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We have performed medium resolution numerical simulations over very long times of
the stationary turbulent flow that develops from a static constant in time Taylor-Green
forcing. By averaging over thousands of large-scale eddy turnover times, we separate the
turbulent fluctuations from the inhomogeneous anisotropic mean flow induced by the
forcing. We show that the turbulent velocity fluctuations are only slightly more isotropic
than the total flow and still display significant deviations from isotropy and homogeneity.
Also, the fluctuations and the mean flow are not independent, and their energies are
locally anticorrelated. The energy transfer laws of Kolmogorov, Yaglom and Monin and
their corresponding finite Reynolds number corrections are also checked for different
positions and orientations in the flow, and it is found that Kolmogorov and Yaglom laws
are not completely satisfied due to the imperfect return to isotropy and homogeneity of
the flow. Monin’s relation is verified because it averages dissipation over the different
directions and in a volume such that homogeneity is restored, and also only for the total
fluid velocity and not for the velocity fluctuations as these do not obey Navier-Stokes
equations. These results suggest that the hypothesis of small scale homogeneous and
isotropic turbulence should be clarified in the presence of an inhomogeneous anisotropic
mean flow induced by forcing.

Key words:

1. Introduction

Homogeneous and Isotropic Turbulence (HIT) is one of the most useful concepts for the
study and characterization of fluid turbulence. This paradigm is based on the hypothesis
(or postulate) that, far away from any boundary and at sufficiently small scales, turbu-
lence ‘forgets’ about initial conditions and forcing mechanism and its statistical properties
do not depend anymore on position or orientation. This implies in particular that two-
point statistical quantities are functions only of the modulus of the distance between
them and allows the description of turbulence through the energy spectrum, correlation
function or structure functions, and many properties of these can be obtained only by
using arguments of isotropy and incompressibility (see among others Hinze (1959), Monin
& Yaglom (1975) or Frisch (1995)). The hypothesis of HIT at small scales is reasonably
confirmed experimentally at sufficiently high Reynolds number Re for anisotropic (but
homogeneous) shear flows when the shear rate is small (see e.g. Kim & Antonia (1993)
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or Antonia & Kim (1994)), and of course numerically with homogeneous and isotropic
volume forcing without boundaries (e.g. turbulence in a periodic box like in Gotoh,
Fukayama & Nakano (2002)). It is however not clear if and how well it can be verified in
the case of a strongly anisotropic and inhomogeneous volume or boundary forcing, which
is often the case in experimental studies, like for instance the von Kármán swirling flow
that has often been used recently to obtain very turbulent flows (high Re) in a small
volume (Douady, Couder, & Brachet (1991); Monchaux, Ravelet, Dubrulle, Chiffaudel
& Daviaud (2006); Ravelet, Chiffaudel & Daviaud (2008)). Indeed, even at very high
Reynolds number Re, such forcing lead to a nonzero mean flow, often with topologies
more complex than the forcing itself, that leaves a non-homogeneous anisotropic imprint
on the total turbulent flow. As an example, (Huck, Machicoane & Volk 2017) recently
studied the turbulence close to the central stagnation point in the von Kármán flow and
found it to be strongly anisotropic and inhomogeneous, even at Re ≈ 27000 (Rλ ≈ 225).
One of the aims of this paper is to investigate these deviations from HIT in the case
of a numerical Taylor-Green flow, the simplest numerical equivalent of the von Kármán
swirling flow. The advantage of using numerical simulations is that we can compute
easily all longitudinal and transverse structure functions of the flow, and check the
isotropic predictions for them, while measuring these quantities experimentally is a
much more complex task. Also, the Taylor-Green vortex has been mostly studied in
the spectral wavenumber space, with or without invoking global anisotropy (Brachet,
Meiron, Nickel, Morf & Frisch 1983), but studies in physical space using correlations or
structure functions are scarse, probably because of the high computational cost, while
measurements in the von Kármán flow have been done only in physical space. It is thus
interesting to try to relate these measurements and bridge the gap between these two
flows using a common representation.

Another common idea in turbulence is that, in the presence of a mean flow due to
the forcing mechanism, the turbulent fluctuations with respect to the mean flow will
be much closer to HIT than the total flow. This leads to the image of homgeneous and
isotropic fluctuations living independently of a mean static anisotropic and inhomoge-
neous background. This image was however recently contradicted by (Huck, Machicoane
& Volk 2017) who found both mean flow and turbulent fluctuations to be inhomogeneous
and anisotropic. Moreover, exchange of energy between man flow and fluctuations was
oberved. In order to investigate this idea, we decided to perform very long simulations
of the Taylor-Green flow (thousands of eddy turnover times), so that we can extract
the mean flow by time averaging and study separately the turbulent fluctuations around
the mean flow. Our goal was to check whether these are in fact spatially independent
of the mean flow (that is indeed strongly anisotropic and inhomogeneous), and a better
realisation of HIT than the total flow itself.

One of the most important results in the theory of stationary HIT is Kolmogorov’s
equation

−
〈
[∆ui(ri)]

3
〉

+ 6 ν ∂i

〈
[∆ui(ri)]

2
〉

=
4

5
ε |ri| , (1.1)

relating the average cube of the longitudinal velocity increments ∆ui(ri) ≡ ui(x + ri)−
ui(x) in any direction ri ≡ r 1i and the mean energy dissipation rate in the flow

ε ≡ −
dE

dt
= ν

〈
|∇u|2

〉
= ν

〈
|∇ × u|2

〉
=

1

2
ν

〈
∑

i,j

(
∂ui

∂xj
+

∂uj

∂xi

)2
〉

, (1.2)

obtained by Kolmogorov in 1941 (Kolmogorov 1941), starting from the Kármán-Howarth
equation (Kármán & Howarth 1938). In the limit of zero viscosity, (1.1) reduces to the
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celebrated Kolmogorov ‘four-fifth’ law
〈
[∆ui(ri)]

3
〉

= −
4

5
ε r , (1.3)

important because it is both ‘exact and non-trivial’ (Frisch 1995). Kolmogorov’s equation
is derived exactly only under the hypothesis of global homogeneity and isotropy (Frisch
1995), but support has been given for its validity even for anisotropic turbulence (e.g.
Monin & Yaglom (1975)). It is thus interesting to verify if it could be satisfied also in
the presence of an inhomogeneous anisotropic mean flow, like the von Kármán flow. This
is what we will do in this paper, checking the validity of (1.1) at different locations and
for different directions of our numerical Taylor-Green flow. Of course, in that case, it is
very important to define the meaning of that averaging 〈. . .〉 operation.

Monin (Monin 1959) tried to establish Kolmogorov’s equation (1.1) under less restric-
tive conditions, working from the start with velocity increments rather than velocity
correlations to establish an equivalent of the Kármán-Howarth equation for velocity
increments. This approach was later examined again and extended by (Antonia, Ould-
Rouis, Anselmet & Zhu 1997), (Hill 1997) and (Danaila, Anselmet, Zhou & Antonia
2001) to obtain another more general form of (1.1),

−
〈
|∆u(ri)|

2∆ui(ri)
〉

+ 2 ν ∂i

〈
|∆u(ri)|

2
〉

=
4

3
ε r , (1.4)

i.e. a ‘four-third’ law that we will refer from now on as Yaglom’s law (even if it was never
written by Yaglom) because, as noted by (Antonia, Ould-Rouis, Anselmet & Zhu 1997),
it is exactly analogous to Yaglom’s equation for the transport of temperature increments
by turbulence (Yaglom 1949). Yaglom’s equation has however an important difference
with Kolmogorov’s equation in that its derivation does not require global but only local

isotropy (Hill 1997) and represents an extended form (over all velocity components) of
Kolmogorov’s equation. An even more general relation was obtained by (Monin 1959)

−∇ ·
〈
|∆u(r)|2∆u(r)

〉
+ 2 ν ∇2

〈
|∆u(r)|2

〉
= 4 ε , (1.5)

that, following (Hill 1997), we’ll call Monin’s law and only requires the assumption of
homogeneity for its derivation (Hill 1997) without the need for isotropy, and is thus
the most general relation that can be obtained between the energy dissipation and the
third-order velocity vector structure function, valid even for anisotropic turbulence.

