
HAL Id: hal-03007675
https://hal.science/hal-03007675

Submitted on 16 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The SPOTIS Rank Reversal Free Method for
Multi-Criteria Decision-Making Support

Jean Dezert, Albena Tchamova, Deqiang Han, Jean-Marc Tacnet

To cite this version:
Jean Dezert, Albena Tchamova, Deqiang Han, Jean-Marc Tacnet. The SPOTIS Rank Reversal
Free Method for Multi-Criteria Decision-Making Support. 2020 IEEE 23rd International Confer-
ence on Information Fusion (FUSION), Jul 2020, Sun City, South Africa. pp.1-8, �10.23919/FU-
SION45008.2020.9190347�. �hal-03007675�

https://hal.science/hal-03007675
https://hal.archives-ouvertes.fr


The SPOTIS Rank Reversal Free Method
for Multi-Criteria Decision-Making Support
Jean Dezert

The French Aerospace Lab
Palaiseau, France.

jean.dezert@onera.fr

Albena Tchamova
Inst. of I&C Tech., BAS

Sofia, Bulgaria.
tchamova@bas.bg

Deqiang Han
Inst. of Integrated Automation
Xi’an Jiaotong Univ., China.

deqhan@xjtu.edu.cn

Jean-Marc Tacnet
INRAE, U.R. ETNA

38000 Grenoble, France.
jean-marc.tacnet@inrae.fr

Abstract—In this paper, we propose a new Multi-Criteria
Decision-Making method (MCDM) which is rank reversal free.
We call it the SPOTIS method standing for Stable Preference
Ordering Towards Ideal Solution method. Our method is exempt
of rank reversal because the preference ordering established from
the score matrix of the MCDM problem under consideration
does not require the relative comparisons between alternatives,
but only comparisons with respect to the ideal solution chosen by
the MCDM system designer after transforming the incomplete
original MCDM problem into a well-defined one thanks to the
specification of the min and max bounds of each criterion
involved in the problem.
Keywords: SPOTIS, multi-criteria decision-making, Informa-
tion fusion, TOPSIS, MCDM.

I. INTRODUCTION

Multi-Criteria Decision-Making (MCDM) is to choose an
alternative among a given set of alternatives based on their
quantitative evaluations (numerical scores) obtained with re-
spect to different criteria. Because the scores are usually ex-
pressed in different (physical) units and scales, a normalization
step is often used in the development of MCDM methods
available in the literature, which is recognized as a source
of the so-called Rank Reversal Problem (RRP) [1]–[10]. Rank
reversal is a change of the rank (or preference ordering) of
alternatives if we change the structure of the MCDM problem
by adding (or deleting) some alternative. The recent survey
paper [11] provides a very good detailed literature review of
RRP in MCDM. The most adopted MCDM methods used so
far are AHP1 [12], ELECTRE2 [7], TOPSIS3 [13], [14] which
all suffer from rank reversal. Other MCDM methods have been
inspired by these methods trying to overcome more or less
successfully RRP. In 2013, a new MCDM method avoiding
data normalization called Estimator Ranking Vector (ERV) has
been presented in [15] which unfortunately is not exempt of
RRP. Quite recently an interesting Rank Reversal Free (RRF)
method, called COMET (Characteristic Object METhod) has
been proposed by Piegat and Sałabun [16]–[18] to address
MCDM from a fuzzy logic standpoint. COMET method avoids
rank reversal, which is very appealing, but it requires much

1Analytic Hierarchy Process.
2ELimination and/Et Choice Translating REality.
3Technique for Order Preference by Similarity to Ideal Solution.

more information4 than the given score matrix used classically
in MCDM problems. So, in our opinion, COMET approach
must not be compared with classical methods because it
requires more information than we usually have in classical
MCDM problems.

In this paper, we propose a new rank reversal free MCDM
method which provides a Stable Preference Ordering Towards
Ideal Solution (SPOTIS) and has a very low complexity. It
requires much less information with respect to the COMET
approach. Moreover SPOTIS fits easily in the framework of
classical MCDM problematic because it uses directly the
MCDM score matrix available, and the importance weighting
factors of criteria.

The paper is organized as follows. After a brief recall of
basics of the classical MCDM problem in section II, we
present the principle of the new SPOTIS method in section
III. The application of SPOTIS method to a multi-criteria car
selection problem is presented in section IV with comparison
to AHP, TOPSIS and Belief Function based TOPSIS methods.
In section V we present briefly the SPOTIS method for
working with an expected solution point. Conclusions, and
perspectives are given in the section VI.

