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Abstract

The majority of machine learning methods can be regarded as the
minimization of an unavailable risk function. To optimize the latter,
given samples provided in a streaming fashion, we define a general
stochastic Newton algorithm and its weighted average version. In
several use cases, both implementations will be shown not to require
the inversion of a Hessian estimate at each iteration, but a direct up-
date of the estimate of the inverse Hessian instead will be favored.
This generalizes a trick introduced in [2] for the specific case of logis-
tic regression, by directly updating the estimate of the inverse Hes-
sian. Under mild assumptions such as local strong convexity at the
optimum, we establish almost sure convergences and rates of con-
vergence of the algorithms, as well as central limit theorems for the
constructed parameter estimates. The unified framework considered
in this paper covers the case of linear, logistic or softmax regressions
to name a few. Numerical experiments on simulated data give the
empirical evidence of the pertinence of the proposed methods, which
outperform popular competitors particularly in case of bad initializa-
tions.
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1 Introduction

Recently, machine learning challenges are encountered in many different
scientific applications facing streaming or large amounts of data. First-
order online algorithms have become hegemonic: by a cheap computa-
tional cost per iteration, they allow to perform machine learning task on
large datasets, processing each observation only once, see for instance the
review paper [3]. The stochastic gradient methods (SGDs) and their av-
eraged versions are shown to be theoretically asymptotically efficient [16,
15, 11] while recent works focus on the non-asymptotic behavior of these
estimates [1, 10, 9]: more precisely, it was proven that under mild assump-
tions, averaged estimates can converge at a rate of order O(1/n) where we
let n denote the size of the dataset (and the number of iterations as well,
in a streaming setting). However, these first-order online algorithms can
be shown in practice to be very sensitive to the Hessian structure of the
risk they are supposed to minimize. For instance, when the spectrum of
local Hessian matrices shows large variations among their eigenvalues, the
stochastic gradient algorithm may be stuck far from the optimum, see for
instance the application of [2, Section 5.2].

To address this issue, (quasi) online second-order optimization has been
also considered in the literature. In view of avoiding highly costly itera-
tions, most online (quasi) second-order algorithms rely on approximating
the Hessian matrix by exclusively using gradient information or by assum-
ing a diagonal structure of it (making its inversion much easier). These
methods result to choose a different step size with respect to the compo-
nents of the current gradient estimate, hence the name of adaptive stochas-
tic gradient algorithms, such as Adagrad [7] or Adadelta [17] methods.

In this paper, we aim at minimizing the general convex function G de-
fined for any h ∈ Rd as

G(h) := E [g (X, h)] ,

where X denotes the data, and g : X × Rd −→ R is a loss function.
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The function G may encode the risk of many supervised or unsupervised
machine learning procedures, encompassing for instance linear, logistic or
even softmax regressions. Having only access to the data points X1, . . . , Xn,
i.i.d. copies of X, instead of the true underlying distribution of X, we pro-
pose to use stochastic Newton methods in order to perform the optimiza-
tion of G, relying on estimates of both the Hessian and its inverse, using
second-order information on g.

Related works. A Stochastic Quasi-Newton method was introduced in
[4], relying on limited-memory BFGS updates. Specifically, local curva-
ture is captured through (subsampled) Hessian-vector products, instead of
differences of gradients. The authors provide a stochastic Quasi-Newton
algorithm which cost is close to the one of standard SGDs. The conver-
gence study in [4] requires the boundedness from above and from below of
the spectrum of the estimated Hessian inverses, uniformly over the space
of parameters, which can be very restrictive. Furthermore, the theoretical
analysis does not include the convergence of the estimates to the inverse
of the Hessian, which cannot ensure an optimal asymptotic behavior of the
algorithm.

A hybrid algorithm combining gradient-descent and Newton-like be-
haviors as well as inertia is proposed in [5]. Under the Kurdyka-Łojasiewicz
(KL) property, the theoretical analysis of the associated continuous dynam-
ical model is conducted, which significantly departs from the type of con-
vergence guarantees established in this paper.

A truncated Stochastic Newton algorithm has been specifically intro-
duced for and dedicated to logistic regression in [2]. The recursive esti-
mates of the inverse of the Hessian are updated through the Ricatti’s for-
mula (also called the Sherman-Morrison’s formula) leading to only O(d2)

operations at each iteration. Only in the particular case of logistic regres-
sion, optimal asymptotic behaviour of the algorithm is established under
assumptions close to the ones allowed by the general framework consid-
ered in the present paper. Furthermore, the considered step sequence of
the order of 1/n in [2] may freeze the estimates dynamics in practice, lead-
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ing to poor results in case of bad initialization.
In [12], the authors introduced a conditioned SGD based on a precondi-

tioning of the gradient direction. The preconditioning matrix is typically an
estimate of the inverse Hessian at the optimal point, for which they obtain
asymptotic optimality of the procedure under L-smoothness assumption
of the objective function, and boundedness assumption of the spectrum of
all the preconditioning matrices used over the iterations. They propose to
use preconditioning matrices in practice as inverse of weighted recursive
estimates of the Hessian. The proposed conditioned SGD thus entails a full
inversion of the estimated Hessian, requiring O(d3) operations per itera-
tion in general, which is less compatible with large-scale data. Note that
the weighting procedure only concerns the estimation of the Hessian, and
not the whole algorithm as we will suggest in this paper. The choice of the
step sequence in the conditioned SGD remains problematic: choosing steps
of the order 1/n, which is theoretically sound to obtain optimal asymp-
totic behaviour, may result in the saturation of the algorithm far from the
optimum, particularly in case of bad initializations.

In order to reduce the sensitivity to the initialization, an averaged Stochas-
tic Gauss-Newton algorithm has been proposed in the restricted setting of
non-linear regression in [6]. Despite the peculiar case of non-linear regres-
sion, stochastic algorithms are shown to benefit from averaging in simula-
tions.

Contributions. In this paper, considering a unified framework that in-
cludes various applications of machine learning tasks, we propose a stochas-
tic Newton algorithm in which an estimate of the Hessian is constructed
and easily updated over iterations using genuine second order information.
Given a particular structure of the Hessian estimates that will be encoun-
tered in various applications, this algorithm leverages from the possibility
to directly update the inverse of the Hessian matrix at each iteration in
O(d2) operations, with d the ambient dimension, generalizing a trick intro-
duced in the context of logistic regression in [2]. For the sake of simplicity,
a first version of this algorithm is studied choosing the step size of the or-
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der O(1/n) where we let n denote the number of iterations. Under suitable
and standard assumptions, we establish the following asymptotic results:
(i) the almost sure convergence, and (ii) almost sure rates of convergence
of the iterates to the optimum, as well as (iii) a central limit theorem for the
iterates. Nevertheless, as mentioned before, considering step sequences of
order 1/n can lead to bad results in practice [6]. In order to alleviate this
problem, we so introduce a Weighted Averaged Stochastic Newton algo-
rithm (WASN) which can benefit from better step size choices and above
all from weighted averaging over the iterates. We then establish the almost
sure rates of convergence of its estimates, preserving an optimal asymptotic
behavior of the whole procedure. This work allows a unified framework
encompassing the case of linear, logistic and softmax regressions, for which
WASN algorithms are derived, coming with their convergence guarantees.
To our knowledge, this is the first time that softmax regression is consid-
ered in applications for second order online methods. The relevance of the
proposed algorithms is illustrated in numerical experiments, challenging
the favorite competitors such as SGDs with adaptive learning rate.

Organization of the paper. The general framework is presented in Sec-
tion 2 introducing all the notation. The set of mild assumptions on G and
g is also discussed. Section 3 presents a general stochastic Newton algo-
rithm and the associated theoretical guarantees. Section 4 introduces a new
weighted averaged stochastic Newton algorithm, followed by its theoreti-
cal study in which optimal asymptotic convergence is obtained. The versa-
tility and the relevance of the proposed algorithms is illustrated in Section
5 in the case of linear, logistic and softmax regressions, both in terms of
theoretical guarantees and numerical implementation on simulated data.

Notation. In the following, we will denote by ‖ · ‖ the Euclidean norm in
dimension d, and by ‖ · ‖op the operator norm corresponding to the largest
singular value in finite dimension. The Euclidean ball centered at c and of
radius r will be noted as B (c, r).
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2 Framework

Let X be a random variable taking values in a space X . The aim of this
work is to estimate the minimizer of the convex function G : Rd −→ R

defined for all h ∈ Rd by

G(h) := E [g (X, h)]

where g : X ×Rd −→ R.
In this paper, under the differentiability of G, we assume that the first

order derivatives also meet the following assumptions:

(A1) For almost every x ∈ X , the functional g(x, .) is differentiable and

(A1a) there is θ ∈ Rd such that ∇G(θ) = 0;

(A1b) there are non-negative constants C and C′ such that for all h ∈
Rd,

E
[
‖∇hg (X, h)‖2

]
≤ C + C′ (G(h)− G(θ)) ;

(A1c) the functional

Σ : h 7−→ E
[
∇hg (X, h)∇hg (X, h)T

]
is continuous at θ.

Furthermore, second order information will be crucial for the defini-
tion of the Newton algorithms to come, for which we require the following
assumptions to hold:

(A2) The functional G is twice continuously differentiable and

(A2a) the Hessian of G is bounded, i.e. there is a positive constant
L∇G > 0 such that for all h ∈ Rd,

∥∥∇2G(h)
∥∥

op ≤ L∇G;
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(A2b) the Hessian of G is positive at θ and we denote by λmin its small-
est eigenvalue, with

λmin(∇2G(θ)) > 0;

(A2c) the Hessian of G is Lipshitz on a neighborhood of θ: there are
positive constants A∇2G > 0 and LA,∇2G > 0 such that for all
h ∈ B (θ, A∇2G),∥∥∇2G(h)−∇2G(θ)

∥∥
op ≤ LA,∇2G ‖θ − h‖ .

Remark that Assumption (A2a) leads the gradient of G to be Lipschitz
continuous, and in particular at the optimum θ, for any h ∈ Rd, one has

‖∇G(h)‖ ≤ L∇G ‖h− θ‖ .

Overall, note that all these assumptions are very closed to the ones
given in [14], [15], [11] or [10]. One of the main differences concerns As-
sumption (A1b) in which the second order moments of ∇hg(X, .) are not
assumed to be upper-bounded by the squared errors ‖ · −θ‖2, but by the
risk error instead, i.e by G(·) − G(θ). Note that the first condition may
entail the second one, when considering the functional G to be µ-strongly
convex, since for any h ∈ Rd, ‖h − θ‖2 ≤ 2

µ (G(h) − G(θ)). In this re-
spect, Assumption (A1b) can be seen as nearly equivalent as counterparts
encountered in the literature.

3 The stochastic Newton algorithm

In order to lighten the notation, let us denote the Hessian of G at the op-
timum θ by H = ∇2G(θ). As already mentioned in [2], usual stochastic
gradient algorithms and their averaged versions are shown to be theoreti-
cally efficient, but can be very sensitive to the case where H has eigenvalues
at different scales. With the aim of alleviating this problem, we first focus
on the stochastic Newton algorithm (SNA).
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3.1 Implementation of the SNA

The algorithm. Consider X1, . . . , Xn, . . . i.i.d. copies of X. The Stochastic
Newton Algorithm (SNA) can be iteratively defined as follows: for all n ≥
0,

θn+1 = θn −
1

n + 1 + cθ
H−1

n ∇hg (Xn+1, θn) (1)

given a finite initial point θ0, for cθ ≥ 0 and with H−1
n a recursive estimate

of H−1, chosen symmetric and positive at each iteration. Remark that the
constant cθ enables to move less for the first (and probably bad) estimates
without penalizing too much the last iterations. Moreover, one can con-
struct a filtration (Fn) verifying that for any n ≥ 0, (i) H−1

n and θn are
Fn-measurable, and (ii) Xn+1 is independent from Fn. Note that if the es-
timate H−1

n only depends on X1, . . . , Xn, one can consider the filtration Fn

generated by the current sample, i.e. for all n ≥ 1, Fn = σ (X1, . . . , Xn).

Construction of H−1
n . When a natural online estimate of the Hessian Hn =

(n + 1)−1Hn of the form

Hn = H0 +
n

∑
k=1

uk (Xk, θk−1)Φk (Xk, θk−1)Φk (Xk, θk−1)
T , (2)

with H0 symmetric and positive, is available, a computationally-cheap es-
timate of its inverse can be constructed. Indeed, the inverse H−1

n+1 can be
easily updated thanks to Riccati’s formula [8], i.e.

H−1
n+1 = H−1

n − un+1

(
1 + un+1ΦT

n+1H−1
n Φn+1

)−1
H−1

n Φn+1ΦT
n+1H−1

n (3)

with Φn+1 = Φn+1 (Xn+1, θn) and un+1 = un+1 (Xn+1, θn). In such a case,
one can consider the filtration generated by the sample again, i.e. Fn =

σ (X1, . . . , Xn). In Section 5, the construction of the recursive estimates of
the inverse of the Hessian will be made explicit in the cases of linear, logistic
and softmax regressions.