Yaglom’s law (1.4), and even more Monin’s law (1.5), are not very well-known in the
turbulence community, probably because they are much harder to study experimentally,
the former requiring the measurement of all velocity components in a given direction and
the latter requiring all velocity components in all directions, while Kolmogorov’s law (1.1)
only requires one velocity component in one direction, so that it is relatively easy to
measure using for example hot-wire probes. Experimental verifications of Yaglom’s law
have been performed by (Antonia, Ould-Rouis, Anselmet & Zhu 1997) and (Danaila,
Anselmet, Zhou & Antonia 2001), while (Lamriben, Cortet & Moisy 2011) observed
Monin’s law in anisotropic axisymmetric rotating turbulence. Yaglom’s law and Monin’s
law are however very important, not only because they require less restrictive isotropy
or homogeneity constraints than Kolmogorov’s law, but also because they are more
general and can be extended to the transport of other quantities by an incompressible
velocity field (e.g. the transport of temperature by turbulence originally considered by
Yaglom (1949)). Yaglom’s equation has for instance be generalised to MHD turbulence
by (Politano & Pouquet 1998), (Politano & Pouquet 1998) for the transport of the two
Elsässer fields z± ≡ u± b one by the other, and that generalised Yaglom’s law has been
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used by (Sorriso-Valvo, Marino, Carbone, Noullez, Lepreti, Veltri, Bruno, Bavassano, &
Pietropaolo 2007), (Marino, Sorriso-Valvo, Carbone, Noullez, Bruno & Bavassano 2008)
to measure the turbulent energy cascade dissipation rate in the Solar wind. The Solar
wind is however not perfectly homogeneous nor isotropic, and it is not clear how sensitive
Yaglom’s law or Monin’s law are sensitive to these effects. So we decided to also check
both of these laws in our Taylor-Green flows, along with Kolmogorov’s law to establish
which, if any, of these can be trusted in the presence of inhomogeneities or anisotropies
in the mean flow, for both the total flow and the fluctuations. Once again, we repeat that
the whole study will be performed by computing structure functions in physical space
along different spatial directions, without invoking isotropy from the start. Numerical
verifications of energy transfer laws, or of the homogeneity and isotropy of turbulence at
small scales are not common in the litterature, and one of the few examples is the very
interesting work of (Gotoh, Fukayama & Nakano 2002) who showed that at sufficiently
high Reynolds numbers, isotropy at small scales is well verified and that Kolmogorov and
Yaglom laws are statisfied if the viscous correction is taken into accound (Monin’s law
was not considered). However, the authors used an isotropic random white in time forcing
for which the mean flow is zero and the statistical properties of the flow are homogeneous
by construction, so it is interesting to reproduce that study with the TG forcing.

Our paper is organised as follows. In section 2, we present a brief derivation of Yaglom’s
law (1.4) and Monin’s law (1.5) for people who are not familiar with these, and also to
clarify our notations and emphasise the hypotheses that are used at various steps of the
derivation for both laws. Section 3 describes the numerical flow and our Taylor-Green
forcing, and gives all numerical parameters and global measurements of the simulation. In
section 4, we precise all averaging procedures that we used, both to get the mean flow and
to measure one-point and two-point statistical quantities in all directions, either in the
whole volume or in specific planes. Results for the statistical homogeneity and isotropy
at second order, both in one point or through the use of second order longitudinal or
transverse structure functions are presented in section 5. The validity of Kolmogorov’s
law, Yaglom’s law and Monin’s law is investigated in section 6. In the concluding section 7,
we discuss about the implications of our results on the measurement of energy transfer
laws in flows with a non trivial mean flow due to non-homogenous anisotropic forcing.

2. Energy transfer laws

Our derivation of energy transfer laws (1.1), (1.4) and (1.5) completely follows (Anto-
nia, Ould-Rouis, Anselmet & Zhu 1997) and (Danaila, Anselmet, Zhou & Antonia 2001),
so we will be brief, refering to these two papers for details and to (Hill 1997) and (Monin
& Yaglom 1975) for the precise statement of the homogeneity and isotropy conditions for
random vectors (not necessarily solutions of the Navier-Stokes equations). We will try to
use vector notation throughout that, besides being much more concise, has (we believe)
the advantage of being less ambiguous.

We start with the incompressible Navier-Stokes equation

∂tu
′ + u′

· ∇x
′ u′ = ∇x

′ p′ + ν ∇2

x
′ u′ + f ′ (2.1)

∂tu + u · ∇x u = ∇x p + ν ∇2

x
u + f (2.2)

written at two points x and x′ ≡ x + r separated by r, for the two velocities u′(x′)
and u(x), p and p′ are the kinematic pressure per unit mass, and ∇x and ∇2

x
are

respectively the gradient and laplacian with respect to the x (or x′) coordinates. We
then subtract the equation written at x from the equation at x′ to get an equation for
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the velocity increment

∆u(r;x, t) ≡ u(x + r, t) − u(x, t) . (2.3)

We emphasise that the difference operator ∆ does not change the vectorial or scalar
character of its argument and that, applied to a vector, it yields a vector and gives a
scalar when applied to a scalar. We then multiply the time evolution equation for the
velocity increment by the velocity increment itself 2∆u and average on spatial locations x

to get

∂t

〈
|∆u|2

〉
+ ∇r ·

〈
|∆u|2∆u

〉
= 2 ν ∇2

r

〈
|∆u|2

〉
− 4 ν

〈
|∇u|2

〉
+ 2 〈∆f · ∆u〉 . (2.4)

Here, local homogeneity has been used multiple times to (1) rewrite differential oper-
ators with respect to x or x′ after averaging in terms of derivatives with respect to r:
∇x

′ = −∇x = ∇r ; (2) eliminate of the pressure-velocity correlations (see Hill (1997)).
Incompressibility has also been used. The first term on the l.h.s. of (2.4) is the rate of
change of the velocity increment variance at scale r, that at large scales should go to four
times the rate of change of the energy ε (1.2). Order of magnitude arguments show that
this non-stationary term should become small when the separation becomes small, going
like (r/L)2/3 and thus can be neglected at small scales. Alternatively, we can consider
stationary turbulence and average over time to eliminate the time-fluctuating term. The
forcing term will also disappear at small scales if the force f is regular in space and
concentrated at large scales. With these simplifications, (2.4) becomes

∇r ·
〈
|∆u(r)|2∆u(r)

〉
= −4 ε + 2 ν ∇2

r

〈
|∆u(r)|2

〉
, (2.5)

which is Monin’s equation (1.5) using the definition of the mean energy dissipation
rate (1.2). Only homogeneity and stationarity have been used to obtain this relation,
but it is important to note the meaning of the averaging operator 〈. . .〉 that we used:
we have to average in space x over scales such that the quantities defined in (2.5) are
independent of x (homogeneous). Also, we have to average over times such that the
time-derivative term can be neglected.

Written in the form (1.5), Monin’equation appears as a scale-by-scale dissipation
budget equation. The r.h.s. of (1.5) is the total dissipation 4 ε, that is (four times) the
energy that disappears at any scale, and has to be constant across scales if a stationary
state is reached. It is made up of the two terms on the l.h.s. of (1.5) which are both
positive for three-dimensional turbulence. The first term ∇·

〈
|∆u(r)|2∆u(r)

〉
represents

the energy that is transfered to smaller scales by the turbulent advection, while the second
term 2 ν ∇2

〈
|∆u(r)|2

〉
is the energy dissipated at each scale by the molecular viscosity.

At very small scales and for finite viscosity, the flow is regular and the transfer term
becomes negligible, so that we can compute the dissipation from the total second-order
structure function

ε =
1

2
ν lim

r→0

∇2
〈
|∆u(r)|2

〉
, (2.6)

which is equivalent to (1.2), and is valid for homogeneous anisotropic turbulence. On the
other hand, for small viscosities at intermediate inertial scales or in the limit of vanishing
viscosity, we have

∇ ·
〈
|∆u(r)|2∆u(r)

〉
= −4 ε , (2.7)

that provides a route for energy to be dissipated (in fact, transfered to smaller scales)
at all scales, even for a vanishing viscosity, and is the anisotropic generalisation of
Kolmogorov ‘four-fifth’ law (1.3). It implies that the energy flux vector

F (r) ≡
〈
|∆u(r)|2∆u(r)

〉
(2.8)
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6 A. Noullez

has a negative divergence ∇ · F = −4 ε, so that energy is transfered by the turbulent
advection towards the small scales.