II. BASICS ON CLASSICAL MCDM

A Multi-Criteria Decision-Making problem is characterized
by a set of alternatives A , {A1, A2, . . . , AM} (M > 2) in
which the best decision must be made, according to a given
set of criteria C , {C1, C2, . . . , CN} (N ≥ 1) and the score
M×N matrix S = [Sij ] whose component Sij is the score (the
performance) of the alternative Ai based on criterion Cj . Each
criterion has an importance normalized weight wj ∈ [0, 1] with∑N

j=1 wj = 1. The MCDM problem is said to be classical if
all criteria Cj and all alternatives Ai are known as well as all
their related scores values Sij expressed quantitatively (i.e. Sij

are real numbers) and the weighting factor wj of each criteria
Cj . Unclassical MCDM problems refer to problems involving
incomplete or qualitative information. The set of normalized
weighting factors is denoted by w , {w1, w2, . . . , wN}.
Depending on the context of the MCDM problem, the score
can be interpreted either as a cost (or expense) or as a reward

4More precisely, the a priori choice of fuzzy set membership functions, and
sets of particular characteristics values for each criterion.



(or benefit). Further on, by convention and without the loss
of generality5 we will interpret the score as a reward having
monotonically increasing preference. Thus, the best alternative
w.r.t.6 a given criterion will be the one providing the highest
reward/benefit. The score matrix S = [Sij ] is sometimes
also called benefit or payoff matrix in the literature. The
classical MCDM problem aims to select the best7 alternative
(corresponding to the most preferred one) A⋆ ∈ A given S
and the weighting factors w of criteria.

It is worth noting that the classical MCDM problem based
only on the knowledge of a given score matrix S and an impor-
tance weighting vector w of criteria is in fact an incomplete
MCDM problem because the absolute (or physical) bounds
of the score values of each criterion are not specified, and
we consider that most of MCDM problems are actually ill-
defined (i.e. incompletely specified) problems. In [19] (p. 148
& p.175), the author adopts a more radical standpoint and
stresses the fact that MCDM problems are, and will always
be ill-defined problems because it is difficult, or impossible, to
gather all relevant technical parameters, and to validate them
against the observations.

To fully characterize and solve a MCDM problem, one also
needs to know (or to specify) the absolute bounds of the
score values of each criterion so that the (ill-defined) classical
MCDM problem becomes a well-defined MCDM one, where
all scores values for each criterion are between its bounds.
Later in the paper we propose a direct and very simple method
to solve well-defined MCDM problems thanks to SPOTIS
method. Of course transforming an ill-defined MCDM prob-
lem into a well-defined MCDM one requires extra information
which is sometimes already available but not exploited in
well-known methods, or which should be introduced based
on reasonable assumptions or expert elicitation depending on
the criteria involved in the ill-defined MCDM problem. Once
the ill-defined MCDM problem is transformed into a unique
well-defined one, the rank reversal free SPOTIS method will
provide the best multi-criteria decision-making solution with
preference ordering of all alternatives.

III. SPOTIS METHOD

In this paper, we always consider the criteria indepen-
dent from each other so that no (even partially) redundant
information is used in the MCDM problem to avoid some
bias of the result. The principle SPOTIS method is based
on the computation of normalized distance dij(Ai, S

⋆
j ) of

each alternative Ai with respect to the (best) ideal solution
S⋆
j chosen for each criterion Cj , and their weighted average

distance d(Ai, S
⋆) =

∑N
j=1 wjdij(Ai, S

⋆
j ) which is also a true

distance metric because of the following Theorem.

Theorem 1: Consider N ≥ 2 metric spaces E1, E2, . . . , EN .
We denote dj(xj , yj) as a true metric chosen for measuring

5Indeed the cost score value can be interpreted as benefit by multiplying
its value by -1.

6with respect to.
7In some sense that will be shortly clarified later in the paper.

the distance between points xj and yj of Ej . We consider
N -dimensional points defined as x = [x1 x2 . . . xN ]t and
y = [y1 y2 . . . yN ]t belonging to E = E1 ×E2 × . . .×EN .
Then for any real factor wj ≥ 0, the weighted average distance
d(x,y) defined by d(x,y) =

∑N
j=1 wjdj(xj , yj) is a true

distance.

