
HAL Id: hal-03007802
https://hal.science/hal-03007802

Submitted on 16 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A fictitious domain method with distributed Lagrange
multipliers on adaptive quad/octrees for the direct

numerical simulation of particle-laden flows
Can Selçuk, Arthur R. Ghigo, Stéphane Popinet, Anthony Wachs

To cite this version:
Can Selçuk, Arthur R. Ghigo, Stéphane Popinet, Anthony Wachs. A fictitious domain method with
distributed Lagrange multipliers on adaptive quad/octrees for the direct numerical simulation of
particle-laden flows. Journal of Computational Physics, 2020, pp.109954. �10.1016/j.jcp.2020.109954�.
�hal-03007802�

https://hal.science/hal-03007802
https://hal.archives-ouvertes.fr

A fictitious domain method with distributed Lagrange
multipliers on adaptive quad/octrees for the direct

numerical simulation of particle-laden flows

Can Selçukc,∗, Arthur R. Ghigoa,c,d, Stephane Popinetb, Anthony Wachsc,d

aPIMS-CNRS, University of British Columbia, 4176-2207 Main Mall, Vancouver, BC, V6T 1Z4, Canada
bInstitut Jean le Rond d’Alembert, Sorbonne Université, CNRS, Paris, France

cDepartment of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC,
Canada, V6T 1Z4.

dDepartement of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall,
Vancouver, BC Canada, V6T 1Z3.

Abstract

In this article, we extend our Distributed Lagrange Multiplier/Fictitious Domain method
previously implemented on simple regular Cartesian grids to quadtree/octree adaptive
grids. The objective is to improve both the accuracy and efficiency of our DLM/FD
particle-resolved simulation method by extending its computing capabitilies through dy-
namic local mesh refinement. The main features of our numerical method, such as a
first-order operator splitting time algorithm and a second-order reconstruction of the ve-
locity field close to the boundary of the immersed rigid bodies (of arbitrary shape), are
unchanged. We implemented our adaptive DLM/FD algorithm within Basilisk, a parallel
platform to solve partial differential equations on dynamic quadtree/octree grids. The
quadtree/octree structure of the grid and specific design rules of Basilisk impose a spe-
cial treatment of some of the operations performed on the grid in the DLM/FD-Uzawa
algorithm. The new computational method is then tested and validated on a set of flow
configurations including the challenging problem of accurately computing lubrication in-
teraction forces without resorting to using any ad hoc correction. Finally, we illustrate
the potential of our code to compute complex particle-laden flow configurations that were
not attainable in the past with a DLM/FD algorithm implemented on a simple regular
Cartesian grid.

Keywords: Fictitious domain; Adaptive grid; Quadtree/octree; Particle-laden flow;
Parallel computing;

1 Introduction
In this article, we combine a fictitious domain method (FD) with an adaptive mesh refine-
ment (AMR) technique to compute the dynamics of particle-laden flows. We consider a
Newtonian and incompressible fluid seeded with rigid and homogeneous particles of, pos-
sibly, complex shape. Such flows have many engineering and practical applications. For
example, fluidized beds are a common process in the chemical engineering industry where
the dynamics at the level of the particles including both short and long range hydrody-
namic interactions controls the overall chemical conversion efficiency. Pollutant transport

∗Corresponding author
Email address: cselcuk@math.ubc.ca (Can Selçuk)

Preprint submitted to Journal of Computational Physics November 16, 2020

with inertial particles is also an important category of application in the aerodynamic and
environmental fields.
Particle-laden flows have been the subject of many investigations and efforts for the past
decades and a broad range of numerical methods has been devised in the literature to
compute them. In general, depending on the treatment of the underlying numerical mesh,
these methods are classified into two main categories: body-conforming mesh methods and
fixed mesh methods (Haeri and Shrimpton, 2012). The former category comprises (among
others) the Arbitrary Lagrangian-Eulerian (ALE) (Choi and Kim, 2010), the Fictitious
Boundary (Wan and Turek, 2006) and the Deforming-Spatial-Domain/Stabilized Space-
Time (DSD/STT) (Tezduyar et al., 1992) methods while the latter category comprises the
Immersed Boundary (IBM) (Peskin, 1972), the Lattice-Boltzmann (LBM) (Ladd, 1994)
and the Distributed Lagrange Multiplier/Fictitious Domain (DLM/FD) (Glowinski et al.,
1999) methods. For a comprehensive overview of existing particle-resolved computational
methods, the reader is referred to the recent review articles by Haeri and Shrimpton (2012),
Sotiropoulos and Yang (2014) or Wachs (2019).
Body-conforming mesh methods, while more appealing at first due to their theoretical
higher accuracy are hindered by the numerical overhead associated with the resolution of
additional equations for the motion of the mesh, the complicated re-meshing process itself
and the costly projection steps between successive meshes when the rigid bodies position
changes in time. Conversely, fixed-mesh methods are theoretically less accurate as they rely
on a local reconstruction of the velocity field around the solid region (usually through an ad
hoc interpolation strategy) but they are more convenient in practice and provide a better
framework for parallel implementation and computational optimized speed-ups. Indeed,
domain decomposition is straightforward and can be achieved with an almost perfect load
balancing. The serial algorithms, once parallelized, also retain their convergence properties
and scale well with the number of cores/CPUs when deployed on supercomputers, see e.g.
Uhlmann (2005) or Wachs (2011).
Existing particle-resolved computational methods have shed some light on the hydro-
dynamics of highly complex particle-fluid systems. However, our comprehension of ele-
mentary mechanisms is still lacking for flow configurations with a high degree of scale
separation throughout the spatial domain and/or the temporal domain such as turbulent
flows where the smallest structures scale with the Reynolds number as ∼ Re−3/4 or highly
dense suspensions where lubrication forces play a major role. For such flows, a fixed/static
grid strategy and/or a constant time-stepping technique are not adequate to capture the
relevant length and time scales (and thus the correct dynamics) of the flow. To over-
come these difficulties, solvers with adaptive mesh refinement (AMR) have emerged and
have been successfully employed in different fields: electrohydrodynamics (López-Herrera
et al., 2011), study of atmospheric boundary layers (van Hooft et al., 2018), multiphase
flows (Fuster et al., 2009; Losasso et al., 2004), flows in complex geometries (Popinet,
2003; Gibou et al., 2002), turbulence modeling (Schneider and Vasilyev, 2010). In gen-
eral, AMR solvers aim to distribute available computational resources efficiently over a
domain by dynamically refining and coarsening the computational grid in space and time.
It is thus natural to use adaptive grids and adaptive time-steps with the aforementioned
particle-resolved computational methods in order to simulate particle-laden flows.
Some fictitious domain/immersed boundary methods were designed from the start for a
potential implementation on adaptive grids and some early contributions to the literature
as, e.g., Johansen and Colella (1998), Calhoun and LeVeque (2000) or Popinet (2003) ac-
tually implemented them on adaptive grids and showed satisfactory results, even with the
limited computing power available at that time. With the expansion of supercomputing,
the contemporary literature features recent contributions to particle-laden flow computa-
tions on adaptive grids that are more advanced from a computational viewpoint and that

2

examine more challenging flow configurations: Mohaghegh and Udaykumar (2016) with an
immersed-boundary/ghost cell method, Hartmann et al. (2011), Meinke et al. (2013) and
Schneiders et al. (2013) with a cut-cell/embedded geometry method and Eitel-Amor et al.
(2013) with a lattice-Boltzmann method. But the use of adaptive grids in particle-laden
flow computations remains limited in the literature and, to the best of the authors’ knowl-
edge, there has been no attempt to port and implement a DLM/FD method on adaptive
grids. Our primary objective in this paper is therefore to combine the powerful features
of the DLM/FD method (unconditional stability with respect to the solid to fluid density
ratio, enhanced fluid-solid coupling through the implicit computation of the hydrodynamic
interactions and robust convergence properties of the Uzawa algorithm) to the improved
spatial accuracy enabled by adaptive grids.
In practice, we implemented our DLM/FD method (Wachs, 2011; Wachs et al., 2015) in
the Basilisk AMR framework (Popinet, 2015). Basilisk is an open-source software that
provides a set of (multigrid) solvers based on a tree data-structure to solve a broad range
of initial-boundary value problems.
It is coded in an “augmented” C programming language (the Basilisk C) and features high
level of abstraction for all non-trivial operations such as grid traversal, mesh refinement
and coarsening. The implementation of new models and/or new numerical schemes is also
eased by the existence of local regular stencils for each cell of the computational domain
(even when the cell of interest has neighboring cells of different sizes).
The paper is organized as follows. In section 2 we present the governing equations of
the problem and the numerical schemes are presented in section 3. A set of specific rules
for the implementation of the fictitious domain method are detailed in section 4 and the
algorithm is given in appendix A. We then present a set of validation cases in section 5,
including problems at high Reynolds numbers or with angular rigid particles. In section
6, we attempt to capture short-range lubrication forces in a direct fashion for the cases of
a sphere approaching a wall or two spheres approaching each other in a simple shear flow.
Finally, we discuss the potential of our DLM/FD algorithm on adaptive grids to compute
a large range of challenging particle-laden flows that are hard or impossible to compute
with an implementation on a regular Cartesian grid and future work in section 8.

2 Governing equations
To describe the behavior of a solid rigid body immersed in a fluid, the fictitious domain
method represents the space occupied by this body as a fluid domain and enforces this
“fictitious” fluid domain to behave as a rigid body. We consider a computational domain Ω
filled with an incompressible Newtonian fluid of constant viscosity µf and constant density
ρf and seeded with N rigid (homogeneous) particles of constant density ρs. The N rigid
particles occupy the domain P = ⋃N

i=1 Pi while the fluid occupies the domain Ω\P such
that Ω\P ⋂P = 0. We denote Γ the boundary of Ω and assume for simplicity (but without
any loss of generality) that the fluid velocity u (x, t) satisfies Dirichlet boundary conditions
on Γ. We briefly recall the equations of motion for the fluid and the solid separately and
then present the so-called combined equation of motion for the fluid-particle mixture, as
originally introduced by Glowinski et al. (1999).

2.1 Equations for the fluid
The starting point of the method is to consider first the motion of the fluid that satisfies:

ρf

(
∂u

∂t
+ u ·∇u

)
= ρfg +∇ · σ in Ω\P, (1)

∇ · u = 0 in Ω\P, (2)

3

where σ is the (general) stress tensor and g the gravity acceleration. The boundary and
initial conditions are

u = uΓ on Γ, (3)
u = Ui + ωi × ri on ∂Pi for i = 1, ..., N, (4)
u|t=0 = u0 in Ω\P. (5)

Equation (4) and quantities Ui,ωi, ri are directly related to the particles through the
no-slip condition at the particles surface. Here, Ui refers to the ith-particle’s translational
velocity, ωi to the ith-particle’s angular velocity and ri ≡ x −Xi to the distance with
respect to the ith-particle’s center of mass position Xi.

2.2 Equations for the particle
The equations of motion for the ith-particle are

Mi
dUi
dt = Mig + Fi + F ′i (6)

dIiωi
dt = Ti + T ′i , (7)

whereMi and Ii denote the ith-particle’s mass and inertia tensor, respectively. The vectors
Fi and Ti are the hydrodynamic force and torque (about the center of mass) exerted on
the ith-particle and read as follows:

Fi =
∫

∂Pi

σ · n̂ dS, Ti =
∫

∂Pi

ri × (σ · n̂) dS, (8)

where n̂ denotes the outward-oriented unit normal vector to ∂Pi. The force F ′i and torque
T ′i result from potential collisions of the ith-particle with other particles and walls:

F ′i =
N∑

j=1,i 6=j

Fc,ij + Fc,iw, (9)

T ′i =
N∑

j=1,i 6=j

rj × Fc,ij + rw × Fc,iw. (10)

2.3 Equation for the fluid-particle mixture
The equation for the fluid-particle mixture, also called the combined equation of motion, is
obtained by combining the weak formulations of the equations of motion of the fluid and of
the rigid particles. It is obtained by first writing the weak formulation for the fluid domain
Ω\P where the rigid body constraint is enforced on the particles surface ∂P = ⋃N

i=1 ∂Pi

only and then extending the weak formulation to the whole domain Ω by imposing the
rigid body motion constraint in the whole region P occupied by the particles. We recall
briefly the steps of the derivation below.

2.3.1 Weak formulation for the fluid domain Ω\P
To obtain the weak formulation in the fluid domain Ω\P , we first introduce the test
functions (v,Vi, ξi) for (u,Ui,ωi) with i = 1, . . . , N belonging to the following function
spaces:

(v,Vi, ξi) ∈
{

(v,Vi, ξi) | v ∈ H1 (Ω\P)3 ,v = 0 on Γ, (Vi, ξi) ∈ R3,v = Vi + ξi × ri on ∂Pi

}
,

(u,Ui,ωi) ∈
{

(u,Ui,ωi) | u ∈ H1 (Ω\P)3 ,u = uΓ on Γ, (Ui,ωi) ∈ R3,u = Ui + ωi × ri on ∂Pi

}
.

4

We then perform the following symbolic operation:∫
Ω\P

Equation(1) · v dx+
N∑

i=1
Equation(6) · Vi +

N∑
i=1

Equation(7) · ξi. (11)

After integrating by part, using the fact that v = Vi + ξi × ri on ∂Pi, for i = 1, . . . , N ,
v = 0 on Γ and that the stress tensor σ is symmetric, we find:∫

Ω\P

ρf

(
∂u

∂t
+ u ·∇u− g

)
· v dx+

N∑
i=1

Mi

(dUi

dt − g
)
· Vi +

N∑
i=1

dIiωi

dt · ξi

−
N∑

i=1
F ′i · Vi −

N∑
i=1
T ′i · ξi = −

∫
Ω\P

D [v] : σ dx, for all (v,Vi, ξi) , (12)

where D [v] = 1
2(∇v+(∇v)T) denotes the strain rate tensor. The weak incompressibility

constraint is simply given by:∫
Ω\P

q∇ · udx = 0, for all q ∈ L2 (Ω\P) . (13)

Note that the hydrodynamic forces Fi and torques Ti on the particle are completely
eliminated in equation (12).