8



3.2 Convergence results for the SNA

A usual key ingredient to establish the almost sure convergence of the es-
timates constructed by stochastic algorithms is the Robbins-Siegmund the-
orem [8]. To do so for the stochastic Newton algorithm proposed in (1),
we need to prevent the possible divergence of the eigenvalues of H−1

n . In
addition, to ensure the convergence to the true parameter solution θ, the
smallest eigenvalue of H−1

n should be bounded from below, i.e. λmax
(

Hn
)

should be bounded from above. To this end, we require the following as-
sumption to be satisfied:

(H1) The largest eigenvalue of Hn and H−1
n can be controlled: there is β ∈

(0, 1/2) such that

λmax
(

Hn
)
= O(1) a.s and λmax

(
H−1

n

)
= O

(
nβ
)

a.s.

If verifying Assumption (H1) in practice may seem difficult, we will see in
Section 5 how to modify the recursive estimates of the inverse the Hessian
to obtain such a control on their spectrum, while preserving a suitable filtra-
tion. The following theorem gives the strong consistency of the stochastic
Newton estimates constructed in (1).

Theorem 3.1. Under Assumptions (A1a), (A1b), (A2a) (A2b) and (H1), the
iterates of the stochastic Newton algorithm given in (1) satisfy

θn
a.s.−−−−→

n→+∞
θ.

The proof is given in Appendix A.1 and consists in a particular case of
the proof of the almost sure convergence for a more general algorithm than
the SNA one.

The convergence rate of the iterates for the SNA is a more delicate result
to obtain, that requires the convergence of Hn and H−1

n . This is why we
suppose from now on that the following assumption is fulfilled:
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(H2a) If Assumptions (A1a), (A1b), (A2a), (A2b), and (H1) hold,

Hn
a.s−−−−→

n→+∞
H.

Assumption (H2a) formalizes how the convergence of θn may yield the con-
vergence of Hn. Remark that Assumption (H2a) would also imply the con-
vergence of H−1

n . Such a hypothesis will be verified in practical use cases,
mainly relying on the continuity of the Hessian at the solution θ (see for
instance the proof of the coming Theorem 5.2 in the setting of the softmax
regression). The following theorem gives the rate of convergence associ-
ated to the SNA (1).

Theorem 3.2. Under Assumptions (A1), (A2), (H1) and (H2a), the iterates of
the stochastic Newton algorithm given in (1) satisfy for all δ > 0,

‖θn − θ‖ = o
(
(ln n)1+δ

n

)
a.s.

In addition, if there exist positive constants a > 2 and Ca such that for all h ∈ R2,

E
[
‖∇hg(X, h)‖a] ≤ Ca

(
1 + ‖h− θ‖a) , (4)

then,

‖θn − θ‖2 = O
(

ln n
n

)
a.s.

The proof of Theorem 3.2 is given in Appendix A.2. This type of results
are analogous to the usual ones dedicated to online estimation based on
Robbins-Monro procedures [16, 15, 10]. Besides, one could note that the
requirements on the functional G to obtain rates of convergence for the
SNA are very closed to the ones requested to obtain rates of convergence
for the averaged stochastic gradient descent [15].

Refining the theoretical analysis of SNA defined in (1), we now aim at
studying the variance optimality of such a procedure. To establish strong
results as the asymptotic efficiency of the parameter estimates, the esti-
mates of the Hessian should admit a (weak) rate of convergence. In this
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sense, we consider the following assumption:

(H2b) Under Assumptions (A1), (A2), (H1) and (H2a), there exists a positive
constant pH such that

∥∥Hn − H
∥∥2

= O
(

1
npH

)
a.s.

.

Assumption (H2b) captures how a rate of convergence of θn may lead
to a rate of convergence of Hn. With this hypothesis at hand, we are able to
establish the optimal asymptotic normality of the iterates (1).

Theorem 3.3. Under Assumptions (A1),(A2), (H1), (H2a) and (H2b), the iter-
ates of the stochastic Newton algorithm given in (1) satisfy

√
n (θn − θ)

L−−−−→
n→+∞

N
(

0, H−1ΣH−1
)

,

with Σ = Σ(θ) := E
[
∇hg(X, θ)∇hg(X, θ)T].

The proof is given in Appendix A.3. In Theorem 3.3, the estimates (1)
of the SNA are ensured to be asymptotically efficient provided usual as-
sumptions on the functional G matching the ones made in [16, 15, 11]. This
result highlights the benefit of stochastic Newton algorithms over standard
online gradient methods, which have been shown not to be asymptotically
optimal [14], unless considering an averaged version [15].

Note that this result has been achieved independently of the work of
[12].

The central limit theorem established in Theorem 3.3 requires conver-
gence rates of the Hessian estimates by Assumption (H2b). This can been
often ensured at the price of technical results (such as the Lipschitz conti-
nuity of the Hessian or a quite large number of bounded moments of X).
In Section 4.2, we will see how to relax Assumption (H2b) for a modified
version of the stochastic Newton algorithm.
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4 The weighted averaged stochastic Newton algorithm

In this section, we propose a modified version of the SNA, by allowing non-
uniform or uniform averaging over the iterates. This leads to the weighted
averaged stochastic Newton algorithm (WASNA). To our knowledge, this
is the first time that non-uniformity of the weights is allowed in an aver-
aged stochastic Newton algorithm.

4.1 Implementation of the WASNA

The algorithm. As mentioned in [6], considering the stochastic Newton
algorithm ends up taking decreasing steps at the rate 1/n (up to a matrix
multiplication), which can clog up the dynamics of the algorithm. A bad
initialization can then become a real obstacle to the high performance of
the method. To circumvent this issue, we consider the Weighted Averaged
Stochastic Newton Algorithm (WASNA) defined recursively for all n ≥ 0
by

θ̃n+1 = θ̃n − γn+1S−1
n ∇hg

(
Xn+1, θ̃n

)
(5)

θn+1,τ = (1− τn+1) θn,τ + τn+1θ̃n+1, (6)

given

• finite starting points θτ,0 = θ̃0,

• γn =
cγ

(n+c′γ)
γ with cγ > 0, c′γ ≥ 0 and γ ∈ (1/2, 1),

• S−1
n a recursive estimate of H−1, chosen symmetric and positive at

each iteration,

• the weighted averaging sequence (τn) that should satisfy

– (τn) is GS(ν) for some ν < 0, i.e.

n
(

1− τn−1

τn

)
−−−−→
n→+∞

ν. (7)
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– There is a constant τ > max {1/2,−ν/2} such that

nτn −−−−→
n→+∞

τ. (8)

Note that the WASNA may output both θ̃n and θn+1,τ, but only the last
iterate θn+1,τ benefits from averaging, and with this respect, only the last
iterate θn+1,τ should be considered.

Moreover, as for the SNA, one can construct a filtration (Fn) such that
(i) Sn and θ̃n are Fn-measurable and (ii) Xn+1 is independent from Fn.

Construction of S−1
n . The only difference between H−1

n and S−1
n is that

the former depends on estimates (θn)n defined in (1) and the latter is con-
structed using the estimates (θn,τ)n (or eventually (θ̃n)n) given in (6). Here
again, if natural Hessian estimates admit the form (2), the Riccatti’s trick
used in (3) can be applied to directly update S−1

n . Section 5 will exemplify
the construction of recursive estimates (S−1

n )n for the Hessian inverse in the
cases of linear, logistic and softmax regressions.

Different weighted versions. By choosing different sequences (τn)n, one
can play more or less on the strength of the last iterates in the optimization.
For instance, choosing τn = 1

n+1 (which is compatible with (7) and (8))
leads to the "usual" averaging in stochastic algorithms (see [6] for instance
for an averaged version of a stochastic Newton algorithm specific to the
non-linear regression setting)

θn =
1

n + 1

n

∑
k=0

θ̃k. (9)

Remark that the estimate obtained with standard averaging in (9) is de-
noted by θn. When considering τn = (n+1)ω

∑n
k=0(k+1)ω with ω ≥ 0 instead leads

to another version of the weighted averaged stochastic Newton algorithm,
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for which the iterates are denoted by θn,ω defined as follows

θn,ω =
1

∑n
k=0(k + 1)ω

n

∑
k=0

(k + 1)ω θ̃k. (10)

This particular choice enables to give more importance to last estimates θ̃n

that should improve on the first iterates. This strategy can be motivated by
limiting the effect of bad initialization of the algorithms.

4.2 Convergence results

As in the case of the SNA, we need to control the possible divergence of the
eigenvalues of Sn and S−1

n to ensure the convergence of the estimates. To
this end, suppose that the following assumption holds true:

(H1’) The largest eigenvalues of Sn and S−1
n can be controlled in the sense

that, there exists β ∈ (0, γ− 1/2) such that

λmax
(
Sn
)
= O(1) a.s. and λmax

(
S−1

n

)
= O

(
nβ
)

a.s.

Remark that the main difference between Assumptions (H1’) and (H1) is
the condition β < γ− 1/2 instead of 1/2. This condition on β in Assump-
tion (H1’) allows to counterbalance the choice of the steps sequence γn used
in (5). Section 5 will exemplify recursive estimates of the Hessian to ensure
that (H1’) is indeed verified in practice. We now dispose of all the ingredi-
ents to ensure the strong consistency of the estimates given by the WASNA.

Theorem 4.1. Under Assumptions (A1a), (A1b), (A2a), (A2b) and (H1’), the
iterates of the weighted averaged stochastic Newton algorithm given in (5) and (6)
satisfy

θ̃n
a.s.−−−−→

n→+∞
θ and θn,τ

a.s.−−−−→
n→+∞

θ.

The proof is given in Appendix A.1. As expected, averaging does not
introduce bias in the estimates. In order to go further and to derive rates of
convergence for the WASNA, consider the following assumption:
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(H2a’) If Assumptions (A1a), (A1b), (A2a), (A2b), and (H1’) hold,

Sn
a.s.−−−−→

n→+∞
H.

This hypothesis is nothing more than the counterpart of Assumption (H2a)
for the Hessian estimates in the averaged setting. It ensures that the almost
sure convergence of the estimates leads to the convergence of Sn and S−1

n .
With this at hand, we can theoretically derive the rate of convergence of the
non-averaged iterates of the WASNA defined in (5).

Theorem 4.2. Under Assumptions (A1), (A2a) (A2b), (H1’) and (H2a’) hold,
suppose also that there are positive constants η > 2− 1

γ and Cη such that

E
[
‖∇hg (X, h)‖2+2η

]
≤ Cη

(
1 + ‖h− θ‖2+2η

)
. (11)

Then the iterates of the weighted averaged stochastic Newton algorithm given in
(5) verify that ∥∥θ̃n − θ

∥∥2
= O

(
ln n
nγ

)
a.s.

The proof is given in Appendix A.4. Theorem 4.2 involves a standard
extra assumption in (11), which matches the usual ones for stochastic gra-
dient algorithms [14, 11].

In order to derive a central limit theorem for the WASNA, suppose the
following holds:

(H2b’) Under Assumptions (A1), (A2a), (A2b), (H1’), (H2a’) and (11), there
is a positive constant pS > 1/2− γ/2 such that

∥∥Sn − S
∥∥ = O

(
1

npS

)
a.s.

Being the counterpart of Assumption (H2b) in the case of the Stochastic
Newton algorithm, (H2b’) allows to translate a rate of convergence of θ̃n

into a rate of convergence of Sn.
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Theorem 4.3. Under Assumptions (A1), (A2), (H1’), (H2a’), (H2b’) and in-
equality (11), the iterates of the weighted averaged stochastic Newton algorithm
defined in (6) satisfy

‖θτ,n − θ‖2 = O
(

ln n
n

)
a.s.

and
√

n (θτ,n − θ)
L−−−−→

n→+∞
N
(

0,
τ2

2τ + ν
H−1ΣH−1

)
with Σ := Σ(θ) = E

[
∇hg (X, θ)∇h (X, θ)T

]
.

The proof is given in Appendix A.5. One could note that Assumption
(H2b’) is required not only to establish the normality asymptotic of the it-
erates, but also to get the rate of convergence of the iterates of the WASNA
defined in (6). This was not the case for the SNA.

Remark 4.1 (On the asymptotic optimality of weighted versions). Particu-
larizing Theorem 4.3 to the "usual" averaged stochastic Newton algorithm defined
by (9) gives √

n
(
θn − θ

) L−−−−→
n→+∞

N
(

0, H−1ΣH−1
)

while considering the weighted version (10) leads to

√
n (θτ,n − θ)

L−−−−→
n→+∞

N
(

0,
(1 + ω)2

2ω + 1
H−1ΣH−1

)
.

This is striking how using some weighted version of the WASNA can theoretically
degrade the asymptotic variance of the constructed estimates. A possible compro-
mise remains, however, to consider for all n ≥ 1, τn+1 = ln(n+1)ω

∑n
k=0 ln(k+1)ω , such that

θn,τ =
1

∑n
k=0 ln(k + 1)ω

n

∑
k=0

ln(k + 1)θ̃k.