Proof: See Appendix.

To avoid rank reversal, the ideal solution S⋆ must be chosen
a priori and independently of score values of alternatives so
that the distance d(Ai, S

⋆) of any chosen alternative Ai to
S⋆ is independent of the distance of d(Ai′ , S

⋆) for i′ ̸= i
as already pointed out by Kong [20]. By doing this, the
preference ordering based on d(Ai, S

⋆) will be stable (i.e.
exempt of rank reversal) because adding or removing some
alternatives of the set A of a given MCDM problem will not
change the values d(Ai, S

⋆) of the modified MCDM problem,
as it will be shown in our examples.

A. Choice of an ideal solution point

Usually the (best) Ideal Solution Point (ISP) is determined
from the bounds of the scores values of the criteria according
to the preference ordering related to each criterion. However
in some MCDM problems the ideal solution point can also
be chosen as some ”expected” (or nominal) reference point
between these bounds. In fact, the choice of the ISP is left to
the MCDM system designer and the type of MCDM problems
he/she wants to address. The MCDM problem consists in
choosing (or sorting) the alternatives with respect to the
defined ideal solution point. The closer to ISP, the better the
MCDM solution.

For each criteria Cj (j = 1, 2, . . . , N) the min and max
bounds of this criterion are denoted respectively by Smin

j and
Smax
j . If for a criterion Cj the preference is larger score value

is better, then the best ideal solution for criterion Cj is S⋆
j =

Smax
j , but if for criterion Cj the preference is smaller score

value is better, then the ideal solution point for criterion Cj

is S⋆
j = Smin

j . The ideal multi-criteria best solution S⋆ is
defined as the point of coordinates (S⋆

1 , . . . , S
⋆
j , . . . , S

⋆
N ) in

the N-dimensional space.

Example 1: Consider a simple classical MCDM problem
with 4 alternatives and 3 criteria with weighting vector w =
[0.2 0.3 0.5] and with the score matrix given by

S =


C1 C2 C3

A1 10.5 −3.1 1.7
A2 −4.7 0 3.4
A3 8.1 0.3 1.3
A4 3.2 7.3 −5.3


This classical MCDM problem is clearly incomplete because
the bounds of the values of the scores are not specified. It
becomes a well-defined MCDM problem if one specifies the
min and max bounds of score values for each criterion. For
instance, one could consider as reasonable (of course this



choice depends on the type of application and criteria under
concern) the following bounds

[Smin
1 , Smax

1 ] = [−5, 12]

[Smin
2 , Smax

2 ] = [−6, 10]

[Smin
3 , Smax

3 ] = [−8, 5]

If for criteria C1 and C3 the preference is larger score value
is better, and for criterion C2 the preference is smaller score
value is better then the ideal best solution is given by

S⋆ = (S⋆
1 , S

⋆
2 , S

⋆
3 ) = (Smax

1 , Smin
2 , Smax

3 ) = (12,−6, 5)

Of course any other ISP can be chosen depending on
the MCDM problem one wants to solve. For example, if
we are rather interested by finding the alternative which is
the closest to the mid score value of each criterion then
we will use the expected solution point S⋆ = (8.5, 8, 6.5)
because 8.5 is the middle of [Smin

1 , Smax
1 ] = [−5, 12], 8 is the

middle of [Smin
2 , Smax

2 ] = [−6, 10], and 6.5 is the middle of
[Smin

3 , Smax
3 ] = [−8, 5].

B. Choice of distance metric

To measure the closeness of an alternative Ai (i =
1, 2, . . . ,M ) with respect to the ideal point solution, we
will use the weighted average distance d(Ai, S

⋆) =∑N
j=1 wjdij(Ai, S

⋆
j ) which is proved to be a true distance

metric thanks to Theorem 1. This theorem is very general
and it does not require that all distances dij(Ai, S

⋆
j ) for

j = 1, 2, . . . , N involved in the weighted average must be of
the same kind. For instance, one may chose a city-block (L1)
distance for measuring the distance in E1 metric space, and
one may chose an Euclidean (L2) distance for measuring the
distance in E2 metric space, and another possible Minkowski’s
distance related with E3, etc. Although it is mathematically
allowed to work with such type of mixed/hybrid weighted
average distance, we do not see a very solid justification8 for
doing this a priori, and that is why we propose to use the
same distance metric for each criterion. Further on we will
use the classical Euclidean (L2) distance [21] for calculating
dij(Ai, S

⋆
j ), but any other choice of distances is possible,

and is theoretically allowed in SPOTIS method (including the
hybrid weighted averaged distance).

