m =

n∑
i=1

ω̂n,m(Xi)

(
Ai (Yi − µ̂1,1,n(Xi))

e1(Xi)
− (1−Ai) (Yi − µ̂0,1,n(Xi))

1− e1(Xi)

)

+
1

m

m+n∑
i=n+1

(µ̂1,1,n(Xi)− µ̂0,1,n(Xi)),

where the estimation of ω̂n,m(.) is detailed in Definition 5, and where µ̂a,1,n are estimated on the
RCT sample (see Definition 4).

They show that τ̂ACW,n,m achieves double robustness and local efficiency, i.e., its asymptotic variance
achieves the semiparametric efficiency bound when both the calibration weights and the outcome
mean model are correctly specified. Moreover, the convergence rate of the ACW estimator cor-
responds to the product of the convergence rates of the nuisance estimators, enabling the use
ofmachine-learning estimation of nuisance functions while preserving the

√
n-consistency of the

ACW estimator, when both the outcome mean and calibration weights model are consistently esti-
mated at rate n1/4 (Lee et al., 2021). Furthermore, Lee et al. (2022b) and Lee et al. (2022a) extend
the framework for handling survival outcomes.
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3.2.5 Practical issues: non-parametric estimation, overlap and unobserved covariates
Lack of overlap. The overlap assumption (see Assumption 7) is restrictive because RCT inclusion
and exclusion criteria can be strict as the goal of RCTs (at least in early stages) is to show a clear
effect even on a restricted population. Whenever Assumption 7 does not hold, it is still possible to
generalize on a different target population, such as the subset of the target population for which
eligibility criteria of the trial are ensured. This has also been suggested before, for e.g. by Tipton
(2013) (p.245). The question asked would rather be “What would have been the estimated treatment
effect in a situation where the trial has sampled individuals from the target population who meet
the trial eligibility criteria?". Another approach has been proposed by Chen et al. (2021). Similarly
to the idea of trimming propensity scores for dealing with limited overlap between treated and
control groups, they propose a generalizability score: a function of participation probability and
propensity score, to select subpopulations from the observational data for causal generalization
when the overlap is limited.

Unobserved treatment effect modifiers. Finally, we point out the important caveat that all
methods assume the ignorability conditions (see Assumptions 3, 4, 5, or 6): given the covariates
X, the conditional treatment effect must be the same in the observational data and the RCT.
In particular, this assumption could be violated if some shifted treatment effect modifiers are not
captured in the concatenated data, which is a plausible scenario given that data are seldom collected
jointly and thus typically measure different covariates.
In case of a richer set of covariates in the RCT than in the observational study (which doesn’t
necessarily mean that a sufficient set of pre-treatment covariates can be chosen, see for e.g. M-bias,
see Pearl (2000), page 186), Egami and Hartman (2021b) propose a method to select a sufficient
set of covariates. But in the case of a low number of common covariates, standard practice is
to consider the subset of covariates present in both data sets, but this violates the identifiability
condition. Recently, sensitivity analyses have been proposed to mitigate the consequences of missing
covariates in the RCT, or in the observational sample or even in both data sets (Nguyen et al.,
2017; Andrews and Oster, 2019; Nguyen et al., 2018; Dahabreh et al., 2019c; Colnet et al., 2022a;
Nie et al., 2021; Huang, 2022).

4 When observational data contain treatment and outcome
information

Section 3 studied how to correct RCT selection bias (with respect to the target population)
while leveraging covariate distribution of an observational sample. When the observational sample
also contains treatment and outcome information (Y,A), efficiency improvements can be obtained
(Huang et al., 2021). But beyond the generalization question, such additional covariates enable
different questions of interest. These questions are the purpose of Section 4. Indeed, RCTs can
make causal conclusions from the observational sample more trustworthy, either by removing con-
founding bias (detailed in Section 4.1) or via more efficient estimation (detailed in Section 4.2). For
completeness, we recall in Appendix B how to perform causal inference from purely observational
data.
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4.1 Dealing with unmeasured confounders in observational data
Motivation. Unmeasured confounding implies that {Y (1), Y (0)} 6⊥⊥ A | X, where X are the
observed covariates. In such situations, standard causal inference estimators τ̂Om(x) (resp. τ̂Om) of
the CATE τ(X) (resp. ATE τ), that are designed for purely observational data of size m, face a
so-called hidden confounding bias for these quantities, i.e.,

lim
m→+∞

τ̂Om(x) 6= τ(x), and lim
m→+∞

τ̂Om 6= τ.

In practice, former RCTs can be used as negative controls4, to ensure the observational study does
not suffer from confounding. For example, in a recent observational study on a COVID-19 vaccine,
Dagan et al. (2021) use such approachto ensure that previous trial results conclusion could be
retrieved. When confounding remains, solutions such as sensitivity analysis have been developed
to handle such situations (Rosenbaum, 2002; Imbens, 2003), but they typically rely on sensitivity
parameters which are difficult to set. Including additional experimental data brings interesting
promises to handle such identification bias. Recent works described below propose to use an RCT
to ground the observational analysis and debias the estimator that would be obtained on purely
confounded observational data.

Using an assumption on secondary outcomes or surrogates. The use of surrogate outcomes
arises in different contexts, for example in clinical studies (Prentice, 1989; Begg and Leung, 2000),
where it may be difficult to observe long-term outcomes, e.g., the effect of early childhood medical
or economic interventions. Athey et al. (2020a,b) observe that the effect of class size reduction leads
to a decrease in children 3rd grades in the observational data, while a famous RCT, the Tennessee
Student/Teacher Achievement Ratio (STAR) study (Krueger, 1999), concludes on a positive effect.
This difference could come from the fact that the two populations are different, but they assume the
apparent difference can be entirely explained by confounding5. In their set-up, they consider two
outcomes, a primary long-term outcome Y 1st (8th grades) and a secondary short-term outcome Y 2nd

(3rd grades). The RCT contains information on the surrogate but not the long-term outcome while
this is the opposite for the observational sample. Their central assumption to recover identifiability
is called latent unconfoundedness, i.e.,

A ⊥⊥ Y 1st(a) | Y 2nd(a), i ∈ R, , for a = 0, 1,

which corresponds to the assumption that hidden confounders violating identification of the effect
on Y 1st are the same than for Y 2nd . In other words, their method consists in adjusting the estimates
of the treatment effects on the primary outcome using the differences observed on the secondary
outcome. Their assumptions can be understood as a missing data problem, i.e., the missing data in
theprimary outcomes are missing at random in the concatenated data (Rubin, 1976). For estimation,
they suggest three methods, namely, i) imputing the missing primary outcome in the RCT, ii)
weighting the units in the observational sample, and iii) using control function methods.

4The term negative controls comes from usual routine precaution in biological laboratory experiments, where such
controls are used to – at least partially – check that the experiment is not undermined. For example it can test the
absence of reagents or components that are necessary for a detection of something particular. For example one of
the two bars of the covid antigenic test is one of these controls. The analogy of this principle in causal inference is
detailed in (Lipsitch et al., 2010).

5Assuming the bias comes from an unobserved confounder and not from inherent differences between populations
can be stated as, S ⊥⊥ {Y (1), Y (0)} , which means that the two samples come from comparable populations (see
Section 3).
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Deconfound using the bias/confounding function. Kallus et al. (2018b) propose to use an
RCT sample to deconfound the CATE estimated on a single observational data set, denoted τ̂Om(x).
Due to possible unmeasured confounding, τ̂Om(x) may be biased for τ(x), that is η(x) 6= 0 where
η(x) := τ(x)− τ̂Om(x) is the bias function. To correct for this bias, they assume they have at hand
a narrow RCT (as it is usually the case with strict eligibility criteria in trial) with high internal
validity, and with covariate support included in the observational sample support. Given that τ̂Om(x)
is obtained from the observational data, one can estimate η(·) on the common support between the
RCT and the observational data using the (unconfounded) RCT data. Another assumption is
required, being that the bias can be well approximated by a function with low complexity, e.g., a
linear function of the covariates x: η(x) = θTx. Kallus et al. (2018b) then propose to estimate the
bias as η̂m,n(x) = θ̂Tm,nx by solving the following minimization:

θ̂m,n = argminη

n∑
i=1

(
Y∗i − τ̂Om (Xi)− η(Xi)

)2
= argminθ

n∑
i=1

(
Y∗i − τ̂Om (Xi)− θTXi

)2
,

where Y ∗i =
(
e(Xi)

−1
Ai − {1− e(Xi)}−1(1−Ai)

)
Yi, which satisfies E[Y ∗i | Xi] = τ(Xi).

Note that the linear assumption guarantees the validity of the framework even if the observational
data does not fully overlap with the experimental data as the bias, i.e, the confounding error
is assumed to be extrapolable. Finally, τ̂m,n(x) = τ̂Om(x) + η̂m,n(x) is the estimated conditional
average treatment effect. They prove that under conditions of parametric identification of η, τ̂m,n(x)
is a consistent estimate of τ(x) which converges at a rate governed by the rate of estimating E[τ̂Om(x)]
by τ̂Om(x).
More recently, Yang et al. (2020b) proposed another approach. Rather than η(x), they consider
what they call the confounding function λ(x),

λ(x) = E[Y (0) | A = 1, X = x]− E [Y (0) | A = 0, X = x] ,

summarizing the impact of unmeasured confounders on the potential outcome distribution between
the treated and untreated patients. In the absence of unmeasured confounding, λ(x) is zero for any
x ∈ X , while if there is unmeasured confounding, λ(x) 6= 0 for some x. Assuming a parametric
model assumption for the CATE τ(x) := τϕ0

(x) with ϕ0 ∈ Rp1 , and for λ(x) := λφ0
(x) with

φ0 ∈ Rp2 , the coupling of RCT and observational data allows identifiability of τ(x) and λ(x). The
key insight is to introduce the following random variable

Hψ0
= Y − τϕ0

(X)A− (1− S)λφ0
(X){A− e(X)} ,

where ψ0 = (ϕT
0 , φ

T
0 )Tis the full vector of model parameters in the CATE and confounding func-

tion, and where here S = 1 (resp. S = 0) denotes trial participation (resp. observational study
participation). By separating the treatment effect τϕ0(X)A and (1 − S)λφ0(X){A − e(X)} from
the observed Y , Hψ0

mimics the potential outcome Y (0). They then derive the semiparametric
efficient score of ψ0:

Sψ0(V ) =

(
∂τϕ0

(X)

∂ϕ0
∂λφ0 (X)

∂φ0
(1− S)

)(
σ2
S(X)

)−1
(Hψ0

− E [Hψ0
| X,S]) (A− e(X)) , (3)

where σ2
S(X) = V[Y (0) | X,S]. A semiparametric efficient estimator of ψ0 can be obtained by

solving the estimating equation based on (3). If the predictors in τϕ0(X) and λφ0(X) are not
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linearly dependent, they show that the integrative estimator of the CATE is strictly more efficient
than the RCT estimator. As a by-product, this framework can be used to generalize the ATEs from
the RCT to a target population without requiring an overlap covariate distribution assumption
between the RCT and observational data. Wu and Yang (2022a) propose an integrative R-learner
that extends the framework of Yang et al. (2020b) to allow flexible machine learning methods for
approximating CATE, confounding function, and nuisance functions.

4.2 Toward more efficient estimation
Under Assumptions 1, 2, and 6, the CATE can be estimated based on the RCT, while under the
classical unconfoundedness assumption (see Appendix S1), the CATE can be estimated using the
observational sample. Therefore when both sets of assumptions are met, the two data sources can be
pooled to improve estimation efficiency. Toward this end, Yang et al. (2022) use the semiparametric
efficiency theory to derive the semiparametrically efficient integrative estimator of ϕ0 for the CATE
τϕ0

(X). However, if the unconfoundedness assumption is violated, integrating the observational
sample would bias the CATE estimation. Leveraging the design advantage of RCTs, Yang et al.
(2022) derive a preliminary test statistic for the comparability and reliability assessment of the
observational data and decide whether to use it in an integrative analysis. Denote the efficient
score based solely on the RCT and observational data as Srct,ϕ0

(V ) and Sos,ϕ0
(V ), respectively,

where V is a full vector of variables. Their basic idea is to derive an RCT estimator ϕ̂rct for
ϕ0 and construct the preliminary test statistics based on Sos,ϕ̂rct

(V ). The rationale is that if the
observational sample is comparable to the RCT sample for estimating ϕ0, Sos,ϕ̂rct

(V ) is expected
to be close to zero; otherwise, Sos,ϕ̂rct

(V ) is expected to deviate from zero. This thought process
leads to the test statistics

T =

{
n−1/2

n+m∑
i=n+1

Sos,ϕ̂rct
(Vi)

}T

Σ̂−1
SS

{
n−1/2

n+m∑
i=n+1

Sos,ϕ̂rct
(Vi)

}
, (4)

where Σ̂SS is a consistent estimator for the asymptotic variance of n−1/2
∑n+m
i=n+1 Sos,ϕ̂rct

(Vi). Un-
der H0 that the observational sample is comparable to the RCT sample, T → χ2

p, a Chi-square
distribution with degrees of freedom dim(ϕ0), as n→∞. This result serves to detect the violation
of the assumption required for the observational data.
Yang et al. (2022) propose the elastic integrative estimator by solving

n∑
i=1

Ŝrct,ϕ(Vi) + I(T < cγ)

n+m∑
i=n+1

Ŝos,ϕ(Vi) = 0, (5)

where cγ is the 100(1 − γ)th percentile of χ2
p, serving as a switch to decide combining or not.