2.3.2 Extension to the entire domain Ω: fictitious domain formulation
Equation (12) enforces the rigid body motion on the particles surface ∂P only. To extend
this constraint to the whole particle domain P , we modify the function spaces as follows:

(v,Vi, ξi) ∈
{

(v,Vi, ξi) | v ∈ H1 (Ω)3 ,v = 0 on Γ, (Vi, ξi) ∈ R3,v = Vi + ξi × ri in Pi

}
,

(u,Ui,ωi) ∈
{

(u,Ui,ωi) | u ∈ H1 (Ω)3 ,u = uΓ on Γ, (Ui,ωi) ∈ R3,u = Ui + ωi × ri in Pi

}
.

Deriving u = Ui +ωi×ri in Pi for i = 1, . . . , N with respect to time leads to the following
relationship:

∂u

∂t
+ u ·∇u = Du

Dt
= dUi

dt + dωi

dt × ri + ωi × (ωi × ri) in Pi, i = 1, . . . , N. (14)

Next, to derive the weak formulation for the particle domain P = ⋃N
i=1 Pi, we multiply

equation (14) by ρsi and integrate it for each particle Pi, i = 1, . . . , N . Then we use
the facts that

∫
Pi

ridx = 0,
∫
P

σ : D [v] dx = 0,
∫
Pi

ρsigvdx = MigVi and sum all weak

formulations of each particle Pi to obtain a formulation similar to (12) as follows:∫
P

ρf

(
∂u

∂t
+ u ·∇u− g

)
· v dx−

N∑
i=1

ρf

ρsi

Mi

(dUi

dt − g
)
· Vi

−
N∑

i=1

ρf

ρsi

dIiωi

dt · ξi = −
∫
P

D [v] : σ dx, for all (v,Vi, ξi) . (15)

Summing equations (15) and (12) yields the so-called combined weak equation of motion
for the entire domain Ω.∫
Ω

ρf

(
∂u

∂t
+ u ·∇u− g

)
· v dx+

∫
Ω

σ : D [v] dx+
N∑

i=1

((
1− ρf

ρsi

)
Mi

(dUi

dt − g
)
− F ′i

)
· Vi

+
N∑

i=1

((
1− ρf

ρsi

) dIiωi

dt − T ′i
)
· ξi = 0, for all (v,Vi, ξi) . (16)

5

2.3.3 Relaxing the rigid-body constraint: distributed Lagrange multipliers
We now relax the constraint of rigid-body motion through the introduction of distributed
Lagrange multipliers λ. We look for solutions in the function spaces defined as:

WΓ = {v ∈ H1 (Ω)3 |v = uΓ on Γ}, W0 = {v ∈ H1 (Ω)3 | v = 0 on Γ},

L2
0 =

{
q ∈ L2 (Ω)3 |

∫
qdx = 0

}
, Λ = H1 (P)3 .

and solve a constrained optimization problem which reads, for a Newtonian fluid with
σ = −pId + 2µfD[u], as follows: find u ∈ WΓ, p ∈ L2

0, λ ∈ Λ, (Ui,ωi) ∈ R3 ×R3 such
that∫

Ω

ρf

(
∂u

∂t
+ (u ·∇)u

)
· v dx−

∫
Ω

p∇ · v dx+
∫
Ω

µf∇u :∇v dx = −
N∑

i=1

∫
Pi

λ · v dx

(17)∫
Ω
−q∇ · udx = 0, (18)

for particle i = 1, . . . , N(
1− ρf

ρsi

)
Mi

(dUi
dt − g

)
· Vi − F ′i · Vi =

∫
Pi

λ · Vi dx, (19)(
1− ρf

ρsi

) dIiωi
dt · ξi − T ′i · ξi =

∫
Pi

λ · (ξi × r) dx, (20)∫
Pi

ν · (u− (Ui + ωi × ri)) dx = 0. (21)

for all v ∈ W0, (Vi, ξi) ∈ R3 ×R3, ν ∈ Λ, q ∈ L2 (Ω)

Note that the term −
∫

Ω
ρfg dx is now included in the pressure term. Also, the test

functions Vi and ξi are simply chosen such that Vi = ξi = 1 in Pi ∪ ∂Pi for i = 1, . . . , N .

3 Numerical method
In this section, we present the numerical method we use to solve the set of equations
(17)-(21).

3.1 Time discretization: 1st order operator splitting
The set of equations (17) - (21) forms a fully coupled problem that is difficult to solve
directly as one has to deal with multiple sources of difficulty (Glowinski et al., 1999):

• an advection-diffusion equation,

• the constraint of incompressibility with the pressure p as unknown,

• the detection and computation of the contact forces F ′i and torques T ′i for particle
i = 1, . . . , N ,

• the constraint of rigid body motion with the Lagrange multipliers λ as unknown.
Following Glowinski et al. (1999), we adopt a first-order accurate operator-splitting method
(or fractional step method a la Marchuk-Yanenko) and split the whole problem into mul-
tiple sub-problems that we solve successively. The process can be seen as an initial value
problem such that:

dφ
dt + A1 (φ) + A2 (φ) + A3 (φ) = f

φ(t = 0) = φ0.

6

The definition of operators Ai is not unique and leads to different splitting strategies (see,
e.g., Glowinski et al. (2001) and Yu (2005)). We choose here a 3-step splitting strategy
defined as follows:

φn+1/3 − φn

∆t + A1
(
φn+1/3

)
= fn+1

1 ,

φn+2/3 − φn+1/3

∆t + A2
(
φn+2/3

)
= fn+1

2 ,

φn+1 − φn+2/3

∆t + A3
(
φn+1

)
= fn+1

3 ,

fn+1
1 + fn+1

2 + fn+1
3 = f ((n+ 1)∆t) .

The operator A1 refers (symbolically) to the Navier-Stokes problem where the incompresi-
bility condition and the advection-diffusion equation are treated all together. The operator
A2 represents a purely granular problem (i.e without the action of the fluid) where the
particle-positions are updated and their intermediate velocities are found by computing
the contact forces F ′i , contact torques T ′i and by solving Newton’s equations of motion.
Finally, the operator A3 refers to the fictitious domain problem where the constraint of
rigid body motion is enforced by solving a saddle-point problem for the particles veloci-
ties (Ui,ωi), fluid velocity u and Lagrange multipliers λ. Note that while this splitting
algorithm is first-order accurate only, it is proven to be robust, stable and also to preserve
stationary solutions (MacNamara and Strang, 2016). From a practical point of view, it
offers flexibility to select an efficient solver for each sub-problem and is rather simple to
implement. Here, we choose to use the (open-source) Basilisk code for the solution of the
Navier-Stokes problem, and the Grains3D code for the granular problem. Basilisk is cho-
sen for its adaptive mesh refinement (AMR) capabilities along with the good convergence
properties of its geometric multi-grid solver while Grains3D is chosen for its appealing
capability to handle rigid particles with a complex shape. For more detail on these codes,
see Popinet (2015) about Basilisk and Wachs et al. (2012); Rakotonirina et al. (2019)
about Grains3D. For the fluid-particle interaction problem, we implemented the iterative
Uzawa/Conjugate gradient algorithm in Basilisk and coupled it with Grains3D. In the
next sub-sections, we present the temporal discretization scheme of each sub-problem (in
their strong formulation for the sake of simplicity). The details and practical aspects of
the Uzawa algorithm are presented in the appendix A.

3.1.1 First sub-problem: Navier-Stokes
The temporal discretization of the Navier-Stokes equations implemented in Basilisk uses
an operator-splitting method similar to the one proposed by (Bell et al., 1989), and is

7

composed of the following intermediate steps (or events in Basilisk’s terminology) :

ρf

(
ua − un

∆t + [u ·∇u]n+1/4
)

= 0, (22)

ρf

(
ur − ua

∆t

)
= + (−∇pn + ρan) , (23)

ρf

(
uλ − ur

∆t

)
= −λn (24)

ρf

(
uv − uλ

∆t

)
=∇ · (2µfD [uv]) , (25)

ρf

(
u∗ − uv

∆t

)
= − (−∇pn + ρan) (26)

ρf

(
un+1/2 − u∗

∆t

)
= −∇pn+1/2 + ρan+1/2, (27)

∇ · un+1/2 = 0. (28)

Equation (22) describes a pure advection problem. The convective term [u ·∇u]n+1/4

is computed with an explicit and second-order accurate Godunov prediction procedure
detailed in Bell et al. (1989). Equation (25) is a purely viscous problem which is solved
implicitly for uv and equations (27) to (28) are the projection of the velocity field onto
a divergence-free space. These two steps involve solving Helmholtz problems by inverting
a Laplacian operator. The term ∇pn + an in equation (23) is a coupling term from
the previous time step that improves the accuracy of the intermediate solutions. It is
subtracted in equation (26) and therefore vanishes when all the equations are summed.
Equation (24) is added here as an explicit forcing term to improve the coupling between
the Navier-Stokes and fictitious domain problems (Yu et al., 2006; Wachs et al., 2015). It
is also subtracted when solving the fictitious domain problem in equation (35). At the
end of the sequence (when all the equations are summed), the global temporal scheme for
the Navier-Stokes problem is:

un+1/2 − un

∆t = − [u ·∇u]n+1/4 + 1
ρf

[
∇ ·

(
2µfDv

[
un+1/2

])
−∇pn+1/2 + an+1/2 − λn

]
,

(29)
∇ · un+1/2 = 0. (30)

3.1.2 Second sub-problem: granular problem
The second sub-problem is a pure granular problem which reads as follows: given particles
velocity at time tn, Un

i ,ω
n
i , find U

n+1/2
i ,ω

n+1/2
i for particle i = 1, . . . , N such that(

1− ρf

ρs

)
Mi

(
U

n+1/2
i −Un

i

∆t

)
=
(

1− ρf

ρs

)
Mig + F ′i (31)

(
1− ρf

ρs

)
I

n+1/2
i ω

n+1/2
i − In

i ω
n
i

∆t = T ′i . (32)

and update particles center of mass position and particles angular position accordingly.
Note that in practice we solve equation (32) in the body-fixed frame of reference and
hence replace dIi,bωi,b

dt by Ii,b
dωi,b
dt + ωi,b × Ii,bωi,b where the subscript b means "in the

body-fixed frame of reference". In the body-fixed frame of reference and with an explicit
treatment of the non-linear term ωi,b × Ii,bωi,b, equation (32) becomes:(

1− ρf

ρsi

)
Ii,b

ω
n+1/2
i,b − ωn

i,b

∆t = −
(

1− ρf

ρsi

)
ωn
i,b × Ii,bωn

i,b + T ′i,b. (33)
8

These equations are integrated in time with a second-order accurate leap-frog Verlet
scheme. In the equations above, the contact terms (force F ′i and torque T ′i) usually
involve time scales much shorter than the fluid time scale. Thus, the time-step ∆t is not
appropriate for the granular problem when multiple particles are colliding and does not
allow the resolution of this problem in a single iteration from tn = n∆t to tn+1 = (n+1)∆t.
Instead, we divide the interval ∆t into Ng sub-intervals and uses a smaller time-step ∆tg
such that ∆tg = ∆t/Ng with Ng chosen to be a reasonably small integer. The choice of ∆tg
is not trivial and depends mainly on the technique that one uses to detect the contacts.
With the so-called soft-sphere model that Grains3D relies upon, the contact time and ∆tg
are directly linked to the stiffness of the material. While realistic stiffness values lead to
too small and impracticable time-steps, one common practice is to artificially soften the
particles as described in Wachs et al. (2012).
Please note that in the test cases presented in this paper, the collision detection and
contact force calculation are not used as either (i) the test case pertains to the flow past
an array of fixed obstacles, (ii) the test case involves a single particle or (iii) in section
6.2 discussing the case of two spheres approaching each other in a simple shear flow, we
purposely turn off the calculation of the contact force and torque to assess the ability of
the directly computed (i.e. as a result of solving the mass and momentum conservation
equations on the adaptive grid in the narrow gap between the two particles) hydrodynamic
force and torque to keep the two particles apart.

3.1.3 Third sub-problem: Fictitious domain problem
The fictitious domain problem reads: given un+1/2, λn, Un+1/2

i , ωn+1/2
i find un+1, λn+1,

Un+1
i , ωn+1

i for particle i = 1, . . . , N such that

ρf

(
un+1 − un+1/2

∆t

)
+ λn+1 = λn over Ω (34)

(
1− ρf

ρs

)(
Mi

[
Un+1
i −Un+1/2

i

∆t

])
−
∫

Pi

λn+1 dx = 0 over Pi (35)

(
1− ρf

ρs

)(
Ii

(
ωn+1
i − ωn+1/2

i

∆t

))
−
∫

Pi

ri × λn+1 dx = 0 over Pi (36)∫
Pi

un+1 −
(
Un+1
i + ωn+1

i × ri
)
dx = 0 over Pi. (37)

This is the final step of the algorithm where the effect of the Lagrange multipliers λ are
accounted for. The Lagrange multipliers λ are computed together with the particles ve-
locity (Ui,ωi) and the constraint of rigid body motion (37) within the particle domain
P = ⋃N

i=1 Pi. Problem (35)-(37) is a saddle-point problem solved with an iterative Uza-
wa/Conjugate gradient method detailed in appendix A.