C. On the necessity of normalization

Another question concerns the necessity, or not, to nor-
malize the score values (or eventually the distances values)
relatively to each criterion before computing the weighted
average distance d(Ai, S

⋆) =
∑N

j=1 wjdij(Ai, S
⋆
j ) that will

help to sort the alternatives with respect to the ideal solution
point. Although not absolutely necessary from the mathemat-
ical standpoint, it seems natural and preferable to apply a
normalization step before computing the weighted average
distance d(Ai, S

⋆) mainly because the criteria have usually

8Maybe for particular types of criterion some distance metrics are more
appropriate than other but we did not investigate this question yet.

very different natures9 characterized by different (physical)
units. In fact, it seems very difficult to define a clear semantics
(if any) for a weighted average distance that mixes distances
of objects of different natures. To circumvent this problem,
we prefer to apply a normalization step to work with unitless
dij(Ai, S

⋆
j ) distances involved in weighted average distance

d(Ai, S
⋆) =

∑N
j=1 wjdij(Ai, S

⋆
j ).

Let’s examine two natural and simple normalization proce-
dures, and their relationships.

• First possible normalization procedure
The first normalization to make the score values related
to a criteria Cj unitless consists in normalizing the score
value Sij by taking

sij =
Sij − Smin

j

Smax
j − Smin

j

(1)

Hence the normalized score value sij ∈ [0, 1], and
sij = 0 if Sij = Smin

j , and sij = 1 if Sij = Smax
j .

Of course the coordinates of the ideal solution point
must be also normalized to get the normalized ISP
s⋆ = (s⋆1, . . . , s

⋆
j , . . . , s

⋆
N ), where s⋆j =

S⋆
j −Smin

j

Smax
j −Smin

j
for

j = 1, 2, . . . , N . Hence the original Euclidean distance
dij(Ai, S

⋆
j ) defined by10

dij(Ai, S
⋆
j ) = |Sij − S⋆

j |

will be replaced by the unitless normalized Euclidean
distance dij(Ai, s

⋆
j ) ∈ [0, 1] defined by

dij(Ai, s
⋆
j ) = |sij − s⋆j | (2)

It is worth noting that one has also11

dij(Ai, s
⋆
j ) = |

Sij − Smin
j

Smax
j − Smin

j

−
S⋆
j − Smin

j

Smax
j − Smin

j

|

=
|Sij − S⋆

j |
|Smax

j − Smin
j |

(3)

Once the normalized distances dij(Ai, s
⋆
j ) are calculated,

we compute the normalized weighted average distance
d(Ai, s

⋆) ∈ [0, 1] defined by

d(Ai, s
⋆) =

N∑
j=1

wjdij(Ai, s
⋆
j ) (4)

to sort alternatives with respect to the (normalized) ISP.

• Second possible normalization procedure
In this second possible normalization, we do not nor-
malize the scores values directly but only the calculated
distances with respect to min and max distances values.

9For instance a criterion can refer to time, another criterion can refer to
price, another one to dimension, etc.

10In our context we work in one dimension for each criterion, so that the
Euclidean distance d(x, y) =

√
(x− y)2 = |x− y|.

11Just replace expressions for sij and s⋆j in (2).



That is, we compute for each alternative Ai and criterion
Cj at first the Euclidean distance defined by

dij(Ai, S
⋆
j ) = |Sij − S⋆

j |

and then we normalize its value by taking

d̃ij(Ai, S
⋆
j ) =

dij(Ai, S
⋆
j )− dmin

j

dmax
j − dmin

j

(5)

where dmin
j corresponds to the minimum achievable dis-

tance which is zero only if the score value Sij coincides
with the ideal solution S⋆

j . The maximum distance is
dmax
j = |Smax

j − Smin
j | because Sij ∈ [Smin

j , Smax
j ].

Hence, the formula (5) can be written as

d̃ij(Ai, S
⋆
j ) =

dij(Ai, S
⋆
j )

|Smax
j − Smin

j |
=

|Sij − S⋆
j |

|Smax
j − Smin

j |
(6)

Once the normalized distances are calculated, we
compute the normalized weighted average distance
d̃(Ai, S

⋆) ∈ [0, 1] defined by

d̃(Ai, S
⋆) =

N∑
j=1

wj d̃ij(Ai, S
⋆
j ) (7)

to sort the alternatives with respect to the ISP.