If we now assume local isotropy and project equation (2.5) on any direction ri, the
only non-singular solution of the scalar equation that results is

〈
|∆u(ri)|

2∆ui(ri)
〉

= −
4

3
ε r + 2 ν ∂i

〈
|∆u(ri)|

2
〉

, (2.9)

with ∂i ≡ ∂/∂ri
, or (in vector form)

〈
|∆u(r)|2∆u(r)

〉
= −

4

3
ε r + 2 ν ∇r

〈
|∆u(r)|2

〉
, (2.10)

that is, Yaglom’s law (1.4). Once again, (1.4) is a conservation law, but for the total
dissipation integrated from 0 to r, and that has to linearly proportional to r if the total
dissipation itself (1.5) is independent of scale. Local isotropy then implies that the energy
flux vector (2.8) and the velocity increment variance are purely radial functions, so that
we have in the limit of vanishing viscosity or in the inertial range a negative energy flux
vector

F (r) =
〈
|∆u(r)|2∆u(r)

〉
= −

4

3
ε r (2.11)

showing that the energy is transfered from large to small scales by the turbulence. By
differentiating (1.4) at small scale, we also have a definition of the dissipation valid for
homogeneous and locally isotropic flows

ε =
3

2
ν lim

r→0

∂2

i

〈
|∆u(ri)|

2
〉

= 3 ν lim
r→0

〈
|∆u(ri)|

2
〉

r2
= 3 ν

〈
∑

j

(
∂uj

∂xi

)2
〉

. (2.12)

To get Kolmogorov’s equation (1.1) from Yaglom’s law (2.9), we need to use relations
valid for globally isotropic incompressible turbulence (see Monin & Yaglom (1975), Hinze
(1959) or Hill (1997))

〈
[∆uj(ri)]

2
∆ui(ri)

〉
=

1

3

〈
[∆ui(ri)]

3
〉

j 6= i , (2.13)

valid in the inertial range, and
〈
[∆uj(ri)]

2
〉

= 2
〈
[∆ui(ri)]

2
〉

j 6= i , (2.14)

valid at small scales, to finally obtain equation (1.1) and also a definition of the dissipation
that can be measured using only longitudinal increments of the velocity

ε =
15

2
ν lim

r→0

∂2

i

〈
[∆ui(ri)]

2
〉

= 15 ν lim
r→0

〈
[∆ui(ri)]

2
〉

r2
= 15 ν

〈(
∂ui

∂xi

)2
〉

, (2.15)

but is valid only for homogeneous globally isotropic turbulence. Kolmogorov’s equation,
whilst very important, is thus less general than either (1.4) and (1.5), requiring a priori

not only homogeneity, but also global isotropy of the flow for its derivation. It is thus
particularly interesting to investigate experimentally or numerically the validity of these
three laws in a flow which is stongly anisotropic and inhomogeneous at large scales, and
this is what we will try to perform in the rest of this paper, for the Taylor-Green vortex
flow.
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0

π

π

2π

2π

Figure 1. The Taylor-Green vortex forcing consists of two counter-rotating vortices replicated
antisymmetrically two times in each direction to obtain a 2π-periodic tridimensional flow
consisting of eight coupled swirling flow cells. The forcing consists of both differential rotation
(planes z = kπ have maximal rotational forcing) and pure shear (forcing is zero in the
planes z = π/2 + kπ).

3. The numerical Taylor-Green flow

The numerical flow that we use is the Taylor-Green (TG) vortex flow, orig-
inally introduced by (Taylor & Green 1937) to study the generation of small
scales and turbulence by vortex stretching in the Navier-Stokes equations. It
is defined as the flow that develops from the initial conditions u(x, y, z, 0) ≡
(sin(k0x) cos(k0y) cos(k0z),− cos(k0x) sin(k0y) cos(k0z), 0)T (see figure 1 for k0 = 1),
following the unforced incompressible Navier-Stokes equations (2.2) with f ≡ 0. As we
want to study stationary turbulence , we will add a constant forcing term identical to
the initial conditions

f(x, y, z) = 2 frms




sin(k0x) cos(k0y) cos(k0z)
− cos(k0x) sin(k0y) cos(k0z)

0


 , (3.1)

to be able to reach a state statistically stationary in time. Note that this is a large scale
constant in time volume forcing while the von Kármán swirling flow uses forcing at the
boundaries. Still, these two flows share many properties like a strong rotation and an
inhomogeneous forcing amplitude along the z-axis. It should also be noted that, even
if the forcing amplitude frms is kept constant in time, because the velocity field u(x, t)
is fluctuating in time, both the instantaneous power injection 〈f · u〉, the instantaneous
power dissipation ε(t) and the total energy E(t) ≡

〈
u2

〉
/2 are fluctuating in time. It

is only after averaging in time that injection and dissipation are equal, and that the
energy is constant. The original (decaying) Taylor-Green vortex has been extensively
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8 A. Noullez

N3 ⇐ 1283

L ≡ 2π Λ = 2.589 λ = 0.487 η = 0.035 ∆x ⇐ 0.049

frms ⇐ 1.5 Urms = 2.69 E = 3.62
˙

|∇U |2
¸

= 150.5 Ω = 75.2

ν ⇐ 0.015 Re = 440 Rλ = 85 ε = 2.257

∆t ⇐ 1 Tnl = 0.961 dt ⇐ 10−3

Nt ⇐ 2 × 103

Table 1. Numerical parameters of our simulation runs of the forced Taylor-Green parameters.
Values marked with ⇐ are set initially at the beginning of the run, while those marked
with = are controlled by the time evolution and measured during the simulation. L is
the size of the box, Λ is the flow integral scale 3π/4 [

R

dk E(k)/k]/E, λ is the Taylor

scale {5E/[
R

dk k2E(k)]}1/2 = (5E/Ω)1/2, η is the Kolmogorov scale (ν3/ε)1/4 and ∆x ≡ 2π/N
is the simulation gridsize. dt is the simulation timestep, Tnl is the eddy turnover time Λ/Urms

and ∆t is the time separation between each of the Nt samplings of the velocity field for time
averaging.

studied numerically since the advent of digital computers (e.g. Brachet, Meiron, Nickel,
Morf & Frisch (1983) and references therein) and has been found to become turbulent
already at rather small Reynolds numbers. The stationary forced Taylor-Green vortex
has been extensively used as a prototype flow to study dynamo action in MHD flows
driven by the von Kármán swirling flow (e.g. Nore, Brachet, Politano & Pouquet (1997),
Ponty, Mininni, Montgomery, Pinton, Politano & Pouquet (2005) and Ponty, Mininni,
Pinton, Politano & Pouquet (2007)), but studies of the statistical properties of the
hydrodynamical TG vortex in the space domain through the use of structure functions
are relatively uncommon. One of the few examples is (Mininni, Alexakis & Pouquet
2008) where structure functions were used to study intermittency, but the authors only
considered longitudinal structure functions averaged in the x and y directions, and used
absolute values for odd orders and extended self-similarity to improve the scaling. Energy
transfer laws, isotropy and homogeneity were thus not considered in that work that rather
concentrated on the inter-mode energy transfers assuming isotropy.