3.2 Spatial discretization
3.2.1 Navier-Stokes
The Navier-Stokes equations are discretized in space with a 2nd order accurate finite-
volume scheme. The velocity field u and pressure field p are defined at the center of the cells
while pressure-gradient terms, acceleration terms and fluxes are defined (and computed)
at the center of the faces. The discretization of the Laplacian operator is performed
using a standard cell-centered finite difference approximation (five-points stencil in 2D).
The computation of the convective term u ·∇u in (22) involves a 3 steps procedure: (i)
a reconstruction step (via slope limiters) followed by (ii) a characteristic extrapolation
(prediction) of un to un+1/4 on the cell-faces and (iii) the evaluation of the fluxes. Finally,

9

Lagrange multiplier (L.m)

Constraint cells

Cell-center to L.m vector

2× 2-stencil

Interface-normal vector

3× 3-stencil

Fluid nodes

Boundary cells

Interior cells

Halo cells

Figure 1: Constrained fluid cells by the Lagrange multipliers (shown with red + symbol) with a collocation
point method. Red colored cells: cells constrained by the multiplier when located on the particle’s surface.
The stencil is oriented in the direction of the particle’s (exterior) normal in order to encapsulate (and
constraint) a maximum number of fluid cells. Two different configurations are shown, the left case is the
optimum with 8 cells in the fluid region. Blue colored cells: each multiplier constraints one fluid cell as
their positions coincide exactly with the fluid cells.

the projection step of (27)-(28) ensures that the velocity field defined at the face centers of
a given cell is divergence-free at the discrete level. The centered velocity field components
of u are then obtained via an arithmetic average of the face-centered values. One can argue
that u is not strictly divergence-free at the discrete level. Because the DLM/FD problem
is solved after the projection step in the global temporal splitting algorithm, our final
velocity field at the end of the sequence is never strictly divergence-free. The resolution
of the linear problems (the Helmholtz/Poisson equation of the projection step and the
purely viscous problem that both require to invert a Laplacian operator) are handled by
a geometric multi-grid solver implemented on adaptive quadtree/octree grids (Popinet,
2003, 2015).

3.2.2 Fictitious domain
The spatial discretization of the fictitious domain problem (35) leads to a saddle point
problem for velocities un+1, Un+1, ωn+1 and Lagrange multipliers λn+1. It is solved
implicitly with an iterative Uzawa/Conjugate-gradient method described in appendix A.
In practice, we choose the so-called collocation point method (Glowinski et al., 1999;
Wachs et al., 2015) that revolves around distributing a set of discrete points as uniformly
as possible on the surface and in the volume of the particles (such that they materialize the
fictitious domain) and constraining the flow field locally in order to enforce the rigid-body
motion as accurately as possible at each discrete point associated with a multiplier. It
results that the functional space for the Lagrange multipliers λ is constructed by covering
the ith-particle domain Pi with a set of Li points P̂i = {xil}Lil=1 and associating a Dirac
delta function to each point xil as its corresponding basis function:

λ (x) =
N∑

i=1

L∑
l=1
λilδ (x− xil) . (38)

The computation of the scalar products in the weak-formulation (17)-(21) < λ,v >Pi=∫
Pi

λ · vdx and < ν,u >Pi=
∫

Pi

ν · udx is then significantly eased. For instance, the
former product (same applies to the latter product) becomes:

< λ,v >Pi=
Li∑

l=1
λil v (xil) . (39)

10

The test functions v (xil) associated to each Lagrange multiplier at point xil define the
velocity reconstruction used to enforce the rigid-body motion. Following (Wachs et al.,
2015), we choose quadratic shape functions constructed on a 3× 3 in 2D and 3× 3× 3 in
3D regular Cartesian stencil. In the two-dimensional case, for a given particle i (we drop
the index i for ease of notations), we then have:

v (xl) =
3∑

m=1

3∑
n=1

vmnφmn (xl, yl) ,

where the components of the vector field vmn are equal to 1 as v (xl) is a test function. The
shape functions φmn (xl, yl) are the standard shape functions of a quadrilateral/hexahedral
finite element. They are equal to 1 at (xm, yn) and zero at all other points of the stencil.
The shape functions written in terms of re-scaled variables 0 ≤ ζ ≤ 1 and 0 ≤ η ≤ 1 are
as follows:

φmn (xl, yl) = ˆφmn (ζ, η) = φ′m (ζ)φ′n (η) for m,n = 1, 2, 3 (40)
where

φ′1 (ζ) = (1− ζ) (1− 2ζ) ,
φ′2 (ζ) = (2ζ − 1) ζ,
φ′3 (ζ) = 4ζ (1− ζ)

are the one-dimensional Lagrange quadratic polynomials.
For a multiplier (with index l) distributed in the interior of the fictitious domain (blue cells
on figure 1), its position xl matches the position of a fluid cell center (xl, yl) = (xm, yn)
for a combination of (m,n). It results that only one shape function has a non-zero term
equal to 1 and the scalar product (39) reduces to the simple sum of all multipliers that lie
in the interior part of the fictitious domain.
For a Lagrange multiplier distributed on the boundary (surface) of the fictitious domain,
the 3 × 3 stencil used for the reconstruction is shown in figure 1 with red colored cells.
This stencil is chosen such that a maximum number of constrained cells lie in the fluid
region. Depending on the location of the multiplier within a given fluid cell and the
direction of the particle’s outwards normal vector, different scenarios are possible. Two
such scenarios are depicted in figure 1 for the case of a circular fictitious domain. The
optimum configuration is the case 1-(a) with a minimum number of constrained cells
associated with the boundary Lagrange multiplier in the interior domain of the fictitious
domain. An additional condition for a fluid cell to be considered as part of the interior of
the fictitious domain is that it must not be part of a stencil associated with a boundary
Lagrange multiplier.
The extension to the three-dimensional case is straightforward and involves adding a third
one-dimensional Lagrange quadratic polynomial to the product of equation (40). For each
multiplier lying on the boundary of the particle, we hence use a 3× 3× 3 stencil with 27
associated shape functions.

3.2.3 A discussion on mesh adaptation, simple reconstruction stencil, homogeneous
surface point distribution and computing efficiency

The principle of local mesh refinement is to densify the grid in regions of strong spatial
variations of the discrete fields of interest. Basilisk uses the interpolation error between
a field value at a grid point belonging to a grid level n and its interpolated value from
a coarser grid level n − 1 as a criterion to coarse or refine the grid locally by merging
8 cubes into a parent cube or slicing a cube into 8 subcubes, respectively (the same
applies to squares in 2D). Given a user-defined threshold ε, the grid is refined or coarsened
depending on whether this interpolation error is larger or lower than ε (van Hooft et al.,

11

(a) Constant grid size over the rigid body surface (b) Varying grid size over the rigid body surface

Figure 2: Problems caused by a varying grid size over the rigid body surface shown in (b) compared to a
regular grid size where velocity interpolation is straightforward in (a). In (b), the two stencils for the red
and green boundary points and the location of the green point with respect to the red point are illustrative
only.

2018). In particle-laden flows, one preferential region of strong velocity variations is the
boundary layer around each individual rigid body. As a result, by simply relying on
the velocity field and the standard grid refining/coarsening algorithm in Basilisk, the
grid would automatically be very fine in boundary layers around rigid bodies. However,
velocity variations in boundary layers are often not homogeneous and this would lead in
the general case to a distribution of sizes over the set of grid cells that host a Lagrange
multiplier boundary point. As a result, the regular 27 cells (9 cells in 2D) quadratic
reconstruction described in the previous section would not be applicable anymore.
The problem of the grid being of different size close to the rigid body surface results in
two sub-problems of different complexity:

1. how to determine the interpolation stencil associated to a boundary point when the
boundary point is not part of a 3 × 3 × 3 (3 × 3 in 2D) group of cells of equal size
(i.e. belonging to the same grid level) ?

2. how to distribute boundary points on the rigid body surface in a non-homogeneous
way (non-homogeneous since the grid size varies along the rigid body surface) such
that the velocity is spatially properly imposed but the system of equations is locally
not over-constrained ?

This problem is illustrated in figure 2 where the groups of cells supporting the interpolation
stencils of the red and green boundary points are illustrative only, although they are valid
stencils. Sub-problem 1 above is relatively easy to solve and well documented in the
literature on simple regular Cartesian grids (see Mittal et al. (2008) and Lu et al. (2018)
among others) but computationally very expensive in the case of moving rigid bodies. In
fact, the construction of the velocity interpolation stencil, while introduced in the context
of simple regular Cartesian grids of constant grid size in, e.g., Mittal et al. (2008) and
Lu et al. (2018), is general and applicable to any set of grid nodes. The principle of
construction of the interpolation stencil is to consider a set of 10 grid nodes (6 grid nodes
in 2D) and the following basis functions 1, x, y, z, xy, xz, yz, x2, y2, z2 (1, x, y, xy, x2, y2 in
2D) where x, y and z are the relative coordinates with respect to the location of the
boundary point. This set of basis functions constitutes an adequate basis for a second-
order interpolation of any field φ. Indeed, the second-order interpolation of φ in the

12

vicinity of the boundary point then reads:

φ(x, y, z) =
i=2∑
i=0

j=2∑
j=0

k=2∑
k=0

Aijkx
iyjzk, i+ j + k ≤ 2 (41)

and the coefficients Aijk are the solution of the following Vandermonde linear system:
1 x0 y0 z0 x0y0 x0z0 y0z0 x2

0 y2
0 z2

0
1 x1 y1 z1 x1y1 x1z1 y1z1 x2

1 y2
1 z2

1
1 x2 y2 z2 x2y2 x2z2 y2z2 x2

2 y2
2 z2

2
...

...
...

...
...

...
...

...
...

...
1 x9 y9 z9 x9y9 x9z9 y9z9 x2

9 y2
9 z2

9




A000
A010
A001
...

A002

 =


φ0
φ1
φ2
...
φ9

 (42)

where φn , n = 0, 1, . . . , 9, and (xn, yn, zn) , n = 0, 1, . . . , 9, stand for the values of field
φ at the grid nodes of coordinates (x, y, z). So in theory we can construct a second-
order interpolation around each boundary point with any set of 10 points by inverting
(42), but this operation is computationally very expensive and has been implemented
primarily in the context of fixed rigid bodies (Mittal et al., 2008; Lu et al., 2018) and
rarely in the context of moving rigid bodies with adaptive grids (Mohaghegh, Fazlolah
and Udaykumar, HS, 2017). In fact, in the case of moving rigid bodies or when the mesh
changes over times to adapt to the flow field as with an adaptive grid, the pseudo-code is
provided in Alg 1. When rigid bodies are fixed and the mesh does not change with time,
the two inner loops in the above pseudo-code are only performed at initialization and the
sets of points and corresponding coefficients are computed and stored once and for all.
Thus, the corresponding computing cost, even if substantial, becomes negligible compared
to the total cost of computing, e.g., thousands of time steps to simulate the time evolution
of the solution.

Algorithm 1 A pseudo-code to compute the interpolation polynomial for velocity recon-
struction at the particle surface for moving particles or a grid non-constant in time as an
adaptive grid.
for all discrete times do

for all rigid bodies do
for all boundary points do

1. determine the set of 10 grid nodes around the boundary point
2. invert the Vandermonde system to compute the coefficients Aijk

3. store the coefficients Aijk for subsequent computations when running the
Uzawa algorithm

end for
end for

end for

However, even if we would be able to come up with a fast implementation of the above
solution to sub-problem 1, we would still need to supply an appropriate solution to sub-
problem 2. In fact, it has been shown multiple times in the literature that the proper
distribution of points of the rigid body surface in the context of fictitious domain/immersed
boundary methods that represent rigid bodies on the fluid grid as a set of points is crucial
to the overall accuracy of the computed solution (Uhlmann, 2005; d’Avino and Hulsen,
2010; Wachs et al., 2015). The common practice is to distribute points homogeneously
with an inter-point distance of α.h, where α is a coefficient between 1 and 2 and h is the
fluid grid size. When h is constant over the rigid body surface, various efficient methods
to construct the set of boundary points have been suggested in the literature for spheres

13

(Uhlmann, 2005) and for some specific non-spherical shapes (Wachs et al., 2015; Pierson
et al., 2019). These construction methods all lead to reasonably homogeneous distributions
of points that are all mostly distant from each other by the specified α.h. The idea to
separate boundary points by α.h is related to the size of the support of the regularized
delta functions in the context of direct forcing immersed boundary methods or the size of
the support of the stencil for the velocity reconstruction at the boundary, which here is 2h.
In the context of the solution of the DLM/FD saddle-point problem by a Uzawa algorithm,
it also guarantees that the system is not locally overconstrained (see the original paper
on DLM/FD by Glowinski et al. (1999)). Now, if the grid size varies over the rigid body
surface, the determination of the set of boundary points that both guarantees (i) that
the rigid body motion constraint is spatially properly enforced on the fluid grid and (ii)
that the problem is locally not overconstrained is a daunting task for which there is no
straightforward solution, to the best of our knowledge, even for a spherical rigid body, and
hence even less for a non-spherical rigid body. As a simple illustration, this problem can
be posed as follows in figure 2b: where should the green boundary point be located with
respect to the red boundary point to satisfy both condition (i) and condition (ii) ?
While a varying grid size over the rigid body surface does not cause any particular problem
to methods that do not represent rigid bodies on the fluid grid as a set of discrete points
as, e.g., embedded geometry/cut-cell methods (Udaykumar et al., 1996; Johansen and
Colella, 1998; Chung, 2013), we do not have at that point a satisfactory solution to the
problem of varying grid size over the rigid body surface and even if we would, this would be
computationally very expensive and potentially detrimental to the efficiency of the whole
algorithm. To circumvent this issue and provide an efficient solution, we force the grid to
be constant and equal to the smallest grid size over all rigid body surfaces and in a narrow
region the width of which is equal to three cells around all rigid bodies. This is achieved
by defining a color function or flag function on the fluid grid and artificially imposing large
variations in the normal direction to the rigid body surface, i.e., large variations in the
3-cell narrow band. The outcome is twofold:

1. we can use the regular quadratic interpolation presented in section 3.2.2,
2. we can use the same boundary points construction rules established for a constant

inter-point distance introduced in Wachs et al. (2015).

To summarize, we locally treat the problem of local velocity reconstruction on an adaptive
quadtree-octree grid as if the grid was a simple regular Cartesian grid. As a result, we
may refine the mesh more than required over some part of the rigid body surfaces, but
we postulate that this potential overhead of grid cells is favorably balanced by a simpler
implementation, the ease to distribute boundary points and a local velocity reconstruction
relying on a classical 27-point quadratic interpolation whose coefficients can be readily
computed.

