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I use the equation (4) of the Gersten paper [1a] for the two-component spinor field function:

(E 2 -c 2 p 2 )I (2) ψ = EI (2) c p • σ EI (2) + c p • σ ψ = 0 ([1a], eq.( 4)).

(1) Actually, this equation is the massless limit of the equation which has been presented (together with the corresponding method of derivation of the Dirac equation) in the Sakurai book [2]. In the latter case one should substitute m 2 c 4 into the right-hand side of eq. ( 1). However, instead of equation (3.25) of [2] one can define the two-component 'right' field function

φ R = 1 m 1 c (i ∂ ∂x 0 -i σ • ∇)ψ, φ L = ψ (2) 
with different mass parameter m 1 . In such a way we come to the Valeriy V. Dvoeglazov Generalized Equations and Their Solutions in the (S, 0) ⊕ (0, S Abstract 1. Generalized Neutrino Equations. 2. Negative Energies in the Dirac Equation 3. Non-commutativity in the Dirac Equation system of the first-order differential equations

(i ∂ ∂x 0 + i σ • ∇)φ R = m 2 2 c m 1 φ L , (3) 
(i ∂ ∂x 0 -i σ • ∇)φ L = m 1 cφ R . (4) 
It can be re-written in the 4-component form:

i (∂/∂x 0 ) i σ • ∇ -i σ • ∇ -i (∂/∂x 0 ) ψ A ψ B = (5) = c 2 (m 2 2 /m 1 + m 1 ) (-m 2 2 /m 1 + m 1 ) (-m 2 2 /m 1 + m 1 ) (m 2 2 /m 1 + m 1 ) ψ A ψ B for the function Ψ = column(ψ A ψ B ) = column(φ R + φ L φ R -φ L ).
The equation ( 5) can be written in the covariant form.

iγ µ ∂ µ - m 2 2 c m 1 (1 -γ 5 ) 2 - m 1 c (1 + γ 5 ) 2 Ψ = 0 . (6) 
The standard representation of γ µ matrices has been used here.

If m 1 = m 2 we can recover the standard Dirac equation. As noted in [4b] this procedure can be viewed as the simple change of the representation of γ µ matrices. However, unless m 2 = 0. Otherwise the entries in the transformation matrix become to be singular. Furthermore, one can either repeat a similar procedure (the modified Sakurai procedure) starting from the massless equation ( 4) of [1a] or put m 2 = 0 in eq. ( 6). The massless equation is 2

iγ µ ∂ µ - m 1 c (1 + γ 5 ) 2 Ψ = 0 . (7) 
Then, we may have different physical consequences following from (7) with those which follow from the Weyl equation. 3 The mathematical reason of such a possibility of different massless limits is that the corresponding change of representation of γ µ matrices involves mass parameters m 1 and m 2 themselves.

It is interesting to note that we can also repeat this procedure for the definition (or for even more general definitions);

φ L = 1 m 3 c (i ∂ ∂x 0 + i σ • ∇)ψ, φ R = ψ . ( 8 
)
This is due to the fact that the parity properties of the two-component spinor are undefined in the two-component equation. The resulting equation is

iγ µ ∂ µ - m 2 4 c m 3 (1 + γ 5 ) 2 - m 3 c (1 -γ 5 ) 2 Ψ = 0 , (9) 
which gives us yet another equation in the massless limit (m 4 → 0):

iγ µ ∂ µ - m 3 c (1 -γ 5 ) 2 Ψ = 0 , (10) 
differing in the sign at the γ 5 term.

The above procedure can be generalized to any Lorentz group representations, i. e., to any spins. In some sense the equations (7,10) are analogous to the S = 1 equations [3, (4-7,10-13)], which also contain additional parameters.

Is the physical content of the generalized S = 1/2 massless equations the same as that of the Weyl equation? Our answer is 'no'. The excellent discussion can be found in [4a,b]. First of all, the theory does not have chiral invariance. Those authors call the additional parameters as the measures of the degree of chirality. Apart of this, Tokuoka introduced the concept of the gauge transformations (not to confuse with phase transformations) for the 4-spinor fields. He also found some strange properties of the anti-commutation relations (see §3 in [4a] and cf. [11b]). And finally, the equation (7) describes four states, two of which answer for the positive energy E = |p|, and two others answer for the negative energy E = -|p|. I just want to add the following to the discussion. The operator of the chiral-helicity η = (α • p) (in the spinorial representation) used in [4b] (and re-discovered in [11a]) does not commute, e.g., with the Hamiltonian of the equation ( 7):

4 [H, α • p] -= 2 m 1 c 1 -γ 5 2 (γ • p) . ( 11 
)
For the eigenstates of the chiral-helicity the system of corresponding equations can be read (η =↑, ↓)

iγ µ ∂ µ Ψ η - m 1 c 1 + γ 5 2 Ψ -η = 0 . ( 12 
)
The conjugated eigenstates of the Hamiltonian

|Ψ ↑ + Ψ ↓ > and |Ψ ↑ -Ψ ↓ > are connected, in fact, by γ 5 transformation Ψ → γ 5 Ψ ∼ (α • p)Ψ (or m 1 → -m 1 )
. However, the γ 5 transformation is related to the PT (t → -t only) transformation [4b], which, in its turn, can be interpreted as E → -E , if one accepts the Stueckelberg idea about antiparticles.