For all values of (integer) wavenumber k0, the Taylor-Green vortex is known to have
many symmetries that are dynamically compatible with the Navier-Stokes and that
are thus preserved by the time evolution if both initial conditions and forcing satisfy
these symmetries (Brachet, Meiron, Nickel, Morf & Frisch 1983). This can be used to
build an optimised pseudospectral code that implements directly all these symmetries
so that they are preserved exactly by the code at all times, reducing memory and
computational burden by a factor of 64 (Nore, Brachet, Politano & Pouquet 1997), but
producing eight symmetrically replicated correlated realisations of the flow. However,
the TG symmetries can be spontaneously broken, at high enough Reynolds number, by
the nonlinear amplification of any small non symmetrical component in the flow, due
for instance to roundoff errors in the numerical code, that will grow and eventually
completely break the symmetries of the flow. We have thus chosen to use a general
numerical code that can handle either symmetric or nonsymmetric constituents in the
flow if both are present. Numerical simulations of the TG vortex flow have been been
performed by Y. Ponty using his CUBBY DNS standard pseudospectral code in a 3-
D (2π)3 cubic periodic box. The program runs in double precision to ensure the correct
representation of all operators even at high resolution, uses an explicit second order
Runge-Kutta advance in time, and a classical 2/3 spectral dealiasing rule at kmax = N/3
where N is the spatial resolution in each direction. The Reynolds number Re is increased
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Homogeneity and Isotropy of the Taylor-Green vortex 9

Figure 2. Two-dimensional horizontal cuts in the plane z = π/2 of the instantaneous
total vertical velocity Uz(x, y, π/2) and total vertical vorticiy (∇ × U )z(x, y, π/2) at a single
time t = 2 × 103, represented in false colors from black (negative) to white (positive) with grey
being around zero. Note the intense localised vortical structures present in the flow showing that
the turbulence is already well developed, and that the symmetries of the forcing have been lost
for the total flow at that Reynolds number. Also, these fields would both be identically zero for
the forcing or the initial conditions.

by keeping the forcing amplitude constant at frms = 1.5 (so that the velocity Urms stay
at O(1)) and decreasing the viscosity ν, increasing the resolution N at the same time,
so that the flow small scale structures are correctly resolved kmaxη > 1. Table 1 lists
all numerical parameters and measured global quantities for the numerical run that has
been analysed in this paper.

We cannot however use very high Reynolds numbers, not only because we are limited
by memory and computation time, but also because we want to run the simulation
for very long times, thousands of eddy turnover times Tnl, to be able to compute the
mean flow by time averaging. Also, because we want to study homogeneity by studying
indepently different locations and more specifically different planes in the z-direction,
we will refrain from averaging statistical quantities over the whole simulation volume,
meaning that the statistical noise could be large if this effect is not compensated by
time averaging. Specifically, starting from the TG initial condition, we will integrate
the flow for 103∆t ≈ 103 Tnl eddy turnover time so that the turbulence has time to be
fully developed and the flow is statistically stationary. Then, we integrate the flow again
for Nt∆t ≡ 2 × 103∆t, saving a snapshot of the flow at every ∆t, that are essentially
uncorrelatated since ∆t & Tnl. These 2 × 103 samples are then divided in two sets of
103 fields, that are analysed independently and then compared, so that we can have an
idea of the remaining statistical fluctuations for 103 samples, and can ensure that this
number of samples of the velocity field is enough to compute time and space averages.

We thus used a moderate resolution of N3 = 1283, which may not seem very large,
but allowed us to reach Reynold numbers Re around 450, enough to obtain a turbulent
flow with velocity fluctuations having an energy of more than twice the mean flow as we
will see in section 5. Figure 2 shows that the instantaneous velocity and vorticity closely
reseembles a turbulent flow, and that the mean flow or the forcing are not apparent in
these instaneous snapshots. Also, even if we will see in the next section that the mean flow
has the symmetries of the TG forcing, the instantaneous velocity and the fluctuations
have completely lost these symmetries. Of course, as the flow is spatially well-resolved
numerically, the inertial range of turbulence won’t be very extended. Still, we will see
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10 A. Noullez

that energy transfer laws can be observed already at this resolution, provided we take
into account the corrections due to the finite viscosity. Note that at this resolution, one
snapshot of the three components of the velocity field in double precision is roughly
50 MBytes, so that we have in total about 100 GBytes of data to analyse, both for the
total velocity and for its fluctuations.

4. Statistical averages and the mean-flow

It is well-known that, in contrast to for instance wind tunnel flows, the von Kármán
swirling flow has a non-trivial tridimensional mean spatial structure that can be evidenced
by long time exposure of flow tracers or by time averaging (see e.g. Ravelet, Chiffaudel
& Daviaud (2008) or Monchaux, Ravelet, Dubrulle, Chiffaudel & Daviaud (2006)).
Similarly, even at high Reynolds numbers, the Taylor-Green vortex has a mean flow that
can be revealed by time averaging. Here, we will define precisely the averaging procedures
that we will use to separate the mean flow and the fluctuations in the TG vortex, and to
study homogeneity along the z-direction.

4.1. Time averages

Let us consider a vector or scalar quantity a(. . . ;x, y, z) defined in our turbulent flow.
Then the time average will be simply given as expected by

a (. . . ;x, y, z) ≡
1

T

∫
dt a(. . . ;x, y, z, t) (4.1)

=
1

Nt

Nt∑

l=0

a(. . . ;x, y, z, l∆t) , (4.2)

where we recall that the time separation ∆t is such that the samples are effectively
uncorrelated. In particular, we can separate the total flow U(x, y, z, t) into its different
constituents, a static mean flow U (x, y, z) and turbulent fluctuations u(x, y, z, t) with

U(x, y, z, t) ≡ U (x, y, z) + u(x, y, z, t) (4.3)

(U, V,W )T (x, y, z, t) ≡ (U , V , W )T (x, y, z) + (u, v, w)T (x, y, z, t) . (4.4)

We will now use capital letters to refer to the total turbulent flow U and lower case
letters to refer to the turbulent fluctuations u, the different components being denoted
by (U, V,W ) or (u, v, w). Note that by definition u (x, y, z) = 0. The mean flow U

obtained by averaging over 2 × 103 snapshots is shown in figure 3, as two-dimensional
cuts along two directions, and at three different heights in the numerical volume. We
emphasize that this mean flow U is not a solution of the Navier-Stokes equations
when the flow has turbulent fluctuations u, as already stressed by (Monchaux, Ravelet,
Dubrulle, Chiffaudel & Daviaud 2006). Still, we can see that even if the mean flow
has developed specific features of its own, it has strong similarities with the forcing ; in
particular, the symmetries of the forcing have been restored, and the mean flow consists
of eight antisymmetrically replicated identical cells, with negligible differences that could
be eliminated by increasing the averaging in time. The mean flow in the top, center or
bottom planes z = kπ closely resembles the forcing and is dominated by the rotation with
completely negligible vertical velocities (figure 3 bottom left, and top and center right).
Due to the strong differential shear along the z-direction, the mean flow in the ‘halfway’
planes z = π/4+ kπ/2 has developed a large poloidal component (see figure 3 center left
and right) that is superposed on the mean rotation, and reproduces the two recirculating
cells observed in the experimental von Kármán flow (see figure 1 of Monchaux, Ravelet,
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Homogeneity and Isotropy of the Taylor-Green vortex 11

Figure 3. On the left, in-plane mean velocity horizontal components ( U , V ) (shown as

arrows) and mean vertical velocity component W (shown as colors), shown for three horizontal
planes z = π/2, z = π/4 and z = 0 (from top to bottom). On the right, in-plane mean velocity

horizontal components ( U , V ) (shown as arrows) and mean vertical velocity component W
(shown as colors), shown for three vertical planes y = π/2, y = π/4 and y = 0 (from top to
bottom). In all of these figures, there is a 4-fold plane symmetry of the mean flow induced by
the TG forcing.
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12 A. Noullez

Dubrulle, Chiffaudel & Daviaud (2006) or figure 1a of Huck, Machicoane & Volk (2017)).
In the ‘middle’ planes z = π/2 + kπ where the forcing is zero, the flow has developed a
non-trivial structure around a central stagnation point in the horizontal plane with two
contracting directions x and y and one diverging z-direction (see figure 3 top left and
right). This configuration has similarities, but does not reproduce the state observed by
(Huck, Machicoane & Volk 2017) (see in particular their figure 3) who studied in detail
the mean flow near the stagnation point at the middle of the von Kármán cell and found
one of the horizontal directions diverging and the other converging, and exchanging their
role in a slow random fashion. However, they used a square section vessel, and this seems
to be the cause of this difference with the circular section cell, because the horizontal
diverging and contracting directions are aligned with the walls of the cell. In our case,
we also don’t have a circular symmetry, but a square symmetry. However, the use of
periodic boundary conditions means that the large scale topology is different and one
can see that the middle stagnation point has a horizontal converging circular symmetry,
but there are also horizontally diverging points at the four ‘corners’ of the plane. These
points would not exist in a circular or square cell with walls and show that the local
topology of the mean flow can be induced by the boundaries, even from far away. The
extent of the interactions between mean flow and turbulent fluctuations is however not
clear. In particular, we find like (Huck, Machicoane & Volk 2017) that the turbulent
fluctuations are maximal near the middle stagnation point, especially for the vertical
z-directions, as we will develop in section 5.