The methodological contribution of Yang et al. (2022) is to derive a data-adaptive selection of cγ
such that the resulting estimator has the smallest mean squared error and thus performs at least
similar to the RCT-only estimator, if not better. Moreover, the elastic integrative estimator is non-
regular and belongs to pre-test estimation by construction. The theoretical contributions of Yang
et al. (2022) include characterizing the distribution of the elastic integrative estimator under local
alternatives, which better approximates the finite-sample behaviors, and providing data-adaptive
confidence intervals that are uniformly valid.
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4.3 Other use cases
Beyond generalizability or overcoming confounding, there are other purposesmotivating the com-
bination of experimental and observational data. We provide a brief list of these purposes and
methodologies. A detailed or exhaustive survey is beyond the scope of this review.

Using hybrid controls. A hybrid control arm is a control arm constructed from a combination
of randomized patients and patients receiving usual care in standard clinical practice, as introduced
by Pocock (1976) and pursued by Hobbs et al. (2012); Schmidli et al. (2014). Recently the FDA has
detailed their usage in the regulatory purposes (FDA, 2018). Using hybrid controls has the potential
to decrease the cost of randomized trials, and to reduce ethic constraints on control groups.

Case-control studies. In certain applications, e.g., in epidemiology, the observational data at
hand comes from a case-control study where the selection of observations is driven by the outcome
of interest Y . Thus, the RCT and observational data differ in terms of the outcome distribution,
typically a preferential selection on the outcome for the observational data set. Several solutions
have been proposed to handle this type of selection bias. Robins (2000) and Hernán et al. (2005)
propose marginal structural model approaches to eliminate this bias given sufficient knowledge of
the selection model given treatment. Guo et al. (2021) propose a control variates technique (Tan,
2006; Yang and Ding, 2020) identifying and estimating an estimand that is sufficiently correlated
with the target estimand of interest for the observational cohort.

Encouragement design intervention An encouragement design intervention is a design in
which some individuals or groups are randomly assigned to receive encouragement to take up
the program. (Rudolph and van der Laan, 2017) provide a semiparametric efficiency score for
transporting the ATE from one study following an encouragement design, to another population.
Due to the design, their set-up is a variant of the generalization work from Section 3, but with
treatment allocation information in the target population.

5 Structural causal models (SCM) and transportability
Within the SCM framework (Pearl, 1995, 2009b), Bareinboim and Pearl (2016) have proposed
answers for transportability and combination of different data-sources – also called data fusion.
This section is split off from the previous section as it builds on additional concepts.
Let us first briefly introduce the SCM framework, using as much as possible the notations of Sec-
tion 2.1 that we introduced for the PO framework (Appendix F gives a more general primer on the
SCM framework, and in particular the do-operator). The covariates X, treatment A, and response
Y are modeled in the SCM framework as random variables with joint distribution P (X,A, Y ). Each
intervention, such as setting A to a = 0 or a = 1, defines an alternative distribution over (X,A, Y )
that can be systematically deduced from the no-intervention (or observational) distribution P us-
ing the SCM model, and which is written P (X,A, Y | do(A = a)). In this framework, the CATE is
written:

τ(x) = E [Y | do(A = 1), X = x]− E [Y | do(A = 0), X = x] ;

and the ATE:
τ = E [Y | do(A = 1)]− E [Y | do(A = 0)] .
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These expressions mirror the corresponding expressions in the PO framework (Table 2) when one
identifies the variable Y (a) in the PO framework to the variable Y under the intervention do(A = a)
in the SCM framework, namely when we set P (Y (a), X) = P (Y,X | do(A = a)). In fact this
analogy is valid in the sense that any theorem that holds for SCM counterfactuals holds in the PO
framework, and vice-versa (Pearl, 2009b, Chapter 7; Pearl, 2009a, Chapter 4). In spite of this formal
equivalence, the two frameworks differ in how they allow practitioners to express causal assumptions,
and to derive corresponding estimands of causal effects. The SCM framework provides a convenient
graphical representation known as causal diagram to encode potentially complex causal assumptions
between variables, and provides a complete language known as do-calculus to express causal effects
(i.e., some expectation under the do(A = a) probability) as a function of observational data (i.e.,
some expectation under the no-intervention distribution) (Pearl, 1995, 2009b). When this reduction
is possible, the causal effect is called identifiable. In addition, the do-calculus is complete in the
sense that a causal effect is identifiable if and only if it can be reduced to a function of observational
data using do-calculus (Huang and Valtorta, 2006; Shpitser and Pearl, 2006). Interestingly, this
provides a variety of formulas to correctly infer causal effects even in the presence of unmeasured
confounders, which cannot be handled by the PO framework (without additional structural and
modeling assumptions), such as the front-door adjustment formula (Pearl, 1995).

5.1 Formulating transportability in the SCM framework
The SCM literature and do-calculus naturally cover the problem of generalizing an RCT experiment
to a different target population. Following our notations in the PO setting (Section 2.1), we again
denote by S a binary random variable that indicates which individuals can be in the RCT. The
RCT population then follows the distribution P (X,Y,A |S = 1), and by design the RCT allows
estimating the conditional distributions P (Y | do(A = a), X, S = 1) for a = 0, 1. The problem
of generalization to the target population in this setting is then to deduce the distributions of
P (Y | do(A = a), X) for a = 0, 1 from these two distributions and the observed distribution of
the covariates P (X) in the target distribution (as in Section 3), or of the covariates, treatments
and responses P (X,A, Y ) in the target population (as in Section 4). If this deduction (using do-
calculus) is possible, then the causal effect on the target population is identifiable, and the deduction
provides a formula for the causal effect that can then be estimated from a finite population using
some consistent estimator.
Interestingly, this formalism covers two important situations: (i) the sample selection bias problem,
when the RCT population is a subset of the target population that fulfills some eligibility criterion6,
and (ii) the transportability problem, where the RCT population differs more drastically from the
target, e.g., when one wants to generalize an RCT conducted in one country to a population in
another country (Pearl, 2015). To model sample selection bias, on the one hand, one typically adds a
node S with incoming edges to a causal graph in order to capture the eligibility conditions that may
depend on pre- or post-treatment variables. It is then possible to derive conditions under which one
can recover from selection bias when the probability of selection is available (Cooper, 1995; Lauritzen
and Richardson, 2008; Geneletti et al., 2008) or when no quantitative knowledge is available about
probability of selection (Didelez et al., 2010; Bareinboim and Pearl, 2012a). We provide examples
of such conditions in Appendix F.1.2. To model transportability to a different population, on
the other hand, the node S has typically no incoming edge, and instead points to variables that
differ between the RCT and the target population, either in their functional dependency to their

6This setting has been termed as generalizability in the introduction of the different study designs in Section 2.2.
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parents in the causal graph, or in the distribution of their exogenous variables. The resulting
graph is called a selection diagram and allows to encode graphically detailed assumptions about
the differences between populations (Pearl and Bareinboim, 2011; Bareinboim and Pearl, 2012b;
Pearl and Bareinboim, 2014; Bareinboim and Pearl, 2013). Note that even if the two situations
imply different causal diagrams, the problem of selection bias “has some unique features, but can
also be viewed as a nuance of the transportability problem, thus inheriting all the theoretical results
of transportability” (Pearl, 2015); this remark is connected to the discussion from Section 2.2.
The SCM approach thus provides powerful machinery to generalize causal effect across populations,
and entails a detailed description of the causal assumptions between variables in the selection
diagram, including the selection variable S. The two selection diagrams of Figure 3 represent for
example transportability problems with a distributional change of covariates X between the RCT
and target populations (with an arrow from S to X), and where the interventional nature of the
RCT versus the target population is also represented with an arrow from S to A.

(a)

S

Y

X

A

(b)

S

Y

X

A

Figure 3: Illustration of selection diagrams depicting differences between source and target populations:
In (a) and (b), the two populations differ by covariate distributions (indicated by S pointing to X) and the two
populations differ in their interventional nature (S pointing to A). Assumption 6 (transportability assumption) is
assumed on (b), but not on (a) (since S points to Y in (a)). These two examples are inspired by Pearl and Bareinboim
(2011).

In addition, in Figure 3(a) the arrow from S to Y indicates that the conditional distribution of
Y given X and A differs between the two populations, which in general prevents any transporta-
bility of causal effect, while the lack of arrow from S to A in Figure 3(b) encodes the indepen-
dence assumption P(Y |X,A) = P(Y |X,A, S = 1), which implies the transportability assumption
P(Y | do(A = a), X, S = 1) = P(Y | do(A = a), X) (which itself implies Assumption 6 in the PO
framework). In that case, one easily deduces by simple conditioning on X that the distribution of
Y under intervention on the whole population is given by

P(Y | do(A = a)) =
∑
x

P(Y | do(A = a), X = x, S = 1)︸ ︷︷ ︸
RCT

P(X = x)︸ ︷︷ ︸
Obs.

. (6)

This transport formula, also known as re-calibration, re-weighting or post-stratification formula
(Pearl, 2015), thus combines experimental results obtained in the RCT population and the obser-
vational description of the target population to estimate the causal effect in the target population.
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In particular, we easily deduce the ATE on the target population by integrating (6) in Y to get

τ =
∑
x

τ1(x)︸ ︷︷ ︸
RCT

P(X = x)︸ ︷︷ ︸
Obs.

, (7)

where τ1(x) is by design identifiable by conditioning on treatment in the RCT population. This
formula (7) is equivalent to the regression formula (2) in the PO framework, which is valid under
Assumption 6. Interestingly, Pearl and Bareinboim (2011) show that the transport formula (6)
holds more generally as soon as X is a set of pre-treatment variables which is S-admissible, i.e.,
if S ⊥⊥ Y | X, do(A = a) for a = 0, 1. Graphically, S-admissibility holds whenever X blocks all
paths from S to Y after deleting from the graph all incoming arrows into A. We note that S-
admissibility implies the mean exchangeability assumption (Assumption 4) and is equivalent to the
S-ignorability assumption S ⊥⊥ Y (a) | X (Assumption 3) used in the PO literature when X and S
are pre-treatment variables, and entails similar transport formula in that situation. However, the
two notions differ for treatment-dependent selection and covariates, as discussed by Pearl (2015),
where several examples illustrate how the S-admissibility assumption can lead to different transport
formulas when both pre- and post-treatment variables are leveraged. Such an example is presented
on Figure 4, where the covariate X is a post-treatment variable, for example a biomarker, believed
to mediate between treatment and outcome.

S

A X Y

Figure 4: Post-treatment covariate adjustment: On this selection diagram
the arrow from S to X indicates the assumption of different effect of A on X
in the two populations. Here, X is S-admissible but not S-ignorable, and the
corresponding transport formula is P (Y | do(A = a)) =

∑
x P (Y | do(A =

a), X = x, S = 1)P (X = x | A = a), where it invokes an unconventional average
of the CATE weighted by a conditional probability in the target population. This
example is taken from Pearl (2015).