4 Basilisk-specific rules associated with parallelism and stencil-
operations

While the DLM/FD algorithm was originally derived and implemented with a fixed grid
in mind, we can implement it in Basilisk’s quadtree/octree framework provided that we
adapt it to satisfy Basilisk’s specific set of rules.
In the quadtree/octree framework, cells are not labeled with indices i, j, k as it is usually
the case with constant Cartesian grids but instead, cells and neighbors are accessed with
predefined operators. The traversal of the grid is done via an operator called foreach() that
loops over all the computational cells (or leaves of the tree). The (regular) stencil associ-
ated to a cell (its direct neighbors) can be accessed via the operator foreach_neighbors()

14

Thread 0 Thread 1

Figure 3: Example of cells (colored in grey) being part of two different stencils which are split by the
domain-decomposition (represented by the red line). The green and blue crosses are the position of the
Lagrange multipliers and the dash-dotted lines are the associated stencil used for the local reconstruction
of the velocity field. In this configuration, each stencil has cells that belongs to the other thread’s domain
(one for the green, and two for the blue).

when nested within the foreach() loop. With such cell-traversal operators, accessing the
stencils associated to a Lagrange multiplier is rather straight-forward but the modification
of the fields, defined on these cells, is more complicated and is subject to a fundamental
constraint/rule in Basilisk. Indeed, in order to maintain the consistency of the stencils,
Basilisk only allows writing within cells which are local to a sub-domain (i.e., a thread)
and accessed directly (i.e., accessed with a foreach() loop).
This rule also guarantees the consistency of the domain decomposition technique used
during parallel computations as cells which belong to a given stencil can be part of another
thread’s domain. An example of such a scenario is depicted on figure 3 where the stencil
associated to the green Lagrange multiplier has one cell in the other thread’s computational
domain. This particular cell (the top middle grey-colored one) is a ghost cell for thread 0
and it is a local one for thread 1. With the above mentioned rule, this means that thread 0
can access (read) the value stored in that cell (with the combination of operators foreach()
and foreach_neighbors()) but cannot modify its value, only thread 1 can modify it within
a direct foreach() loop. Thus, the modification of a cell accessed indirectly or non-locally
is not allowed. This slightly complicates the implementation of the algorithm as the effect
of the Lagrange multipliers (through the computation of scalar products and residuals
involved at different stages of the algorithm) has to be spread to non-local cells as well.
It also forbids the straightforward and natural approach where one would first locate the
cell containing a multiplier, sweep its neighborhood and distribute the associated weights
(given by the shape-functions in equation (40)).
The solution is to reverse the algorithm and to consider local operations only. We can
see in figure 3 that the middle top cell is actually part of two different stencils as it is
affected by two multipliers. Thus, instead of using the straight-forward (and probably
optimal) approach described above, we check the neighborhood of each (local) cell if a
Lagrange multiplier is present and compute the weights and scalar products when it is the
case. This comes with an additional number of operations of about ∼ 5222M in 2D and
∼ 5323M in 3D for the worst case scenario (i.e when the grid is fully refined and becomes
a constant Cartesian grid) with M the level of refinement (the number of time that a cell
is sub-divided). While the algorithm is iterative, this operation is performed only once
per time-step (as the grid does not change over the iteration of the Uzawa algorithm) and
its load is perfectly distributed among the different sub-domains (i.e., threads).

15

5 Validation cases on quadtrees/octrees
We present now a set of test cases for which either analytical or reference solutions are
available and to which we compare our numerical results. The test cases are chosen to
cover a broad range of applications: from Stokes flow to highly inertial regime, in 2D and
in 3D, with spherical and non-spherical particles. Special attention is given to the spatial
(obtained with and without adaptive meshes) and temporal convergence of our method.

5.1 Dimensionless form of the equations and dimensionless parameters
The set of governing equations (17)-(21) can be easily written in a dimensionless form
using the following scales: Lc for length, Vc for velocity, Lc/Vc for time, ρfV

2
c for pressure,

V 2
c /Lc for gravity acceleration, ρfV

2
c /Lc for distributed Lagrange multiplier and ρfV

2
c L

2
c

for contact force (see (Wachs et al., 2015) among many others). Using * superscripts to
distinguish dimensionless quantities, the dimensionless and strong form of (17)-(21) then
reads as follows:

∂u∗

∂t∗
+ u∗ ·∇∗u∗ +∇∗p∗ − 1

Re∗
∆∗u∗ = −λ∗ in Ω∗, (43)

−∇∗ · u∗ = 0 in Ω∗, (44)
for particle i = 1, . . . , N

(ρ∗r − 1)V ∗i
(dU∗i

dt∗ − Fr
∗g

g

)
− F ′∗i =

∫
P ∗
i

λ∗ dx∗, (45)

(ρ∗r − 1) dI
∗
i ω
∗
i

dt − T ′∗i =
∫

P ∗
i

r × λ∗ dx∗, (46)

u∗ − (U∗i + ω∗i × r∗) = 0 in P ∗i . (47)

where V ∗i = Mi/(ρsL
d
c) denotes the dimensionless particle volume, I∗i = Ii/(ρsL

d+2
c)

the dimensionless particule inertia tensor, g the gravity acceleration modulus and d the
space dimension. In (43)-(47), we have also introduced the three following dimensionless
numbers:

Reynolds number Re∗ = ρfVcLc

µf
= Tv

Ta
(48)

Inverse Froude number Fr∗ = gLc

V 2
c

(49)

Density ratio ρ∗r = ρs

ρf
(50)

where Tv = ρfL
2
c/µf and Ta = Lc/Vc denote the viscous time scale and advective time

scale, respectively. In the following, we take Lc = D where D is the particle diameter
or particle equivalent diameter in the case of a non-spherical particle. Please note that
depending on the choice of the characteristic velocity Vc, the inverse Froude number is not
necessarily a parameter independent of the density ratio ρ∗r (Yu et al., 2004).

5.2 Stokes flow through a periodic array of spheres
Pure Stokes flows are known to be challenging problems for operator-splitting methods.
The problem of a creeping flow through an infinite array of spheres was solved analytically
by Zick and Homsy (1982) who reformulated the initial tri-dimensional problem as a set of
two-dimensional integral equations. With numerical integration, they obtained the drag
coefficient K∗ as a function of the solid volume fraction c∗ and packing characteristics
that agrees well with respect to experiments and theoretical asymptotic analysis. Our
goal is to verify here that our octree DLM/FD method can properly compute the flow
field, especially at high c∗, and yield the correct drag coefficient K∗.

16

5.2.1 Numerical setup
We compute the motion of a creeping flow through an infinite array of spheres for various
solid volume fractions c∗ and for different numerical parameters. We use a cubic computa-
tional domain of edge length L with periodic boundary conditions in all directions and we
place the particle of diameter D = (6c∗/π)1/3L at the center of the box. We use the diffu-
sive time Tv as characteristic time scale and set µf and ρf such that Re∗ = 0.01, i.e., the
corresponding Reynolds number is sufficiently small to represent a quasi-pure Stokes flow.
The streamwise direction of the flow is set to the x direction. The flow field is initially
at rest and is driven by an imposed constant pressure gradient ∇pimp = ∆pimp

L ex where
∆pimp is the pressure difference between x = 0 and x = L. We choose the dimensionless
time-step such that ∆t∗ = ∆t/Tv = 6.3 ·

{
10−3, 10−4, 10−5, 10−6, 10−7} and the spatial

resolution is varied by changing the adaptive grid maximum level of refinement M . This
ensures a maximum number of 2M cells per direction or, equivalently, D/∆ = 2MD/L
cells per diameter where ∆ denotes the grid size of the highest level of refinement. We
vary M such that the inverse of the minimum dimensionless grid size 1/∆∗ = D/∆ varies
within the range D/∆ = {20, . . . , 200} for all solid volume fractions c∗ considered.
According to Zick and Homsy (1982), the drag coefficient K∗ is related to the force exerted
on each sphere of the array by

F = 3πµfDK
∗Vs, (51)

where Vs is the superficial velocity defined as

Vs = 1
L3

∫ L

0

∫ L

0

∫ L

0
u(x)dx, (52)

In practice, using mass conservation, we measure Vs as Vs = Q/L2 and compute the flow
rate Q through the plane normal to the streamwise direction x located at x = 0 as:

Q =
∫ L

0

∫ L

0
u(0, y, z)dydz. (53)

5.2.2 Temporal and spatial convergence
To assess the temporal accuracy of the method we set the spatial resolution to D/∆ = 100
and we consider a dense case of c∗ = 0.45. The time evolution of the dimensionless
superficial velocity |V ∗s | = |Vs|Dρf/µf and the dimensionless force |F ∗| = |F |/|∇pimp|
acting on the sphere are plotted in figure 4 for all time-steps considered. In all cases, we
observe a similar trend: after a short transient, a steady state is reached and |V ∗s | and |F ∗|
tend towards a converged value as ∆t∗ is reduced. Interestingly, and as demonstrated by
Wachs et al. (2015) and the references therein, the dependency with respect to the time-
step observed in figures 4-(a) and 4-(b) is significantly reduced by introducing the Lagrange
multipliers λn (solution of the fictitious domain problem of the previous time-step) as an
explicit forcing term in the Navier-Stokes equations (29). This can be seen in figures 4-(c)
and 4-(d) where all the curves collapse onto a single curve as well as in figure 5-(a) where
the drag coefficient K∗ is plotted for various ∆t∗.
In order to measure the temporal convergence rate of our computed solutions, we compute
the relative error ε = |K∗ref − K∗|/K∗ref , where the reference drag coefficient K∗ref is
obtained by fitting the curve K∗(∆t∗) with a first-order polynomial P (∆t∗) within a
range of chosen points. We typically use 3 points as shown in figure 5-(a) and get K∗ref =
P (∆t∗ = 0). The error ε as a function of ∆t∗ is plotted in figure 5-(b) with their associated
fits. We obtain a temporal convergence rate which strongly depends on the presence of
the explicit Lagrange multipliers as an additional coupling term. When not present, we
measure an order of convergence of 0.94 which is very close to 1, the theoretical value

17

0 0.05 0.1 0.15
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

t∗

|F
∗ |

noforcing-∆t∗ = 6.3e− 03

noforcing-∆t∗ = 6.3e− 04

noforcing-∆t∗ = 6.3e− 05

noforcing-∆t∗ = 6.3e− 06

noforcing-∆t∗ = 6.3e− 07

0 0.05 0.1 0.15
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

t∗

|V
∗ |

noforcing-∆t∗ = 6.3e− 03

noforcing-∆t∗ = 6.3e− 04

noforcing-∆t∗ = 6.3e− 05

noforcing-∆t∗ = 6.3e− 06

noforcing-∆t∗ = 6.3e− 07

0 0.05 0.1 0.15
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

t∗

|F
∗ |

forcing-∆t∗ = 6.3e− 03

forcing-∆t∗ = 6.3e− 04

forcing-∆t∗ = 6.3e− 05

forcing-∆t∗ = 6.3e− 06

forcing-∆t∗ = 6.3e− 07

0 0.05 0.1 0.15
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

t∗

|V
∗ |

forcing-∆t∗ = 6.3e− 03

forcing-∆t∗ = 6.3e− 04

forcing-∆t∗ = 6.3e− 05

forcing-∆t∗ = 6.3e− 06

forcing-∆t∗ = 6.3e− 07

Figure 4: Time evolution of dimensionless force acting on the sphere |F ∗| = |F |/|∇pimp| and magnitude
of the dimensionless superficial velocity |V ∗| = |V |Dρf/µf for concentration c∗ = 0.45 and various ∆t∗.
The effect of the explicit Lagrange multipliers as an additional coupling term in equations (29) and (35)
is illustrated on the bottom/top row figures. Top row: results obtained without the forcing term.

18

10−7 10−6 10−5 10−4 10−3 10−2

5

10

15

20

25

30

35

∆t∗

K
∗

forcing-c∗ = 0.450

forcing-linear fit

noforcing-c∗ = 0.450

noforcing-linear fit

10−7 10−6 10−5 10−4 10−3 10−2

0.001

0.01

0.1

1

10

∆t∗

ε

forcing, c∗ = 0.45 error

forcing, c∗ = 0.45 order 0.29

noforcing, c∗ = 0.45 error

noforcing, c∗ = 0.45 order 0.94

Figure 5: (a) Drag coefficient K∗ (∆t∗) for c∗ = 0.45 with and without the use of the explicit coupling
term λn in the sub-problems (29) (more precisely (24)) and (35). (b) plot of the relative error ε(∆t∗) in
solid-lines and the fitted curves a∆t∗α (with α the fitted convergence rate) shown in dotted lines as visual
reference.

10−3 10−2 10−1

0.001

0.01

0.1

1

∆∗

ε

c =0.125
order=1.1168
c =0.216
order=1.1429
c =0.343
order=1.1886
c =0.45
order=1.0625
c =0.5236
order=1.1948

0.1 0.2 0.3 0.4 0.5 0.6 0.7
1

10

100

c∗

K
∗

Zick and Homsy 1982

Basilisk-dlmfd-6-levels
Basilisk cut-cell-6-levels

Figure 6: (a) Relative error ε versus the dimensionless grid size ∆∗ = ∆/D. The fitted curves a∆∗α (with
α the convergence rate) are shown in dotted lines as visual reference. (b) Drag coefficient K∗ versus the
concentration c∗, squares: present study, crosses: semi analytical results of Zick and Homsy (1982) and
crosses: Basilisk’s cut-cell method.

for our splitting algorithm. When present, it reduces to ∼ 0.3 but the curve is globally
shifted downwards by almost two orders of magnitude for the largest values of ∆t∗. This
emphasizes the importance of the explicit Lagrange multiplier coupling term in Stokes
flows in order to obtain accurate solutions with larger time-steps. These results are in line
with what we observed with our simple regular Cartesian grid DLM/FD method in Wachs
et al. (2015). Without the explicit forcing term, the convergence rate of the solution is
linear while with the explicit forcing term activated, the convergence rate drops but the
magnitude of the error is significantly reduced for large time steps.
To assess the spatial convergence of our computed solutions, we compute the drag coeffi-
cientK∗ for various levels of refinement. The time step is set to ∆t∗ = 10−3 and we use the
explicit Lagrange multipliers as an additional coupling term. The relative error ε is plot-
ted in figure 6-(a) for various solid volume fractions c∗. We measure a clean convergence
rate of ∼ 1.1 − 1.2 for all the cases. A direct comparison with Zick and Homsy (1982)’s
analytical results and Basilisk’s built-in 2nd order accurate in space cut-cell/embedded
geometry method with the same level of refinement is provided in figure 6-(b). We obtain
a very satisfactory agreement.