4.2. Space averages

As we noted in section 2, statistical conservation laws like Kolmogorov, Yaglom or
Monin’s law are derived under the assumption of homogeneity, i.e. we have to average
over temporal and spatial scales large enough that the mean statistical properties of
two-point quantities like structure functions or correlations become nearly independent
of the center position of the two points (i.e. it becomes translationally invariant), and
depends only on the separation between the two points. It is in fact not exactly clear how
large this scale must be for turbulence, but the flow integral scale Λ is a good candidate
and, for turbulence in a periodic box, the (larger) size of the box L is even better to
reduce the statistical noise. So, we will define (global) space averages to be over the total
volume of the box as

ã (. . . ; t) ≡
1

L3

∫
dz

∫
dy

∫
dx a(. . . ;x, y, z, t) (4.5)

=
1

N3

N∑

i=0

N∑

j=0

N∑

k=0

a(. . . ; i∆x, j∆x, k∆x, t) . (4.6)

For homogeneous isotropic turbulence (HIT), this spatial averaging would (by defi-
nition) be unnecessary, as all statistical properties are assumed to be independent of
position, and only further time averages are needed for statistical convergence. As our
goal is precisely to study homogeneity in the TG vortex, especially as function of the z
coordinate along the z axis, we will also use averages limited to horizontal planes at a
given height z, but average over the x and y coordinates to reduce the statistical noise

â (. . . ; z, t) ≡
1

L2

∫
dy

∫
dx a(. . . ;x, y, z, t) (4.7)

=
1

N2

N∑

i=0

N∑

j=0

a(. . . ; i∆x, j∆x, z, t) . (4.8)
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Homogeneity and Isotropy of the Taylor-Green vortex 13

With these spatial averages definitions, we will compute global space-time averages by
combining (4.1) and (4.5) or (4.7)

〈a〉 (. . .) ≡ ã (4.9)

or

〈a〉 (. . . ; z) ≡ â , (4.10)

where we will be slightly abusing notation and using 〈. . .〉 for means over the whole vol-
ume, or only a z-plane, the difference being apparent by the z dependence in the notation.
When averages are limited to a given z-plane, and we are considering increments rz along
the z direction, we have to be careful and center the increment around the z-plane of
interest, that is use for instance U(x, y, z + rz/2, t)−U (x, y, z− rz/2, t) when computing
structure functions at height z.

As we already said, structure functions will be evaluated completely in physical space.
This is a time-expensive computation, even for moderate resolutions like we have here.
Indeed, for a single structure function, we have to average over N3 points in space,
times Nt snapshots in time, times N increment separations, times 3 directions, that is
about 900 × 109 increment values to average and at least that number of flops and of
memory accesses, for each computed structure function. For second-order ordrer structure
functions, Discrete Fourier Transforms (FFTs) could be used to compute them from
correlation functions, but we did not implement this method as it cannot be generalised
to higher order structure functions.

5. Second-order statistical results

From the decompositions (4.3) and (4.4), we can compute the single point second
order statistics for the total flow, the mean flow or the turbulent fluctuations, either
in the whole volume, or in specific planes only. Results are presented in table 2 for all
constituents of the flow in all directions, either in the whole volume, or in the bottom
plane z = 0 where rotation is maximal, or in the ‘middle’ plane z = π/2 where both
rotation and mean flow are small (see figure 3). Several comments are in order.

First, we can note the absence of cross correlations between different velocity compo-
nents, for all constituents of the flow we find that

〈
Ui Uj

〉
(z), 〈uiuj〉 (z) and 〈Ui Uj〉 (z)

are close to zero for i 6= j and for all z. For the mean flow, this property comes from the
pure shear form of the forcing that satisfies

〈fifj〉 (z) = 4 f2

rms

cos2(z)

4
δij (1 − δi3) , (5.1)

i.e. its is purely diagonal (but not isotropic 〈fzfz〉 (z) = 0) for all heights z with a
non-homogeneous total variance

〈
f2

〉
(z) that changes with z (2 f2

rms
for z = 0, f2

rms

for z = π/4 and 0 for z = π/2) and that is equal to f2
rms

for the whole volume. For the
fluctuations and the total flow, this absence of cross-correlations would be an indication
of isotropic turbulence as indeed the two horizontal variances are always nearly equal,
but the vertical component variance is significantly smaller than the two horizontal ones
by a factor of nearly 2 for the total flow in the whole volume. This is not surprising
for the total flow in the top or bottom plane where the mean flow is dominant, but
remains true even for the velocity fluctuations in the middle plane z = π/2 where the
vertical variance is 15 % smaller than the two horizontal ones. In the whole volume, the
fluctuations vertical variance is smaller by 20 % than the the horizontal ones, so the
turbulent velocity fluctuations are more isotropic than the total flow, but not completely
so.
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14 A. Noullez

Mean Fluctuations Total

Middle plane z = π/2

U
¸

V
¸

W
¸

u〉 v〉 w〉 U〉 V 〉 W 〉

˙

U 0.084 -0.005 -0.001 〈u 1.904 -0.007 0.002 〈U 1.988 -0.012 0.001
˙

V -0.005 0.084 -0.000 〈v -0.007 1.880 0.004 〈V -0.012 1.964 0.003
˙

W -0.001 -0.000 0.012 〈w 0.002 0.004 1.594 〈W 0.001 0.003 1.606

D

U
2
E

0.181
˙

u2
¸

5.378
˙

U 2
¸

5.559

Bottom plane z = 0

U
¸

V
¸

W
¸

u〉 v〉 w〉 U〉 V 〉 W 〉

˙

U 1.923 -0.049 -0.006 〈u 1.668 -0.006 -0.001 〈U 3.590 -0.059 -0.007
˙

V -0.049 1.921 0.005 〈v -0.006 1.628 0.003 〈V -0.059 3.549 0.008
˙

W -0.006 0.005 0.001 〈w -0.001 0.003 1.238 〈W -0.007 0.008 1.239

D

U
2
E

3.845
˙

u2
¸

4.534
˙

U 2
¸

8.377

Total volume 0 6 z < 2π

U
¸

V
¸

W
¸

u〉 v〉 w〉 U〉 V 〉 W 〉

˙

U 1.108 -0.020 -0.003 〈u 1.766 -0.007 -0.001 〈U 2.875 -0.027 -0.003
˙

V -0.020 1.100 0.002 〈v -0.007 1.752 -0.001 〈V -0.027 2.851 0.001
˙

W -0.003 0.002 0.082 〈w -0.001 -0.001 1.428 〈W -0.003 0.001 1.510

D

U
2
E

2.289
˙

u2
¸

4.946
˙

U 2
¸

7.235

Table 2. Covariance matrices of the velocity components and total variance for the mean
velocity

˙

Ui Uj

¸

, the velocity fluctuations 〈uiuj〉 and the total velocity 〈Ui Uj〉, for two
horizontal planes at z = 0 and z = π/2 and for the total TG vortex volume 0 6 z < 2π.