Here, we presented how Assumptions 2, 3 and 4 are translated in the SCM literature and how an-
other scenario with post-treatment covariates can be identified. More identifiability scenarios have
been discussed in the SCM literature (Huang and Valtorta, 2012; Bareinboim et al., 2013; Pearl,
2015; Lee et al., 2020b), and to our knowledge we have found no similar identifiability scenario
in the PO literature. It is worth mentioning that the transportation problem discussed so far, to
export a causal effect estimated in an RCT to a general population is only one specific instance
of the more general problem of data fusion (Pearl and Bareinboim, 2011; Bareinboim and Pearl,
2012b, 2016; Hünermund and Bareinboim, 2019; Lee et al., 2020a), which simultaneously accounts
for confounding issues of observational data, sample selection issues, as well as extrapolation of
causal claims across heterogeneous environments. The SCM framework, with its elegant way of for-
malizing the problem, helps practitioners formulate and discuss causal assumptions across variables
and environments. In particular, subject to a good knowledge of the graph, it helps selecting sets
of variables that are sufficient to establish identifiability and exclude variables that would bias the
analysis. As we will see in Section 7, already in the early phase of a study, the causal and selection
diagrams offer a very convenient tool to discuss with clinicians and explicitly lay out conditional
independence assumptions. Once a diagram encodes assumptions about a system, algorithmic solu-
tions implementing the do-calculus are available to determine whether non-parametric identifiability
holds, and to provide correct formula if it holds (Correa et al., 2018; Tikka et al., 2019).
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While the SCM literature provides powerful and versatile sets of concepts and tools to identify causal
effects, practical estimators with publicly available implementations and detailed consistency, con-
vergence rates or robustness results are still scarce. Some recent work has proposed solutions for this
estimation task in the context of either experimental or observational data by extending weighting-
based methods developed for the back-door case to more general settings (Jung et al., 2020a,b), or
extending the double/debiased machine learning (DML) approach proposed by Chernozhukov et al.
(2018) under ignorability assumption to any identifiable causal effect (Jung et al., 2021). In the
same spirit, Karvanen et al. (2020) propose combination of data from a survey and a meta-analysis
of 34 trials, where identifiability and transport formula are the output of the algorithm do-search
(see Section 6), and estimation is performed with the real data at hand.Additionally, even if a causal
effect is not identifiable, partial-identifiability techniques have been proposed for deriving bounds
for the causal effect (Tian and Pearl, 2000; Dawid et al., 2019). Cinelli and Pearl (2020) give an
example illustrating partial identifiability on real data, with experiments assessing the effect of the
Vitamin A supplementation. In this setting the existence of experimental data from one source
population leads to identify bounds on the transported causal effect, but the availability of two
trials instead of one leads to a point estimate. Finally, Dahabreh et al. (2019b, 2020b) propose an
alternative approach for generalizability and integrative analyses of trials and observational stud-
ies using structural equation models under weaker error assumptions and represented using single
world intervention graphs (Richardson and Robins, 2013).

6 Software for combining RCT and observational data

6.1 Review of available implementations
An important point to bridge the gap between theory and practice is the availability of software.
In recent years, there have been more and more solutions for users interested in causal inference
and causation, see Tikka and Karvanen (2017); Guo et al. (2018); Yao et al. (2020) for surveys
and Mayer et al. (2022) for a task view of R implementations. Regarding the specific subject of
this article, we present in Table 3 the implementations available about both identifiability and
estimators. The available implementations are often dedicated to specific sampling designs and, as
mentioned, estimators are different from nested and non-nested framework. As a consequence, a
new user has to pay attention to all of these practical – but fundamental – details.

6.2 Simulation study ofgeneralization estimators
This part presents simulations results to illustrate the different estimators introduced in Section 3
and their behavior under several mis-specifications patterns. The code to reproduce the results is
available on Github7. We implement in R (R Core Team, 2021) our own version of the estimators
to match exactly the formulas introduced in the review (IPSW and IPSW.normd see Definition 2,
stratification; Definition 3, plug-in g-formula; Definition 4, and AIPSW; Definition 6), except
for the CW and ACW estimators (Definitions 5) and 7) for which we use the genRCT package.

Scenario 1: well-specified models. Similarly to Lee et al. (2021), We generate non-nested
trial settings as follow. First, we draw a sample of size 50, 000 from a covariate distribution with

7https://github.com/BenedicteColnet/combine-rct-rwd-review
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Figure 5: Well-specified model
Estimated ATE with the inverse
propensity of sampling weighting
with and without weights normal-
ization (IPSW and IPSW.norm;
Definition 2), stratification (with
10 strata; Definition 3), plug-in
g-formula (Definition 4), calibra-
tion weighting (CW; Definition 5),
augmented IPSW (AIPSW; Defini-
tion 6) and ACW (Definition 7))
over 100 simulations.

RCT
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IPSW.norm

Stratification.n.10

plug.in.g.formula

AIPSW

CW

ACW

10 20 30 40
Estimated ATE

Population ATE

RCT
IPSW
IPSW.norm
Stratification.n.10
plug.in.g.formula
AIPSW
CW
ACW

four covariates are generated independently as with Xj ∼ N (1, 1) for each j = 1, . . . , 4. From this
sample, we then select an RCT sample of size n ∼ 1000 with trial selection scores defined using a
logistic regression model:

logit {πS(X)} = −2.5− 0.5X1 − 0.3X2 − 0.5X3 − 0.4X4. (8)

Then, we generate the treatment according to a Bernoulli distribution with probability equals to
0.5, e1(x) = e1 = 0.5 and the outcome according to a linear model:

Y (a) = −100 + 27.4 aX1 + 13.7X2 + 13.7X3 + 13.7X4 + ε with ε ∼ N (0, 1). (9)

This outcome model implies a target population ATE of τ = 27.4, and E [X1] = 27.4. Finally, we
generate an observational sample by drawing a new sample of size m = 10, 000 from the distribution
of the covariates.
Figure 5 presents estimated ATE over 100 simulations. The true ATE is represented with a dash
line. The ATE estimated only with the RCT sample is also displayed as a baseline. As expected it is
biased downward (its mean is equal to 14.24) as the distribution of the covariates and in particular
the treatment effect modifiers such as X1 is not the same in the trial sample and in the population
(as illustrated in Table 14 in Appendix G). Note that in this simulation all the estimators are
unbiased. The variability of the two IPSW estimators are larger than the others. The number of
strata in the stratification estimator plays an important role. As shown in Figure 16 in Appendix
G, the results are biased when the number of strata is smaller than 10.

Scenario 2: mis-specification of the sampling propensity score or outcome model. To
study the impact of mis-specification of the sampling propensity score model, we generate the RCT
selection according to the model

logit {πS(X)} = −2.5− 0.5 eX1 − 0.3 eX2 − 0.5 eX3 − 0.4 eX4 + 3,
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Figure 6: Mis-specified models Estimated ATE when selection in RCT and/or outcome models are mis-specified.
Estimators used being IPSW (IPSW and IPSW.norm; Def. 2), stratification (with 10 strata; Def. 3), plug-in g-
formula (Def. 4), calibration weighting (CW; Def. 5), augmented IPSW (AIPSW; Def. 6), and ACW (Def. 7) over
100 simulations.

and outcome according to the model

Y (a) = −100 + 27.4 aX1X2 + 13.7X2 + 13.7X3 + 13.7X4 + ε.

The analysis is then performed using classical logistic and linear estimators on the four covariates.
As shown in Figure 6, when the sampling propensity score model is mis-specified, the IPSW es-
timators are biased; whereas when the outcome model is mis-specified, the plug-in g-estimator is
biased. In both settings, the double robust estimator (AIPSW) is unbiased and robust to mis-
specification. In the case where both models are mis-specified, all estimators are biased except the
CW and ACW estimators. This demonstrates some robust properties of calibration against slight
model mis-specification.
Appendix G investigates the effect of a missing covariate, homogeneous treatment effect, and the
impact of a stronger covariate shift, i.e., poorly satisfied Assumption 7.

7 Application: Effect of Tranexamic Acid
To illustrate the methodological question of combining experimental and observational data and
demonstrate some of the previously discussed methods, we consider an open medical question about
major trauma patients. We focus on trauma patients suffering from a traumatic brain injury (TBI):
brain damage caused by a blow or jolt to the head. Tranexamic acid (TXA) is an antifibrinolytic
agent that limits excessive bleeding, commonly given to surgical patients. Previous clinical trials
showed that TXA decreases mortality in patients with traumatic extracranial bleeding (Shakur-Still
et al., 2009). Such prior result raises the possibility that it might also be effective in TBI, because
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intracranial hemorrhage is common in TBI patients, with risks of raised intracranial pressure,
brain herniation, and death. Therefore the aim here is to assess the potential decrease of mortality
in patients with intracranial bleeding when using TXA. To answer this question, we have at our
disposal both an RCT, CRASH-3, and an observational study, the Traumabase. Both data have
previously been analyzed separately in CRASH-3 (2019); Cap (2019) (for the RCT) and in Mayer
et al. (2020) (for the observational study) and the medical teams of both studies want to share their
respective data to answer both medical and methodological questions. Such initiatives allow to: (1)
collate the results from the observational study with the RCT findings; (2) assess the generalizability
methods, considering the Traumabase as the target population, and assess the estimators presented
in this review in a real application. We first present the two data sources, treatment effect analyses
and findings from these, before turning to the combined analysis in Section 7.3. The code to
reproduce all these analyses is available on Github8, however the medical data cannot be publicly
shared for privacy concerns.

7.1 The observational data: Traumabase
7.1.1 Context

The Traumabase regroups 23 French Trauma centers that collect detailed clinical data from major
trauma patients from the scene of the accident to hospital discharge in form of a registry. The
data, currently counting over 30,000 patient records, are of unique granularity and size in Europe.
However, they are highly heterogeneous, with both categorical – sex, type of illness, ...– and quan-
titative – blood pressure, hemoglobin level, ...– features, multiple sources, and many missing data
(98% of the records are incomplete). Here, we use 8,270 patients suffering from TBI extracted
from the Traumabase. Mayer et al. (2020) performed a first, purely observational, study to assess
the effect of TXA on mortality for traumatic brain injury patients from this data: the treatment
variable is the administration of TXA during pre-hospital care or on admission to a Trauma Center9
within three hours of the initial trauma. The Traumabase analysis contains many missing values
(see Appendix H.1), which implies additional assumptions to perform causal inference.

7.1.2 Purely-observational results from two different estimation strategies

The direct causal effect of TXA on 28-day intra-hospital TBI-related mortality and on all cause
intra-hospital mortality among traumatic brain injury patients is estimated by adjusting for con-
founding using 17 confounding variables. In addition, 21 variables predictive of the outcome but
not related to the treatment are included (see Mayer et al. (2020) for the detailedadjustment set).
We recall the results from this study which put a focus on how to estimate treatment effects in the
presence of incomplete data. The presented methods rely either on logistic regressions or general-
ized random forests (Athey et al., 2019) for the nuisance components, denoted respectively by GLM
and GRF in Table 4. The doubly robust results (AIPW) in Table 4 show that from this study there
is no evidence for an effect of TXA on mortality of TBI patients. These findings —obtained prior
to the publication of CRASH-3—are consistent with the main conclusion of the CRASH-3 study.
However, the results from IPW conclude on a possible deleterious effect. In such a situation, the
possibility to generalize the treatment effect from the RCT is also a step to comfort the results. In

8https://github.com/BenedicteColnet/combine-rct-rwd-review
9More precisely, to the resuscitation room of a hospital equipped to treat major trauma patients.
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Appendix H.4, we additionally recall results on sub-groups obtained by stratifying along trauma
severity.

Table 4: ATE estimations from the Traumabase for TBI-related 28-day mortality. Red cells conclude on
deteriorating effect, white cells can not reject the null hypothesis of no effect. GLM stands for Generalized
Linear Models and GRF for Generalized Random Forests to estimate nuisance components. Two estimators
of the treatment effect are considered: IPW and AIPW, as well as two methods to deal with missing values:
multiple imputation or missing incorporated in attribute (MIA) in GRF.

Multiple imputation (MICE) GRF-MIA Unad-
justed
ATE
×102

IPW
(95% CI)
×102

AIPW
(95% CI)
×102

IPW
(95% CI)
×102

AIPW
(95% CI)
×102

GLM GRF GLM GRF
Total
(n = 8248)

15
(6.8, 23)

11
(6.0, 16)

3.4
(-9.0, 16)

-0.1
(-4.7, 4.4)

9.3
(4.0, 15)

-0.4
(-5.2, 4.4) 16

7.2 The RCT: CRASH-3
7.2.1 Context

CRASH-3 is a multi-centric randomized and placebo-controlled trial launched over 175 hospitals
in 29 different countries (Dewan et al., 2012). This trial recruited 9,202 adults –unusually large
for a medical RCT–, all suffering from TBI with only intracranial bleeding, i.e., without major
extracranial bleeding. All participants were randomly administrated TXA (CRASH-3, 2019; Cap,
2019). The primary outcome studied is head-injury-related death in hospital within 28 days of
injury in patients included and randomized within 3 hours of injury. The study concludes that the
risk of head-injury-related death is 18.5% in the TXA group versus 19.8% in the placebo group. The
causal effect, measured as a Risk Ratio (RR) was not significant (RR = 0.94 [95% CI 0.86 - 1.02])).
Note that CRASH-3 revealed a positive effect of TXA only when considering mild and moderate
cases. In the Appendix H.4, we provide a complementary analysis to study this sub-group.