Indeed, with this logarithmic weights choice, one has

√
n (θn,τ − θ)

L−−−−→
n→+∞

N
(

0, H−1ΣH−1
)

.
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Here, the non-uniform weighting in play for the WASNA will give more impor-
tance to the last estimates θ̃n, while keeping an optimal asymptotic behavior.

If Assumption (H2b’) may represent a theoretical lock for the applica-
tion of Theorem 4.3, it can be by-passed by the following theorem. The
idea is to exploit a particular structure of the Hessian estimates, to derive
the rate of convergence and the asymptotic normality of the WASNA iter-
ates.

Theorem 4.4. Suppose that the Hessian estimates (Sn)n in the WASNA iteration
(5) is of the form

Sn =
1

n + 1

(
S0 +

n

∑
k=1

ukΦkΦT
k +

n

∑
k=1

cβ

kβ
ZkZT

k

)

with S0 a symmetric and positive matrix, cβ ≥ 0, β ∈ (γ− 1/2) and

uk = uk (Xk, θτ,k−1) ∈ R Φk = Φk (Xk, θτ,k−1) ∈ Rd,

and (Zk)k standard Gaussian vectors in dimension d. Assume that

• for all δ > 0, there is a positive constant Cδ such that for all k,

E
[∥∥∥ukΦkΦT

k

∥∥∥ 1{‖θτ,k−1−θ‖≤(ln k)1/2+δ√γk}|Fk−1

]
≤ Cδ, (12)

• there is α ∈ (1/2, τ) and δ > 0 such that

∑
k≥0

(k + 1)2α
τ2

k+1

γk+1

(ln k)1+δ

(k + 1)2

·E
[∥∥∥ukΦkΦT

k

∥∥∥2
1{‖θτ,k−1−θ‖≤(ln k)1/2+δ√γk}|Fk−1

]
< +∞ a.s. (13)

Under the additional Assumptions (A1), (A2a), (A2b), (H1’), (H2a’) and (11),
the iterates of the weighted averaged stochastic Newton algorithm defined in (6)
satisfy

‖θτ,n − τ‖2 = O
(

ln n
n

)
a.s.
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and
√

n (θτ,n − θ) −−−−→
n→+∞

N
(

0,
τ2

2τ + ν
H−1ΣH−1

)
with Σ := E

[
∇hg (X, θ)∇hg (X, θ)T

]
.

The proof is given in Appendix A.6. The main interest of this theorem
is that it enables to get the asymptotic normality of the estimates without
having the rate of convergence of the estimates of the Hessian, at the price
of a special structure of the latter. More specifically, contrary to [2], no
Lipschitz assumption on the functional

h 7−→ E
[
uk (Xk, h)Φk (Xk, h)Φk (Xk, h)T |Fk−1

]
is needed. Note in particular that (13) is verified for all α < 3−γ

2 since

E

[∥∥∥ukΦkΦT
k

∥∥∥2
1{‖θτ,k−1−θ‖≤(ln(k))1/2+δ√γk}|Fk−1

]
is uniformly bounded.

Theorem 4.4 will be particularly useful for the coming practical appli-
cations, since this special structure in the Hessian estimates will be met in
the case of linear, logistic and softmax regressions.

5 Applications

In this section, for different machine learning tasks, we make the weighted
stochastic Newton algorithm explicit, and verify that the associated theo-
retical guarantees hold. Then, for each application, we perform simulations
by comparing second-order online algorithms:

• the stochastic Newton algorithm (SNA) defined in (1) with a step in
1/n, similar to the one studied in [2] specifically for the logistic re-
gression;

• the stochastic Newton algorithm (SNA) defined in (1) with a step in
1/n3/4;

18



• the weighted averaged stochastic Newton algorithm (WASNA) given
in (5) and (6) with standard weighting (τn = 1/(n + 1));

• the weighted averaged stochastic Newton algorithm (WASNA) given
in (5) and (6) with logarithmic weighting (τn = τn = (n+1)ω

∑n
k=0(k+1)ω and

ω = 2);

with first-order online methods:

• the stochastic gradient algorithm (SGD) [14] with step 1/n3/4;

• the averaged Stochastic Gradient Algorithm (ASGD) [1];

and finally with first-order online algorithms mimicking second-order ones:

• the Adagrad algorithm [7], which uses adaptive step sizes using only
first-order information,

• the averaged Adagrad algorithm, with standard weighting.

We illustrate their performances in the case of linear, logistic and softmax
regressions, for simple and more complex structured data.

5.1 Least-square regression

Setting & Algorithm. Consider the least square regression model defined
by

∀n ≥ 1, Yn = XT
n θ + εn

where Xn ∈ Rd is a random vector, θ ∈ Rd is the parameters vector, and
εn is a zero-mean random variable independent from Xn, and (Xi, Yi, εi)

are independent and identically distributed. Then, θ can be seen as the
minimizer of the functional G : Rd −→ R+ defined for all h ∈ Rp by

G(h) =
1
2

E

[(
Y− XTh

)2
]

.

The Hessian of G at h is given by∇2G(h) = E
[
XXT] and a natural estimate

is

Hn =
1
n

n

∑
i=1

XiXT
i
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whose inverse can be easily updated thanks to Riccati’s formula leading to

H−1
n+1 = H−1

n −
(

1 + XT
n+1H−1

n Xn+1

)−1
H−1

n Xn+1XT
n+1H−1

n

where Hn = (n + 1)Hn. Then, assuming that H = E
[
XXT] is positive

and that X and ε admits 4-th order moments, entails that all assumptions
of Section 2 are verified and by the law if the iterated logarithm,

∥∥Hn − H
∥∥2

= O
(

ln ln n
n

)
a.s.

Then the convergence results of the Stochastic Newton algorithm in Section
3.2 hold. Furthermore, if there is η > 0 verifying η > 2 − 1

γ and such
that X and ε admit moment of order 4 + 4η, the convergence results of the
averaged version in Section 4.2 hold.

Simulations. In this section, we fix d = 10, and we choose

θ = (−4,−3, 2, 1, 0, 1, 2, 3, 4, 5)T ∈ R10,

X ∼ N
(

0, diag
(

i2

d2

)
i=1,...,10

)
and ε ∼ N (0, 1). Note that in such a case the

Hessian associated to this model is equal to diag
(

i2

d2

)
i=1,...,10

, meaning that

the largest eigenvalue is 100 times larger than the smallest one. Therefore,
considering stochastic gradient estimates leads to a step sequence which
cannot be adapted to each direction. In Figure 1, we monitor the quadratic
mean error of the different estimates, for three different type of initializa-
tions. In Figure 1, one can see that both averaged Newton methods and the
stochastic Newton method with step size of the order 1/n outperform all
the other algorithms, specially for far intializations (right). The faster con-
vergence of Newton methods or of the Adagrad algorithm compared to the
one of standard SGD can be explained by their ability to manage the diag-
onal structure of the Hessian matrix, with eigenvalues at different scales.

Consider now a more complex covariance structure of the data, such as
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Figure 1: (Linear regression with uncorrelated variables) Mean-squared
error of the distance to the optimum θ with respect to the sample size for
different initializations: θ0 = θ + r0U, where U is a uniform random vari-
able on the unit sphere of Rd with r0 = 1 (left), r0 = 2 (middle) or r0 = 5
(right). Each curve is obtained by an average over 10 different samples
(drawing a different initial point each time).

follows

X ∼ N
(

0, Adiag
(

i2

d2

)
i=1,...,d

AT

)
where A is a random orthogonal matrix. This particular choice of the co-
variates distribution, by the action of A, allows to consider strong corre-
lations between the coordinates of X. In Figure 2, one can notice that the
choice of adaptive step size used in the Adagrad algorithm is no longer suf-
ficient to give the best convergence result in presence of highly-correlated
data. In such a case, both averaged Newton algorithms remarkably per-
form, showing their ability to handle complex second-order structure of
the data, and all the more so for bad initializations (right).

5.2 Logistic regression

Setting. We turn out to a binary classification problem: the logistic regres-
sion model defined by

∀n ≥ 1, Yn|Xn ∼ B
(

π
(

θTX
))
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Figure 2: (Linear regression with correlated variables) Mean-squared error
of the distance to the optimum θ with respect to the sample size for different
initializations: θ0 = θ + r0U, where U is a uniform random variable on the
unit sphere of Rd, with r0 = 1 (left), r0 = 2 (middle) or r0 = 5 (right).
Each curve is obtained by an average over 10 different samples (drawing a
different initial point each time).

where X1, . . . , Xn, . . . are independent and identically distributed random
vectors lying in Rd and for all x ∈ R,

π(x) =
exp(x)

1 + exp(x)
.

Due to the intrinsic non-linear feature of this model, this is not clear how
the covariance structure of the covariates may affect the training phase,
clearly departing from the linear regression setting.

The WASNA. In the particular case of logistic regression, the weighted
averaged version the stochastic Newton algorithm in Section 4.1 can be
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rewritten as:

an+1 = π
(

θT
n,τXn+1

) (
1− π

(
θT

n,τXn+1

))
θ̃n+1 = θ̃n + γn+1S−1

n Xn+1

(
Yn+1 − π

(
θ̃T

n Xn+1

))
θn+1,τ = (1− τn+1) θn,τ + τn+1θ̃n+1

S−1
n+1 = S−1

n −
(

1 + an+1XT
n+1S−1

n Xn+1

)−1
an+1S−1

n Xn+1XT
n+1S−1

n

(14)

with θ̃0 = θ0,τ bounded, S−1
n = (n + 1)S−1

n and S−1
0 symmetric and

positive, γn = cγn−γ with cγ > 0 and γ ∈ (1/2, 1), τn = ln(n+1)ω

∑n
k=0 ln(k+1)ω , with

ω ≥ 0,
an+1 = π

(
XT

n+1θn,τ

) (
1− π

(
XT

n+1θn,τ

))
and

an+1 = max
{

an+1,
cβ

(n + 1)β

}
,

with cβ > 0 and β ∈ (γ− 1/2).
Choosing γ = 1, cγ = 1 and τn = 1 at each iteration leads to the Newton

algorithm of Section 3 for the logistic regression, which matches the specific
truncated Newton algorithm developed in [2].

We study the convergence rates associated to this instance (14) of the
WASNA in the following theorem.

Theorem 5.1. Suppose that X admits a 4-th order moment and that

E
[
π
(

θTX
) (

1− π
(

θTX
))

XXT
]
� 0

is a positive matrix. The iterates given by the WASNA defined in (14) verify

∥∥θ̃n − θ
∥∥2

= O
(

ln n
nγ

)
a.s. and ‖θn,τ − θ‖2 = O

(
ln n

n

)
a.s.

Furthermore, √
n (θn,τ − θ)

L−−−−→
n→+∞

N
(

0, H−1
)

.
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Finally,

∥∥Sn − H
∥∥2

= O
(

1
n2β

)
a.s and

∥∥∥S−1
n − H−1

∥∥∥2
= O

(
1

n2β

)
a.s.

The proof is given in Appendix A.7, and consists in verifying Assump-
tions (A1), (A2a), (A2b), (H1’), (H2a’) to get the convergence rate of

∥∥θ̃n − θ
∥∥2,

then in verifying Assumptions (A2c) with Inequalities (12) and (13) to get
the convergence rate of ‖θn,τ − θ‖2 and the central limit theorem. Remark
that in the context of the WASNA, we get the rates of convergence as for
the direct truncated stochastic Newton algorithm [2], without additional
assumptions.

Simulations. The first logistic regression setting that we consider is given
in [2] and defined by the model parameter θ = (9, 0, 3, 9, 4, 9, 15, 0, 7, 1, 0)T ∈
R11, with an intercept and standard Gaussian variables, i.e. X =

(
1, ΦT)T,

Φ ∼ N (0, I10). In Figure 3, we display the evolution of the quadratic mean
error of the different estimates, for three different initializations. The New-
ton methods converge faster than online gradient descents, which can be
again explained by the Hessian structure of the model: even if the features
are standard Gaussian random variables, the non-linearity introduced by
the logistic model leads to a covariance structure difficult to apprehend the-
oretically and numerically by first-order online algorithms. In case of bad
initialization (right), the best performances are given by the averaged Ada-
grad algorithm, the stochastic Newton algorithm with steps in O(1/n3/4),
closely followed by averaged stochastic Newton algorithms. For the latter,
this optimal asymptotic behaviour is enabled in particular by the use of
weights giving more importance to the last estimates (being compared to
the "standard" averagind Newton algorithm). One can see that in such an
example the step choice for the non-averaged Newton algorithm is crucial:
choosing a step sequence of the form 1/n as in [2] significantly slows down
the optimization dynamics, whereas a step choice in O(1/n3/4) allows to
reach the optimum much more quickly.