The velocity fluctuations energy accounts for ≈ 70 % of the total flow energy for the
whole volume, but only for ≈ 55 % in the top or bottom plane, while it is completely
dominant in the middle planes where it accounts for 97 % of the total energy (fluctuations
energy is ≈ 30 times larger than the mean flow in the middle plane). In fact, while
the mean flow energy decreases by a factor of ≈ 20 between the bottom and middle
planes, the fluctuations variance increases only by 17 % with respect to its global volume
mean, so that the total energy changes by 40 % with respect to this global mean. The
turbulent fluctuations are thus more homogeneous than the total flow, but still vary
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Figure 4. Second-order longitudinal structure functions
˙

[∆Ui(ri)]
2
¸

for the horizontal
U component of the velocity (circles) and the vertical W component (squares) in two horizontal
planes at z = 0 (empty symbols) and z = π/2 (filled symbols) for the total velocity U (left)
and the turbulent fluctuations u (right). The long dashed line is an r2 law showing that the
structure functions are quadratic at small scales and that the simulation is indeed well-resolved.

significantly as a function of the height, and measuring accurately the total energy of
the flow requires measurements in the whole volume. Also, we emphasize that these
deviations from homogeneity are measured by averaging over whole planes in the flow,
and it is highly probable that even larger deviations could be measured by restricting the
averaging domain around specific locations, like the center point of the middle planes, as
was indeed observed by (Huck, Machicoane & Volk 2017).

An observation that can be made from table 2 is that the fluctuations energy is not
independent of the mean flow energy, but it is anticorrelated , the fluctuations being larger
where the mean flow is weaker. This is true even if the mean flow and the turbulent
fluctuations are uncorrelated, either globally or in specific planes, i.e.

〈Ui Uj〉 (z) =
〈
Ui Uj

〉
(z) + 〈uiuj〉 (z) , (5.2)

so that this link between their magnitudes
〈

U
2
〉

and
〈
u2

〉
in different planes is not a

priori obvious.

5.1. Second-order homogeneity

We now turn to the subject of the homogeneity of two points second order statistics by
looking at second order longitudinal structure functions in different planes z, either for
the total velocity U or its turbulent fluctuations u. Examples are shown in figure 4 for U

on the left and for u on the right, for the x and z velocity components and at two different
heights z = 0 and z = π/2. One can first notice that no inertial range scaling is observed
in the structure functions, which is not surprising since the Reynolds number is not very
large, and observing a clear inertial range is much more difficult for structure functions
than for spectra, the latter switching from a power law to an exponential behaviour at
small scales, while the former switches between two power laws. On the other hand,
a clear quadratic behaviour is shown at small scales, showing that the velocity field is
regular and that small spatial scales are correctly resolved.

One can see from the graphs that, even if the second order statistics are quite
different at large scales for different components or different planes, they come closer
together as we move towards smaller scales. Still, even at the smallest scale reached
in the simulation ∆x, there are significant differences of nearly 20 % between structure
functions measured at z = 0 and z = π/2 for the total velocity. Interestingly, these
differences are even stronger for the turbulent fluctuations, reaching up to ≈ 30 %
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Figure 5. Transverse structure functions
˙

[∆Ui(rj)]
2
¸

plotted as a function of the corresponding

longitudinal structure functions
˙

[∆Ui(ri)]
2
¸

for i ≡ x, j ≡ z (circles) and i ≡ z, j ≡ x (squares)
in two horizontal planes at z = 0 (empty symbols) and z = π/2 (filled symbols). The long
dashed line corresponds to the ratio 2 that is expected for isotropic turbulence regular (smooth)
at small scales.

between the two planes. These differences are much larger than those between different
components in the same plane, showing that small scale inhomogeneities are important in

the TG flow, so that measurements of the local small-scale energy
〈
[∆Ui(ri)]

2
〉

or of the

local dissipation 15 ν limr→0

〈
[∆Ui(ri)]

2
〉

/r2 using isotropy will give different results if

measured at different heights z.

5.2. Second-order isotropy

Local and global isotropy are key ingredients to obtain Yaglom’s law (1.4) and Kol-
mogorov’s law (1.1) respectively, so it is important to verify if they come realised in
the TG flow at small scales. Local isotropy simply means that all directions are locally
equivalent for the turbulent velocity field, at least at small scales. While that property
is not evident if the turbulence forcing is anisotropic as it is for the TG forcing (3.1), it
is generally believed to be true, or postulated, for fluid turbulence. Figure 4 show that it

is indeed reasonably verified in the TG turbulent flow, with the horizontal
〈
[∆Ux(rx)]

2
〉

and the vertical
〈
[∆Uz(rz)]

2
〉

being undistinguishable at small scales r in the two

planes z = 0 and z = π/2 (but differ between the two planes as noted in the previous
section), even though their large scale variances Ux

2 and Uz
2 differ significantly (see

table 2). Local small scale isotropy thus seems a tenable option for the TG vortex flow.
Global isotropy is a deeper property that links the velocity statistics in different

orthogonal directions using isotropy and incompressibility. For second-order statistics,
it implies for instance (see Monin & Yaglom (1975) or Hinze (1959))

〈
[∆Uj(ri)]

2
〉

=
〈
[∆Ui(ri)]

2
〉

+
r

2

∂
〈
[∆Ui(ri)]

2
〉

∂r
j 6= i , (5.3)
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Figure 6. Ratio between second-order transverse
˙

[∆Ui(rj)]
2
¸

and longitudinal structure

functions
˙

[∆Ui(ri)]
2
¸

for i ≡ x, j ≡ z (circles) and i ≡ z, j ≡ x (squares) in two horizontal
planes at z = 0 (empty symbols) and z = π/2 (filled symbols) for the total velocity U (left) and
the turbulent fluctuations u (right).

that links the transverse
〈
[∆Uj(ri)]

2
〉

and longitudinal
〈
[∆Ui(ri)]

2
〉

structure functions.

In particular, if the longitudinal structure function is a power law with exponent ζ2, the
transverse one will also be a power law with the same exponent and an amplitude that
differs by a factor 1 + ζ2/2 (see e.g. Noullez, Wallace, Lempert, Miles & Frisch (1997)
for experimental measurements of transverse structure functions), so that if at small
scales the flow becomes regular with a quadratic behaviour of the second-order structure
functions, the transverse and longitudinal ones should differ by a factor of 2, a fact used
in equ. (2.14).

Figure 5 plotting the transverse structure function as a function of the longitudinal
one for the total velocity shows however that this relation is not very well statisfied,
with discrepancies of more than 20 % from the factor 2 (materialised by the long dashed

line) at the small scales. For instance, the transverse
〈
[∆Ux(rz)]

2
〉

is about 2.5 times

the longitudinal
〈
[∆Ux(rx)]

2
〉

in the middle plane z = π/2, showing once again the

strong anisotropy of that zone (Huck, Machicoane & Volk 2017). This discrepancy is
also visualised in figure 6, where the ratio between transverse and longitudinal structure
functions is plotted as a function of scale, and shows that this ratio does not go to 2,
neither for the total flow (left) or the turbulent fluctuations (right). These same ratios
computed for the full TG simulation volume display exactly the same behaviour, and show
that global isotropy is not fully satisfied in the TG flow with forcing, with significant
departures from relations (2.14). Whether these discrepancies will decrease and eventually
disappear when the Reynolds number increases is an open question, but at least it means
that using relations like (2.15) should be done with caution in flows with anisotropic mean
flow or forcing.

6. Energy transfer and dissipation

We will now study third-order structure functions, either the standard longitudinal
ones or the mixed third-order structure function (2.8) defining the energy flux vector,
in the context of the validation of the Kolmogorov, Yaglom or Monin’s energy transfer
laws. We stress that these odd-order structure functions are computed without using
any absolute values in their definition, as we will compare their value with those coming
from the corresponding law, i.e. (1.3), (2.11) and (2.7), without any adjustable parameter,
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Figure 7. The two terms of the l.h.s. of the Kolmogorov equation (1.1), turbulent transfer
(circles) and viscous dissipation (squares), and their sum (lozenges) as a function of scale,
compared to the Kolmogorov prediction 4/5 ε r shown as a long dashed line. The averages are
computed for the total velocity U in the full volume, and correspond to increments in the
horizontal x direction on the left, and in the vertical z direction on the right.

because the dissipation has been measured independently in the spectral DNS code as ε =
ν

〈
|∇ × U |2

〉
. The resulting value of these structure functions thus involves a lot of

cancellations between positive and negative values of the longitudinal velocity increment
and only comes from the slight asymmetry of the distribution of ∆Ui(ri). Averaging over
a large number of nearly independent times is then required to ensure the convergence
of these structure functions. While studying the energy transfer laws, we will also check
the validity of the various computational definitions of the dissipation equ. (2.6), (2.12)
and (2.15), as the total dissipation will be controlled only by the viscous dissipation at
small scales.