7.2.2 RCT selection

Six covariates are present at baseline, being age, sex, time since injury, systolic blood pressure,
Glasgow Coma Scale score (GCS)10, and pupil reaction. The inclusion criteria of the trial are
patients with a GCS score of 12 or lower or any intracranial bleeding on CT scan (computed to-
mography), and no major extracranial bleeding. We provide a DAG summarizing the trial selection
and predictors of the outcome present in CRASH-3 in Figure 7.

7.3 Transporting the ATE on the observational data
With the two separate analyses in mind, we can now turn to the combined analysis, more specifi-
cally, the generalization from the RCT results to the target population defined by the observational
Traumabase registry. Before any analysis aiming to compare and combine two data sets an impor-
tant step is to assess that baseline covariates, treatment, and outcome are the same (for details, see
Appendix H.2).

10The Glasgow Coma Scale (GCS) is a neurological scale which aims to assess a person’s consciousness. The lower
the score, the higher the severity of the trauma.
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Figure 7: Structural causal diagram representing treatment, outcome, inclusion criteria with S and other pre-
dictors of outcome (Figure generated using the Causal Fusion software presented in Section 6 from Bareinboim and
Pearl (2016)).

7.3.1 Descriptive analyses

Missing values. The RCT contains almost no missing values, whereas the variables for determin-
ing eligibility in the observational data contain important fractions of missing values, ranging from
0.27 to 29 %. Thus the methods discussed in this review must be adapted to account for missing
values11In order to estimate the nuisance components, i.e., the conditional odds and the outcome
model(s), despite the missing data, we explore two alternative strategies: (1) logistic regression
with incomplete covariates using an expectation maximization algorithm (Dempster et al., 1977),
a computationally efficient variant of this method using stochastic approximation is implemented
in the R package misaem (Jiang et al., 2020); (2) generalized regression forest with missing incor-
porated in attributes (Twala et al., 2008; Josse et al., 2019), this method is implemented in the R
package grf (Tibshirani et al., 2020).

Distribution shift. Simple comparisons of the means of the covariates between the treatment
groups of the two studies –Figure 8– reveal the fundamental difference between the two studies,
namely the treatment assignment bias in the observational study and the balanced treatment groups
in the RCT. In Appendix H.3.1 we further explore the distribution shift with univariate histograms
(Figures 21–25).

7.3.2 Analyses

Notations and estimator details. We use two consistent ATE estimators from the CRASH-3
data, namely the difference in mean estimator (Difference in means; Section A) and the differ-
ence in conditional mean relying on OLS (Difference in conditional means). We also present
the results from the purely observational study outlined earlier: AIPW coupled with multiple im-
putation (MI AIPW) and AIPW based on nuisance parameters estimated via generalized random
forest (GRF AIPW) that can directly handle missing values when needed with missing incorporated
in attribute strategy.
To generalize the ATE to the target population, we apply the estimators discussed in this review
while implementing strategies to handle the missing values. The resulting estimators are presented

11If we assumed the missing values being missing completely at random (MCAR), we could “throw away” the
incomplete observations and perform the analyses on the complete observations, but this would reduce the total
sample size to 917 observations. And as explained in Section 7.1, the MCAR assumption is not plausible for the
present observational data, thus such a complete case analysis would be biased.
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Figure 8: Distributional shift and difference in terms of univariate means of the trial inclusion criteria (red: group
mean greater than overall mean, blue: group mean less than overall mean, white: no significant difference with
overall mean, numeric values: group mean (resp. proportion for binary variables). Graph obtained with the catdes
function of the FactoMineR package (Lê et al., 2008).

in Table 6.

Table 6: Overview of generalization estimators based on different missing values handling strategies used in the
data analysis.

Missing values strategy
Logistic regression with missing values Generalized random forests (grf) - MIA

τ̂n,m

IPSW EM IPSW GRF IPSW
Plug-in g-formula EM Plug-in g-formula GRF Plug-in g-formula

AIPSW EM AIPSW GRF AIPSW

The confidence intervals of these estimators are computed with a stratified bootstrap in the RCT
and the observational data set in order to maintain the ratio of relative size of the two studies (with
100 bootstrap samples). Note that the Calibration Weighting estimators (CW and ACW) are not
used in this analysis as they would require a specific adaptation to the case of the missing values.

Results of the combined analysis. Figure 9 gives the generalization from the RCT to the target
population using all the observations from both data sets, showing certain discrepancies with respect
to the separate analysis results. On the one hand, one half of the generalization estimators support
the CRASH-3 conclusion about the treatment effect: no significant effect. On the other hand, some
estimators point towards a deleterious treatment effect. Recall that the AIPW ATE estimations
from the purely observational data study do not reject the null hypothesis of no treatment effect.
Note that these results are to be interpreted carefully due to the potential impact of missing values
on the performance of the chosen estimators. For example, the large confidence intervals for the
GRF estimators when used to estimate weights are likely to be due to the imbalanced proportions of
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missing values in the RCT and the observational data. Indeed, the variance is much smaller using
the plug-in g-formula with GRF. Dealing with missing values when generalizing a treatment effect
remains an open research question.

EM AIPSW

EM plug−in g−formula

EM IPSW

EM IPSW.norm

GRF AIPSW

GRF plug−in g−formula

GRF IPSW

GRF IPSW.norm

GRF AIPW

MI AIPW

Difference in means

Difference in conditional means

−0.2 0.0 0.2 0.4 0.6
ATE

Generalization 
(3+3 variables)

Observational data 
(17+21 variables)

RCT 
(0 variables)

Figure 9: Juxtaposition of different estimation results with ATE estimators computed on the Traumabase
(observational data set), on the CRASH-3 trial (RCT), and transported from CRASH-3 to the Traumabase target
population. All the observations are used. Number of variables used in each context is given in the legend.

Here we present the results transported onto the total TBI Traumabase population, but the CRASH-
3 study highlights a specific subgroup of patients (mild and moderate patients) for which a positive
effect of the tranexamic acid is measured. The generalization of the CRASH-3 findings onto this
subgroup in the Traumabase raises multiple methodological issues that still need to be addressed
in future works (detailed in Appendix H.4.3).
Overall this data analysis highlights the interest of combining two different data sets, but also some
challenges: the need for a good understanding of the common covariates, exposure, and outcome
of interest before combining the data sets, different missing data patterns, and poor overlap when
considering specific target (sub-)populations.

8 Conclusion
Combining observational data and RCTs can improve many aspects of causal inference, from in-
creased statistical power to better external validity. A large part of this review is dedicated to
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generalizability and transportability of RCT from one population to another. The corresponding
rich and prolific literature answers a real practical concern: external validity. Indeed, questions
about external validity arise as soon as there are treatment effect heterogeneities in the populations
under study. We find that, as any growing scientific field, the ideas are in flux: notations differ,
implementations are scattered, and the proposed methods proposed still lack real-world bench-
marks, generated hand in hand with practitioners. In addition, many open questions still remain
as detailled below.

Discrepancies between RCTs and observational data. The application on tranexamic acid
effect hinted to moderate external validity of the RCT as the generalized ATE is concordant with
the findings from the RCT, at least for half of the estimators. Additionally, the purely observational
data study also supports the results from the RCT. Determining which analysis to trust depends on
the assumptions we are willing to make – either related to transportability or unconfoundedness – as
well as the suitability of the selected variables. Beyond these assumptions, caution is needed when
interpreting the results, as observing the methods in action reveals threats to validity. The target
population of interest and overlap also raise concerns. Considering certain strata revealed violated
positivity, which leads to a non-transportable treatment effect on the strata of interest: mild and
moderate patients. Therefore, further discussions and analyses with the medical expert committee
are necessary to re-define a target population of interest on which generalization is possible and
medically relevant. As it is generally the case, beyond methodological and theoretical guarantees,
a major step to be taken before applying a set of methods is to clearly state the causal question
and estimand(s) and the associated identifiability requirements. This task is even more complex
when combining data sets. A primary and fundamental concern is whether outcome, treatment,
and covariates are comparable in the two studies (Lodi et al., 2019).

Right choice of covariates to answer the question. Domain expertise can be used to postu-
late a causal graph: a directed acyclic graph representing the mechanisms (as Figure 7). The SCM
framework is then convenient to assess whether the question of interest can be formulated in an
identifiable way. This approach offers a principled way of selecting variables needed for identification
of the causal effect and to avoid biased causal effect estimates. Without such an approach, identi-
fiability claims are limited. A common practical recommendation is to include as many variables
as possible to avoid violation of any assumption as proposed for e.g. by Stuart and Rhodes (2017);
Ling et al. (2022) and Dahabreh and Hernán (2019): “it is probably best to include as many outcome
predictors as possible in regression models for the expectation of the outcome or the probability of
trial participation”. On the contrary, a recent work alerts about the bad consequences of adding
covariates that are shifted between the two populations while not being treatment effect modifiers,
resulting in variance inflation (Colnet et al., 2022b). In its current state, the field probably lacks
work on covariate selection and its impact on bias and variance. Some recent works propose the
use of causal graphs to select optimal adjustment sets that allow the reduction of the variance of
the final estimation (Rotnitzky and Smucler, 2019; Witte et al., 2020; Guo and Perković, 2020),
but such methods have not yet been developed for generalization or data fusion.

Challenges in handling missing values. In our data analysis, we have seen the need to ac-
count for missing values, and in particular different missing value patterns between data sources.
Missing values typically occur more often in observational data since in RCTs, investigators typi-
cally deploy significant efforts to avoid them. RCTs may however suffer from participants missing
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scheduled visits or completely dropping out from the study. The literature for RCT mainly focuses
on missing outcome data and calls for sensitivity analysis given that available strategies to handle
such missing data (weighting, multiple imputation) rely on untestable assumptions about the miss-
ing values mechanism (Carpenter and Kenward, 2007; National Research Council, 2012; Kenward,
2013; O’Kelly and Ratitch, 2014; Li and Stuart, 2019; Cro et al., 2020). Missing values may lead
to subtle biases in the inferences, as they are seldom uniformly distributed across both data sets –
occurring more in one than in the other. While a recent research work proposes an assessment of
the effect of different missing data patterns (Mayer et al., 2021), further research is needed to clarify
identifiability conditions and estimators in this setting in order to better understand the scope of
each method.
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A Randomized controlled trial
This section recalls assumptions and estimators for average treatment estimation in the case of a
single RCT. The assumptions for average treatment effect identifiability in RCTs are the SUTVA
assumption and assumptions 1 (consistency) and 2 (random treatment assignment within the RCT).
These assumptions allow the average treatment effect to be identifiable. The most intuitive esti-
mators coming from these assumptions is the difference-in-means estimators:

τ̂DM,n =
1

n1

∑
Ai=1

Yi −
1

n0

∑
Ai=0

Yi (S1)

With n1 being the number of individuals in the trial that have been treated and n0 the number
of individuals in the trial who have not been treated (n0 + n1 = n). This estimator is unbiased
and

√
n-consistent if the trial is a random sample of the target population. If not, it is a biased

estimation of the population average treatment effect.

B Estimation of ATE in observational data
Under classical identifiability assumptions, it is possible to estimate the ATE and CATE based only
on the observational data. In what follows, we briefly recall the usual assumptions, which can be
seen as an introduction to Section 4.

Assumption S1 (Unconfoundedness). Y (a) ⊥⊥ A | X for a = 0, 1.

Assumption S1 (also called ignorability assumption) states that treatment assignment is as good as
random conditionally on the attributes X. In other words, all confounding factors are measured.
Unlike the RCT, in observational studies, its plausibility relies on whether or not the observed
covariates X include all the confounders that affect the treatment as well as the outcome.

Assumption S2 (Overlap). There exists a constant η > 0 such that for almost all x, η < e(x) <
1− η.

Assumption S2 (also called positivity assumption) states that the propensity score e(·) is bounded
away from 0 and 1 almost surely.