19

Figure 7: Snapshot of a flow past a cylinder at Re∗ = 9500 at t∗ = 3: (a) Axial vorticity field ωz. (b)
Adaptive quadtree grid.

5.3 Flow past a circular cylinder at Re∗ = 9500
The impulsively started flow past a circular cylinder problem is a canonical problem of com-
plex boundary layer separation. Inspired by the experiments of Bouard and Coutanceau
(1980), notable early numerical simulations include the results of Koumoutsakos and
Leonard (1995), hereafter referred to as K & L and used in the comparisons below. Our
goal here is to test our implementation with adaptive quadtrees on a two-dimensional flow
past a circular cylinder in a highly inertial regime.
High resolution is needed to resolve the boundary layers properly. Mohaghegh, Fazlolah
and Udaykumar, HS (2017) propose to use a maximum resolution of order D/10/Re∗
with Re∗ defined with the inflow far field velocity Uin as characteristic velocity Vc. The
computational domain is a square of edge length L = 18D. The maximum level of re-
finement is chosen to be 16 such that the inverse of the minimum dimensionless grid size
1/∆∗ = D/∆ is 3600. On a constant regular Cartesian grid, this would correspond to
a total number of cells of 232 ∼ 4 · 109 for the same resolution. The dimensionless time
step ∆t∗ is dynamically adapted during the simulation with the velocity U∗ such that a
CFL ≡ max(U∗)∆t∗/∆∗ restriction of 0.8 is satisfied and is also bounded by 10−3 to make
the splitting error tolerable. The streamwise direction of the flow is set to the x direction,
hence we impose a Dirichlet boundary condition (1, 0) on the dimensionless velocity over
the entry located at x∗ = 0 and a zero Dirichlet boundary condition on the dimensionless
pressure combined to homogeneous Neumann boundary conditions on the dimensionless
velocity over the exit located at x∗ = 18. We also impose a Dirichlet boundary condition
(1, 0) on the dimensionless velocity over lateral boundaries y∗ = 0 and y∗ = 18. The fluid
is initially at rest.
A snapshot at t∗ = tUin/D = 3 of the axial vorticity field, zoomed closely around the
cylinder, is depicted in figure 7-(a) and the corresponding mesh is shown in figure 7-(b). It
can be seen that the (adaptive) mesh is refined on the regions where thin layers of vorticity
are present and where the velocity gradients are strong. This results in a high number
of cells used around the cylinder and in the wake while the core of the cylinder (which is
a fictitious domain filled with fluid that is constrained to be at rest) and the remaining
regions of the flow field are represented with coarser grid cells. The vortex structures can
be visually compared to the results obtained by Koumoutsakos and Leonard (1995) in
figure 26 in their paper and to those obtained by Mohaghegh, Fazlolah and Udaykumar,
HS (2017) in figure 3 in their paper. We observe a good quantitative agreement. To go
one step further, we plot in figure 8-(a) the time history of the drag coefficient C∗d defined

20

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3

C
D

tU/D

SIM (Mohahegh et al 2017)
K and L. 1995

Basilisk (15 levels)
Basilisk (16 levels)

Basilisk-dlmfd (15 levels)

-800

-600

-400

-200

0

200

400

600

800

0 0.5 1 1.5 2

o
m

e
g
a

s
D

/U

theta/pi

SIM (Mohahegh et al 2017)
K and L 1995

Basilisk (15 levels)
Basilisk (16 levels)

Basilisk-dlmfd (15 levels)

Figure 8: (a) Comparison of the temporal evolution of the drag coefficient Cd with various models. (b)
Position of the zeros of the axial vorticity ωz on the cylinder’s surface at t∗ = 3.

as:
C∗d = |Fx|

1
8ρfU

2
inπD

2 (54)

along with the results of Mohaghegh, Fazlolah and Udaykumar, HS (2017) obtained with
an immersed boundary method, Koumoutsakos and Leonard (1995) obtained with a vor-
tex method and those obtained with Basilisk’s built-in 2nd−order accurate in space cut-
cell/embedded geometry method. We see that our DLM/FD method is capable of properly
capturing the correct dynamics of this highly complex flow field and compares well with
other numerical methods. The visible noisy aspect of our signal can have multiple sources:

• A flow field at such high Reynolds number might be subject to strong fluctuations
that can manifest through high-frequency oscillations.

• Our reconstruction technique is locally non-conservative (for fixed and moving par-
ticles) as it uses the shape-functions given in equation (40). There is no flux balance
considered in such approach which is common to DLM/FD and immersed-boundary
methods.

• The adaptive mesh can be a source of noise by itself. In our formulation, the force is
computed by integrating the Lagrange multipliers over the domain of the particle. As
we use Dirac functions as basis functions for each Lagrange multiplier (see equation
38), the force is directly obtained by computing their sum. As the mesh is adaptive
inside the particle (we force it to be constant on a shell on the surface but not
inside), this change of topology and spatial resolution might induce oscilations on
the computed force.

Note also that our signal is plotted for every time-step without any treatement of post-
process operations.
In figure 8-(b), we plot the evolution of the axial vorticity on the surface of the cylinder
and compare it to the other authors and techniques. We obtain a similar profile as other
authors, although the peaks are not as sharp as for the other methods. We argue that this
is due to the post processing techniques we employed. Indeed, the vorticity field is not
solution of the fictitious domain problem and it has to be computed from the velocity field
and then interpolated to the cylinder surface. For now, this interpolation does not use the
fictitious domain specific reconstruction strategy but rather the standard interpolation
scheme available in Basilisk, thus introducing interpolation error close to the particle
boundary. Nonetheless we find the agreement rather satisfactory.

21

5.4 Flow past a sphere
The flow past a fixed spherical obstacle is also a classical and well documented flow configu-
ration. We hence compare our computed results both to published numerical/experimental
works and existing correlations for the drag and lift force coefficients. Our objective is
to compute the flow at Reynolds numbers between 10 and 300, i.e., to capture the onset
of vortex shedding manifesting for Re∗ > 270. We define Re∗ with the inflow far field
velocity Uin as characteristic velocity Vc. Assuming the streamwise direction of the flow
is set to the x direction, we also define the lift coefficient C∗l and the Strouhal number St∗
as follows:

C∗l =

√
F 2

y + F 2
z

1
8ρfUinπD2 (55)

St∗ = fvD

Uin
(56)

where fv denotes the vortex shedding frequency for Re∗ > 270, while the drag coefficient
C∗d is already defined in (54). We place the sphere at the center of a cubic computational
domain of edge length L = 30D. The dimensionless time step ∆t∗ is dynamically adapted
during the simulation such that a CFL restriction of 0.8 is satisfied and is also bounded
by 10−3 to make the splitting error tolerable. We impose a Dirichlet boundary condition
(1, 0, 0) on the dimensionless velocity over the entry located at x∗ = 0 and a zero Dirichlet
boundary condition on the dimensionless pressure combined to homogeneous Neumann
boundary conditions on the dimensionless velocity over the exit located at x∗ = 30. We
also impose a Dirichlet boundary condition (1, 0, 0) on the dimensionless velocity over the
four lateral boundaries. The fluid is initially at rest.
For Reynolds numbers within the range 150 ≤ Re∗ ≤ 250, we perform four computa-
tions with different spatial resolutions by varying the maximum level of refinement of the
adaptive mesh from 10 to 13 such that the inverse of the minimum dimensionless grid
size 1/∆∗ = D/∆ is 34, 68, 136 and 272, respectively. For Re∗ = 50 and Re∗ = 100 we
consider the cases 1/∆∗ = 17, 34, 68 and 136.

Group C∗d C∗l St∗

Johnson and Patel (1999) 0.656 0.069 0.137
Kim et al. (2001) 0.657 0.067 0.134
Hartmann et al. (2011) 0.657 0.069 0.135
Eitel-Amor et al. (2013) 0.660 0.065 0.132
Our results 0.652 0.068 0.133

Table 1: Comparison of our computed drag coefficient, lift coefficient and Strouhal number to other
published numerical works in the case of the flow past a fixed sphere at Re∗ = 300

For Re∗ = 300, a case for which vortices are shed periodically from the sphere, we set
the maximum level of refinement such that the inverse of the minimum dimensionless grid
size 1/∆∗ = D/∆ is 48. Although the wake is only moderately well resolved as shown in
figure 9, our computed C∗d , C∗l and St∗ are already in very satisfactory agreement with
the literature, as supported by data presented in table 1. The comparison of our results
with the experimental work of Roos and Willmarth (1971), numerical data of Johnson
and Patel (1999) and the classical Schiller-Naumann correlation defined for Re∗ < 1000
as C∗d = 24(1 + 0.15Re∗0.687)/Re∗ is presented in figure 10. Our results match very well
the results obtained by these authors.
The spatial convergence of the computed solution with mesh refinement is presented in
figure 11. We plot in figure 11-(a) the drag coefficient C∗d as a function of the minimum

22

Figure 9: Vortex shedding at Re∗ = 300 visualized with the Q criterion together with the adaptive grid in
a xy cut plane containing the sphere center of mass

0 50 100 150 200 250 300 350
0.1

1

10

Re∗

C
∗ d

Roos and Willmarth 1971
Johnson and Patel 1999
basilisk-dlmfd
Schiller-Neumann

Figure 10: Comparison of the drag coefficient C∗
d as a function of the Reynolds number Re∗ against the

experimental results of Roos and Willmarth (1971), the numerical work of Johnson and Patel (1999) and
the Schiller-Neumann’s correlation.

10−4 10−3 10−2 10−1

0.6

0.8

1

1.2

1.4

1.6

∆∗

C
∗ d

Re∗ = 50

Re∗ = 100

Re∗ = 150

Re∗ = 200

Re∗ = 250

10−4 10−3 10−2 10−1

0.0001

0.001

0.01

0.1

∆∗

ε

Re∗ = 50 error ε

Re∗ = 50 order0.97

Re∗ = 100 error ε

Re∗ = 100 order1.02

Re∗ = 150 error ε

Re∗ = 150 order0.97

Re∗ = 200 error ε

Re∗ = 200 order1.04

Re∗ = 250 error ε

Re∗ = 250 order1.05

Figure 11: Flow past a sphere with adaptive grids: (a) Drag coefficient C∗
d as a function of the smallest

dimensionless grid size ∆∗ in full lines and their corresponding fit in dashed-lines. For Re∗ > 50 we used
time-averaged quantities. (b) relative error versus ∆∗.

23

dimensionless grid size ∆∗ with their associated (1st order) polynomial fits P (∆∗) for
various Re∗. Note that, for Re∗ > 50, we time-average our results and the reference value
for C∗d is obtained by evaluating P (∆∗ = 0). The evolution of the relative error ε as a
function of ∆∗ is shown in figure 11-(b). For all the Reynolds considered, the error ε
decreases with ∆∗ and we measure an order of convergence that remains very close to ∼ 1.
In terms of number of cells, we measure during computations an average number of grid
cells of ∼ 680, 000 for the case of 68 points per diameter at Re∗ = 250. In order to achieve
the same resolution in a box of size L = 30D with a fixed Cartesian mesh, we would
require 23(11) cells, a computation at least (in theory) ∼ 12500 times more expensive.

5.5 Coupling with Grains3D: freely-moving particles of arbitrary shape
As in our previous implementation of the DLM/FD algorithm on simple regular Carte-
sian grids (Wachs et al., 2015; Dorai et al., 2015), we have coupled our quadtree-octree
DLM/FD algorithm implemented in Basilisk to our granular solver Grains3D (Wachs
et al., 2012; Rakotonirina et al., 2019) to compute the motion of rigid particles of arbi-
trary shape immersed in a fluid. Here our objective is to validate our quadtree/octree
DLM/FD algorithm for non-spherical particles, i.e., to validate the computation of the
hydrodynamic interaction between the fluid and the rigid non-spherical particles, not to
consider immersed particle/particle collisions. Hence we focus on a single particle case.
In a series of recent papers (Rahmani and Wachs, 2014; Seyed-Ahmadi and Wachs, 2019),
we examined the dynamics of a single settling or rising non-spherical particle in an un-
bounded domain in which the fluid is quiescent far away from the moving particle with a
simple regular Cartesian grid implementation of the DLM/FD method in our legacy code
PeliGRIFF. The motion is driven by the density difference between the particle and the
fluid. We established a flow map for the case of a cubic particle as a function of the solid
to fluid density ratio ρ∗r = ρs/ρf and the Galileo number Ga∗ defined as:

Ga∗ = ρf

√
|1− ρ∗r |gD3

µf
(57)

In the case of a cube, D is given by (6/π)1/3e where e denotes the cube edge length such
that a sphere of diameter D has the same volume as the cube of edge length e. Rahmani
and Wachs (2014) and Seyed-Ahmadi and Wachs (2019) revealed some striking features
of the dynamics of a settling or rising cube and in particular the existence of a spiralling
(helical) motion at all ρ∗r for Ga∗ approximately between 120 and 170. The regularity of
the helical trajectory was more marked for ρ∗r < 1, i.e., for lighter rising cubes. The helical
motion is a signature of the complex hydrodynamic interaction between the cube and the
surrounding fluid and hence represents a challenging test case for any numerical method
designed to compute particle-laden flows.
The flow configuration is as follows. The gravity acceleration vector points downwards
in the z direction. The computational domain is a cube of edge length 700D. The
cubic particle is initially placed at the center of the box in the horizontal xy plane and
10D above the bottom wall of the box and rises in the domain as time evolves. The
dimensionless time step ∆t∗ is dynamically adapted during the simulation such that a
CFL restriction of 0.8 is satisfied and is also bounded by 10−3 to make the splitting error
tolerable. We impose a zero Dirichlet boundary condition on the dimensionless velocity
on all six boundary walls of the computational domain. We consider two sets of (ρ∗r , Ga∗).
In the first set (ρ∗r , Ga∗) = (0.2, 100), the trajectory as predicted by PeliGRIFF in Seyed-
Ahmadi and Wachs (2019) is vertical. We run the same computation with our octree
DLM/FD method with a smallest dimensionless grid size of 1/24. We also find a vertical
motion and perfectly reproduce the time evolution of the vertical velocity computed with
PeliGRIFF. Indeed, in figure 12a, the two curves are almost superposed and the final rising

24

velocity predicted by our octree DLM/FD method differs by less than 2% from the final
rising velocity predicted with PeliGRIFF.