Figure 7 shows the two terms of the l.h.s. of the finite Reynolds number Kolmogorov
relation (1.1), as well as their sum, computed in the whole simulation volume for the
total velocity U in the horizontal x direction on the left, and in the vertical z direction
on the right. Both sums should be proportional to the total integrated dissipation from 0
to r and thus scale linearly according to the Kolmogorov prediction 4/5 ε r. A first point
to note is that, at this small Reynolds number, no inertial range can be observed in the
third-order longitudinal structure functions themselves (circles), so the transfer term

alone
〈
[∆ui(ri)]

3
〉

has no linear behaviour (it rather displays a cubic behaviour at

small scales, implying that the flow is regular and that the numerical simulation is well
resolved) and Kolmogorov’s ‘law’ (1.3) is not verified. This is to be expected, as previous
computations of (Gotoh, Fukayama & Nakano 2002) and (Mininni, Alexakis & Pouquet
2008) showed that the approach to pure scaling laws is very slow and that very large
Reynolds numbers would be needed to observe (1.3) without viscous correction. Our
goal here is rather to check whether the complete law (1.1) and isotropy holds for the
TG flow. The viscous terms (squares) differ only by ≈ 10 % between the horizontal and
vertical directions at small scales and are close to the Kolmogorov value, so that using
second-order structure functions to estimate the dissipation using (2.15) is reasonable,
provided the small scales are correctly resolved (either numerically in the TG flow or
experimentally in the von Kármán flow). On the other hand, using the transfer term
alone never gives a reliable estimation of ε unless the Reynolds numbers is very large, an
effect already noted by various authors (see e.g. fig. 2 of Antonia, Ould-Rouis, Anselmet &
Zhu (1997) or fig. 12 of Gotoh, Fukayama & Nakano (2002)). Using the sum of the viscous
and transfer terms (if they can be measured reliably) gives a result that is not too far
away from the Kolmogorov linear scaling, but there are significant differences between the
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Figure 8. The two terms of the l.h.s. of the Yaglom equation (1.4), turbulent transfer (circles)
and viscous dissipation (squares), and their sum (lozenges) as a function of scale, compared to
the Yaglom prediction 4/3 ε r shown as a long dashed line. The averages are computed for the
total velocity U in the full volume, and correspond to increments in the horizontal x direction
on the left, and in the vertical z direction on the right.
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Figure 9. Computed derivatives of all terms of the Yaglom relation (1.4), as a function of
scale r, as well as the Yaglom prediction of the constant slope 4/3 ε. All symbols and conditions
as in figure 8.

horizontal and vertical directions for the TG flow, due mostly to the horizontal transfer
term overestimating the total dissipation at intermediate scales, while the vertical one
underestimates it. This could be due the smaller variance of the velocity in the vertical
direction, or to the rotational part of the mean flow that cannot be completely neglected
in the total flow, and that could partly inhibit energy transfers in the vertical direction.
Arguments if favor of one or these possible explanations can be obtained by looking at
the Yaglom and Monin laws.

Figure 8 is exactly similar to figure 7, but this time shows the different terms in the
Yaglom relation, whose sum should scale linearly like 4/3 ε r. Once again, no inertial
range is present in the mixed third-order structure function (circles) due to the limited
Reynolds number, but the sum of the transfer and viscous terms is very close to the
linear Yaglom prediction. Also, the horizontal (left) and vertical (right) directions appear
nearly identical. To check that this really the case, it is better to look at the derivatives
(computed here using 3 points finite differences) of the different terms, that are shown
in figure 9. One can then see that, even if the x and z directions are very similar, and
that the sums of the derivatives are close to the Yaglom prediction 4/3 ε, they have slight
differences. In particular, the transfer in the x direction (and thus the total dissipation)
starts from a lower value than the transfer along z, but increases faster with scale so that
the apparent total dissipation along x increases with scale, while it decreases for z (the
same effect is observed for the Kolmogorov law). For the Yaglom relation, the transfer
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Figure 10. The two terms of the l.h.s. of Monin’s equation (1.5), turbulent transfer (circles)
and viscous dissipation (squares), and their sum (lozenges) as a function of scale, compared to
the constant prediction 4 ε shown as a long dashed line. Averages are computed for the total
velocity U in the full volume.

term corresponds to the dissipation of the total energy |∆U(ri)|
2 by the longitudinal

velocity fluctuations ∆Ui(ri), so we can make the hypothesis that this reduction of the
transport is due to the lower amplitude of the velocities in the vertical direction when we
go to larger scale, and the flow is more rotational. At small scales, the velocity gradients
along z are slightly larger by about 15 % than the gradients along x, probably due to the
fact that the total velocity z component is mostly due to the turbulent fluctuations that
act at small scales, while the total velocity x component also has large scale constituents
coming partly from the mean flow. Measuring the dissipation through (2.12) will thus
not always be completely reliable if the flow has anisotropic inhomogenities like the
TG flow has. Also, it must be noted that, even if small, the transfer term does not vanish
immediately when going to small scales, and gives a finite contribution to the total
dissipation at nonzero scales, that only goes to zero like r2 when the flow is regularised
by the viscosity.

The fact that the Yaglom relations along x and z have opposite deviations from a
linear behaviour suggests that some ‘average’ between them might give a perfectly linear
relationship, and this in fact what Monin’s relation will produce. Figure 10 shows the
two terms on the l.h.s. of Monin’s relation (with derivatives computed again using 3-
points finite differences), and shows that their sum manages to stay constant for about
one decade of scales even at this low resolution, and has the correct value 4 ε to better
than 2 %. Several comments are in order. It might come as a surprise that Monin’s relation
is already valid at such a low Reynolds number, but its derivation does not require the
assumption of zero viscosity if we include the viscous dissipation term. Homogeneity
is needed, but is clearly satisfied in our case if we average over the full volume of a
2π-periodic box and the forcing also has these symmetries. Interestingly, the transfer
term alone goes to a maximum that nearly coincides with the right value for the total
dissipation (the error is only 3 %), but it does so at only one scale, while the sum of
the viscous and dissipative terms stays constant from the smallest scale to the scale
of maximum transfer (note that the viscous term 2 ν ∇2

〈
|∆u(r)|2

〉
changes sign at
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Figure 11. ‘Isotropically integrated’ terms of Monin’s equation (1.5), corresponding to the sum
of Yaglom’s equation (1.4) in the three directions r, compared to the prediction 4 ε r. Conditions
and symbols as in figure 10.

intermediate scales r ≈ 0.32). The total dissipation apparently goes to zero at large
scales, but this is because we did not compute the work of the forcing that has to act at
these scales to maintain a steady state. Also, it is only because we averaged over very
long times that we could observe Monin’s law with stationary values of all terms, because
all the terms in the complete Monin’s relation (2.4) are fluctuating in time with varying
characteristic times at each scale. Because Monin’s relation is a form of ‘weighted sum’
of the derivatives of Yaglom’s law in the different directions, we can also compute a ‘sum’
of Yaglom’s laws as an ‘isotropically integrated’ Monin’s law

−
∑

i

〈
|∆U (r 1i)|

2
∆Ui (r 1i)

〉
+ 2 ν

∑

i

∂i

〈
|∆U (r 1i)|

2
〉

= 4 ε r , (6.1)

summing the mixed third-order structure functions and the total second-order structure
functions at the same separation in the three different directions. This ‘integrated’ form
of Monin’s relation that should be valid also for anisotropic homogeneous flows is shown
in figure 11 and we can see that it is well-verified in the TG flow even at low Reyynolds
numbers. One can notice that the viscous and transfer terms become equal and cross each
other at a scale that has to be related to the Kolmogorov scale η, but differs between
Monin’s relation where it is ≈ 4 η, and its integrated form where it is around 8 η. Still,
this means that one or both forms of Monin’s law can be used to observe η only from
experimental measurements of the velocity U , if the fluid viscosity ν is known.