Under Assumptions S1 and S2, the ATE can be identified based on the following formulas from the
observational data:

a) Reweighting formulation:

τ = E
[
AY

e(X)
− (1−A)Y

1− e(X)

]
; (S2)

b) Regression formulation:
τ = E [τ(X)] = E [µ1(X)− µ0(X)] . (S3)

For example the identification formulas, and more particularly the reweighting formulation, moti-
vates the Inverse Propensity Weighting (IPW) estimator (Hirano et al., 2003),
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τ̂IPW,m =
1

m

m∑
i=1

{
AiYi
e(Xi)

− (1−Ai)Yi
1− e(Xi)

}
, (S4)

where e(x) = P (A = 1 | X = x) is the propensity score, i.e., the probability to be treated given the
covariates. The rationale of IPW is to upweight treated observations with a small propensity score
(and the other way around) to balance the two groups, treated and non treated, with respect to their
covariates. These identification formula motivate also the regression estimators or doubly robust
estimators based solely on the observational data. Efficient estimation of the ATE with one single
observational data set and non-parametric models is detailed in Laan and Rose (2011); Kennedy
(2016); Chernozhukov et al. (2018) There are also many available methods to estimate the CATE,
based on the observational data such as causal forests (Wager and Athey, 2018), causal BART
(Hill, 2011; Hahn et al., 2020), causal boosting (Powers et al., 2018), or causal multivariate adaptive
regression splines (MARS) (Powers et al., 2018). There are also meta-learners such as the S-Learner
(Künzel et al., 2018), T-learner (Künzel et al., 2018), X-Learner (Künzel et al., 2019), MO-Learner
(Rubin and van der Laan, 2007; Künzel et al., 2018), modified covariate method (MCM) (Tian
et al., 2014; Chen et al., 2017), modified covariate method with efficiency augmentation (MCM-
EA) (Tian et al., 2014; Chen et al., 2017), and R-learner (Nie and Wager, 2017), which build upon
any base learners for regression or supervised classification. Knaus et al. (2021) and Powers et al.
(2018) conduct comprehensive simulation studies to compare these methods.

C Identification formula
This part focuses on the non-nested design only, as it corresponds to the central design of this
review.
Identification by the g-formula or regression formula in the target population

Proof.

E[Y (a)] = E [E[Y (a) | X]] Law of total expectation
= E [E[Y (a) | X,S = 1]] Assump. 4
= E [E[Y (a) | X,S = 1, A = a]] Assump. 2
= E [E[Y | X,S = 1, A = a]] Assump. 1

This last quantity can be expressed as a function of the distribution of X in the target population:

E [Y (a)] =

∫
E[Y | X = x, S = 1, A = a]df(x) ,

where f(X) denotes the distribution of X in the target population.

Identification by weighting

Proof.

τ = E [τ(X)] Law of total expectation
= E [τ1(X)] Assump. 6
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= E
[

f(X)

f(X | S = 1)
τ1(X) | S = 1

]
Assump. 7.

Using Bayes’ rule, we note that

f(x)

f(x | S = 1)
=

P (S = 1)

P (S = 1 | X = x)
=
P (S = 1)

πS(x)
.

In this expression, however, it is important to notice that neither πS(x) nor P (S = 1) can be
estimated from the data, because we do not observe the S indicator in the observational study
(Figure 1). On the other hand, the conditional odds α(x) can be estimated by fitting a logistic
regression model that discriminates RCT versus observational samples, and Bayes’ rule gives:

α(x) =
P(i ∈ R | ∃i ∈ R ∪O, Xi = x)

P(i ∈ O | ∃i ∈ R ∪O, Xi = x)

=
P(i ∈ R)

P(i ∈ O)
× P(Xi = x | i ∈ R)

P(Xi = x | i ∈ O)

=
n

m
× f(x | S = 1)

f(x)
,

and therefore
τ = E

[
n

mα(X)
τ1(X) | S = 1

]
.

This quantity can be further developed, underlying τ1(X) identification as presented in the following
proof C.

Proof.

τ1(x) = E [Y (1)− Y (0) | X = x, S = 1]

= E [Y (1) | X = x, S = 1]− E [Y (0) | X = x, S = 1]

=
E [A | X = x, S = 1]E [Y (1) | X = x, S = 1]

e1(x)

− E [1−A | X = x, S = 1]E [Y (0) | X = x, S = 1]

1− e1(x)

=
E [AY (1) | X = x, S = 1]

e1(x)
− E [(1−A)Y (0) | X = x, S = 1]

1− e1(x)
Assump. 2

=
E [AY | X = x, S = 1]

e1(x)
− E[(1−A)Y | X = x, S = 1]

1− e1(x)
Assump. 1

= E
[

A

e1(x)
Y − 1−A

1− e1(x)
Y | X = x, S = 1

]
.
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D Sources of formal statements of estimators described in
Section 3.2

This section proposes formal statements on the statistical properties of the exposed estimators in
the form of theorems. As part of a review work, this section only reports results that are stated
along a Theorem environment and with explicit proof in the original papers.

D.1 Inverse Propensity of Sampling Weighting
Beyond the result from Colnet et al. (2022a) recalled in plain document, other theoretical results
on the IPSW can be found in:

• Egami and Hartman (2021a), which provides finite sample unbiasedness, consistency and
asymptotic normality of an oracle version of the IPSW, that is an estimator where the true
α is known (see their appendix, Section SM-2).

• Buchanan et al. (2018), which provides consistency and asymptotic normality assuming that
theconditional odds are well approached by a parametric model (for e.g. a logistic regression).
Results are detailed both in the main paper (p.7) and in appendix for detailed derivations.
Note that they also obtain asymptotic normality and consistency for an oracle version of the
IPSW. Their proof rely on M-estimation methods (Stefanski and Boos, 2002; Lunceford and
Davidian, 2004), writing the estimation problem as a stacked equation, with the specificity
that the observations are not necessarily identically distributed. The authors retrieve a well-
known result in causal inference: estimating the weights leads to a gain in variance. Note
that the proof is done in the context of a nested design, which is not exactly the purpose
of the review. Without stating theoretical results, Zivich et al. (2022) extends this work to
non-nested design showing how to compute the sandwich type confidence intervals. Buchanan
et al. (2018) also propose sandwich-type estimation of variance, while noting that estimation
of the variance of the oracle version of IPSW would provide conservative but valid confidence
intervals.

• Dahabreh et al. (2020a), which announces consistency of the IPSW for parametric estimator
of the RCT selection model α(X), and sketches the proof in Appendix for both a normalized
and non-normalized version of the IPSW (see Section A). Note that derivations are made in
the context of a nested design but said to extend to a non-nested design.

• Colnet et al. (2022a), which provides consistency (i.e. asymptotically unbiased) for any con-
sistent parametric or non-parametric method to estimate α.

• Colnet et al. (2022b), which provides finite and large sample bias and variance when the
adjustment set is constituted of categorical covariates. The consistency is a by-product of their
results. To our knowledge, their results is the only one characterizing different variance regimes
depending on the size of the two data sample (RCT and observational). They also recommend
to estimate the probability to be treated in the trial e1(X) to decrease the asymptotic variance.
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D.2 Stratification
• O’Muircheartaigh and Hedges (2014) provide a formula of the variance under the situation

where the strata estimates are assumed independent and the estimation of the strata propor-
tion ml/m is without error (i.e. infinite target sample).

• Buchanan et al. (2018) provide asymptotic normality for the stratification estimator, assuming
that the estimator is the average of L independent, within-stratum, treatment effect estimators
(Lunceford and Davidian, 2004; Tipton, 2013). They propose a formula for the asymptotic
variance.

D.3 Calibration Weighting
Lee et al. (2021) provide regularity conditions and theoretical properties of the CW and ACW
estimators in terms of consistency, asymptotic normality, and inference procedures. The proof can
be found in the supplementary material of Lee et al. (2021).

E Nested study design
The nested trial design has different impacts on the estimators expressions previously introduced,
and even on the causal quantity of interest. In a nested trial design the randomized trial is embedded
in a cohort (e.g. a large cohort - considered as a sample from the target population - in which eligible
people are proposed to participate in the trial, but if they refuse they are still included in the cohort
study). As a consequence, S is the binary indicator for trial participation, with S = 1
for participants and S = 0 for non-participants. Therefore the sampling probability of non-
randomized individuals is known in nested trial designs (Lesko et al., 2017; Buchanan et al., 2018;
Dahabreh et al., 2019a). Mathematically it means that the quantity P (S = 1) is identifiable.
In addition, two causal quantities can be identified: E [Y (1)− Y (0)] and E [Y (1)− Y (0) | S = 0].
It is important to note that the second quantity can have a scientific interest in order to better
understand heterogeneities within the cohort, and variables that influence the sampling selection
and/or the treatment effect on the outcome.

E.1 When observational data have no outcome and treatment informa-
tion

Main estimators, such as IPSW, g-formula, and doubly-robust estimators are presented for the
specific case of nested trial design.

E.1.1 IPSW

In this design the weights in the IPSW estimators are different, because the quantity πS can be
estimated directly from the observed data as the indicator S is observed. This allows the IPSW
formula to be closer to the classic IPW expression without the need to use the odds to weight data.
The IPSW expression is the following:

τ̂IPSW-nested,n,m =
1

n

n∑
i=1

n

n+m

AiYi
π̂S,n,m(Xi)e1(Xi)

− 1

n

n∑
i=1

n

n+m

(1−Ai)Yi
π̂S,n,m(Xi)(1− e1(Xi))

. (S5)
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The normalized version is the following one:

τ̂IPSW-nested norm.,n,m =

∑n
i=1(π̂S,n,m(Xi)e1(Xi))

−1AiYi∑n
i=1(π̂S,n,m(Xi)e1(Xi))−1Ai

−
∑n
i=1(π̂S,n,m(Xi)(1− e1(Xi)))

−1(1−Ai)Yi∑n
i=1(π̂S,n,m(Xi)(1− e1(Xi)))−1(1−Ai)

.

(S6)

Proof.

τ = E [τ(X)] Law of total expectation
= E [τ1(X)] Assump. 6

= E
[

f(X)

f(X | S = 1)
τ1(X) | S = 1

]
Assump. 7

= E
[
P (S = 1)

πS(X)
τ1(X) | S = 1

]
Bayes law

= E
[

n

n+m
πS(Xi)

−1τ1(X) | S = 1

]
P (S = 1) =

n

n+m
in the nested design

Where πS can be estimated directly using the randomized and the non randomized data. τ1 is further derived as
presented in proof C.

E.1.2 G-formula

The g-formula formulation in the case of nested trial design depends on the causal quantity of
interest. When the target population is the causal quantity of interest, then the identification
expression is the same as in the non-nested design. But, because f 6= f.|S=0, the estimator’s
expression is slightly different:

τ̂g−nested,n,m =
1

n+m

n+m∑
i=1

(µ̂1,1,n(Xi)− µ̂0,1,n(Xi)) , (S7)

In the case where the population of interest is the non-randomized one, the identification of the
causal quantity of interest is the following:

E [Y a | S = 0] = E[E[Y | X,S = 1, A = a] | S = 0] = E [µ1,1(X)− µ0,1(X) | S = 0] (S8)

The Proof E.1.2 details the calculus. And the estimator is the same as given in Definition 4 as the
integration is done on the law f.|S=0.

Proof.

E[Y (a)|S = 0] = E[E[Y (a) | X]|S = 0] Law of total expectation
= E[E[Y (a) | X,S = 1]|S = 0] Assump. 4
= E[E[Y (a) | X,S = 1, A = a]|S = 0] Assump. 4
= E[E[Y | X,S = 1, A = a]|S = 0] Assump. 1

This last quantity can be expressed as a function of the distribution of X in the non-randomized population:

E[Y (a)] =

∫
E[Y | X = x, S = 1, A = a]f(x|S = 0)dx

where f(X|S = 0) denotes the density function of X in the non-randomized population.
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E.1.3 Doubly-robust estimator

Similarly to the doubly-robust estimation in the non-nested case (Section 3.2.4), the g-formula and
the IPSW methods can be leveraged into a doubly-robust estimator. The AIPSW expression for
the nested case is the following:

τ̂AIPSW-nested,n,m =
1

n+m

n+m∑
i=1

SiAi
π̂S,n,m(Xi)e1(Xi)

(Yi − µ̂1,1,n(Xi))

− 1

n+m

n+m∑
i=1

Si(1−Ai)
π̂S,n,m(Xi)(1− e1(Xi))

(Yi − µ̂0,1,n(Xi))

+
1

m+m

m+n∑
i=1

{µ̂1,1,n(Xi)− µ̂0,1,n(Xi)} .

(S9)

E.2 Combining treatment-effect estimates from both sources of data
Under Assumptions 1, 2 and 3 for the RCT and Assumptions S1 and S2 for the observational data,
separate estimators of the ATEs from the two data sources can be constructed. Lu et al. (2019)
considered the ATEs for the comprehensive cohort studies (CCS) which include participants who
would like to be randomized, constituting the RCT, and participants who would like to choose the
treatment by their preference, constituting the observational sample. In particular, they considered
the ATE over the CCS study population τ2 and the ATE over the trial population τ1. Note that
τ2 is different from τ in our setting because τ2 is defined with respect to the combined RCT and
observational sample; while τ is defined with respect to the observational sample only. In order
to construct improved estimators by combining study-specific estimators, they derived the optimal
influence functions for τ1 and τ2, which suggest that the efficient estimators of τ1 and τ2 can be
obtained by

τ̂1,eff =
1

n

n+m∑
i=1

[
π̂S(Xi)AiYi

ê(Xi)
+

{
Si −

Aiπ̂S(Xi)

ê(Xi)

}
µ̂1(Xi)

− π̂S(Xi)(1−Ai)Yi
1− ê(Xi)

−
{
Si −

(1−Ai)π̂S(Xi)

1− ê(Xi)

}
µ̂0(Xi)

]
,

τ̂2,eff =
1

n+m

n+m∑
i=n

Ai{Yi − µ̂1(Xi)}
ê(Xi)

− (1−Ai){Yi − µ̂0(Xi)}
1− ê(Xi)

+ {µ̂1(Xi)− µ̂0(Xi)},

where ê1(Xi), µ̂0,1(Xi), and µ̂1,1(Xi) for units in the RCT are simplified as ê(Xi), µ̂0(Xi), and
µ̂1(Xi).