Valeriy V. Dvoeglazov Generalized Equations and Their Solutions in the (S, 0) ⊕ (0, S Abstract 1. Generalized Neutrino Equations. 2. Negative Energies in the Dirac Equation 3. Non-commutativity in the Dirac Equation We associate |Ψ ↑ + Ψ ↓ > with the positive-energy eigenvalue of the Hamiltonian E = |p| and |Ψ ↑ -Ψ ↓ >, with the negative-energy eigenvalue of the Hamiltonian (E = -|p|). Thus, the free chiral-helicity massless eigenstates may oscillate one to another with the frequency ω = E / (as the massive chiral-helicity eigenstates, see [10a] for details). Moreover, a special kind of interaction which is not symmetric with respect to the chiral-helicity states (for instance, if the left chiral-helicity eigenstates interact with the matter only) may induce changes in the oscillation frequency, like in the Wolfenstein (MSW) formalism. The question is: how can these frameworks be connected with the Ryder method of derivation of relativistic wave equations, and with the subsequent analysis of problems of the choice of normalization and of the choice of phase factors in the papers [7,8,9]? However, the conclusion may be similar to that which was achieved before: the dynamical properties of the massless particles (e. g., neutrinos and photons) may differ from those defined by the well-known Weyl and Maxwell equations. 2. Negative Energies in the Dirac Equation. The recent problems of superluminal neutrinos, e. g., Ref.

[10], negative-mass squared neutrinos, various schemes of oscillations including sterile neutrinos, e. g. [11], require much attention. The problem of the lepton mass splitting (e, µ, τ ) has long history [12]. This suggests that something missed in the foundations of relativistic quantum theories. Modifications seem to be necessary in the Dirac sea concept, and in the even more sophisticated Stueckelberg concept of the backward propagation in time. The Dirac sea concept is intrinsically related to the Pauli principle. However, the Pauli principle is intrinsically connected with the Fermi statistics and the anticommutation relations of fermions. Recently, the concept of the bi-orthonormality has been proposed; the (anti) commutation relations and statistics are assumed to be different for neutral particles. We observe some interisting thing related to the negative-energy concept. The Dirac equation is:

[iγ µ ∂ µ -m]Ψ(x) = 0 . ( 13 
)
At least, 3 methods of its derivation exist [14,2,15]: the Dirac one (the Hamiltonian should be linear in ∂/∂x i , and be compatible with

E 2 p -p 2 c 2 = m 2 c 4 ); the Sakurai one (based on the equation (E p -σ • p)(E p + σ • p)φ = m 2 φ);
the Ryder one (the relation between 2-spinors at rest is φ R (0) = ±φ L (0) and boosts). Usually, everybody uses the following definition of the field operator [16] in the pseudo-Euclidean metrics:

Ψ(x) = 1 (2π) 3 h d 3 p 2E p [u h (p)a h (p)e -ip•x + v h (p)b † h (p)]e +ip•x ] , (14) 
Valeriy V. Dvoeglazov Generalized Equations and Their Solutions in the (S, 0) ⊕ (0, S Abstract 1. Generalized Neutrino Equations. 2. Negative Energies in the Dirac Equation 3. Non-commutativity in the Dirac Equation as given ab initio. After actions of the Dirac operator at exp(∓ip µ x µ ) the 4-spinors ( u-and v -) satisfy the momentum-space equations: (pm)u h (p) = 0 and (p + m)v h (p) = 0, respectively; the h is the polarization index. However, it is easy to prove from the characteristic equations Det(p ∓ m) = (p 2 0 -p 2 -m 2 ) 2 = 0 that the solutions should satisfy the energy-momentum relation p 0 = ±E p = ± p 2 + m 2 . Let me remind the general scheme of construction of the field operator has been presented in [17]. In the case of the Valeriy V. Dvoeglazov Generalized Equations and Their Solutions in the (S, 0) ⊕ (0, S Abstract 1. Generalized Neutrino Equations. 2. Negative Energies in the Dirac Equation 3. Non-commutativity in the Dirac Equation (1/2, 0) ⊕ (0, 1/2) representation we have:

Ψ(x) = 1 (2π) 3 d 4 p δ(p 2 -m 2 )e -ip•x Ψ(p) = = 1 (2π) 3 h d 4 p δ(p 2 0 -E 2 p )e -ip•x u h (p 0 , p)a h (p 0 , p) = (15) = 1 (2π) 3 d 4 p 2E p [δ(p 0 -E p ) + δ(p 0 + E p )][θ(p 0 ) + θ(-p 0 )]e -ip•x × h u h (p)a h (p)
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3 h d 4 p 2E p [δ(p 0 -E p ) + δ(p 0 + E p )] θ(p 0 )u h (p)a h (p)e -ip•x + + θ(p 0 )u h (-p)a h (-p)e +ip•x = 1 (2π) 3 h d 3 p 2E p θ(p 0 ) u h (p)a h (p)| p 0 =Ep e -i(Ept-p•x) + + u h (-p)a h (-p)| p 0 =Ep e +i(Ept-p•x)
During the calculations above we had to represent 1 = θ(p 0 ) + θ(-p 0 ) in order to get positive-and negative-frequency parts. following relation in the field operator:

h v h (p)b † h (p) = h u h (-p)a h (-p) . ( 16 
) We know that [15] ūµ (p)u λ (p) = +mδ µλ , (17) ūµ 
(p)u λ (-p) = 0 , ( 18 
) vµ (p)v λ (p) = -mδ µλ , ( 19 
) vµ (p)u λ (p) = 0 , (20) 
but we need Λ µλ (p) = vµ (p)u λ (-p). By direct calculations, we find

-mb † µ (p) = λ Λ µλ (p)a λ (-p) . ( 21 
)
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b † µ (p) = i λ (σ • n) µλ a λ (-p) . (22) 
Multiplying ( 16) by ūµ (-p) we obtain

a µ (-p) = -i λ (σ • n) µλ b † λ (p) . (23) 
The equations are self-consistent. 6 However, other ways of thinking are possible. First of all to mention, we have, in fact, u h (E p , p) and u h (-E p , p), and v h (E p , p) and v h (-E p , p), originally, which may satisfy the equations:

7 E p (±γ 0 ) -γ • p -m u h (±E p , p) = 0 . (25) 
Due to the properties

U † γ 0 U = -γ 0 , U † γ i U = +γ i with the Valeriy V. Dvoeglazov
Generalized Equations and Their Solutions in the (S, 0) ⊕ (0, S Abstract 1. Generalized Neutrino Equations. 2. Negative Energies in the Dirac Equation 3. Non-commutativity in the Dirac Equation unitary matrix U = 0 -1 1 0 = γ 0 γ 5 in the Weyl basis, 8 we have

E p γ 0 -γ • p -m U † u h (-E p , p) = 0 . (26) 
Thus, unless the unitary transformations do not change the physical content, we have that the negative-energy spinors γ 5 γ 0 u - (see ( 26)) satisfy the accustomed "positive-energy" Dirac equation. We should then expect the same physical content. Their explicite forms γ 5 γ 0 u -are different from the textbook "positive-energy" Dirac spinors. They are the following ones: 9

ũ(p) = N 2m(-E p + m)     -p + + m -p r p --m -p r     , (27) ũ 
(p) = N 2m(-E p + m)     -p l -p -+ m -p l p + -m     .
(28)

E p = p 2 + m 2 > 0, p 0 = ±E p , p ± = E ± p z , p r ,l = p x ± ip y .
Their normalization is to (-2N 2 ). What about the ṽ (p) = γ 0 u -transformed with the γ 0 matrix? Are they equal to v h (p) = γ 5 u h (p)? Our answer is 'no'. Obviously, they also do not have well-known forms of the usual vspinors in the Weyl basis, differing by phase factor and in the sign at the Valeriy V. Dvoeglazov Generalized Equations and Their Solutions in the (S, 0) ⊕ (0, S found [7,24]. 11 For instance,

     λ S ↑ (p) λ S ↓ (p) λ A ↑ (p) λ A ↓ (p)      = 1 2     1 i -1 i -i 1 -i -1 1 -i -1 -i i 1 i -1         u +1/2 (p) u -1/2 (p) v +1/2 (p) v -1/2 (p)     , (44) 
provided that the 4-spinors have the same physical dimension. Thus, we can see that the two 4-spinor systems are connected by the unitary transformations, and this represents itself the rotation of the spin-parity basis. However, it is usually assumed that the λ-and ρ-spinors describe the neutral particles, meanwhile uand vspinors describe the charged particles. Kirchbach [24] found the amplitudes for neutrinoless double beta decay (00νβ) in this scheme. It is obvious from (44) that there are some additional terms comparing with the standard formulation.