As we said in the the intoduction, turbulent fluctuations with respect to the mean flow
due to forcing are often believed to be closer to homogeneous isotropic turbulence than the
total flow. They are indeed slightly more isotropic, as we showed in section 5, but they are
farther when we consider exact energy transfer laws, as figure 12 demonstrates. One can
see that all terms of Monin’s relation (1.5) computed for the velocity fluctuations u, and
also their sum, have values that are much lower than the expected total dissipation 4 ε.
This could be attributed to the amplitude of the fluctuations being smaller than those of
the total velocity that is used to compute ε, and indeed one can see that the dissipative
term alone is too small and does not reach the correct value of the total dissipation at
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Figure 12. The same quantities and conditions as in figure 10, but computed for the velocity
fluctuations u instead of the total velocity U .
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Figure 13. The same quantities and conditions as in figure 10, computed for the total
velocity U , but averaging only in the plane z = 0 (left) and only in the plane z = π/2 (right).

small scales. But the transfer term is also too small and does not go at all to the total
dissipation, so that the sum of the two terms does not show any constant plateau as a
function of scales. This implies that the distribution of total dissipation across scales for
the turbulent fluctuations, and its decomposition in transfer and viscous terms, do not
correspond to those of a turbulent velocity field. This could have been expected as the
turbulent fluctuations u are not solutions of the Navier-Stokes equations (nor does the
mean velocity field U ) and so have no reason to obey (1.5).

A final comment about Monin’s law (and of course to an even greater extent for
Yaglom an Kolomogorov law) is that it is realised only if averaging over scales such that
the flow has become homogeneous. Otherwise, quantities like the mean dissipation are not
even well-defined. For example, figure 13 displays the different terms of Monin’s relation
computed for the total velocity U in the same conditions as in figure 10, but averaging
only in the planes z = 0 (left) and z = π/2 (right). One can see that the sum of the
terms, that is the total dissipation, is slightly too low at small scales in the bottom plane,
mainly due to a lack of dissipation, and slightly too high at large scales, due to an excess
of transfer, so that the total dissipation increases with scale. Opposite deviations (excess
of dissipation and lack of transfer) occur in the middle plane z = π/2. One should note
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that, because Monin’s law computes an average between the three directions, it requires
increments also along the z direction that, as we said in section 4.2, are centered on
the considered z position, but involve larger vertical separations as the scale increase.
Still, it means that the TG flow has strong inhomogeneities that can affect the local
energy dissipation rate (as was also observed experimentally by Huck, Machicoane &
Volk (2017), and this effect can be evidenced using Monin’s energy transfer relation that
is independent of isotropy, but requires homogeneity. This means that its violation implies
either inhomogeneities, or that the velocity field does not obey Navier-Stokes equations,
as we pointed out in the previous section.

7. Discussion and conclusions

We have checked the applicability of the Kolmogorov, Yaglom and Monin energy
transfer laws for a strongly anisotropic and inhomogeneous flow, namely the stationary

TG vortex that develops from a large scale constant in time TG forcing 3.1. This large
scale forcing induces an anisotropic non-homogenous mean flow that is not negligible with
respect to the turbulent fluctuations and, more importantly, does not disappear when the
Reynolds number becomes very large (Ravelet, Chiffaudel & Daviaud 2008). Although
the velocity fluctuations have been found to be more isotropic and homogeneous than
the total flow at the level of one and two points second-order statistics, they still show
strong deviations from Homogeneous and Isotropic Turbulence, with statistcal properties
that depend on position and orientation in the flow (see also Huck, Machicoane & Volk
(2017)). These discrepancies can be observed in the finite Reynolds number Kolmogorov
and Yaglom laws that show deviations from a linear behaviour and an apparent total
integrated dissipation ε r that change with scale, location and direction. On the other
hand, Monin’s law with the finite Reynolds number viscous correction remains valid in
these non-ideal flows and provides a reliable way to estimate the total mean dissipation ε
in the flow, even if its measurement in experimental conditions has practical difficulties
(but see Lamriben, Cortet & Moisy (2011)). Monin’s law can be seen an ‘isotropic mean’
of Yaglom’s law in all space directions (see (6.1) and figure 11) and, as such, it might not
be surprising that it remains valid as it is averaged in orientation (because of the sums in
the divergence and laplacian) and position (because of the assumption of homogeneity).
Still, it is reassuring that it is valid in the TG flow provided we average over a volume
sufficient for the flow to be considered as homogeneous. Intriguingly, the derivation of
Monin’s law does not use the hypothesis of turbulence of the flow, but only homogeneity,
incompressibility and the fact that it satisfies the Navier-Stokes equation. It should thus
also be valid at very low Reynolds numbers and for scales in the inertial range, provided
we include in (2.4) the time derivative term if the flow is not stationary (for example in
decaying turbulence) and/or the forcing term if we consider such large scales that the
work of the forcing is not negligible. In fact, we plan in future work to check Monin’s
relation in decaying turbulence or in static flows.

On the other hand, Monin’s relation (as well as Kolmogorov or Yaglom laws) requires

homogeneity and we have demonstrated that it is not verified if we restrict its averaging
region to inhomogeneous regions of the flow. Also, the velocity fluctuations with respect
to the mean flow do not by themselves obey the Navier-Stokes equations and so do
not statisfy Monin’s equation ; even if they contribute a significant part of the total
dissipation, part of the total dissipation is missing in the fluctuations. In fact, some part
of the dissipation is contained in the mean flow, even if it is also not a solution of Navier-
Stokes equations. Figure 14 demonstrates this fact by computing the different terms of
Monin’s relation for the mean flow U and shows that, even if the small scale viscous
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Figure 14. Same quantities and conditions as in figure 10, but computed for the mean
flow U instead of the total velocity U .

term is indeed small and begligible for small viscosities, the transfer term is not zero
and not negligible with respect to the total dissipation at large scales. This implies that
the mean flow is negatively skewed longitudinaly, a surprising fact as the TG forcing
itself has zero skewness and all its longitudinal or mixed third-order structure functions
are zero. Of course, dissipation for the total flow is not additive between the mean flow
and the fluctuations, but it is interesting to note that both constituents have dissipation
by themselves and that their skewness has its origin in the fact that their sum obeys
the Navier-Stokes equations. Also, at low Reynolds numbers such that the TG vortex is
static, the mean flow is the total flow and so is a solution of the Navier-Stokes equations,
so that Monin’s relation must be satisfied if we include the work of the forcing, as the
mean flow and the forcing are strongly correlated. So the mean static flow in fact transfers
energy to small scales even in that case, which is not obvious a priori.

The interaction between the mean flow and the turbulent fluctuations also seems to be
non-trivial, as their amplitude appears to be locally anticorrelated, even if the mean and
turbulent velocities themselves are uncorrelated. The fact that the mean flow is not only
inhomogeneous, but locally strongly anisotropic also slows down the return to isotropy
of the turbulent fluctuations, an effect already noticed in simulations of homogeneous
shear flow by (Pumir & Shraiman 1995) and (Pumir 1996) who showed that the velocity
derivative skewness does not decrease when the Reynolds number increases in presence
of a local velocity shear. The experimental work of (Huck, Machicoane & Volk 2017) also
shows that anisotropies of the turbulent fluctuations can be induced by inhomogeneities
and anisotropies of the mean flow and can have a deep effect on the local turbulent
energy dissipation and production. These deviations from isotropy and homgeneity have
effects and can be observed in the Yaglom and Kolmogorov energy transfer laws that
need these ingredients to be satisfied, and implies that local measurements of dissipation
through the use of these laws can have strong variations with position and orientation.
All these results suggest that the convergence at small scales and high Reynolds numbers
to Homegeneous Isotropic Turbulence might be slower and more complex than usually
thought in presence of an inhomogeneous or anisotropic mean flow, as is the case in the
Tyalor-Green vortex or the von Kármán swirling flow.
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