E.3 Softwares: Examples of implementations
This part completes Section 6 and proposes specific examples of implementations, such as identi-
fiability questions with the package causaleffect, the beta version of causalfusion, and imple-
mentation examples for the nested case.
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E.3.1 R package causaleffect

The R packages causaleffect (Tikka and Karvanen, 2017) and dosearch (Tikka et al., 2019) can
be used for causal effect identification, with the later handling transportability, selection bias and
missing values (bivariates) issues simultaneously. In this package, the dosearch function takes the
observable distributions, a query, and a semi-Markovian causal graph as the input and outputs a
formula for the query over the input distributions, or decides that it is not identifiable. It is based
on a search algorithm that directly applies the rules of do-calculus. Their general identification pro-
cedure is not necessary complete given an arbitrary query and an arbitrary set of input distributions
In order to retrieve the backdoor criterion in theorem S4, one can write:

1 data <- "P(Y, X,Z)"
2 query <- "P(Y|do(X))"
3 graph <- "X -> Y
4 Z -> X
5 Z -> Y"
6 dosearch(data , query , graph)

1 $identifiable
2 [1] TRUE
3 $formula
4 [1] "[sum_{Z} [p(Z)*p(Y|X,Z)]]"

E.3.2 Beta version of causalfusion

The beta version of causal fusion (Bareinboim and Pearl, 2016) can be used, with a user-friendly
interface requiring no coding skills. For example, if uploading the selection diagrams from Figure 3
onto this interface, it will state that diagram (a) is not transportable, while (b) is transportable
along with the correct transport formula. The authors also propose to load their diagrams from
previous publications and research works, some of which have been discussed in this review.

E.3.3 IPSW for the nested case

Te IPSW estimator can be implemented using the available code from Dahabreh et al. (2019b). It
requires as input a data.frame (here called study) which columns represent treatment, denoted
by A (binary), the RCT indicator, denoted as S (binary), the outcome as Y (continuous), and the
quantitative covariates. The current available code for 3 quantitative covariates denoted X1, X2,
X3 is presented below. A first function generate_weights() estimates the sampling propensity
score and the propensity score as logistic regressions, and compute the according weights to each
data point. The variance is estimated with the geex library (Saul and Hudgens, 2020) through the
m_estimate function which computes the empirical sandwich variance estimator.

1 # Compute selection score model and propensity score in the trial (logit)
2 weights <- generate_weights(Smod = S~X1+X2+X3, Amod = A~X1+X2+X3 , study)
3

4 # Use these scores to compute IPSW
5 IOW1 <- IOW1_est(data = weights$dat)
6

7 # Compute the empirical sandwich variance
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8 param_start_IOW1 <- c(coef(weights$Smod) , coef(weights$Amod),
9 m1 = IOW1$IOW1_1 , m0 = IOW1$IOW1_0 , ate = IOW1$IOW1)

10 IOW1_mest <- m_estimate( estFUN = IOW1_EE , data = study ,
11 root_control = setup_root_control(start = param_start_IOW1 ))
12

13 # Format the output
14 IOW1_ate <- extractEST(geex_output = IOW1_mest ,
15 est_name ="ate",
16 param_start = param_start_IOW1)

The output is:

1 print(IOW1_ate)
2 > ate SE
3 > -0.16961 0.02751

E.3.4 G-formula for the nested case

The G-formula can also be implemented in the nested design using the available code from Dahabreh
et al. (2019b). It takes a similar entry as the IPSW previously presented. The variance is estimated
with the geex library (Saul and Hudgens, 2020) through the m_estimate function which computes
the empirical sandwich variance estimator.

1 # Linear regression cond. outcome mean as a function of covariates on the RCT
2 # Compute ATE on the observational data
3 OM <- OM_est(data = study)
4

5 # Compute the empirical sandwich variance
6 param_start_OM <- c(coef(OM$OM1mod), coef(OM$OM0mod),
7 m1=OM$OM_1 , m0=OM$OM_0 , ate=OM$OM)
8 OM_mest <- m_estimate( estFUN = OM_EE , data = study ,
9 root_control = setup_root_control(start = param_start_OM ))

10

11 # Format the output
12 OM_ate <- extractEST(geex_output = OM_mest , est_name = "ate",
13 param_start = param_start_OM)

The output is:

1 > ate SE
2 > -0.1934 0.0300

F Additional information on the SCM framework

F.1 Notations and Assumptions
This supplementary introduction aims to provide an introduction to the whole SCM framework,
and introduce the graphical representation, along with the do-calculus concepts and notations.
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Figure 10: Left: (a) example of an SCM M and corresponding DAG; right: (b) Post-intervention graph of M for
do(A = a0).

Structural Causal Models. Formally (Pearl, 2009b, p.203), an SCM is a 4-tupleM = (U, V, F, P )
where:

a) U is a set of background or exogenous variables, which are not explicitly modeled but which
can affect relationships within the model.

b) V = {V1, . . . , Vn} is a set of endogenous variables, that are deterministically determined by
variables in U ∪ V ; in the setting of this paper, one typically chooses V = {X,A, Y } or
V = {X,A, Y, S} to respectively model covariates, treatment, outcome and selection.

c) F is a set of functions {f1, .., fn} such that each fi uniquely determines the value of Vi ∈ V by
the so-called structural equation vi = f(pai, ui), where PAi ⊂ V \{Vi} are called the parents
of Vi and Ui ⊂ U .

d) P is a probability distribution for U .

The causal diagram corresponding to an SCM is a graph with V as vertices, directed edges from
each parent to its children, and undirected dotted edges between vertices Vi and Vj such that
Ui ∩ Uj 6= ∅. Alternatively, the U can be explicitly represented, with directed dotted edges from
Ui to Vi, as in Figure 10(a) which represents the SCM with V = (X,A, Y ), U = (Ux, Ua, Uy), and
structural equations:

x ← fx(ux)

a ← fa(x, ua),

y ← fy(a, x, uy).

Often, no parametric assumptions is made on F or P . The distribution P (U) induces a distribution
PM (V ) through V = F (U), and in the case where the causal diagram is a directed acyclic graph and
variables in U are independent, then the distribution PM (V ) is a Bayesian network. In particular,
the causal diagram encodes the conditional independence relationships among variables in V .

Interventions. At the core of the SCM framework is the do-operator which enables the use of
structural equations to represent causal effects and counterfactuals. The do(A = a0) operation
marks the replacements of the mechanism fa with a constant a0, while keeping the rest of the
model unchanged, resulting in the following post-treatment model for our toy example:

x ← fx(ux)
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a ← a0

y ← fy(a, x, uy)

In the causal graph, this corresponds to deleting all incoming arrows in A (Figure 10(b)). We
denote Q = P (Y | do(A = a0)) the post-intervention distribution, i.e., the distribution of a random
variable Y after a manipulation on A. From this distribution, the ATE can be written as:

τ = E [Y | do(A = a1)]− E [Y | do(A = a0)]

=
∑
y

y (P (Y = y | do(A = a1))− P (Y = y | do(A = a0))) .

Note that the post-intervention distribution can also be denoted in counterfactual notation as
P (Y = y | do(A = a)) = P (Y (a) = y). The distinction between P (Y | A = a) and P (Y | do(a))
corresponds in the PO framework to the difference between P (Y | A = a) and P (Y (a)).

D-separation. Conditional independences between variables can be read from the DAG induced
by an SCM using a graphical criterion known as d-separation. This criterion will be useful in
identifying the causal effect.

Definition 8 (d-separation). A set X of nodes is said to block a path p if either

• p contains at least one arrow-emitting node that is in X, or

• p contains at least one collision node that is outside X and has no descendant in X.

If X blocks all paths from set A to set Y , it is said to “d-separate A and Y ” and then it can be shown
that A ⊥⊥ Y | X. As an illustration, let us consider a path with A→ D ← B → C. Since B emits
arrows on that path, it blocks the path between A and C, and A ⊥⊥ C | B. D is a collider (two arrows
incoming) and consequently it blocks the path without conditioning A ⊥⊥ C; but conditioning on D
would open the path and thus would imply that A 6⊥⊥ C | D. Furthermore, in the SCM framework
it is generally assumed that faithfulness holds, i.e., that all conditional independences are encoded
in the graph, allowing to infer dependencies from the graph structure (Peters et al., 2017). In
other words, if the Global Markov property (i.e., d-separation implies conditional independence),
and faithfulness hold, then the resulting equivalence between conditional independences and d-
separation allows to move back and forth between the graphical and the probabilistic model.

Identifiability. We are interested in answering the identifiability question: can the post-intervention
distribution Q be estimated using observed data (such as pre-intervention distribution)?

Definition 9 (identifiability). A causal query Q is identifiable from distribution P (y) compatible
with a causal graph G, if for any two (fully specified) modelsM1 andM2 that satisfy the assumptions
in G, we have

P1(V ) = P2(V ) =⇒ Q(M1) = Q(M2).

Specifically, if a causal query Q in the form of a do-expression can be reduced to an expres-
sion no longer containing the do-operator (i.e, containing only estimable expressions using non-
experimental, observed data) by iteratively applying the inference rules of do-calculus, then Q
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Figure 11: Application of the backdoor criterion in large graphs. Based on the admissible set definition
10, (S10) present all the following sets that are admissible and can be used for adjustment. For example, the set
{W2,W3} blocks all backdoor paths between A and Y . W2 block the path A←W2 →W3 →W5 → Y .

is identifiable. The language of do-calculus is proved to be complete for queries in the form
Q = P (Y = y | do(A = a), X = x) meaning that if no reduction can be obtained using these
rules, Q is not identifiable.

The application of previous rules and the backdoor criterion in the graph of Figure 11 allows to list
all possible admissible adjustment sets for identifying P (y | do(a)):

X = {W2}, {W2,W3}, {W2,W4}, {W3,W4}, {W2,W3,W4}, {W2,W5}, {W2,W3,W5},
{W4,W5}, {W2,W4,W5}, {W3,W4,W5}, {W2,W3,W4,W5} (S10)

The analyst can select from this list which is preferable. Note that conditioning onW1 would induce
bias as it is a collider.

F.1.1 Confounding bias

In order to estimate the causal effect P (Y | do(A = a)) using only available observational data,
following the observational distribution P (A,X, Y ), the idea is to identify—on the basis of the
causal graph—a set of admissible variables such that measuring and adjusting for these variables
removes any bias due to confounding. The backdoor criterion defined below provides a graphical
method for selecting admissible sets for adjustment.

Definition 10 (Admissible sets - the backdoor criterion). Given an ordered pair of treatment and
outcome variables (A, Y ) in a causal DAG G, a set X is backdoor admissible if it blocks every path
between A and Y in the graph GA, with GA the graph that is obtained when all edges emitted by
node A are deleted in G.

The backdoor criterion can be seen as the counterpart of unconfoundedness in Assumption S1:
If a set X of variables satisfies the backdoor condition relative to (A, Y ), then Y (a) ⊥⊥ A | X.
Identifying backdoor admisible variables is important because it allows to estimate causal effects
from observational data as follows:

57



Theorem S4 (Backdoor adjustment criterion). If a set of variables satisfies the backdoor criterion
relative to (A, Y ), the causal effect of A on Y can be identified from observational data by the
adjustment formula:

P (Y = y | do(A = a)) =
∑
x

P (Y = y | A = a,X = x)P (X = x) .

The adjustment formula can be seen as part of the identifiability formula in Equation S3.
The backdoor criterion is one of the graphical methods for identifying admissible sets. In cases
where it is not applicable, an extended definition called the frontdoor criterion can be applied using
mediators in the graph. Figure 12 provides a summary of the identifiability conditions when the
available data is either observational data or data from surrogate experiments.