Let us now consider a second example, consisting in choosing θ ∈ Rd
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Figure 3: (Logistic regression with standard Gaussian variables) Mean-
squared error of the distance to the optimum θ with respect to the sample
size for different initializations: θ0 = θ + r0U, where U is a uniform ran-
dom variable on the unit sphere of Rd, with r0 = 1 (left), r0 = 2 (middle)
or r0 = 5 (right). Each curve is obtained by an average over 10 different
samples (drawing a different initial point each time).

with all components equal to 1, and X ∼ N
(

0, Adiag
(

i2

d2

)
i=1,...,d

AT
)

where A is a random orthogonal matrix. The results are displayed in Fig-
ure 4. In presence of such highly-structured data, the averaged stochastic
Newton algorithms are shown to perform greatly, even more for initializa-
tions far from the optimum (middle and right). One could note that in all
initial configurations (left to right), the stochastic Newton algorithm with
step size in O(1/n) proves to be a worthy competitor, whereas the Adagrad
algorithm becomes less and less relevant as the starting point moves away
from the solution.

5.3 Softmax regression

In this section, we focus on the softmax regression, which can be seen as an
extension of the logistic regression setting to the multi-label classification
case.

Setting. Assume that the number of different classes is K, and that the
model parameters are θ1 ∈ Rp, . . . , θK ∈ Rp. Consider the samples (X1, Y1) ,
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Figure 4: (Logistic regression with correlated Gaussian variables) Mean-
squared error of the distance to the optimum θ with respect to the sample
size for different initializations: θ0 = θ + r0U, where U is a uniform random
variable on the unit sphere of Rd, with r0 = 1 (left), r0 = 2 (middle) or r0 =
5 (right). Each curve is obtained by an average over 10 different samples
(drawing a different initial point each time).

. . . , (Xn, Yn) , . . . being independent and identically distributed random vec-
tors in Rd × [1, . . . , K] with for all n ≥ 1 and k = 1, . . . , K,

P [Yn = k|Xn] =
eθT

k Xn

∑K
k′=1 eθT

k′Xn
.

Then, the likelihood can be written as

Ln (θ1, . . . , θK) =
n

∏
i=1

∑K
k′=1 eθT

k′Xi 1Yi=k

∑K
k′=1 eθT

k′Xn
=

n

∏
i=1

eθT
Yi

Xi

∑K
k′=1 eθT

k′Xi
,

which leads to the following log-likelihood

`n (θ1, . . . , θK) =
n

∑
i=1

log

(
eθT

Yi
Xi

∑K
k′=1 eθT

k′Xi

)
.
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Then, considering the asymptotic objective function, the aim is to minimize
the convex function G : Rd × . . .×Rd −→ R defined for all h by

G(h) = −E

[
log

(
ehT

Y X

∑K
k′=1 ehT

k′X

)]
=: E [g(X, Y, h)] .

where (X, Y) is a i.i.d. copy of (X1, Y1). In order to establish convergence
rate for the weighted averaged Newton algorithm in such a setting, we
suppose that the following assumptions hold:

(HS1a) The random vector X admits a second order moment.

(HS1b) The random vector X admits a fourth order moment.

Under Assumption (HS1a), the functional G is twice differentiable and for
all h = (h1, . . . , hK) ∈ Rd × . . .×Rd,

∇G(h) = E





X
(

ehT
1 X

∑K
k=1 ehT

k X
− 1Y=1

)
...
...

X
(

ehT
K X

∑K
k=1 ehT

k X
− 1Y=K

)




= E [∇hg (X, Y, h)] ,

and one can check that ∇G(θ) = 0. Furthermore, computing second-order
derivatives leads to the Hessian, defined for all h by

∇2G(h) = E
[(

diag (σ(X, h))− σ(X, h)σ(X, h)T
)
⊗ XXT

]

where σ(X, h) =

(
ehT

1 X

∑K
k=1 ehT

k X
, . . . , ehT

K X

∑K
k=1 ehT

k X

)T

, and ⊗ denotes the Kronecker

product. In addition, suppose that

(HS2) The Hessian of G at θ is positive.

Finally, one can easily check that at h = θ,

∇2G(θ) = E
[
∇hg (X, Y, θ)∇hg (X, Y, θ)T

]
.
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The SNA. In the case of softmax regression, the stochastic Newton algo-
rithm can be defined for all n ≥ 1 by

Φn+1 = ∇hg (Xn+1, Yn+1, θn)

θn+1 = θn −
1

n + 1
H−1

n ∇hg (Xn+1, Yn+1, θn)

H−1
n+ 1

2
= H−1

n −
(

1 + βn+1ZT
n+1H−1

n Zn+1

)−1
βn+1H−1

n Zn+1ZT
n+1H−1

n

Hn+1 = H−1
n+ 1

2
−
(

1 + ΦT
n+1H−1

n+ 1
2
Φn+1

)−1
H−1

n+ 1
2
Φn+1ΦT

n+1H−1
n+ 1

2
,

(15)
where θ0 is bounded, Hn = (n + 1)H−1

n , H−1
0 is symmetric and positive,

βn = cβn−β, with cβ > 0 and β ∈ (0, 1/2), and Z1, . . . , Zn+1 are i.i.d with
Z1 ∼ N (0, Id). To our knowledge, this is the first time that a stochastic
Newton algorithm is made explicit for the softmax regression problem. The
associated convergence guarantees follow.

Theorem 5.2. Under Assumptions (HS1a), (HS1b) and (HS2), the iterates of the
stochastic Newton algorithm defined by (15) satisfy

‖θn − θ‖ = O
(

ln n
n

)
a.s

and √
n (θn − θ)

L−−−−→
n→+∞

N
(

0, H−1
)

.

Furthermore,

∥∥Hn − H
∥∥2

= O
(

1
n2β

)
a.s. and

∥∥∥H−1
n − H−1

∥∥∥2
= O

(
1

n2β

)
a.s.

The proof is given in Appendix A.8.2.
As far as we know, this is the first theoretical result covering the softmax

regression using a stochastic Newton algorithm. In such a setting, the SNA
proposes efficient online estimates and the convergence guarantees can be
established with weak assumptions.

28



The WASNA. Let us now consider the weighted averaged stochastic New-
ton algorithm defined recursively for all n ≥ 1 by

Φn+1 = ∇hg (Xn+1, Yn+1, θn,τ)

θ̃n+1 = θ̃n − γn+1S−1
n ∇hg (Xn+1, Yn+1, θn)

θn+1,τ = (1− τn+1) θn,τ + τn+1θ̃n+1

S−1
n+ 1

2
= S−1

n −
(

1 + βn+1ZT
n+1S−1

n Zn+1

)−1
βn+1S−1

n Zn+1ZT
n+1S−1

n

S−1
n+1 = S−1

n+ 1
n
−
(

1 + ΦT
n+1S−1

n+ 1
n
Φn+1

)−1
S−1

n+ 1
n
Φn+1ΦT

n+1S−1
n+ 1

n
,

(16)

with θ̃0 = θ0,τ bounded, S−1
n = (n+ 1)S−1

n and S−1
0 symmetric and positive,

γn = cγn−γ with cγ > 0 and γ ∈ (1/2, 1), τn = ln(n+1)ω

∑n
k=0 ln(k+1)ω , with ω ≥

0, and βn = cβn−β with cβ > 0 and β ∈ (γ − 1/2). Finally, Zi are i.i.d
random vectors with Z1 ∼ N (0, Id). The following theorem gives rates of
convergence of the weighted averaged stochastic Newton algorithm.

Theorem 5.3. Under Assumptions (HS1a), (HS1b) and (HS2), the iterates of the
weighted averaged stochastic Newton algorithm defined by (16) satisfy

∥∥θ̃n − θ
∥∥2

= O
(

ln n
nγ

)
a.s. and ‖θn,τ − θ‖2 = O

(
ln n

n

)
a.s,

Furthermore, √
n (θn,τ − θ)

L−−−−→
n→+∞

N
(

0, H−1
)

.

Finally,

∥∥Sn − S
∥∥2

= O
(

1
n2β

)
a.s. and

∥∥∥S−1
n − S−1

∥∥∥2
= O

(
1

n2β

)
a.s.

The proof is given in Appendix A.8.2. This is the first time to our knowl-
edge that a stochastic Newton algorithm is considered in the softmax re-
gression setting, for which convergence results hold under weak assump-
tions. Note as well that the Riccatti’s trick to update the inverse of the Hes-
sian estimates is particularly appropriate, as the dimensionality of θ gets
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larger.

Simulations. The considered multinomial regression model is defined in
the case of three-label classification in dimension d = 3, for all k = 1, 2, 3,
by

P [Y = k|X] =
eθT

k X

∑3
k′=1 eθT

k′X

with θ =
(
θT

1 , θT
2 , θT

3
)T chosen randomly on the unit sphereof R9. In Fig-

ure 5, we display the evolution of the quadratic mean error of the different
estimates, for three different initializations, for correlated Gaussian vari-

ables X ∼ N
(

0, Adiag
(

i2

d2

)
i=1,...,d

AT
)

where A is an orthogonal matrix

randomly generated. Results in the case of heteroscedastic Gaussian vari-

ables X ∼ N
(

0, diag
(

i2

d2

)
i=1,...,d

)
are very similar and can be found in

Appendix B, Figure 6. In Figure 5, one can see that again the averaged
versions (weighted or not) converge faster in the case of bad initial point.
The improvement over the Adagrad algorithm is made clearer as the initial
point is chosen further from the optimum.
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Figure 5: (Softmax regression with correlated Gaussian variables) Mean-
squared error of the distance to the optimum θ with respect to the sample
size for different initializations: θ0 = θ + r0U, where U is a uniform random
variable on the unit sphere of Rd, with r0 = 1 (left), r0 = 2 (middle) or r0 =
5 (right). Each curve is obtained by an average over 50 different samples of
size n = 5000 (drawing a different initial point each time).

6 Conclusion

In this paper, we have given a unified framework to derive stochastic New-
ton algorithms and their new averaged versions. Under mild assumptions,
we have established convergence results, such as almost sure convergence
rates and asymptotic efficiency of the constructed estimates. The differ-
ent proposed methods require the calibration of several hyperparameters,
which can be seen as a limitation for the implementation. Nevertheless,
we believe this work paves the way of genuine second-order online algo-
rithms for machine learning. Indeed, a few different and arbitrary choices
for these hyperparameters, as highlighted in the numerical experiments,
prove the averaged stochastic Newton algorithm to give the best practical
results in most of cases, providing more stability and less sensitivity to bad
initializations. The Riccatti’s trick to directly update the Hessian inverse es-
timates is also very beneficial in practice to reduce the iteration cost usually
attributed to second-order methods. The next step to explore is to optimize
the storage needed by such algorithms, that could become a lock for very
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high-dimensional data.
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A Proofs

Remark that for the sake of simplicity, in all the proofs we consider that
cθ = c′γ = 0. Indeed, for the cases where cθ 6= 0 or c′γ 6= 0, one can consider
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H′
−1
n = n+1

n+1+cθ
H−1

n and S′
−1
n = (n+1)γ

((n+1+cγ)
γ . Then, these estimates have the

same asymptotic behaviors as H−1
n and S−1

n .

A.1 Proof of Theorems 3.1 and 4.1

We only give the proof of Theorem 4.1 since we just have to take cγ = 1
and γ = 1 and exchange Sn and Hn to obtain the proof of Theorem 4.1.

Proof of Theorem 4.1. With the help of a Taylor’s decomposition of G,and
thanks to Assumption (A2a),

G
(
θ̃n+1

)
= G

(
θ̃n
)
+∇G

(
θ̃n
)T (

θ̃n+1 − θ̃n
)

+
1
2
(
θ̃n+1 − θ̃n

)T
∫ 1

0
∇2G

(
θ̃n+1 + t

(
θ̃n − θ̃n+1

))
dt
(
θ̃n+1 − θ̃n

)
≤ G

(
θ̃n
)
+∇G

(
θ̃n
)T (

θ̃n+1 − θ̃n
)
+

L∇G

2

∥∥θ̃n+1 − θ̃n
∥∥2

Then, since θ̃n+1 − θ̃n = −γn+1S−1
n ∇hg

(
Xn+1, θ̃n

)
,

G
(
θ̃n+1

)
= G

(
θ̃n
)
− γn+1∇G

(
θ̃n
)T S−1

n ∇hg
(
Xn+1, θ̃n

)
+

L∇G

2
γ2

n+1

∥∥∥S−1
n ∇hg

(
Xn+1, θ̃n

)∥∥∥2

≤ G
(
θ̃n
)
− γn+1∇G

(
θ̃n
)T S−1

n ∇hg
(
Xn+1, θ̃n

)
+

L∇G

2
γ2

n+1

∥∥∥S−1
n

∥∥∥2

op

∥∥∇hg
(
Xn+1, θ̃n

)∥∥2

Let us denote Vn = G
(
θ̃n
)
− G(θ). Then, we can rewrite previous inequal-

ity as

Vn+1 ≤ Vn − γn+1∇G
(
θ̃n
)T S−1

n ∇hg
(
Xn+1, θ̃n

)
+

L∇G

2
γ2

n+1

∥∥∥S−1
n

∥∥∥2

op

∥∥∇hg
(
Xn+1, θ̃n

)∥∥2

and considering the conditional expectation, since θ̃n and S−1
n areFn-measurable,

E [Vn+1|Fn] ≤ Vn − γn+1∇G
(
θ̃n
)T S−1

n ∇G
(
θ̃n
)

+
L∇G

2
γ2

n+1

∥∥∥S−1
n

∥∥∥2

op
E
[∥∥∇hg

(
Xn+1, θ̃n

)∥∥2 |Fn

]
.
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Then, thanks to Assumption (A1b), it comes

E [Vn+1|Fn] ≤
(

1 +
C′L∇G

2
γ2

n+1

∥∥∥S−1
n

∥∥∥2

op

)
Vn − γn+1λmin

(
S−1

n

) ∥∥∇G
(
θ̃n
)∥∥2

+
CL∇G

2
γ2

n+1

∥∥∥S−1
n

∥∥∥2

op

Remark that thanks to Assumption (H1’),

∑
n≥0

γ2
n+1

∥∥∥S−1
n

∥∥∥2

op
< +∞ a.s.