One can also re-write the above equations into the two-component forms. Thus, one obtains the Feynman-Gell-Mann [23] equations. As Markov wrote himself, he was expecting "new physics" from these equations. Barut and Ziino [21] proposed yet another model. They considered γ 5 operator as the operator of the charge conjugation. Thus, the charge-conjugated Dirac equation has the different sign comparing with the ordinary formulation:

[iγ µ ∂ µ + m]Ψ c BZ = 0 , (45) 
and the so-defined charge conjugation applies to the whole system, fermion + electromagnetic field, e → -e in the covariant derivative. The superpositions of the Ψ BZ and Ψ c BZ also give us the "doubled Dirac equation", as the equations for λ-and ρspinors. The concept of the doubling of the Fock space has been developed in the Ziino works (cf. [22,25]) in the framework of the quantum field theory. In their case the self/anti-self charge conjugate states are simultaneously the eigenstates of the chirality. Next, it is interesting to note that for the Majorana-like field 
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  operators (a η (p) = b η (p)) we haveν ML (x µ ) + Cν ML † (x µ ) µ ) a η (p µ )e -ip•x + + -iΘφ * η L (p µ ) 0 a † η (p µ )e ip•x ,(47)which, thus, naturally lead to the Ziino-Barut scheme of massive chiral fields, Ref.[21].Finally, I would like to mention that, in general, in the Weyl basis the γ-matrices are not Hermitian,γ µ † = γ 0 γ µ γ 0 . So, γ i † = -γ i , Valeriy V. DvoeglazovGeneralized Equations and Their Solutions in the (S, 0) ⊕ (0, S
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	5 Moreover, during these calculations we
	did not yet assumed, which equation this field operator (namely,
	the u-spinor) satisfies, with negative-or positive-mass?
	In general we should transform u
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can be used in the parity operator as well as in the original Weyl basis. The parity-transformed function Ψ (t, -x) = PΨ(t, x) must satisfy [iγ µ ∂ µ -m]Ψ (t, -x) = 0 ,

with ∂ µ = (∂/∂t, -∇ i ). This is possible when P -1 γ 0 P = γ 0 and P -1 γ i P = -γ i . The matrix (29) satisfies these requirements, as in the textbook case. However, if we would take the phase factor to be zero we obtain that while u h (p) have the eigenvalue +1 of the parity, but (R = (x → -x, p → -p))
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(32)

Perhaps, one should choose the phase factor θ = π. Thus, we again confirmed that the relative (particle-antiparticle) intrinsic parity has physical significance only. [

In fact, he studied all properties of this relativistic quantum model (while he did not know yet the quantum field theory in 1937).
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Thus, ϕ and χ solutions can be presented as some superpositions of the Dirac 4-spinors u-and v -. These equations, of course, can be identified with the equations for the Majorana-like λ-and ρ-, which we presented in Ref. [7].

Neither of them can be regarded as the Dirac equation. However, they can be written in the 8-component form as follows:

with

It is easy to find the corresponding projection operators, and the Feynman-Stueckelberg propagator.

You may say that all this is just related to the spin-parity basis rotation (unitary transformations). However, in the previous papers I explained: the connection with the Dirac spinors has been i = 1, 2, 3, the pseudo-Hermitian matrix. The energy-momentum operator i∂ µ is obviously Hermitian. So, the question, if the eigenvalues of the Dirac operator iγ µ ∂ µ (the mass, in fact) would be always real? The question of the complete system of the eigenvectors of the non-Hermitian operator deserve careful consideration [26]. As mentioned before, Bogoliubov and Shirkov [17, used the scheme to construct the complete set of solutions of the relativistic equations, fixing the sign of p 0 = +E p . The main points of this Section are: there are "negative-energy solutions" in that is previously considered as "positive-energy solutions" of relativistic wave equations, and vice versa. Their explicit forms have been presented in the case of spin-1/2. Next, the relations to the previous works have been found. For instance, the doubling of the Fock space and the corresponding solutions of the Dirac equation obtained additional mathematical bases.
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or

Obviously, the inverse operators of the Dirac operators of the positive-and negative-masses exist in the non-commutative case.

As in the original Dirac work, we have
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where σ i are the ordinary Pauli 2 × 2 matrices. We also postulate the non-commutativity relations for the components of 4-momenta:

as usual. Therefore the equation (49) will not lead to the well-known equation E 2 -p 2 = m 2 . Instead, we have

(53) For the sake of simplicity, we may assume the last term to be zero. Thus, we come to
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For α matrices we re-write (55) to

The explicit form of the U 1 matrix is (a r ,l = a 1 ± ia 2 ):
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