Yes

No

Yes

NoYes

No

Condition
( -identifibility)Observational and

Experimental data

+

intercepts all directed
paths from to
and

is identifiable
in

Figure 12: Summary of identifiability results to control for confounding bias: If there exists a set of
observed variables that satisfies the backdoor criterion, then the causal effect of A on Y can be identified using
nonexperimental data alone. In the case where no set of observed variables satisfies the backdoor condition but the
effect of A can be mediated by an observed variable M (mediator), if there exists a set of observed variables that
satisfies the frontdoor criterion, then the causal effect if also identifiable from observational data alone. If none of
these conditions holds, the query is not identifiable. If, in addition to observational data, RCTs through surrogate
experiments are available, the z-identifiability condition is sufficient to determine if the query is identifiable or not.

F.1.2 Sample selection bias

To tackle sample selection bias, i.e., preferential selection of units, the authors consider an indicator
variable S such that S = 1 identifies units in the sample. The data at hand can be seen as
P (A, Y,X | S = 1) and the target is P (Y | do(A = a)). Figure 13 (b) presents a case where
the selection process is d-separated (definition in Appendix F) from Y by A, then P (y | a) =
P (y | a, S = 1); since A and Y are unconfounded, P (y | do(a)) = P (y | a) so that the experimental
distribution is recoverable from observed data. This is not the case for Figure 13 (a) without further
assumptions. When both confounding bias and selection bias are present in the data (Figure 13
(c)), the graphical framework can help selecting among the list of adjustment sets, {W1,W2},
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Figure 13: Cases with sample
selection bias: A is the treatment
and Y the outcome, S is the selec-
tion process and the aim is to esti-
mate P (y | do(a)) when data avail-
able come from P (a, y | S = 1) in
(a) and (b).

{W1,W2, X}, {W1, X}, {W2, X}, and X, (these sets control for confounding), the one that can be
used as available from biased data; here it will be X as it is the only one separated from S, leading
to P (y | do(a)) =

∑
x P (y | a, x, S = 1)P (x | S = 1). This ability to select relevant covariates for

identifiability is presented as an important advantage of the SCM framework.

Combined biased and unbiased data. Note that the previous examples in Figure 13 concern
only one set of data but the approach is extended to combine data, biased (with a selection)
data, and unbiased data (for example covariates from the target population) as follows. To do so,
Bareinboim and Pearl (2016) define the S-backdoor admissible criterion which is a sufficient
condition but not necessary. It states that if X is backdoor admissible, A and X block all paths
between S and Y , i.e. Y ⊥⊥ S | A,X, and that X is measured in both population-level data and
biased data, then, the causal effect can be identified as

P (Y | do(A = a)) =
∑
x

P (Y | do(A = a), X = x, S = 1)P (X = x),

where P (X = x) denotes the probability in the target population. If the set X contains post-
treatment covariates, then this formula is generally wrong. Indeed S-ignorability is rarely satisfied
in that case, as illustrated with several examples by Pearl (2015). This formula is called the
post-stratification formula, to define this action of re-calibrate or re-weight (Pearl, 2015). This
expression shows that one can generalize what is observed on the selected sample by reweighting
or recalibrating by P (X = x) that is available from the target population (unbiased data). More
complex setting can be handled, such as dealing with post-treatment variables. In such a case, they
show that generalizibility can be obtained by another weighting strategy (not by P (X = x)), which
can also be seen as a benefit of this framework.

F.2 Proof of the transport formula (6)
We compute:

P (Y | do(A = a)) =
∑
x

P (Y | do(A = a), X = x)P (X = x | do(A = a))

=
∑
x

P (Y | do(A = a), X = x, S = 1)P (X = x | do(A = a))

=
∑
x

P (Y | do(A = a), X = x, S = 1)P (X = x) ,
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where the first equation follows by conditioning, the second one by S-admissibility assumption of
X, and the third one from the fact X are pre-treatment variables.

G Additional simulation results
This section follows Section 6.2 and provides additional results for the simulations.

G.1 Distributional shift between RCT and observational samples
The simulation design proposed simulates a situation where the RCT data reveals a distributional
shift with the observational sample. In the RCT all the covariates tend to have lower values than in
the observational sample. Still, the overlap assumption (Assumption 7) is valid as each observation
in the target sample has a non-zero probability to be included in the experimental sample. Summary
statistics obtained for a simulation with ∼ 1000 observations in the RCT and 10 000 observations in
the observational sample is given on Figure 14, in addition with an histogram illustrating overlaps
and the distributional shift for the covariate X1.

Figure 14: Covariates distributions differences between experimental sample and observational sample when
simulating according to (8) as detailed in Section 6.2 (left), with a focus on the X1 distributional shift with histograms
overlap for the two samples (right).

The sampling propensity score model used to generate the simulated data (8) implies a weak
covariate shift between the RCT sample and the observational sample. A stronger shift can be
obtained, at least on covariate X1, swapping the coefficient −0.5X1 with −1.5X1. Figure 15 shows
that the variance of the weighted and CW estimators have increased in the setting with a stronger
covariate shift.
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Figure 15: Weak versus strong distri-
butional shift between experimen-
tal and observational data with es-
timated ATE when RCT is weakly or
strongly shifted from the target popula-
tion distribution. Estimators used being
IPSW (IPSW and IPSW.norm; Def. 2),
stratification (with 10 strata; Def. 3),
g-formula (Def. 4), calibration weight-
ing (CW; Def. 5), augmented IPSW
(AIPSW; Def. 6), and ACW (Def. 7) over
100 simulations.

G.2 Stratification
Within the weighted estimators, the stratification estimator (Section 3.2.1) supposes to choose an
additional parameter being the number of strata used. Simulations are launched with the number
of strata varying from 3 to 15, and the results are presented on Figure 16. We observed that the
number of strata has an impact on the results, the higher the number of strata used, the better the
prediction.

G.3 Impact of a hidden treatment effect modifier
In this part, we consider a heterogeneous treatment effect setting where X1 impacts the RCT
sampling while also being a treatment effect modifier. We consider the IPSW estimator and its
variations without usingX1 (labeled as IPSW.without.X1) and using onlyX1 (labeled as IPSW.X1).
As shown in Figure 17, IPSW.X1 is still unbiased when using only X1 in the sampling propensity
score estimation, as it is the only covariate being the shifted treatment effect modifier. However, if
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Figure 16: Effect of strata num-
ber Estimated ATE obtained while
varying the number of strata L ∈
{3, 5, 7, 9, 11, 13, 15} with 100 repe-
titions each time. All others sim-
ulation parameters being the same
as the standard case described in
6.2 and in Figure 5.

X1 is missing, the resulting estimator IPSW.without.X1 is strongly biased. Therefore, by including
all variables that affect both sampling and outcome one can ensure identifiability.A recent work
suggests to add non-shifted treatment effect modifier for precision (Colnet et al., 2022b).
Note also that if the treatment effect were homogeneous (does not depend onX1), then the estimated
ATE on the RCT would be unbiased (as shown Figure 18 in the section below, Section G.4) so
in this setting there is no need to use the observational data and associated methods to transport
the ATE from the trial to the target population as the causal effect investigated is on the absolute
different scale.

G.4 Homogeneous treatment effect
It is always interesting to note that in the case of an homogeneous treatment effect the RCT sample
contains all the information to estimate the population ATE, in other words τ1 is a consistent
estimator of the ATE. We performed simulation with an homogeneous treatment effect (results are
presented on Figure (18)) such as:

Y (a) | X = −100 +X1 + 13.7X2 + 13.7X3 + 13.7X4 + 27.4a+ ε
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Figure 17: Impact of the
treatment-effect modifiers Es-
timated ATE when IPSW estima-
tor includes all covariates, only X1,
or all covariates except X1 (IPSW;
Section 3.2.1), with g-formula (Sec-
tion 3.2.2) presented as a control,
over 100 simulations. Simulations
are still performed with (8) for
RCT eligibility and (9) for outcome
modeling.

Figure 18: Homogeneous treat-
ment effect Estimated ATE with
a homogeneous treatment effect
Y (a) | X = −100 +X1 + 13.7X2 +
13.7X3 + 13.7X4 + 27.4a + ε. All
others simulation parameters being
the same as the standard case de-
scribed in (6.2) and in Figure 5.

H Supplementary information on Traumabase and CRASH-3
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H.1 Additional information on the Traumabase
H.1.1 Missing values

The problem of missing values is ubiquitous in data analysis practice and particularly present in
observational data, as they are not necessarily collected for research purposes. The Traumabase is
a high-quality data set but, nevertheless, missing values occur. Figure 19 represents the percentage
of missing values for the covariates selected by the medical doctors from the Traumabase. It varies
from 0 to nearly 60% for some features. In addition, there are different codes for missing values
giving hints on the reason of their occurrence, e.g., not available (NA), impossible (imp), not made
(NM), etc. Some of these values can be seen as missing completely at random (MCAR), e.g., the
information has not been recorded simply because the form was not filled out, but they can be
informative and missing not at random (MNAR), e.g., when the state of the patient is such that it
was impossible to take a measurement.
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Figure 19: Missing values Percentage of missing values for a subset of Traumabase variables relevant for traumatic
brain injury. Different encodings of missing values are available such as: NA (not available), but also not informed,
not made, not applicable, impossible.

There is an abundant literature available on how to deal with missing values in a general context
and Mayer et al. (2019) identify more than 150 R (R Core Team, 2021) packages available on
the topic. Missing values add a layer of complexity to conducting causal analyses as they require
coupling conventional hypotheses of causal effect identifiability in the complete case with hypotheses
about the mechanism that generated the missing data (Rubin, 1976), or defining new hypotheses,
to establish conditions of causal effect identifiability with missing data. Mayer et al. (2020) survey
available works, classify the methods in three families that differ with respect to the different
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assumptions and provide associated estimators to estimate the ATE from an observational data set
with missing values in the covariates. More precisely, they advocate the use of multiple imputation
(van Buuren, 2018) by IPW or doubly robust estimators when missing values can be considered
to be missing (completely) at random (M(C)AR) and the classical unconfoundedness assumption
(Assump. S1) holds (Seaman and White, 2014). As an alternative, they recommend using a
doubly robust estimator adapted to missing values. More specifically an estimator that makes use
of random forests with a missing incorporate in attributes splitting criterion (Twala et al., 2008;
Josse et al., 2019) to estimate the generalized propensity scores (Rosenbaum and Rubin, 1984) and
the regression function with missing values12; this approach does not require a particular missing
values mechanism but an adapted unconfoundedness hypothesis with missing data. Finally, when
covariates can be seen as noisy incomplete proxies of true confounders, latent variable models can
be a solution to estimate causal effect with missing values (Kallus et al., 2018a; Louizos et al.,
2017). Note that for the generalization task, IPSW weights are also computed after imputation in
Susukida et al. (2016).

H.1.2 Covariate adjustment

Since the Traumabase is an observational registry, straightforward treatment effect estimation on
these data is not possible due to confounding. The causal graph in Figure 20 is the result of a
two-stage Delphi method (Linstone and Turoff, 1975) in which six anesthetists and resuscitators
specialized in critical care—and therefore familiar with the allocation process for TXA—first select
covariates related to either treatment or outcome or both, and second classify these covariates into
confounders and predictors of only outcome. Even though it is not possible to test for unobserved
confounding, this Delphi procedure is an attempt to gather as much expert knowledge about the
studied question as possible to manually identify possible confounders and qualitatively assess the
plausibility of the unconfoundedness assumption. Note that this approach is an explicit example
where we leverage the advantages of the SCM and PO frameworks: the causal graph helps to
select relevant variables during the conception phase of the study and to assess identifiability of the
target estimand, and the treatment effect analysis uses different estimation methods from the PO
framework.

H.2 Common covariates description between CRASH-3 and Traumabase
In the following, we discuss definitions of common variables, outcome, treatment, and designs in
order to leverage both sources of information. We recall the causal question of interest: “What is
the effect of the TXA on head-injury related death in patients suffering from TBI?” This part is
important for the alignment of the study protocol.

Treatment exposure. The treatment protocol of CRASH-3 precisely frames the timing and
mean of administration (a first dose given by intravenous injection shortly after randomization, i.e.,
within 3 hours of the accident, and a maintenance dose given afterwards (Dewan et al., 2012)).
For consistency with the original CRASH-3 study described above, we also only keep observations
from the RCT with administration within 3 hours. The Traumabase study being a retrospective
analysis, this level of granularity concerning TXA is not available. Neither the exact timing, nor
the type of administration are specified for patients who received the drug. However, the expert

12This doubly robust method is implemented in the R package grf (Athey et al., 2019).
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Figure 20: Causal graph representing treatment, outcome, confounders and other predictors of outcome (Figure
generated using DAGitty (Textor et al., 2011); NAs indicates variables that have missing values).

committee agreed that the assumption of treatment within 3 hours of the accident is plausible since
this drug is administered in pre-hospital phase or within the first 30 minutes at the hospital.