(a) Vertical velocity (b) Wake

Figure 12: Vertical rising motion of the cube at (ρ∗
r , Ga

∗) = (0.2, 100): (a) dimensionless rising velocity
as a function of dimensionless time computed by our octree DLM/FD method and PeliGRIFF and (b)
vortex thread in the wake visualized with the Q criterion and colored by the vertical velocity (red is max
and blue is min)

In the second set (ρ∗r , Ga∗) = (0.5, 140), the trajectory as predicted with PeliGRIFF in
Seyed-Ahmadi and Wachs (2019) is helical. We run the same computation with our octree
DLM/FD method with a smallest dimensionless grid size of 1/48 and resolve the wake
accurately as Seyed-Ahmadi and Wachs (2019) pointed out that the dynamics is primarily
controlled by the vortex thread in the wake of the cube. To speed up the onset of the
instability that leads to the helical motion, we initially tilt the cube by 20o in each direction.
Again we predict very well the helical regime with the same dimensionless amplitude of
≈ 1.4 found in Seyed-Ahmadi and Wachs (2019). We show in figure 13 the helical motion
of the rising cube and the intertwined vortex thread in the wake that attests of the helical
motion.
After about eight complete revolutions in the xy horizontal plane along its helical tra-
jectory, the cube has risen by about 200. The total number of grid cells has reached a
pseudo-stationary number of about 5, 000, 000. Given the large size of the box of 700 and
the requested smallest dimensionless grid size of 1/48, the grid comprises 15 levels and
enables to model very large domains without any particular problem. The octree grid
is shown in figure 14. In comparison, the simple regular Cartesian grid in PeliGRIFF
imposes to adopt a specific strategy to model a single particle in a very large domain.
Since the whole computational domain cannot be arbitrarily large without adaptive mesh
refinement, the strategy implemented in PeliGRIFF is based on selecting a computational
domain of rather limited size and translating it to follow the particle motion (Rahmani
and Wachs, 2014; Seyed-Ahmadi and Wachs, 2019). Our octree DLM/FD method avoids
such complications.

6 Attempt to capture lubrication forces with adaptive grids
In this section, we attempt to capture the lubrication forces acting on one or two spheres
in a Stokes flow (for which analytical solutions are available) by fully resolving the short
length scale relevant to lubrication with our octree DLM/FD method.

25

(a) Trajectory (b) Wake

Figure 13: Helical rising motion of the cube at (ρ∗
r , Ga

∗) = (0.5, 140): (a) cube trajectory and (b) inter-
twined vortex thread in the wake visualized with the Q criterion and colored by the vertical velocity (rex
is max and blue is min)

6.1 One sphere close to a plane wall
We consider the ideal case of a semi-infinite domain bounded by a rigid plane wall at the
bottom. A rigid sphere of radius a = D/2 moves toward the bottom wall in the normal
direction to the bottom wall with an imposed constant velocity Us. As shown by Brenner
(1961) and Cooley and O’Neill (1969), the normal force Fn acting on the sphere is given
by the following expression:

Fn/Fst = F ∗n = (δ/a)−1 − 1
5 log (δ/a) + 0.97128, (58)

where Fst = 6πµfaUs and δ are the Stokes force in an unbounded domain and the gap
distance, respectively. The arising difficulty is that the force increases fast when δ/a de-
creases and eventually diverges as δ/a tends toward zero. We compute Fn with our octree
DLM/FD method and compare our results to equation (58). We also pay a particular
attention to the temporal and spatial convergence of our computed solutions.

6.1.1 Numerical setup and results
The flow configuration is depicted in figure 15. We use the sphere radius a, the imposed
velocity Us and the viscous time ρfa

2/µf as characteristic length, characteristic velocity
and characteristic time, respectively. The flow domain is a cubic box of dimensionless
edge length L∗ = 60. We impose a zero Dirichlet boundary condition on the dimensionless
velocity over the top and bottom walls and periodic boundary conditions on the left/right
and front/back walls to mimic the semi-infinite domain. Such a large box size ensures
that the images of the periodic sphere are sufficiently far away not to affect the global
dynamics. The fluid is initially at rest. The dimensionless velocity of the sphere is imposed
constant to (U∗,ω∗) = ((0,−1, 0), (0, 0, 0)) through time while maintaining the sphere at
a constant position in order to establish the steady Stokes flow for a given δ∗ = δ/a. We
set Re∗ = 0.005 to model a quasi-pure Stokes flow.
In order to assess the temporal and spatial convergence of our computed solutions, we run
simulations with various time steps and grid sizes independently. The time evolution of

26

(a) Full domain (b) Complete wake

(c) Zoom in the wake (d) Zoom in the close wake

Figure 14: Different views of the 15-level grid in the case of the rising cube at (ρ∗
r , Ga

∗) = (0.5, 140) after
8 full revolutions in the xy plane along its helical trajectory

27

Figure 15: Sphere-wall interaction: flow configuration and notations.

the normal force F ∗n for two different gap distances δ∗ = 0.1 and δ∗ = 0.3 with different
spatial and temporal resolutions is plotted in figures 16-a and 16-b. In all cases, we
observe that after a short transient evolution, the flow reaches a steady state as expected.
The sensitivity to the numerical parameters is more visible for the more challenging case
δ∗ = 0.1 but both spatial and temporal refinements lead to values of F ∗n close to the
analytical prediction (58). The better agreement with respect to the analytical solution
for δ∗ = 0.3 results from the larger number of fluid cells within the gap than for δ∗ = 0.1
for the same level of refinement. The minimum dimensionless grid size we consider is
∆∗ = ∆/a = 1/136 corresponding to 13 levels of refinement. It amounts to δ∗/∆∗ ∼ 40
cells within the fluid gap for δ∗ = 0.3 and to δ∗/∆∗ ∼ 13 for δ∗ = 0.1. We plot all results
in figure 17 together with the analytical solution (58). We obtain a very good agreement
for all values of δ∗ considered, especially for the smallest δ∗ = 0.025 corresponding to the
most challenging case.

6.2 Two spheres moving towards each other in a creeping shear flow
We consider the case of two neutrally buoyant and identical spheres in a simple creeping
shear flow moving in opposite direction. The analytical solution was derived by Batchelor
and Green (1972) and Lin et al. (1970) for the particle separation vector r = r1−r2 where
r1 and r2 are the position vectors of the first sphere and the second sphere, respectively.
Using the sphere radius a as a characteristic length and the inverse shear rate γ̇−1 as a
characteristic time, the analytical solution for r∗ is obtained by solving the following set
of ordinary differential equations:

dr∗x
dt = r∗y + er∗x −

B (r∗)
2 r∗y, (59)

dr∗y
dt = er∗y −

B (r∗)
2 r∗x, (60)

dr∗z
dt = er∗z , (61)

where
e =

r∗xr
∗
y (B (r∗)−A (r∗))

r∗2
, (62)

and A (r∗), B (r∗) are dimensionless scalar functions of r∗. Their values are tabulated
in Batchelor and Green (1972) and they are reported here in table 2 for the sake of
completeness. Our goal is to compute the motion of the two spheres with our octree
DLM/FD method and to compare our result for r∗ with the analytical solution obtained
by solving (59)-(61). We consider an initial separating distance of r∗0 = (−10, 1, 0) and we
solve (59)-(61) with a fourth order Runge-Kutta integration scheme (with the open source
software octave and its built-in “ode45” function). The analytical solution provides insight
into the length scale that we need to resolve accurately in our numerical simulation. The

28

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

10

12

t∗

F
∗ n

1/∆t∗ = 1

1/∆t∗ = 10

1/∆t∗ = 30

1/∆t∗ = 100

Analytic

0 200 400 600 800 1000
0

2

4

6

8

10

12

t∗

F
∗ n

∆∗ = 1/34

∆∗ = 1/68

∆∗ = 1/136.5

Analytic

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

t∗

F
∗ n

1/∆t∗ = 1

1/∆t∗ = 10

1/∆t∗ = 30

1/∆t∗ = 100

Analytic

0 200 400 600 800 1000
0

1

2

3

4

5

t∗

F
∗ n

∆∗ = 1/34

∆∗ = 1/68

∆∗ = 1/136.5

Analytic

Figure 16: Time evolution of the normal force F ∗
n acting on the sphere for two different gap distances:

δ∗ = 0.1 (top row) and δ∗ = 0.3 (bottom row). Left column: effect of the time-step with fixed ∆∗ = 1/136.
Right column: effect of the spatial resolution with time-step fixed at ∆t∗ = 1/30. In all plots, the dashed
lines represent the analytical prediction of Brenner (1961) and Cooley and O’Neill (1969).

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

δ∗

F
∗ n

Analytical

Basilisk-dlmfd

Figure 17: Comparison of our computed lubrication force for various gap distances against the analytical
prediction of Brenner (1961) and Cooley and O’Neill (1969).

29

0 1 2 3 4 5 6
10−5

10−4

10−3

10−2

10−1

100

101

r∗y(t = 0)

δ∗ m
in

Figure 18: (a) Two spheres in a creeping shear flow: numerical setup and notations. (b) Minimum gap
distance δ∗

min = δmin/a as a function of the initial position vector r∗
0 = (−10, ry(t = 0)∗, 0) for various

ry(t = 0)∗ obtained by solving (59)-(61).

minimum dimensionless gap distance δ∗min = δmin/a within which the fluid film is squeezed
between the two spheres is plotted in figure 18-(b) as a function of the initial dimensionless
separation distance in the cross-flow direction ry(t = 0)∗ = ry(t = 0)/a. For the initial
ry(t = 0)∗ = 1 considered, the minimum dimensionless gap distance (and length scale)
that we need to resolve is δ∗min ∼ 5 · 10−3. This underscores how challenging this flow
configuration is in terms of required grid resolution. Besides, we purposely do not use
here any collision model in our simulations so that equations (31) and (32) have no force
and torque term due to the contact (the granular solver is only used to predict particles’
positions and velocities). As a consequence, the repelling force that the two spheres
experience only results from the thin fluid film squeezed between them as they approach
towards each other. This implies that for the cases where the lubrication force is not fully
captured, the two spheres’ domains end up overlapping each other. This scenario, although
not realistic, is carefully handled at the numerical level. For the Lagrange multipliers lying
on the surface, we remove the ones for which the associated stencil extends to the interior
of the other sphere. For the interior part of the domains, a fluid cell is set to be constrained
by the Lagrange-multiplier of only one sphere even if the given cell is located inside both
of them (otherwise the problem would be over-constrained). This procedure is equivalent
to locally “pixelating” the spheres around the regions of the contact and has already been
used successfully in our previous works (Wachs, 2009).

6.2.1 Numerical setup and results
The flow configuration is shown in figure 18. The computational domain is a cube of
dimensionless edge length L∗ = 20. The flow and the particles are initially at rest and
the initial separation vector between the two spheres is r∗0 = (−10, 1, 0). The streamwise
direction of the flow is set to the x direction. The boundary conditions are as follows.
We impose periodicity in the x and z directions and Dirichlet boundary conditions on the
dimensionless velocity of the form (−10, 0, 0) and (10, 0, 0) on the bottom y∗ = −0.5L∗
wall and the top y∗ = 0.5L∗ wall, respectively, in order to impose a dimensionless linear
shear rate γ̇∗ = 1. We set the particle Reynolds number defined as Re∗p = ρfaγ̇L/(2µf)
to 0.001 and the dimensionless time step ∆t∗ = ∆tγ to 10−4. The solution computed by
our octree DLM/FD method in terms of r∗y = ry/a as a function of r∗x = rx/a for various
spatial resolutions ∆∗ = ∆/a is plotted in figure 19.
We observe that even for our coarsest spatial resolution ∆∗ = 1/12.5 a large portion of

30

|r∗| A (|r|∗) B (|r|∗)
20.1353 0.0006 0.0000
11.1139 0.0036 0.0000
6.2149 0.0204 0.0006
4.7048 0.0468 0.0023
3.6213 0.1033 0.0086
3.3370 0.1331 0.0130
3.0862 0.1704 0.0193
2.8662 0.2167 0.0281
2.6749 0.2735 0.0399
2.5103 0.3424 0.0553
2.3709 0.4248 0.0748
2.2553 0.5214 0.0988
2.1621 0.6313 0.1275
2.0907 0.7505 0.1608
2.0401 0.8679 0.1996
2.0100 0.9619 0.2461
2.0025 0.9900 0.2762
2.0006 0.9975 0.2968

Table 2: Values for the function A and B in equations (59)-(61) describing the velocities of two identical
spheres derived from the numerical data of (Lin et al., 1970).