Then, since S−1
n is positive and applying Robbins-Siegmund Theorem, Vn

converges almost surely to a finite random variable and

∑
n≥0

γn+1λmin

(
S−1

n

) ∥∥∇G
(
θ̃n
)∥∥2

< +∞ p.s

and since, thanks to Assumption (H1’),

∑
n≥0

γn+1λmin

(
S−1

n

)
= ∑

n≥0
γn+1

1
λmax

(
Sn
) = +∞ a.s,

this necessarily implies that lim infn
∥∥∇G

(
θ̃n
)∥∥ = 0 almost surely. Since G

is strictly convex, this also implies that

lim inf
n

∥∥θ̃n − θ
∥∥ = 0 a.s and lim inf

n
Vn = G

(
θ̃n
)
− G(θ) = 0 a.s,

and since Vn converges almost surely to a random variable, this implies
that G

(
θ̃n
)

converges almost surely to G(θ) and by strict convexity, that θ̃n

converges almost surely to θ.
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A.2 Proof of Theorem 3.2

Only the main ideas of the proofs are given here, since it follows the same
strategy of proof as in [2, Theorem 4.2]. Remark that

θn+1 − θ = θn − θ − 1
n + 1

H−1
n ∇G (θn) +

1
n + 1

H−1
n ξn+1 (17)

= θn − θ − 1
n + 1

H−1∇G (θn)−
1

n + 1

(
H−1

n − H−1
)
∇G (θn) +

1
n + 1

H−1
n ξn+1

=

(
1− 1

n + 1

)
(θn − θ)− 1

n + 1
H−1δn −

1
n + 1

(
H−1

n − H−1
)
∇G (θn)

+
1

n + 1
H−1

n ξn+1 (18)

with ξn+1 = ∇G (θn) −∇hg (Xn+1, θn) and δn = ∇G (θn) − H (θn − θ) is
the remainder term in the Taylor’s decomposition of the gradient. Since θn

and Hn are Fn-measurable, and since Xn+1 is independent from Fn, (ξn+1)

is a sequence of martingale differences adapted to the filtration (Fn). More-
over, inductively, one can check that

θn+1− θ =
1

n + 1

n

∑
k=0

H−1
k ξk+1︸ ︷︷ ︸

=:Mn+1

− 1
n + 1

n

∑
k=0

H−1δk −
1
n

n

∑
k=0

(
H−1

k − H−1
)
∇G (θk)︸ ︷︷ ︸

=:∆n

.

(19)

Convergence rate for Mn+1. Note that (Mn) is a martingale adapted to
the filtration (Fn) and since H−1

n is Fn-measurable,

〈M〉n+1 =
n

∑
k=0

H−1
k E

[
ξk+1ξT

k+1|Fk

]
H−1

k

=
n

∑
k=0

H−1
k E

[
∇hg (Xk+1, θ)∇hg (Xk+1, θk)

T |Fk

]
H−1

k

−
n

∑
k=0

H−1
k ∇G (θk)∇G (θk)

T H−1
k
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Since H−1
k converges almost surely to H−1, since θk converges almost surely

to θ, and since ∇G is L∇G lipschitz,

1
n + 1

n

∑
k=0

H−1
k ∇G (θk)∇G (θk)

T H−1
k

a.s−−−−→
n→+∞

0

Moreover, Assumption (A1c) entails that

1
n + 1

n

∑
k=0

H−1
k E

[
∇hg (Xk+1, θ)∇hg (Xk+1, θk)

T |Fk

]
H−1

k

a.s−−−−→
n→+∞

H−1E
[
∇hg (X, θ)∇hg(X, θ)T

]
H−1.

Setting Σ := E
[
∇hg (X, θ)∇hg(X, θ)T], one has

1
n + 1

〈M〉n+1
a.s−−−−→

n→+∞
H−1ΣH−1. (20)

Then, applying a law of large numbers for martingales (see [8]), for all δ >

0,
1
n2 ‖Mn+1‖2 = o

(
(ln n)1+δ

n

)
a.s,

and if inequality (4) is verified,

1
n2 ‖Mn+1‖2 = O

(
ln n

n

)
a.s.

Convergence rate for ∆n. Let us recall that

∆n := − 1
n + 1

n

∑
k=1

H−1δk −
1

n + 1

n

∑
k=1

(
H−1

k − H−1
)
∇G (θk) .

Given that θk converges almost surely to θ, and since the Hessian is contin-
uous at θ,

‖δn‖ =
∥∥∥∥∫ 1

0

(
∇2G

(
θ + t (θn − θ)−∇2G(θ)

))
dt (θn − θ)

∥∥∥∥ = o (‖θn − θ‖) a.s.
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Similarly, since the gradient is L∇G-lipschitz, one can check that∥∥∥(H−1
k − H−1

)
∇G (θn)

∥∥∥ = o (‖θn − θ‖) a.s

and following computation such as Equations (6.27),(6.28),(6.34) and (6.35)
in [2], one has

‖∆n‖2 = O
(

1
n2 ‖Mn+1‖2

)
a.s,

which concludes the proof.

A.3 Proof of Theorem 3.3

In order to derive asymptotic normality of the estimates, let us start again
from Equation (19). As we are going to see, the first term will dictate the
speed of convergence, while the other terms will collapse. First, since (ξn)

is a sequence of martingale differences adapted to the filtration (Fn), given
(20) and (4), the Central Limit Theorem for martingales (see [8]) reads as
follows,

1√
n

n

∑
k=0

H−1
k ξk+1

L−−−−→
n→+∞

N
(

0, H−1ΣH−1
)

. (21)

Let us now show that the other terms on the right-hand side of (20) are
negligible. Under Assumption (A2c), and since θn converges almost surely
to θ,

‖δn‖ =
∥∥∥∥∫ 1

0

(
∇2G

(
θ + t (θn − θ)−∇2G(θ)

))
dt (θn − θ)

∥∥∥∥ = O
(
‖θn − θ‖2

)
a.s.

Theorem 3.2 coupled with Toeplitz lemma imply in turn

1
n + 1

∥∥∥∥∥ n

∑
k=0

δk

∥∥∥∥∥ = o
(
(ln n)2+δ

n

)
a.s (22)
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In the same way, the gradient being L∇G-lipschitz and under Assumption
(H2b), one has

1
n + 1

∥∥∥∥∥ n

∑
k=0

(
H−1

k − H−1
)
∇G (θk)

∥∥∥∥∥ = o
(

(ln n)2+δ

nmin{ 1
2+pH ,1}

)
a.s. (23)

The rates obtained in (22) and (23) are negligible compared to the one in
(21), which leads to the desired conclusion.

A.4 Proof of Theorem 4.2

Considering the Weighted Averaged Stochastic Newton Algorithm defined
by (6), Inequality (18) can be adapted such as

θ̃n+1− θ = (1− γn+1)
(
θ̃n − θ

)
−γn+1H−1δ̃n−γn+1

(
S−1

n − H−1
)
∇G

(
θ̃n
)
+γn+1S−1

n ξ̃n+1

(24)
with ξ̃n+1 = ∇G

(
θ̃n
)
−∇hg

(
Xn+1, θ̃n

)
and δ̃n = ∇G

(
θ̃n
)
− H

(
θ̃n − θ

)
is

the remainder term of the Taylor’s decomposition of the gradient. Since
θ̃n, Sn are Fn-measurable and Xn+1 is independent from Fn,

(
ξ̃n+1

)
is a se-

quence of martingale differences adapted to the filtration (Fn). Moreover,
inductively, one can check that

θ̃n − θ = βn,0
(
θ̃0 − θ

)
−

n−1

∑
k=0

βn,k+1γk+1H−1δ̃k −
n−1

∑
k=0

βn,k+1γk+1

(
S−1

k − H−1
)
∇G

(
θ̃k
)

︸ ︷︷ ︸
:=∆̃n

+
n−1

∑
k=0

βn,k+1γk+1S−1
k ξ̃k+1︸ ︷︷ ︸

:=M̃n

(25)

with for all k, n ≥ 0 such that k ≤ n, βn,k = ∏n
j=k+1

(
1− γj

)
and βn,n = 1.

Focusing on the last term of (25), applying Theorem 6.1 in [6] and thanks to
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inequality (11) ∥∥∥∥∥n−1

∑
k=0

βn,k+1γk+1S−1
k ξ̃k+1

∥∥∥∥∥
2

= O
(

ln n
nγ

)
a.s. (26)

Furthermore, one can check that

|βn,0| = O
(

exp
(
− cγ

1− γ
n1−γ

))
,

and the term βn,0
(
θ̃0 − θ

)
is negligible compared to (26). Considering now

∆̃n and following the proof of Theorem 3.2, one can check that

∥∥δ̃n
∥∥ = o

(∥∥θ̃n − θ
∥∥) a.s and

∥∥∥(S−1
n − H−1

)
∇G

(
θ̃n
)∥∥∥ = o

(∥∥θ̃n − θ
∥∥) a.s

Let n0 such that for all n ≥ n0, γn ≤ 1. Then, for all n ≥ n0,

∥∥∆̃n+1
∥∥ ≤ (1− γn+1)

∥∥∆̃n
∥∥+ γn+1

(∥∥∥H−1δ̃n

∥∥∥+ ∥∥∥(S−1
n − H−1

)
∇G

(
θ̃n
)∥∥∥)

= (1− γn+1)
∥∥∆̃n

∥∥+ o
(
γn+1

∥∥θ̃n − θ
∥∥) a.s

= (1− γn+1)
∥∥∆̃n

∥∥+ o
(
γn+1

∥∥M̃n + βn,0
(
θ̃0 − θ

)∥∥+ γn+1
∥∥∆̃n

∥∥) a.s

= (1− γn+1 + o(γn+1))
∥∥∆̃n

∥∥+ o

(
γn+1

(√
ln n
nγ

+ exp
(
− cγ

1− γ
n1−γ

)))
a.s

and applying a lemma of stabilization [8] or with analogous calculus to the
ones of the proof of Lemma 3 in [14], it comes

∥∥∆̃n
∥∥2

= O
(

ln n
nγ

)
a.s.

A.5 Proof of Theorem 4.3

Remark that for all n ≥ 0, θn,τ can be written as

θn,τ − θ =
n

∏
k=j

(
1− τj

)
︸ ︷︷ ︸

:=κn,0

(θ0,τ − θ) +
n−1

∑
k=0

n

∏
j=k+1

(
1− τj

)
︸ ︷︷ ︸

:=κn,k

τk+1
(
θ̃k − θ

)
. (27)
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with κn,n = 1. Remark also that decomposition (24) can be written as

θ̃n − θ =
θ̃n − θ −

(
θ̃n+1 − θ

)
γn+1

− H−1δ̃n −
(

S−1
n − H−1

)
∇G

(
θ̃n
)
+ S−1

n ξ̃n+1

(28)
Then, decomposition (27) can be written as

θn,τ − θ = κn,0 (θ0,τ − θ) +
n

∑
k=1

κn,kτk+1
θ̃k − θ −

(
θ̃k+1 − θ

)
γk+1

− H−1
n−1

∑
k=0

κn,kτk+1δ̃k

−
n−1

∑
k=0

κn,kτk+1

(
S−1

k − H−1
)
∇G

(
θ̃k
)
+

n−1

∑
k=0

κn,kτk+1S−1
k ξ̃k+1

(29)

Let us now give the rate of convergence of each term on the right-hand side
of equality (29).

Bounding ‖∏n
k=1 (1− τk) (θ0,τ − θ)‖: Since nτn converges to τ > 1/2,

there is a rank nτ such that for all n ≥ nτ, 0 ≤ τn ≤ 1, so that for all
n ≥ nτ,

n

∏
k=1
|1− τk| ≤

nτ−1

∏
k=1
|1− τk| exp

(
n

∑
k=nτ

1− τk

)
≤

nτ

∏
k=1
|1− τk| exp

(
−

n

∑
k=nτ

τk

)
= O

(
1

nτ

)
.

(30)
Then ∥∥∥∥∥ n

∏
k=1

(1− τk) (θ0,τ − θ)

∥∥∥∥∥ = O
(

1
nτ

)
a.s.