Outcome of interest. The CRASH-3 trial defines its primary outcome as head injury related
death in hospital within 28 days of injury. For the Traumabase data we also look at death in
hospital within 28 days but with a wider range of possible causes of death, namely TBI, brain
death, multiple organ failure, brain death, or withdrawal of life-sustaining therapy.

Multi-centered design. Both studies are multi-centered, but while the Traumabase is a French
registry with over 20 participating Trauma Centers, the CRASH-3 trial enrolled patients in various
countries on different continents. This large spectrum of participating centers is likely to contribute
to external validity of the CRASH-3 trial, it should nevertheless be noted that more than 65% of
the patients included are from developing countries; regions of the world that differ from developed
countries by a prolonged pre-hospital care period, limited access to brain imaging tests and neu-
rosurgery within short periods of time, and the absence of expert centers for major trauma and
neuro-intensive care. Thus, on top of the restrictive inclusion criteria of the RCT, this aspect of
large heterogeneity in the participating Trauma centers motivates the combination of both studies
to estimate the effect for a population with access to a specific high level of care, here represented
by the French Trauma centers.
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Covariates accounting for trial eligibility. In total, four criteria depending on five variables
determined inclusion in the CRASH-3 trial: age (only adults were eligible), presence of TBI (defined
as presence of intracranial bleeding on the CT scan, or a GCS of less than 13 in the case of
no available CT scan), absence of major extracranial bleeding (defined explicitly in CRASH-3
and defined via the number of packed red blood cells transfused in the first 6 hours of admission
or by colloid injection in the Traumabase), and delay of less than 8 hours (later reduced to 3
hours) between the injury and the randomization. The necessary variables are also available in
the Traumabase, either exactly or in form of close proxies, which allows the estimation of the trial
inclusion model on the combined data.

Additional covariates. Note that other covariates are available in both data sets, while not
directly related to trial inclusion according to CRASH-3 investigators. But as they could be covari-
ates moderating the treatment effect, we include them. According to the two studies, we can add
three of them: sex (binary), systolic blood pressure (continuous), and pupils reactivity (categorical,
ranging from 0 to 2, being the number of active pupils). Note that these three covariates are all
mentioned as baselines for the CRASH3 study (CRASH-3, 2019), where the authors argue that
they are likely to impact the outcome.

H.3 Additional analysis
This part proposes additional analysis to the data analysis part (Section 7). We first propose
additional visualization of the distributional shift between CRASH-3 and the Traumabase, then we
present a principal component analysis of the combined database. Propensity scores obtained either
with the logistic regression or the forest are analyzed with histograms and scatter plots. Finally, a
focus on the different patients strata, based on the severity of the injury, is presented.

H.3.1 Distributional shift between CRASH-3 and Traumabase

Distributional shift between CRASH-3 and the Traumabase data can be illustrated with histograms.
Figures 21 – 25 presents the empirical distribution shift between the Traumabase and CRASH-3
for age, Glasgow score, systolic blood pressure, sex and pupils reactivity (respectively). Differences
can be observed, and for example the fact that the CRASH-3 study contains more young patients,
while the Traumabase contains more moderate case (corresponding to a high Glasgow score). It is
interesting to notice that the overlaps assumption seems to hold in our situation.
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Figure 21: Distributional shift of Age between the Traumabase and the CRASH-3 studies.

Figure 22: Distributional shift of the Glasgow score between the Traumabase and the CRASH-3 studies.
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Figure 23: Distributional shift of the systolic blood pressure between the Traumabase and the CRASH-3
studies.

Figure 24: Distributional shift of the sex between the Traumabase and the CRASH-3 studies.
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Figure 25: Distributional shift of the pupils reactivity between the Traumabase and the CRASH-3 studies.

H.3.2 Principal component analysis

A principal component analysis is performed on the combined data set for the Traumabase and the
CRASH-3 data using the FactoMineR package (Lê et al., 2008), results are presented on Figure 26.
As expected the Glasgow coma scale score and the pupils reactivity are related (paralysis of the
cranial nerves leading to pupillary anomalies being closely related to the presence of an intracranial
lesion, itself linked to the state of consciousness encoded in the Glasgow.). Additionally, the link
between age and systolic blood pressure can be explained by the fact that atherosclerosis of the
arteries is the source of an increase in blood pressure and is related to age.
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Figure 26: Principal Components Analysis (PCA) of the data set combining CRASH-3 and Traumabase data.

H.3.3 Conditional odds

Theconditional odds obtained while performing the generalization from the CRASH-3 patients to
the observational data are presented on Figures 27 (logistic regression) and 28 (forest). We observe
that extreme coefficient values are obtained, and that the forest grf strengthens this trend. We
can further investigate the differences in between the two methods to infer the propensity scores
noticing that the forest method uses the NAs from the Traumabase to learn the propensity scores
model. Figure 29 shows that the NAs present in the systolic blood pressure covariate are used by
the random forest to predict S, leading to more extreme values at the end. This importance of
different missing values patterns when combining two data sets are of importance and highlight the
need for a better understanding of the impact of missing values in the present framework.
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Figure 27: Conditional odds histogram (glm) obtained with the misaem R package.
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Figure 28: Conditional odds histogram (grf) obtained with random forests.

Figure 29: Scatter plot of the two conditional odds obtained with glm in x-axis and grf in the y-axis. Color
is set according to the systolic blood pressure covariate values (while missing values are in grey).
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H.4 Evidence on other patient strata
The data analysis part only focuses on all the patients from the two studies CRASH-3 and Traum-
abase. This part proposes a focus on different patients type, based on the severity of the brain
trauma (measured either with the Glasgow score or the pupils reactivity).

H.4.1 Traumabase: evidence on different strata

When stratifying along different criteria of severity as in the CRASH-3 study, namely pupil reac-
tivity and the Glasgow Coma Scale as illustrated in Table 7 with Mild/moderate and Severe strata,
the two studies provide different evidence: no average treatment effect in any of the strata for the
Traumabase, while the CRASH-3 study finds a beneficial effect for mild forms of TBI.

H.4.2 CRASH-3: evidence on different strata

The CRASH-3 trial presents a significant treatment effect only on some strata (in particular on less
severe injured patients). As the brain-injury gravity has an effect on the outcome—most patients
with TBI with a GCS score of 3 (corresponding to a coma or unconsciousness state) and those with
bilateral non-reactive pupils have a very poor prognosis regardless of treatment—, the treatment
effect is likely to be biased towards the null. Therefore the CRASH-3 authors observe the maximal
treatment effect and statistical strength on mild to moderate injured patients, which is what we
retrieve from the data. This evidence is computed from the data, with a link between the risk ratio
(RR) and the average treatment effect (ATE) on Table 8.

H.4.3 Generalizing treatment effect on patient strata

As found by the CRASH-3 study, the group with potential benefit from TXA seems to be mild to
moderate TBI patients (Table 2.1), defined as patients with a Glasgow Coma Scale between 9 and
15, while the evidence obtained from the Traumabase has not found a significant treatment effect
for this group. However, in this stratum, for the CRASH-3 study, none of the patients has major
extracranial bleeding, leading to a constant variable for this group. Conversely, in the Traumabase,
in this stratum, only four patients without major extracranial bleeding are treated (while 1867 are
not treated with TXA). Since the practitioners are interested in the treatment effect transported on
patients with mild to moderate TBI and with major extracranial bleeding, we cannot restrict the
target population to those patients without major extracranial bleeding. The current methodology
does not allow to satisfy the necessary assumptions for transporting the effect using the presented
estimation strategies and defining a clinically relevant target population. Further methodological
investigations are required to transport the effect on the stratified subpopulations (see Table 9 for
the corresponding sample sizes).
This issue does not apply to the complementary stratum of severe TBI patients (corresponding to
a low Glasgow score, GCS ≤ 8). We can thus provide the results for this stratum in Figure 30.
We observe that on this strata discrepancies between the solely Traumabase estimators and the
generalized estimators are presents. The generalization supports either no-effect or a deleterious
effect, while the RCT and the observational estimators support the no-effect hypothesis.
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Figure 30: Juxtaposition of different estimation results for target population corresponding to the
severe Traumabase patients with ATE estimators computed on the Traumabase (observational data set), on the
CRASH-3 trial (RCT), and transported from CRASH-3 to the Traumabase target population (severe TBI patients).
Number of variables used in each context is given in the legend.
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Table 3: Inventory of publicly available code for generalization (top: software for identification; bottom: software
for estimation).

Name Method - Setting Source & Reference

Identification

causaleffect
Identification and transportation of
causal effects, e.g., conditional
causal effect identification algorithm

R package on CRAN,
Tikka and Karvanen (2017)

dosearch

Identification of causal effects
from arbitrary observational and
experimental probability distributions
via do-calculus

R package on CRAN,
Tikka et al. (2019)

Causal Fusion Identifiability in data fusion
framework, (Section 5)

Browser beta version upon request
Bareinboim and Pearl (2016)

Estimation

ExtendingInferences

IPSW (Definition 2),
plug-in g-formula equation (S7) - Nested
AIPSW (S9) - Nested
Continuous outcome

R code on GitHub,
Dahabreh et al. (2020a)

generalize IPSW (Definition 2),
TMLE (Section 3.2.4)

R package on GitHub
Ackerman et al. (2020)

genRCT
IPSW (Definition 2),
calibration weighting (Section 3.2.4)
Continuous and binary outcome

R package
Lee et al. (2021)

IntegrativeHTE Integrative HTE (Section 4.1) R package on GitHub,
Yang et al. (2022)

IntegrativeHTEcf Includes confounding functions
(Section 4.1)

R package on GitHub,
Yang et al. (2022)

generalizing
SCM with probabilistic graphical
model for Bayesian inference
Binary outcome

R package on GitHub,
Cinelli and Pearl (2020)

RemovingHiddenConfounding Unmeasured confounder
(Section 4.1)

R package on GitHub,
Kallus et al. (2018b)

senseweight Sensitivity analysis
(IPSW Definition 2)

R package on Github
Huang (2022)

transport Targeted maximum likelihood estimators (TMLEs)
Transport

R package on GitHub,
Rudolph et al. (2018)

combine-rct-rwd-review Generalization estimators of Section 3 R code on GitHub
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Table 5: Sample sizes for both studies.

Traumabase CRASH-3
m #treated #death n #treated #death

8248 683 1411 9168 4632 1745

Table 7: ATE estimations from the Traumabase for TBI-related 28-day mortality. Red cells conclude on
deteriorating effect, white cells conclude on no effect.

Multiple imputation (MICE) MIA Unad-
justed
ATE
×102

IPW
(95% CI)
×102

AIPW
(95% CI)
×102

IPW
(95% CI)
×102

AIPW
(95% CI)
×102

GLM GRF GLM GRF
Total
(n = 8248)

15
(6.8, 23)

11
(6.0, 16)

3.4
(-9.0, 16)

-0.1
(-4.7, 4.4)

9.3
(4.0, 15)

-0.4
(-5.2, 4.4) 16

Mild/moderate
(GCS > 8,
n = 5228)

17
(-7.9, 42)

11
(3.3,18)

15
(-47, 77)

2.1
(-8.5, 13)

6.8
(2.6, 11)

-0.1
(-4.9, 4.7) 8.7

Severe
(GCS ≤ 8,
n = 2855)

10
(-7.0, 27)

7.7
(-6.6, 22)

2.2
(-14, 18)

-1.3
(-14, 11)

7.1
(-1.0, 15)

-0.3
(-4.6, 4.0) 9.5

Table 8: Results reproduction for CRASH-3, with four possible stratifications based on the gravity level of the
injury. Results are both presented as risk ratio (in accordance with CRASH-3 (2019)) and as ATE (in accordance
with our framework, Section 2.1).

Relative risk Average Treatment Effect
RR 95% CI ATE 95% CI

Total (within 3 hours) 0.94 (0.855, 1.02) -0.12 (−0.28, 0.004)
GCS > 3 or at least 1 pupil reacts 0.90 (0.78, 1.01) -0.02 (−0.03, 0.0005)
Mild/moderate (GCS > 8) 0.78 (0.59, 0.98) −0.2 (−0.03, −0.003)
Severe (GCS ≤ 8) 0.99 (0.91, 1.07) −0.004 (−0.04, 0.03)
Both pupils react 0.87 (0.74, 1.00) -0.015 (−0.03, −0.001)

Table 9: Sample sizes for both studies and different strata along the Glasgow Coma Scale. #maj.Ex corresponds
to the number of patients with a major extracranial bleeding.

Traumabase CRASH-3
m #treated #death #maj.Ex n #treated #death #maj.Ex

Total (within 3 hours) 8248 683 1411 5583 9168 4632 1745 5
Mild/moderate (GCS > 8) 5456 535 527 3392 5844 3075 600 0
Severe (GCS ≤ 8) 3083 596 1322 2224 3717 1985 1601 5
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