-4 -2 0 2 4
0.8

1

1.2

1.4

1.6

1.8

2

2.2

r∗x

r∗ y

1/∆∗ = 12.5

1/∆∗ = 25

1/∆∗ = 50

1/∆∗ = 100

Analytic

0 20 40 60 80 100
0

0.5

1

1.5

2

1/∆∗

l∗

Figure 19: (a) Comparison of inter-particle trajectory r∗
y = ry/a vs r∗

xrx/a for various spatial resolution
∆∗ = ∆/a against the analytical solution to equations (59)-(61). (b) Overlapping length l/a between the
two particles as a functions of the inverse spatial resolution a/∆.

31

the lubrication force is already accurately captured. As we increase the level of refinement
further, we obtain a better agreement with the analytical solution. The missing portion
of the lubrication force can be directly related to the overlapping distance l of the two
spheres, i.e., the difference between the analytical r∗y for r∗x = 0 and the r∗y for r∗x = 0
computed with the various spatial resolutions. We report this overlapping distance in
figure 19-(b) as a function of 1/∆∗ and we observe that it is always close to 1, i.e., one
smallest grid size indicating a (relative) lack of spatial resolution. Indeed, assuming that
we need at (the very) least one fluid cell within the fluid gap between the two spheres
to properly compute the flow, i.e. δmin/∆ ≥ 1, it would require a spatial resolution of
∆∗ ≤ 1/200.

7 Polydisperse suspensions with adaptive DLM/FD

(a) Array of polydisperse particles (b) AMR grid and flow field

Figure 20: Flow through an array of polydisperse spheres of size ratio 5: (a) the five classes of particles of
dimensionless diameter 1, 0.8, 0.6, 0.4 and 0.2 and (b) adaptive grid and x (streamwise) velocity countours
(blue is min and red is max) in the two xy cut planes shown in grey in (a).

Another possible application of interest for our adaptive DLM/FD method is polydisperse
suspensions that have been largely unexplored in the literature with particle-resolved sim-
ulation tools, in particular when the particle size distribution is broad. In fact, with a
simple regular Cartesian grid and assuming that we intend to resolve all particles properly,
the constant grid size in the domain would be dictated by the smallest particles, resulting
in a very large number of cells, presumably larger than what available computing resources
allow. This would restrict the largest particle to smallest particle size ratio to low values in
order to render the computation feasible (as, e.g., a size ratio of 2 as in (Van der Hoef et al.,
2005; Beetstra et al., 2007). With our adaptive grid method, we can consider any size ratio
and still limit the number of cells to a very tractable number. As an illustration below, we
compute the flow past a fixed array of polydisperse spheres of size ratio 5. The Reynolds
number based on the largest sphere is 50. We consider 5 classes of sphere of dimensionless
diameter 1, 0.8, 0.6, 0.4 and 0.2. The number of spheres in each class is 2, 4, 10, 32 and
250, respectively, such that the total volume of all spheres in each class is approximately
the same. The resulting solid volume fraction is 0.032. The computational domain is a

32

cube of dimensionless edge length 5. We set the number of levels in our adaptive grid to
10 such that the lowest level corresponds to a dimensionless grid size of ≈ 0.2/40, i.e.,
the smallest spheres are resolved with a grid size equivalent to ≈ 40 points per diameter.
This is generally considered as a very fine resolution, even an excessively fine resolution
in such a flow regime and we could have easily accommodated even smaller particles of,
e.g., dimensionless diameter 0.1 and hence considered a size ratio of 10. Anyhow, a simple
regular Cartesian grid method would hence require a 10243 grid for a similar resolution
of small particles, thus comprising ≈ 1, 000, 000, 000 grid cells. The corresponding com-
putation would likely run on about 1, 000 cores, assuming a 1, 000, 000 grid cell load per
process/core. Here the 10 levels of the adaptive grid result in ≈ 31, 000, 000 grid cells only,
hence a substantial reduction of a factor of 32 of the required number of grid cells with
respect to a simple regular Cartesian grid method, and correspondingly of the required
computing resources. The computation ran on 96 cores only, and could have easily run
on fewer cores if needed. Figure 20a shows the array of polydisperse particles and figure
20b illustrates the adaptive grid together with contours of the streamwise velocity in two
xy cut planes.

8 Discussion and Perspectives
We extended our DLM/FD method for the particle-resolved simulation of particle-laden
flows to quadtree-octree adaptive grids. The method retains the robust convergence prop-
erties, the inconditional stability as a function of the solid to fluid density ratio thanks
to the implicit computation of the hydrodynamic force and torque and the temporal/s-
patial convergence properties observed when implemented on a simple regular Cartesian
grid, i.e., order 1 in time and order 1 in space (Wachs et al., 2015). In practice, we
implemented a DLM/FD method in Basilisk and addressed specific issues related to the
parallelization of the Uzawa algorithm in a quadtree-octree framework. The key point of
the implementation is to impose an uniform grid size in a narrow band of the boundary
layer around the particles in order to use a standard quadratic interpolation defined on a
regular 3 × 3 × 3 stencil for the velocity reconstruction. We tested and successfully vali-
dated our new quadtree-octree DLM/FD method on a set of flow configurations, including
challenging problems dominated by lubrication forces or involving particle of non-spherical
shape.
Our new DLM/FD implementation on quadtree-octree adaptive grids opens up unprece-
dented opportunities for the particle-resolved computation of particle-laden flows that were
unattainable with an implementation on a simple regular Cartesian grid. As any other
immersed boundary/fictitious domain method, our method can be straightforwardly ex-
tended to heat or mass transfer in the case of small Biot numbers, i.e., when temperature
or chemical species gradients inside the rigid body are negligible and the assumption of
uniform temperature or chemical species over the entire rigid body volume is acceptable.
In the case of small Biot numbers, there are many heat and mass transfer problems at large
Prandtl Pr or Schmidt Sc numbers that cannot be computed with a simple regular Carte-
sian grid method. Most of the published literature focuses on Pr ≈ 1 and Sc ≈ 1 cases
to guarantee that thermal/mass boundary layers around rigid bodies have approximately
the same thickness as momentum boundary layers. As reported by (Deen et al., 2014),
in order to tackle systems with high high values of Sc and/or Pr efficient grid refinement
techniques are clearly mandatory. Recently, the same authors have suggested an approach
to address moderate Reynolds but high Pr particle-laden flows that combines solving the
flow field on a constant, regular and relatively coarse Cartesian grid with an immersed
boundary/ghost cell method and solving the heat equation on an adaptive octree grid
with a staircase (i.e., pixelated) representation the particle surface (Panda et al., 2019).

33

Our proposed octree adaptive grid implementation of the DLM/FD method is another
contribution in the direction of computing high Reynolds, Sc and/or Pr particle-laden
flows.
Restricting opportunities to momentum transfer only, our method is also well suited to
rigid bodies of complex shape, in particular with angular edges and corners as shown in
Section 5.5. In fact, the local mesh refinement capability of our method enables us to
refine the grid in the vicinity of geometric singularities as sharp edges and corners of non-
spherical particles. Coupled to our granular solver Grains3D to compute particle-particle
collisions for any particle shape, our method shows a large potential for the accurate
computation of flows laden with particles of complex shape.
Another application of interest that can now be examined with significantly fewer comput-
ing resources thanks to local mesh refinement is inertial particle-laden flows and particle-
induced turbulence in the dilute regime, i.e., at low solid volume fraction, when the back-
ground flow itself is not yet turbulent (and hence does not require a fine resolution every-
where in the flow domain).
As usual with the DLM/FD method, its main strength is also its main drawback. In
fact, by formulating the hydrodynamic interaction problem as a saddle-point problem,
the DLM/FD method computes the hydrodynamic force and torque implicitly, unlike
weak coupling/direct-forcing immersed boundary methods, and in particular computes the
added mass contribution to the hydrodynamic force and torque implicitly. This enhances
the coupling of the fluid-solid equations and gives unconditional stability to the method
with respect to the solid to fluid density ratio. However, the solution of the DLM/FD
saddle point problem requires the use of the iterative Uzawa algorithm, and we may
postulate that the DLM/FD method is as many times more expensive than a direct forcing
method as the number of iterations required by the Uzawa algorithm to converge. In
practice, the Uzawa algorithm applied to the DLM/FD problem requires between 10 and 30
iterations to converge. This can represent a substantial computing overhead with respect
to weak coupling/direct-forcing methods. However, this postulation may be flawed as the
iterative process of the Uzawa algorithm represents a part only of the total overhead related
to the consideration of immersed rigid particles. In fact, there are many, mostly geometric,
operations that our code performs before the Uzawa algorithm iterates such as, e.g., the
determination of the set of points representing immersed bodies, the determination of their
location of the grid or the computation of the coefficients of the reconstruction polynomial
for each boundary point. All these operations are common to a direct forcing method,
such that the overhead of the iterative Uzawa algorithm may not be that signficant in the
overall computing time when compared to a direct forcing method. This requires a deeper
analysis.
For now, the computational performance of the method is roughly as follow: in most
computations, the Navier-Stokes solution costs about 60 to 70% of the total computing
time and the DLM/FD problem about 30 to 40%. There is potentially room for improve-
ment. Also, we have so far tested our implementation on a moderate number of cores
only. In fact, most of the computations presented in this paper are performed on up to
256 cores. We have not noticed any significant loss of performance with the increase of the
number of cores up to 256 cores. This seems to indicate that our implementation of the
DLM/FD method in Basilisk scales well. However, the Navier-Stokes solver of Basilisk
has been shown to scale well on up to multiple thousands of cores, showing promises for
very large-scale computations. To run jobs on O(104) cores, the DLM/FD method is thus
required to scale accordingly. Future work hence involves examining the scaling and the
optimization of our quadtree-octree DLM/FD method on a larger number of cores.

34

8.1 Acknowledgement
We greatly appreciate the financial support of the Natural Sciences and Engineering Re-
search Council of Canada via their Discovery Grant program. This research was enabled
by support provided by Compute Canada (www.computecanada.ca) through Prof. Wachs’
computing ressource allocation qpf-764-ab.

A Uzawa/conjugate-gradient algorithm in Basilisk
We present the implementation of the iterative Uzawa/Conjugate-gradient algorithm we
use to solve the saddle-point problem of the fictitious domain step described in section
3.1.3. We follow closely the algorithm given in the annex of Wachs (2011) (minus some
sign errors that are present in the original paper) transposed to Basilisk’s matrix-free and
Finite Volume framework.
In the following, ∆v denotes the volume of a grid cell. The Uzawa/conjugate-gradient
algorithm proceeds as follows:
• Initialisation k = 0:

– Given an initial guess λ0 (we use either λ0 = 0 or the Lagrange multipliers of
the previous time-step λ0 = λn = λ(tn = n∆t)) and solutions from the previ-
ous problems Un+1/2

i , ωn+1/2
i , un+1/2 compute vectors qu and (qUi

, qωi) , i =
1, . . . , N as follows:

qu = ρfu
n+1/2

∆t ∆v +
N∑

i=1
< λn − λ0

il,v >Pi=
ρfu

n+1/2

∆t ∆v +
N∑

i=1

Li∑
l=1

(λn − λ0
il)v (xil) ,

qUi
= Mi

(
1− ρf

ρsi

)(
U

n+1/2
i

∆t + g
)

+
Li∑

l=1
λ0
il , i = 1, . . . , N,

qωi =
(

1− ρf

ρsi

)
Ii
ω

n+1/2
i

∆t +
Li∑

l=1
ril × λ0

il , i = 1, . . . , N.

– Compute:

u = qu∆t
ρf ∆v ; Ui = qUi

∆t
(1− ρf/ρsi)Mi

, ωi =
[1− ρf/ρsi

∆t Ii

]−1
qωi , i = 1, . . . , N.

– Compute the initial residual r0:

r0 = −
N∑

i=1
< α,u− (Ui + ωi × ri) >Pi= −

N∑
i=1

Li∑
l=1

(u (xil)− (Ui + ωi × ril)).

– Set s0 = r0

• Iterative procedure: for k > 0 do while ‖ r ‖< ε

(1) Compute vectors qu and (qUi
, qωi) , i = 1, . . . , N as follows:

qu =
N∑

i=1
< sk−1,v >Pi=

N∑
i=1

Li∑
l=1
sk−1
il v (xil) ,

qUi
= −

Li∑
l=1
sk−1
il , i = 1, . . . , N,

qωi = −
Li∑

l=1
ril × sk−1

il , i = 1, . . . , N.

35

(2) Compute:

tu = qu∆t
ρf ∆v ; tUi

= qUi
∆t

(1− ρf/ρsi)Mi
, tωi =

[1− ρf/ρsi

∆t Ii

]−1
qωi , i = 1, . . . , N.

(3) Compute the residual y:

y =
N∑

i=1
< α, tu − (tUi

+ tωi × ri) >Pi=
N∑

i=1

Li∑
l=1

(tu (xil)− (tUi
+ tωi × ril)).

(4) Compute scalar γ:

γ = rk−1 · rk−1

sk−1 · y
.

(5) Compute new Lagrange multiplicators λk and residual rk as follows:

λk = λk−1 − γ sk−1,

rk = rk−1 − γ y.

(6) Update solutions:

uk = uk−1 + γtu; Uk
i = Uk−1

i + γtUi
, ωk

i = ωk−1
i + γtωi , i = 1, . . . , N.

(7) Compute ‖ rk ‖.
(8) Compute scalar β:

β = ‖ rk ‖2

‖ rk−1 ‖2
.

(9) Update sk:

sk = rk + βsk−1.

Note that the whole implementation of the method along with various examples and test
cases are freely available on Basilisk’s website on the following link http://basilisk.fr/
sandbox/cselcuk/.

References
GK Batchelor and J-T_ Green. The hydrodynamic interaction of two small freely-moving spheres in a

linear flow field. Journal of Fluid Mechanics, 56(2):375–400, 1972.
R. Beetstra, M.A. Van der Hoef, and J.A.M. Kuipers. Drag force of intermediate Reynolds number flow

past mono-and bidisperse arrays of spheres. AIChE journal, 53(2):489–501, 2007.
John B Bell, Phillip Colella, and Harland M Glaz. A second-order projection method for the incompressible

Navier-Stokes equations. Journal of Computational Physics, 85(2):257–283, 1989.
Roger Bouard and Madeleine Coutanceau. The early stage of development of the wake behind an impul-

sively started cylinder for 40 < Re < 104. Journal of Fluid Mechanics, 101(3):583–607, 1980.
Howard Brenner. The slow motion of a sphere through a viscous fluid towards a plane surface. Chemical En-

gineering Science, 16(3):242 – 251, 1961. ISSN 0009-2509. doi: https://doi.org/10.1016/0009-2509(61)
80035-3. URL http://www.sciencedirect.com/science/article/pii/0009250961800353.