Bounding ∑n−1
k=0 κn,kτk+1δ̃k: Since

∥∥δ̃n
∥∥ = O

(∥∥θ̃n − θ
∥∥2
)

a.s,

and with the help of Theorem 4.2, for all δ > 0, there is a positive random
variable Bδ such that∥∥∥∥∥n−1

∑
k=0

κn,kτk+1δ̃k

∥∥∥∥∥ ≤ Bδ

n

∑
k=1
|κn,k| τk+1

(ln(+1))1+δ

(k + 1)γ
a.s.
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Then, since the sequence
(
(ln n)1+δ

nγ

)
is in GS(−γ), applying Lemma 4 in

[13], ∥∥∥∥∥n−1

∑
k=0

κn,kτk+1δ̃k

∥∥∥∥∥ = o
(
(ln n)1+δ

nγ

)
a.s.

Bounding ∑n−1
k=0 κn,kτk+1

(
S−1

k − H−1
)
∇G

(
θ̃k
)
: Thanks to Assumption

(H2b’) and since the gradient of G is L∇G lipshitz, for all δ > 0, there is a
positive random variable B′δ such that∥∥∥∥∥n−1

∑
k=0

κn,kτk

(
S−1

k − H−1
)
∇G

(
θ̃k
)∥∥∥∥∥ ≤ B′δ

n−1

∑
k=0
|κn,k| τk+1

(ln(k + 1))1/2+δ

(k + 1)pS+γ/2 a.s.

Then, since the sequence
(
(ln n)1/2+δ

npS+γ/2

)
is in GS(−pS−γ/2), applying Lemma

4 in [13],∥∥∥∥∥n−1

∑
k=0

κn,kτk+1

(
S−1

k − H−1
)
∇G

(
θ̃k
)∥∥∥∥∥ = o

(
(ln n)1/2+δ

npS+γ/2

)
a.s.

Bounding ∑n−1
k=0 κn,kτk+1

θ̃k−θ−(θ̃k+1−θ)
γk+1

: Applying an Abel’s transform, one
can check that

n−1

∑
k=0

κn,kτk+1
θ̃k − θ −

(
θ̃k+1 − θ

)
γk+1

=
κn,0τ1

γ1

(
θ̃0 − θ

)
− τn

γn

(
θ̃n − θ

)
+

n−1

∑
k=1

κn,kτk+1γ−1
k+1

(
1− (1− τk+1)

τkγ−1
k

τk+1γ−1
k+1

) (
θ̃k − θ

)
Thanks to equation (30),

κn,1τ1

γ1

∥∥θ̃0 − θ
∥∥ = O

(
1

nτ

)
a.s.

Furthermore, thanks to Theorem 4.2,

τn+1

γn+1

∥∥θ̃n+1 − θ
∥∥ = O

( √
ln n

n1−γ/2

)
a.s.
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Finally, since τn is in GS(ν),

1− (1− τn+1)
τnγ−1

n

τnγ−1
n+1

= 1 + (1− τn+1)︸ ︷︷ ︸
=1− τ

n+o( 1
n )

(
1− τn

τn+1

)
︸ ︷︷ ︸

= ν
n+o( 1

n )

γ−1
n

γ−1
n+1︸ ︷︷ ︸

=1+ γ
n +o( 1

n )

− (1− τn+1)︸ ︷︷ ︸
=1− τ

n+o( 1
n )

γ−1
n

γ−1
n+1︸ ︷︷ ︸

=1+ γ
n +o( 1

n )

=
2ν− γ

n
+ o

(
1
n

)
and applying Theorem 4.2, for all δ > 0,

n−1

∑
k=1

κn,kτk+1γ−1
k+1

(
1− (1− τk+1)

τkγ−1
k

τk+1γ−1
k+1

)∥∥θ̃k − θ
∥∥ = O

(
n

∑
k=1

κn,kτk+1
(ln k)1+δ

k1−γ/2

)
a.s.

Then, since
(
(ln n)1/2+δ

n1−γ/2

)
is in GS (−1 + γ/2) and applying Lemma 4 in [13]

n−1

∑
k=1

κn,kτk+1γ−1
k+1

(
1− (1− τk+1)

τkγ−1
k

τk+1γ−1
k+1

)∥∥θ̃k − θ
∥∥ = o

(
(ln n)1/2+δ

n1−γ/2

)
a.s

so that

n−1

∑
k=1

κn,kτk+1
θ̃k − θ −

(
θ̃k+1 − θ

)
γk+1

= o
(
(ln n)1/2+δ

n1−γ/2

)
a.s.

Bounding ∑n−1
k=0 κn,kτk+1S−1

k ξ̃k+1 : First, remark that this term can be writ-
ten as

n−1

∑
k=0

κn,kτk+1S−1
k ξ̃k+1 = κn,0

n−1

∑
k=0

k

∏
j=1

(
1− τj

)−1
τk+1S−1

k ξ̃k+1︸ ︷︷ ︸
Mn

where
(

Mn
)

is a martingale term with respect to the filtration (Fn), and

〈M〉n =
n−1

∑
k=0

(
k

∏
j=1

(
1− τj

)−2

)
τ2

k+1S−1
k E

[
ξ̃k+1ξ̃T

k+1|Fk

]
S−1

k ,
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which can be written as

〈M〉n =
n−1

∑
k=0

(
k

∏
j=1

(
1− τj

)−2

)
τ2

k+1S−1
k E

[
∇hg

(
Xk+1, θ̃k

)
∇hg

(
Xk+1, θ̃k

)T |Fk

]
S−1

k

−
n−1

∑
k=0

(
k

∏
j=1

(
1− τj

)−2

)
τ2

k+1S−1
k ∇G

(
θ̃k
)
∇G

(
θ̃k
)T S−1

k

Since ∇G
(
θ̃n
)

and S−1
n converge almost surely to 0 and H−1 and applying

Lemma 4 (third equality) in [13],

κ2
n,0τ−1

n

∥∥∥∥∥n−1

∑
k=0

(
k

∏
j=1

(
1− τj

)−2

)
τ2

k+1S−1
k ∇G

(
θ̃k
)
∇G

(
θ̃k
)T S−1

k

∥∥∥∥∥ a.s−−−−→
n→+∞

0.

Furthermore, since θ̃k converges almost surely to θ, since S−1
k converges

almost surely to H−1 and thanks to assumption (A1c), there is a sequence
of random matrices Rn converging to 0 such that

S−1
k E

[
∇hg

(
Xk+1, θ̃k

)
∇hg

(
Xk+1, θ̃k

)T |Fk

]
S−1

k

= H−1 E
[
∇hg (X, θ)∇hg (X, θ)T

]
︸ ︷︷ ︸

:=Σ

H−1 + Rk.

Applying Lemma 4 (third equality) in [13],

κ2
n,0τ−1

n

∥∥∥∥∥n−1

∑
k=0

(
k

∏
j=1

(
1− τj

)−2

)
τ2

k+1Rk

∥∥∥∥∥ a.s−−−−→
n→+∞

0.

Finally, applying Lemma 4 (second equality) in [13],

κ2
n,0τ−1

n

n−1

∑
k=0

k

∏
j=1

(
1− τj

)−2
τ2

k+1H−1ΣH−1 −−−−→
n→+∞

τ

2τ + ν
H−1ΣH−1

Then,
κ2

n,0τ−1
n 〈M〉n

p.s−−−−→
n→+∞

H−1ΣH−1

Then, thanks to inequality (11) and with the help of the law of large num-
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bers for martingales [8], it comes

‖Mn‖2 = O

(
ln(n)

τn

κ2
n,0

)
a.s

which can be written, since nτn converges to τ, as

‖κn,0Mn‖2 = O
(

ln n
n

)
a.s.

Furthermore, thanks to inequality (11), the Lindeberg condition for Cen-
tral Limit Theorem for martingales is verified. Indeed, thanks to Hölder’s
inequality, for all ε > 0,

Ln := κ2
n,0τ−1

n

n−1

∑
k=1

k

∏
j=1

κ−2
k,0 τ2

k+1E

[∥∥∥H−1
k ξ̃k+1

∥∥∥2
1

κ−1
k,0 τk+1

∥∥∥H−1
k ξ̃k+1

∥∥∥≥εκ−1
n,0τ1/2

n

∣∣∣Fk

]

≤
κ2

n,0

τn

n−1

∑
k=1

τ2
k+1

κ2
k,0

∥∥∥H−1
k

∥∥∥2

op

(
E
[∥∥ξ̃k+1

∥∥2+2η |Fk

]) 1
1+η

(
P

[
τk+1

κk,0

∥∥∥H−1
k ξ̃k+1

∥∥∥ ≥ ε
√

τn

κn,0
|Fk

]) η
1+η

.

Then, applying Markov inequality,

Ln ≤
κ2

n,0

τn

n−1

∑
k=0

τ2
k+1

κ2
k,0

∥∥∥H−1
k

∥∥∥2

op

(
E
[∥∥ξ̃k+1

∥∥2+2η |Fk

]) 1
1+η
∥∥∥H−1

k

∥∥∥2η

op

(
E
[∥∥ξ̃k+1

∥∥2+2η |Fk

]) η
1+η κ

2η
n,0τ

2η
k+1

ε2τ
η
n κ

2η
k,0

=
1
ε2

κ
2+2η
n,0

τ
1+η
n

n−1

∑
k=0

τ
2+2η
k+1

κ
2+2η
k,0

∥∥∥H−1
k

∥∥∥2+2η

op
E
[∥∥ξ̃k+1

∥∥2+2η |Fk

]
.

Furthermore, thanks to Theorem 4.2 as inequality (11) and Assumption
(H2a’), there is a positive random variable B such that

Ln ≤
B
ε2

κ
2+2η
n,0

τ
1+η
n

n−1

∑
k=0

τ
2+2η
k+1

κ
2+2η
k,0

and applying Lemma 4 in [13], this term converges to 0. Then the Lindeberg
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condition is verified and it comes

κn,0τ−1/2
n Mn

L−−−−→
n→+∞

N
(

0,
τ

2τ + ν
H−1ΣH−1

)
and since nτn converges to τ, this can be written as

√
nκn,0Mn

L−−−−→
n→+∞

N
(

0,
τ2

2τ + ν
H−1ΣH−1

)
,

which concludes the proof.

A.6 Proof of Theorem 4.4

Let us recall that θ̃n+1 can be written as

θ̃n+1 − θ = θ̃n − θ − γn+1S−1
n ∇G

(
θ̃n
)
+ γn+1S−1

n ξ̃n+1.

Then, linearizing the gradient,

θ̃n+1 − θ =
(

Id − γn+1S−1
n H

) (
θ̃n − θ

)
− γn+1S−1

n δ̃n + γn+1S−1
n ξ̃n+1,

which can be written as

θ̃n − θ = H−1Sn

(
θ̃n − θ

)
−
(
θ̃n+1 − θ

)
γn+1

+ H−1δ̃n + H−1ξ̃n+1 (31)

Then, thanks to decomposition (27),

θn,τ − θ = κn,0 (θ0,τ − θ) + H−1
n−1

∑
k=0

κn,kτk+1Sk

(
θ̃k − θ

)
−
(
θ̃k+1 − θ

)
γk+1

− H−1
n−1

∑
k=0

κn,kτk+1δ̃k

+ H−1
n−1

∑
k=0

κn,kτk+1ξ̃k+1. (32)

Note that the rate of convergence of the first and third term on the right-
hand side of previous equality are given in the proof of Theorem 4.3. For
the martingale term, with analogous calculus as the ones in the proof of
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Theorem 4.3, one can check that∥∥∥∥∥H−1
n−1

∑
k=0

κn,kτk+1ξ̃k+1

∥∥∥∥∥
2

= O
(

ln n
n

)
a.s

and

√
n

(
H−1

n−1

∑
k=0

κn,kτk+1ξ̃k+1

)
L−−−−→

n→+∞
N

(
0,

τ2

2τ + ν
H−1ΣH−1

)
.

Then, in order to conclude the proof, we have to give the rate of conver-
gence of the second term on the right-hand side of equality (32). Applying
an Abel’s transform,

n−1

∑
k=0

κn,kτk+1Sk

(
θ̃k − θ

)
−
(
θ̃k+1 − θ

)
γk+1

=
κn,0τ1

γ1
S−1

0
(
θ̃0 − θ

)
− τn

γn
S−1

n−1
(
θ̃n − θ

)
−

n−1

∑
k=1

(
κn,k−1

τk

γk
Sk−1 − κn,k

τk+1

γk+1
Sk

) (
θ̃k − θ

)
︸ ︷︷ ︸

:=Rn

The rate of convergence of the two first term on the right hand side of pre-
vious equality are given (since Sn converges almost surely to H−1) in the
proof of Theorem 4.3. Remark that since Sk = Sk−1 +

1
k+1

(
ukΦkΦT

k − Sk−1

)
,

Rn can be rewritten as

Rn =
n−1

∑
k=1

(
κn,k−1

τk

γk
− κn,k

τk+1

γk+1

)
Sk−1

(
θ̃k − θ

)
︸ ︷︷ ︸

:=R1,n

+
n−1

∑
k=1

κn,k
τk+1

γk+1

1
k + 1

(
Sk−1 − ukΦkΦT

k +
cβ

kβ
ZkZT

k

) (
θ̃k − θ

)
︸ ︷︷ ︸

:=R2,n

Let us now give the rate of convergence of the two terms.
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Rate of convergence of R1,n: First, since κn,k−1 = (1− τk) κn,k,

R1,n =
n−1

∑
k=1

κn,k

(
(1− τk)

τk

γk
− τk+1

γk+1

)
Sk−1

(
θ̃k − θ

)
=

n−1

∑
k=1

κn,k
τk+1

γk+1

(
(1− τk)

τkγk+1

τk+1γk
− 1
)

S−1
k−1
(
θ̃k − θ

)
Since

1− (1− τn−1)
τn−1γn+1

τnγn
=
−2ν + γ

n
+ o

(
1
n

)
,

applying Lemma 4 in [13] coupled with Theorem 4.2, it comes that for all
δ > 0,

‖R1,n‖ = o
(
(ln n)1/2+δ

n1−γ/2

)
a.s.