D. Calhoun and R. J. LeVeque. A Cartesian grid finite-volume method for the advection-diffusion equation
in irregular geometries. Journal of Computational Physics, 157(1):143–180, 2000.

Choeng Ryul Choi and Chang Nyung Kim. Direct numerical simulations of the dynamics of particles with
arbitrary shapes in shear flows. Journal of Hydrodynamics, Ser. B, 22(4):456–465, 2010.

36

http://basilisk.fr/sandbox/cselcuk/
http://basilisk.fr/sandbox/cselcuk/
http://www.sciencedirect.com/science/article/pii/0009250961800353

Meng-Hsuan Chung. An adaptive Cartesian cut-cell/level-set method to simulate incompressible two-phase
flows with embedded moving solid boundaries. Computers & Fluids, 71:469–486, 2013.

M. D. A. Cooley and M. E. O’Neill. On the slow motion generated in a viscous fluid by the approach
of a sphere to a plane wall or stationary sphere. Mathematika, 16(1):37–49, 1969. doi: 10.1112/
S0025579300004599.

G d’Avino and MA Hulsen. A comparison between a collocation and weak implementation of the rigid-
body motion constraint on a particle surface. International Journal for Numerical Methods in Fluids,
64(9):1014–1040, 2010.

N.G. Deen, E.A.J.F Peters, J.T. Padding, and J.A.M. Kuipers. Review of direct numerical simulation
of fluid–particle mass, momentum and heat transfer in dense gas–solid flows. Chemical Engineering
Journal, 116:710–724, 2014.

Ferdaous Dorai, Carlos Moura Teixeira, Matthieu Rolland, Eric Climent, Manuel Marcoux, and Anthony
Wachs. Fully resolved simulations of the flow through a packed bed of cylinders: Effect of size distribu-
tion. Chemical Engineering Science, 129:180–192, 2015.

G Eitel-Amor, M Meinke, and W Schröder. A lattice-Boltzmann method with hierarchically refined meshes.
Computers & Fluids, 75:127–139, 2013.

Daniel Fuster, Anne Bagué, Thomas Boeck, Luis Le Moyne, Anthony Leboissetier, Stéphane Popinet,
Pascal Ray, Ruben Scardovelli, and Stéphane Zaleski. Simulation of primary atomization with an octree
adaptive mesh refinement and VOF method. International Journal of Multiphase Flow, 35(6):550–565,
2009.

Frederic Gibou, Ronald P Fedkiw, Li-Tien Cheng, and Myungjoo Kang. A second-order-accurate sym-
metric discretization of the Poisson equation on irregular domains. Journal of Computational Physics,
176(1):205–227, 2002.

R. Glowinski, T.W. Pan, T.I. Hesla, and D.D. Joseph. A distributed Lagrange multiplier/fictitious domain
method for particulate flows. International Journal of Multiphase Flow, 25(5):755–794, 1999. ISSN
0301-9322.

Roland Glowinski, Tsorng-Whay Pan, Todd I Hesla, Daniel D Joseph, and Jácques Periaux. A fictitious
domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid
bodies: application to particulate flow. Journal of Computational Physics, 169(2):363–426, 2001.

S Haeri and JS Shrimpton. On the application of immersed boundary, fictitious domain and body-conformal
mesh methods to many particle multiphase flows. International Journal of Multiphase Flow, 40:38–55,
2012.

Daniel Hartmann, Matthias Meinke, and Wolfgang Schröder. A strictly conservative cartesian cut-cell
method for compressible viscous flows on adaptive grids. Computer Methods in Applied Mechanics and
Engineering, 200(9-12):1038–1052, 2011.

Hans Johansen and Phillip Colella. A Cartesian grid embedded boundary method for Poisson’s equation
on irregular domains. Journal of Computational Physics, 147(1):60–85, 1998.

TA Johnson and VC Patel. Flow past a sphere up to a Reynolds number of 300. Journal of Fluid Mechanics,
378:19–70, 1999.

Jungwoo Kim, Dongjoo Kim, and Haecheon Choi. An immersed-boundary finite-volume method for
simulations of flow in complex geometries. Journal of computational physics, 171(1):132–150, 2001.

Petros Koumoutsakos and A Leonard. High-resolution simulations of the flow around an impulsively started
cylinder using vortex methods. Journal of Fluid Mechanics, 296:1–38, 1995.

Anthony JC Ladd. Numerical simulations of particulate suspensions via a discretized Boltzmann equation.
Part 1. Theoretical foundation. Journal of fluid mechanics, 271:285–309, 1994.

Jongho Lee, Jungwoo Kim, Haecheon Choi, and Kyung-Soo Yang. Sources of spurious force oscillations
from an immersed boundary method for moving-body problems. Journal of computational physics, 230
(7):2677–2695, 2011.

CJ Lin, KJ Lee, and NF Sather. Slow motion of two spheres in a shear field. Journal of Fluid Mechanics,
43(1):35–47, 1970.

JM López-Herrera, Stéphane Popinet, and MA Herrada. A charge-conservative approach for simulating
electrohydrodynamic two-phase flows using volume-of-fluid. Journal of Computational Physics, 230(5):
1939–1955, 2011.

Frank Losasso, Frédéric Gibou, and Ron Fedkiw. Simulating water and smoke with an octree data structure.
In ACM transactions on graphics (TOG), volume 23, pages 457–462. ACM, 2004.

Jiangtao Lu, Saurish Das, EAJF Peters, and JAM Kuipers. Direct numerical simulation of fluid flow and
mass transfer in dense fluid-particle systems with surface reactions. Chemical Engineering Science, 176:
1–18, 2018.

Shev MacNamara and Gilbert Strang. Operator splitting. In Splitting Methods in Communication, Imaging,
Science, and Engineering, pages 95–114. Springer, 2016.

M. Meinke, L. Schneiders, C. Günther, and W. Schröder. A cut-cell method for sharp moving boundaries
in Cartesian grids. Computers & Fluids, 85:135–142, 2013.

Rajat Mittal, Haibo Dong, Meliha Bozkurttas, FM Najjar, Abel Vargas, and Alfred Von Loebbecke. A

37

versatile sharp interface immersed boundary method for incompressible flows with complex boundaries.
Journal of computational physics, 227(10):4825–4852, 2008.

F. Mohaghegh and H.S. Udaykumar. Comparison of sharp and smoothed interface methods for simulation
of particulate flows I: Fluid structure interaction for moderate reynolds numbers. Computers & Fluids,
140:39–58, 2016.

Mohaghegh, Fazlolah and Udaykumar, HS. Comparison of sharp and smoothed interface methods for
simulation of particulate flows II: Inertial and added mass effects. Computers & Fluids, 143:103–119,
2017.

A. Panda, E.A.J.F. Peters, M.W. Baltussen, and J.A.M. Kuipers. Fully Resolved Scalar Transport for
High Prandtl Number Flows using Adaptive Mesh Refinement. Chemical Engineering Science: X, 4:
100047, 2019.

Charles S Peskin. Flow patterns around heart valves: a numerical method. Journal of computational
physics, 10(2):252–271, 1972.

Jean-Lou Pierson, Franck Auguste, Abdelkader Hammouti, and Anthony Wachs. Inertial flow past a
finite-length axisymmetric cylinder of aspect ratio 3: Effect of the yaw angle. Physical Review Fluids, 4
(4):044802, 2019.

Stéphane Popinet. Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex
geometries. Journal of Computational Physics, 190(2):572–600, 2003.

Stéphane Popinet. A quadtree-adaptive multigrid solver for the Serre–Green–Naghdi equations. Journal
of Computational Physics, 302:336–358, 2015.

Mona Rahmani and Anthony Wachs. Free falling and rising of spherical and angular particles. Physics of
Fluids, 26(8):083301, 2014.

Andriarimina Daniel Rakotonirina, Jean-Yves Delenne, Farhang Radjai, and Anthony Wachs. Grains3D, a
flexible DEM approach for particles of arbitrary convex shape-Part III: extension to non-convex particles
modelled as glued convex particles. Computational Particle Mechanics, 6(1):55–84, 2019.

Frederick W Roos and William W Willmarth. Some experimental results on sphere and disk drag. AIAA
journal, 9(2):285–291, 1971.

Kai Schneider and Oleg V Vasilyev. Wavelet methods in computational fluid dynamics. Annual review of
fluid mechanics, 42:473–503, 2010.

L. Schneiders, D. Hartmann, M. Meinke, and W. SchröDer. An accurate moving boundary formulation in
cut-cell methods. Journal of Computational Physics, 235:786–809, 2013.

Arman Seyed-Ahmadi and Anthony Wachs. Dynamics and wakes of freely settling and rising cubes.
Physical Review Fluids, 4(7):074304, 2019.

F. Sotiropoulos and X. Yang. Immersed boundary methods for simulating fluid–structure interaction.
Progress in Aerospace Sciences, 65:1–21, 2014.

Tayfun E Tezduyar, Mittal Behr, S Mittal, and J Liou. A new strategy for finite element computations
involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: II.
Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Computer methods
in applied mechanics and engineering, 94(3):353–371, 1992.

HS Udaykumar, Wei Shyy, and MM Rao. Elafint: a mixed Eulerian–Lagrangian method for fluid flows
with complex and moving boundaries. International journal for numerical methods in fluids, 22(8):
691–712, 1996.

Markus Uhlmann. An immersed boundary method with direct forcing for the simulation of particulate
flows. Journal of Computational Physics, 209(2):448–476, 2005.

M.A. Van der Hoef, R Beetstra, and J.A.M. Kuipers. Lattice-Boltzmann simulations of low-Reynolds-
number flow past mono-and bidisperse arrays of spheres: results for the permeability and drag force.
Journal of Fluid Mechanics, 528:233–254, 2005.

J Antoon van Hooft, Stéphane Popinet, Chiel C van Heerwaarden, Steven JA van der Linden, Stephan R
de Roode, and Bas JH van de Wiel. Towards adaptive grids for atmospheric boundary-layer simulations.
Boundary-layer meteorology, 167(3):421–443, 2018.

A. Wachs. A DEM-DLM/FD method for direct numerical simulation of particulate flows: Sedimentation of
polygonal isometric particles in a Newtonian fluid with collisions. Computers & Fluids, 38(8):1608–1628,
2009.

A. Wachs. Particle-scale computational approaches to model dry and saturated granular flows of non-
Brownian, non-cohesive, and non-spherical rigid bodies. Acta Mechanica, 230:1919–1980, 2019.

A. Wachs, A. Hammouti, G. Vinay, and M. Rahmani. Accuracy of Finite Volume/Staggered Grid Dis-
tributed Lagrange Multiplier/Fictitious Domain simulations of particulate flows. Computers & Fluids,
115:154–172, 2015.

Anthony Wachs. PeliGRIFF, a parallel DEM-DLM/FD direct numerical simulation tool for 3D particulate
flows. Journal of Engineering Mathematics, 71(1):131–155, 2011.

Anthony Wachs, Laurence Girolami, Guillaume Vinay, and Gilles Ferrer. Grains3D, a flexible DEM
approach for particles of arbitrary convex shape-Part I: Numerical model and validations. Powder
Technology, 224:374–389, 2012.

38

Decheng Wan and Stefan Turek. Direct numerical simulation of particulate flow via multigrid FEM
techniques and the fictitious boundary method. International Journal for Numerical Methods in Fluids,
51(5):531–566, 2006.

Z. Yu, N. Phan-Thien, and R.I. Tanner. Dynamic simulation of sphere motion in a vertical tube. Journal
of Fluid Mechanics, 518:61–93, 2004.

Z. Yu, A. Wachs, and Y. Peysson. Numerical simulation of particle sedimentation in shear-thinning fluids
with a fictitious domain method. Journal of Non-Newtonian Fluid Mechanics, 136(2):126–139, 2006.

Zhaosheng Yu. A DLM/FD method for fluid/flexible-body interactions. Journal of computational physics,
207(1):1–27, 2005.

A.A. Zick and G.M. Homsy. Stokes flow through periodic arrays of spheres. Journal of Fluid Mechanics,
115(1):13–26, 1982.

39

	Introduction
	Governing equations
	Equations for the fluid
	Equations for the particle
	Equation for the fluid-particle mixture
	Weak formulation for the fluid domain P
	Extension to the entire domain : fictitious domain formulation
	Relaxing the rigid-body constraint: distributed Lagrange multipliers

	Numerical method
	Time discretization: 1st order operator splitting
	First sub-problem: Navier-Stokes
	Second sub-problem: granular problem
	Third sub-problem: Fictitious domain problem

	Spatial discretization
	Navier-Stokes
	Fictitious domain
	A discussion on mesh adaptation, simple reconstruction stencil, homogeneous surface point distribution and computing efficiency

	Basilisk-specific rules associated with parallelism and stencil-operations
	Validation cases on quadtrees/octrees
	Dimensionless form of the equations and dimensionless parameters
	Stokes flow through a periodic array of spheres
	Numerical setup
	Temporal and spatial convergence

	Flow past a circular cylinder at Re* = 9500
	Flow past a sphere
	Coupling with Grains3D: freely-moving particles of arbitrary shape

	Attempt to capture lubrication forces with adaptive grids
	One sphere close to a plane wall
	Numerical setup and results

	Two spheres moving towards each other in a creeping shear flow
	Numerical setup and results

	Polydisperse suspensions with adaptive DLM/FD
	Discussion and Perspectives
	Acknowledgement

	Appendices
	Appendix Uzawa/conjugate-gradient algorithm in Basilisk