Rate of convergence of R2,n: Thanks to Theorem 4.2 coupled with lemma
4 in [13], one can check that for all δ > 0,

∥∥θ̃τ,n − θ
∥∥ = o

(
(ln n)1/2+δ

nγ/2

)
a.s.

Then, let us consider the sequence of events (Ωn) defined for all n ≥ 0 by

Ωn =
{∥∥θ̃n − θ

∥∥ < (ln(n)1/2+δγ1/2
n+1, ‖θτ,n−1 − θ‖ < (ln(n))1/2+δγ1/2

n

}
.

Remark that 1ΩC
n

converges almost surely to 0. Then, one can write R2,n as

R2,n =
n−1

∑
k=1

κn,k
τk+1

γk+1

1
k + 1

Sk−1
(
θ̃k − θ

)
−

n−1

∑
k=1

κn,k
τk+1

γk+1

1
k + 1

(
ukΦkΦT

k +
cβ

kβ
ZkZT

k

) (
θ̃k − θ

)
1ΩC

k

−
n

∑
k=1

κn,k
τk+1

γk+1

1
k + 1

(
ukΦkΦT

k +
cβ

kβ
ZkZT

k

) (
θ̃k − θ

)
1Ωk .
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Applying Lemma 4 in [13], for all δ > 0,∥∥∥∥∥n−1

∑
k=1

κn,k
τk+1

γk+1

1
k + 1

Sk
(
θ̃k − θ

)∥∥∥∥∥ = o
(
(ln n)1/2+δ

n1−γ/2

)
a.s.

Furthermore, remark that

n−1

∑
k=1

κn,k
τk+1

γk+1

1
k + 1

(
ukΦkΦT

k +
cβ

kβ
ZkZT

k

) (
θ̃k − θ

)
= κn,0

n−1

∑
k=1

κ−1
k−1,0

τk+1

γk+1

1
k + 1

(
ukΦkΦT

k +
cβ

kβ
ZkZT

k

) (
θ̃k − θ

)
Since 1ΩC

n
converges almost surely to 0,

∑
k≥1

κ−1
k−1,0

τk+1

γk+1

1
k + 1

∥∥∥∥ukΦkΦT
k +

cβ

kβ
ZkZT

k

∥∥∥∥ ∥∥θ̃k − θ
∥∥ 1ΩC

k
< +∞ a.s

and∥∥∥∥∥n−1

∑
k=1

κn,k
τk+1

γk+1

1
k + 1

(
ukΦkΦT

k +
cβ

kβ
ZkZT

k

) (
θ̃k − θ

)
1ΩC

k

∥∥∥∥∥ = O (κn,0) a.s

= O
(

1
nτ

)
a.s,

which is negligible since τ > 1/2. Finally, let

R3,n =
n−1

∑
k=1

κn,k
τk+1

γk+1

1
k + 1

∥∥∥∥ukΦkΦT
k +

cβ

kβ
ZkZT

k

∥∥∥∥ ∥∥θ̃k − θ
∥∥ 1Ωk

≤
n−1

∑
k=1

κn,k
τk+1√
γk+1

1
k + 1

(ln k)1/2+δ

∥∥∥∥ukΦkΦT
k +

cβ

kβ
ZkZT

k

∥∥∥∥ 1Ωk

≤
n−1

∑
k=1

κn,k
τk+1√
γk+1

1
k + 1

(ln k)1/2+δ

∥∥∥∥ukΦkΦT
k +

cβ

kβ
ZkZT

k

∥∥∥∥ 1Ω′k−1︸ ︷︷ ︸
:=∆k
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with Ω′k−1 =
{
‖θτ,k−1 − θ‖ ≤ (ln(k))1/2+δγk

}
. Then, R3,n can be written as

R3,n =
n−1

∑
k=1

κn,k
τk+1√
γk+1

1
k + 1

(ln k)1/2+δE [∆k|Fk−1]+
n−1

∑
k=1

κn,k
τk+1√
γk+1

1
k + 1

(ln k)1/2+δΞk

with Ξk = ∆k −E [∆k|Fk−1]. Remark that (Ξn+1) is a sequence of martin-
gale differences adapted to the filtration (Fn) defined for all n by Fn =

σ ((X1, Z1) , . . . , (Xn, Zn)). Thanks to inequality (12) coupled with lemma 4
in [13],

n−1

∑
k=1

κn,k
τk+1√
γk+1

1
k + 1

(ln k)1/2+δE [∆k|Fk−1] = o
(
(ln n)1/2+δ

n1−γ/2

)
a.s.

Let us now consider α ∈ (1/2, τ), and Vn = n2α
(

∑n−1
k=1 κn,k

τk+1√
γk+1

1
k+1 (ln k)1/2+δΞk

)2
.

Then,

E [Vn|Fn−1] = |1− τn|2
(

n
n− 1

)2α

Vn−1 + n2α τ2
n

γn

(ln(n− 1))1+δ

n2 E
[
∆2

n|Fn−1
]

Since

|1− τn|2
(

n
n− 1

)2α

= 1− 2
τ − α

n
+ o

(
1
n

)
,

thanks to inequality (13) and applying Robbins-Siegmund Theorem,(
n−1

∑
k=1

κn,k
τk+1√
γk+1

1
k + 1

(ln k)1/2+δΞk

)2

= O
(

1
n2α

)
a.s.

which concludes the proof.

A.7 Proof of Theorem 5.1

Verifying (A1). First, remark that for all h ∈ Rd, ‖∇hg(X, Y, h)‖ ≤ X.
Then, since X admits a second order moment, Assumption (A1b) is veri-
fied. Furthermore, we have

∇G(θ) = E [∇hg(X, Y, θ)] = E
[
π
(

θTX
)
−Y

]
= E

[
π
(

θTX
)
−E[Y|X]

]
= 0
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and (A1a) is so verified. Furthermore, since X admits a second order mo-
ment and since the functional π is continuous, the functional

Σ : h 7−→ E
[
∇hg(X, Y, h)∇hg(X, Y, h)T

]
= E

[(
Y− π

(
XTh

))2
XXT

]
is continuous on Rd, and in particular at θ. Then, (A1c) is verified.

Verifying (A2a) and (A2b). First, remark that (A2a) is verified thanks to
hypothesis. Furthermore, note that for all h ∈ Rd,

∇2G(h) = E
[
π
(

hTX
) (

1− π
(

hTX
))

XXT
]

and by continuity of π and since X admits a second order moment, G is
twice continuously differentiable. Furthermore,

∥∥∇2G(h)
∥∥

op ≤
1
4 E
[
‖X‖2

]
and (A2a) is so verified.

Verifying (H1’). Only the mains ideas are given since a detailed analogous
proof is available in [2] (proof of Theorem 4.1). Remark that thanks to Ric-
cati’s formula, we have

Sn =
1

n + 1

(
S0 +

n

∑
k=1

akXkXT
k

)

and that by definition, ak ≥
cβ

kβ . Then, λmin
(
Sn
)
≥ 1

n+1 λmin

(
∑n

k=1
cβ

kβ XkXT
k

)
,

and one can easily check that

1

∑n
k=1

cβ

kβ

n

∑
k=1

cβ

kβ
XkXT

k
p.s−−−−→

n→+∞
E
[

XXT
]

(33)

which is supposed to be positive (since ∇2G(θ) is). Then, one can easily
check that

λmax

(
S−1

n

)
= O

(
nβ
)

a.s.

In a same way, since ak ≤ 1
4 , one can easily check that

λmax

(
S−1

n

)
= O (1) a.s
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and (H1’) is so verified.

Conclusion 1. Since Assumptions (A1), (A2a), (A2b) as well as (H1’) are
verified, Theorem 4.1 holds, i.e θ̃n and θτ,n converge almost surely to θ.

Verifying (H2a’). Only the mains ideas are given since a detailed analogous
proof is available in [2] (proof of Theorem 4.1). Remark that Sn can be
written as

Sn =
1

n + 1

(
S0 +

n

∑
k=1

akXkXT
k +

n

∑
k=1

(ak − ak) XkXT
k

)

and since ak − ak 6= 0 if and only if ak > ak, it comes thanks to equation
(33),∥∥∥∥∥ 1

n + 1
S0 +

1
n + 1

n

∑
k=1

akXkXT
k

∥∥∥∥∥
op

=
1

n + 1

∥∥S0
∥∥

op +
1

n + 1

∥∥∥∥∥ n

∑
k=1

cβ

kβ
XkXT

k

∥∥∥∥∥
op

= O
(

n−β
)

a.s.

Furthermore, as in the proof of Theorem 4.1 in [2], one can check, since θτ,n

converges to θ, that

1
n

n

∑
k=1

akXkXT
k =

1
n

n

∑
k=1

π
(

θT
τ,k−1Xk

) (
1− π

(
θT

τ,k−1Xk

))
XkXT

k
a.s−−−−→

n→+∞
∇2G(θ)

and (H2a’) is so verified.

Conclusion 2. Since Assumptions (A1), (A2a), (A2b), (H1’) and (H2a’) are
verified, if X admits a moment of order 2+ 2η with η > 1

α − 1, Theorem 4.2
holds, i.e ∥∥θ̃n − θ

∥∥2
= O

(
ln n
nγ

)
a.s.

Verifying (A2c). Thanks to Lemma 6.2 in [2], we have for all h1, h2 ∈ Rd,∣∣∣π (hT
1 X
) (

1− π
(

hT
1 X
))
− π

(
hT

2 X
) (

1− π
(

hT
2 X
))∣∣∣ ≤ 1

12
√

3
‖X‖ ‖h1 − h2‖
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and in a particular case, it comes

∥∥∇2G (h1)−∇2G (h2)
∥∥

op ≤
1

12
√

3
E
[
‖X‖3

]
‖h1 − h2‖

and (A2c) is verified since X admits a third order moment.

Verifying inequalities (12) and (13). Remark that for all n ≥ 1,∥∥∥anXnXT
n

∥∥∥ ≤ max
{

1
4

, cβ

}
‖X‖2 =: Ca,β‖X‖2

so that, if X admits a fourth order moment,

E
[∥∥∥anXnXT

n

∥∥∥] ≤ Ca,βE
[
‖X‖2

]
and E

[∥∥∥anXnXT
n

∥∥∥2
]
≤ C2

a,βE
[
‖X‖4

]
and inequalities (12) and (13) are so verified.

Conclusion 3. Theorem 4.4 holds, meaning that

‖θτ,n − θ‖2 = O
(

ln n
n

)
a.s and

√
n (θτ,n − θ)

L−−−−→
n→+∞

N
(

0, H−1
)

.

Convergence of Sn. First, let us recall

Sn =
1

n + 1

S0 +
n

∑
k=1

akXkXT
k︸ ︷︷ ︸

An

+
n

∑
k=1

(ak − ak) XkXT
k


and that ∥∥∥∥∥ 1

n + 1

(
S0 +

n

∑
k=1

(ak − ak) XkXT
k

)∥∥∥∥∥
2

= O
(

1
n2β

)
a.s.

Furthermore, let us split An into two terms, i.e

An =
n

∑
k=1
∇2G (θτ,k−1) +

n

∑
k=1

Ξk
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with Ξk = akXkXT
k − ∇2G (θτ,k−1). Since (ξn) is a sequence of martin-

gale differences adapted to the filtration (Fn) and since E
[
‖Ξk‖2 |Fk−1

]
≤

1
16 E

[
‖X‖4

]
, we have (see Theorem 6.2 in [6]) for all δ > 0

∥∥∥∥∥ 1
n + 1

n

∑
k=1

Ξk

∥∥∥∥∥
2

= o
(
(ln n)1+δ

n

)
a.s.

Furthermore, since X admits a third order moment, the Hessian is 1
12
√

3
E
[
‖X‖3]-

lipschitz and for all δ > 0, by Toeplitz Lemma,∥∥∥∥∥ 1
n

n

∑
k=1
∇2G (θτ,k−1)−∇2G(θ)

∥∥∥∥∥ ≤ E
[
‖X‖3]

12
√

3n

n

∑
k=1
‖θτ,k−1 − τk‖ = o

(
(ln n)1/2+δ/2
√

n

)
a.s,

which concludes the proof.

A.8 Proofs of Theorems 5.2 and 5.3

In what follows, let us recall that we consider the functional G : Rp × . . .×
Rp −→ R defined for all h = (h1, . . . , hK) by

G(h) := E

[
log

(
ehT

Y X

∑K
k=1 ehT

k X

)]

A.8.1 Some results on the functional G

Verifying assumption (A1). First remark that

‖∇hg (X, Y, h)‖ ≤
√

K ‖X‖ .
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and if X admits a second order moment, (A1b) is verified. Furthermore it
is evident that (A1a) is verified. Indeed, we have

∇G(θ) = E [E [∇hg(X, Y, θ)|X]] = E




X
(

eθT
1 X

∑K
k=1 eθT

k X
−E [1Y=1|X]

)
...

X
(

eθT
K X

∑K
k=1 eθT

k X
−E [1Y=K|X]

)


 = 0.

Furthermore, for all h,

E
[
∇hg(X, Y, h)∇hg (X, Y, h)T

]
−E

[
∇hg(X, Y, θ)∇hg (X, Y, θ)T

]
= E

[
(σ(X, h)− σ(X, θ)) (σ(X, h)− σ(X, θ))T ⊗ XXT

]
. (34)

and since the functional σ is bounded and continuous, by dominated con-
vergence, since X admits a second order moment, (A1c) is verified.

Verifying assumption (A2). First, remark that for all h, since ‖σ(., .)‖ is
bounded by

√
K,

∥∥∇2G(h)
∥∥

op ≤ E
[
‖X‖2 ‖σ (X, h)‖

]
≤
√

KE
[
‖X‖2

]
.

Then, if X admits a second order moment, assumption (A2a) is verified.
Furthermore, (A2b) is verified by hypothesis. Finally, let us consider the
functional Fk′ : [0, 1] −→ R defined for all t by

Fk′(t) =
e(θk′+t(hk′−θk′ ))

T X

∑K
k=1 e(θk+t(hk−θk))

T X

Then, for all t ∈ [0, 1],

F′(t) =
(hk′ − θk′)

T Xe(θk′+t(hk′−θk′ ))
T X

∑K
k=1 e(θk+t(hk−θk))

T X
− e(θk′+(hk′−θk′ ))

T X ∑K
k=1 t (hk − θk)

T Xe(θk+t(hk−θk))
T X(

∑K
k=1 e(θk+t(hk−θk))

T X
)2

︸ ︷︷ ︸
(∗)
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First, one can check that for all t ∈ [0, 1],∣∣∣∣∣ (hk′ − θk′)
T Xe(θk′+t(hk′−θk′ ))

T X

∑K
k=1 e(θk+t(hk−θk))

T X

∣∣∣∣∣ ≤ ‖hk′ − θk′‖ ‖X‖.

Furthermore, applying Cauchy Schwartz inequality,

(∗) ≤ ‖X‖ e(θk′+t(hk′−θk′ ))
T X(

∑K
k=1 e(θk+t(hk−θk))

T X
)2

√√√√ K

∑
k=1
‖hk − θk‖2

√√√√ K

∑
k=1

e2(θk+t(hk−θk))
T X ≤ ‖X‖ ‖θ − h‖ .

Then, ∣∣∣∣∣ eθT
k′X

∑K
k=1 eθT

k X
− ehT

k′X

∑K
k=1 ehT

k X

∣∣∣∣∣ ≤ ‖X‖ (‖hk′ − θk′‖+ ‖θ − h‖) . (35)

Then,
‖σ(X, h)− σ(X, θ)‖ ≤ 2

√
K ‖X‖ ‖θ − h‖ (36)

and
‖diag (σ(X, θ))− diag (σ(X, h))‖ ≤ 2

√
K ‖X‖ ‖θ − h‖

Then, ∥∥∇2G(θ)−∇2G(h)
∥∥ ≤ 6

√
KE

[
‖X‖3

]
‖h− θ‖ .

Finally, if X admits a third order moment, the Hessian is 6
√

KE
[
‖X‖3

]
lipschitz and assumption (A2c) is so verified.

A.8.2 Proof of Theorems 5.2 and 5.3

We first give the proof of Theorem 5.2.

Proof of Theorem 5.2. Verifying (H1). Remark that

λmin (Hn) ≥ λmin

(
n

∑
k=1

βkZkZT
k

)
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and that, since β ∈ (0, 1/2),

1− β

c−1
β n1−β

n

∑
k=1

βkZkZT
k

a.s−−−−→
n→+∞

IpK.

Then, ∥∥∥H−1
n

∥∥∥ = O
(

nβ
)

a.s.

Furthermore, since ‖∇hg(X, Y, h)‖ ≤ ‖X‖, and thanks to assumption (HS1a),

1
n + 1

∥∥∥∥∥ n

∑
k=1
∇hg (Xk, Yk, θk−1)∇hg (Xk, Yk, θk−1)

T

∥∥∥∥∥ ≤ 1
n

n

∑
k=1
‖Xk‖2 a.s−−−−→

n→+∞
E
[
‖X‖2

]
ans assumption (H1) is so verified.

Conclusion 1. Since Assumptions (A1a), (A1b),(A2a), (A2b) and (H1) are
fulfilled, Theorem 3.1 holds, i.e θn converges almost surely to θ.

Verifying (H2a). First, let us rewrite Hn as

Hn =
1

n + 1

H−1
0 +

n

∑
k=1
∇hg (Xk, Yk, θk−1)∇hg (Xk, Yk, θ)T

︸ ︷︷ ︸
:=An

+
n

∑
k=1

cβ

kβ
ZkZT

k


and we have already proven that∥∥∥∥∥ 1

n + 1

(
H−1

0 +
n

∑
k=1

cβ

kβ
ZkZT

k

)∥∥∥∥∥
2

= O
(

1
n2β

)
p.s.

Furthermore, one can rewrite An as

An =
n

∑
k=1

E
[
∇hg (Xk, Yk, θk−1)∇hg (Xk, Yk, θk−1)

T |Fk−1

]
+

n

∑
k=1

Ξk

with Ξk := ∇hg (Xk, Yk, θk−1)∇hg (Xk, Yk, θk−1)
T−E

[
∇hg (Xk, Yk, θk−1)∇hg (Xk, Yk, θk−1)

T |‘Fk−1

]
.

First, note that if X admits a fourth order moment, E
[
‖∇hg (Xk, Yk, θk−1)‖4 |Fk−1

]
≤
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K2E
[
‖X‖4

]
, so that applying Theorem 6.2 in [6], for all δ > 0,

∥∥∥∥∥ 1
n + 1

n

∑
k=0

Ξk

∥∥∥∥∥
2

= o
(
(ln n)1+δ

n

)
a.s.

Furthermore, we have proven that if X admits a second order moment,
(A1c) is fulfilled. Then, since θn converges almost surely to θ and by conti-
nuity

1
n + 1

n

∑
k=1

E
[
∇hg (Xk, Yk, θk−1)∇hg (Xk, Yk, θk−1)

T |Fk−1

]
a.s−−−−→

n→+∞
E [∇hg (X, Y, θ)∇hg (X, Y, θ)] = H,

and assumption (H2a) is so fulfilled.

Conclusion 2. If X admits a second order moment, Assumptions (A1),
(A2), (H1), (H2a) are verified and Theorem 3.2 holds, i.e

‖θn − θ‖2 = O
(

ln n
n

)
a.s.

Verifying (H2b). Note that thanks to inequalities (34) and (36),∥∥∥E
[
∇hg (X, Y, h)∇hg (X, Y, h)−∇hg (X, Y, θ)∇h (X, Y, θ)T

]∥∥∥ ≤ E
[
‖σ(X, h)− σ(X, θ)‖2 ‖X‖2

]
≤ 4KE

[
‖X‖4

]
‖h− θ‖2 .

Then, thanks to Toeplitz lemma, it comes that for all δ > 0,∥∥∥∥∥ 1
n + 1

n

∑
k=1

E
[
∇hg (Xk, Yk, θk−1)∇hg (Xk, Yk, θk−1)

T |Fk−1

]
− H

∥∥∥∥∥
≤ ‖H‖

n + 1
+

4KE
[
‖X‖4

]
n + 1

n

∑
k=1
‖θk−1 − θ‖2 = o

(
(ln n)1+δ

n

)
a.s.
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Then, ∥∥Hn − H
∥∥2

= O
(

1
n2β

)
a.s,

and (H2b) is so verified.

Conclusion 3. If X admits a fourth order moment, Assumptions (A1),
(A2), (H1), (H2a) and (H2b) are fulfilled, so that Theorem 3.3 holds, which
can be written, since

E
[
∇hg (X, Y, θ)∇hg (X, Y, θ)T

]
= H,

as √
n (θn − θ)

L−−−−→
n→+∞

N
(

0, H−1
)

.

Proof of Theorem 5.3. Verifying (H1’) and conclusion 1. If X admits a sec-
ond order moment, with the same calculus as in the proof of Theorem 5.2,
up to take β < γ− 1/2 instead of β < 1/2, one can check that this assump-
tion is verified. Then, θ̃n and θτ,n converge almost surely to θ.

Verifying (H2a’) and conclusion 2. If X admits a fourth order moment,
with the same calculus as in the proof of Theorem 5.2, up to take β < γ−
1/2 instead of β < 1/2, one can check that this assumption is verified.
Then, ∥∥θ̃n − θ

∥∥2
= O

(
ln n
nγ

)
a.s.

Furthermore, let us recall that

θτ,n − θ = κn,0 (θ0,τ − θ) +
n−1

∑
k=0

κn,kτk+1
(
θ̃k − θ

)
and that |κn,0| = O (n−τ). Furthermore, applying Lemma 4 in [13], for all
δ > 0,

n−1

∑
k=0

κn,kτk+1
∥∥θ̃k − θ

∥∥ = o
(
(ln n)1/2+δ/2

nγ/2

)
a.s
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leading, since τ > 1/2, to

‖θτ,n − θ‖2 = o
(
(ln n)1+δ

nγ

)
a.s.

Verifying (H2b). Note that thanks to inequalities (34) and (36),∥∥∥E
[
∇hg (X, Y, h)∇hg (X, Y, h)−∇hg (X, Y, θ)∇h (X, Y, θ)T

]∥∥∥
≤ E

[
‖σ(X, h)− σ(X, θ)‖2 ‖X‖2

]
≤ 4KE

[
‖X‖4

]
‖h− θ‖2 .

Then, thanks to Toeplitz lemma, it comes that for all δ > 0,∥∥∥∥∥ 1
n + 1

n

∑
k=1

E
[
∇hg (Xk, Yk, θτ,k−1)∇hg (Xk, Yk, θτ,k−1)

T |Fk−1

]
− H

∥∥∥∥∥
≤ ‖H‖

n + 1
+

4KE
[
‖X‖4

]
n + 1

n

∑
k=1
‖θτ,k−1 − θ‖2

= o
(
(ln n)1+δ

nγ

)
a.s.

Then, since β < γ− 1/2,

∥∥Hn − H
∥∥2

= O
(

1
n2β

)
a.s,

and (H2b) is so verified.

Conclusion 3. If X admits a fourth order moment, Assumptions (A1),
(A2), (H1’), (H2a’) and (H2b’) are fulfilled, and Theorem 4.3 holds, i.e

‖θτ,n − θ‖ = O
(

ln n
n

)
a.s and

√
n (θτ,n − θ)

L−−−−→
n→+∞

N
(

0, H−1
)
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B Additional figures

1 5 10 50 500 5000

0.
5

1.
0

1.
5

2.
0

2.
5

Sample size

Q
ua

dr
at

ic
 m

ea
n 

er
ro

r

SN with step (n+100)−0. 75

SN with step (n+100)−1

ASN (standard)
ASN (log)
SGD
ASGD
Adagrad
Adagrad (averaged)

1 5 10 50 500 5000

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Sample size

Q
ua

dr
at

ic
 m

ea
n 

er
ro

r
SN with step (n+100)−0. 75

SN with step (n+100)−1

ASN (standard)
ASN (log)
SGD
ASGD
Adagrad
Adagrad (averaged)

1 5 10 50 500 5000

10
15

20
25

Sample size

Q
ua

dr
at

ic
 m

ea
n 

er
ro

r

SN with step (n+100)−0. 75

SN with step (n+100)−1

ASN (standard)
ASN (log)
SGD
ASGD
Adagrad
Adagrad (averaged)

Figure 6: (Softmax regression with heteroscedastic Gaussian variables)
Mean-squared error of the distance to the optimum θ with respect to the
sample size for different initializations: θ0 = θ + r0U, where U is a uniform
random variable on the unit sphere of Rd, with r0 = 1 (left), r0 = 2 (mid-
dle) or r0 = 5 (right). Each curve is obtained by an average over 50 different
samples of size n = 5000 (drawing a different initial point each time).
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