One can easily verify that the two normalization procedures
are in fact equivalent because the formulas (3) and (6) are the
same. Hence, we can either use the normalization procedure 1
or 2 as one prefers. It does not matter because one will always
have d(Ai, s

⋆) = d̃(Ai, S
⋆). We recall that the weighting

factor wj entering in (4) and in (7) is the importance weighting
factor of the j-th criterion which is chosen independently of
the score values and the bounds of the criterion.

D. Choice of the bounds

SPOTIS method needs extra information on the bounds of
criteria in order to transform the original ill-defined MCDM
problem into a well-defined MCDM problem to obtain its
solution. We do not know yet if there exists, or not, a
general principle for automatic bound selection for the SPOTIS
method, and this is a challenging open question. A priori it
appears difficult to establish very general principles because
the bound selection appears very dependent of the nature of
criteria involved in the MCDM problem under consideration.
The guideline we suggest presently is to ask some experts
to provide these bounds necessary to the SPOTIS method,
and then to make eventually a sensitivity analysis of the
SPOTIS result with respect to the changes of the bounds for
determining a margin of acceptable bound values to evaluate
the robustness of the SPOTIS solution.

E. Steps of SPOTIS method

For convenience we summarize the main steps of SPOTIS
method.

1) Step 1: Define the min and max bounds of classical (ill-
defined/incomplete) original MCDM problem in order
to transform it into a well-defined MCDM problem12.

2) Step 2: Define the ideal solution point of MCDM
depending of preference order of each criterion (larger
is better, or smaller is better).

3) Step 3: For each alternative Ai (i = 1, 2, . . . ,M ),
compute its normalized distance with respect to ideal
solution for each criteria Cj (j = 1, 2, . . . , N ) by either
formulas (2) or (5).

4) Step 4: For each alternative Ai (i = 1, 2, . . . ,M ),
compute its normalized averaged distance with respect
to multi-criteria ideal solution by either formulas

d(Ai, s
⋆) =

N∑
j=1

wjdij(Ai, s
⋆
j )

or equivalently

d̃(Ai, S
⋆) =

N∑
j=1

wj d̃ij(Ai, S
⋆
j )

5) Step 5: Sort alternatives in increasing order using
d(Ai, s

⋆) (or equivalently d̃(Ai, S
⋆)) values. The least

value corresponds to the best MCDM solution A⋆, that
is A⋆ = Ai⋆ , where i⋆ = argmin d(Ai, s

⋆). The second
least value corresponds to the second best MCDM
solution, etc.

Once the MCDM is well-defined thanks to the specification
of the bounds values of each criteria, the SPOTIS method
does not suffer from rank reversal because the evaluation of
each alternative is done independently of the others. Therefore,
removing an alternative or including a new alternative in
the new well-defined MCDM problem will not change the
preference order of alternatives. The SPOTIS method must be
adapted if the chosen ISP is a particular Expected Solution
Point (ESP) that does not include maximum or minimum
bounds of criteria. This is briefly presented in section V.

IV. EXAMPLES FOR SPOTIS METHOD

A. Example 1 (continued)

For this example, the ideal best solution is S⋆ =
(S⋆

1 , S
⋆
2 , S

⋆
3 ) = (Smax

1 , Smin
2 , Smax

3 ) = (12,−6, 5) because
one considers that for criteria C1 and C3 the preference is
larger score value is better, and for criterion C2 the preference
is smaller score value is better, and we have chosen the
min and max bounds of criteria as [Smin

1 , Smax
1 ] = [−5, 12],

[Smin
2 , Smax

2 ] = [−6, 10] and [Smin
3 , Smax

3 ] = [−8, 5].

12The choice of the min and max bounds is left to the analyst and the
system designer, and it highly depends on the MCDM problem they have to
solve.



The step 3 of SPOTIS yields the following normalized
distances matrix

dij = [dij(Ai, s
⋆
j )] ≈


C1 C2 C3

A1 0.0882 0.1812 0.2538
A2 0.9824 0.3750 0.1231
A3 0.2294 0.3937 0.2846
A4 0.5176 0.8313 0.7923


For instance, the value d11(A1, s

⋆
1) ≈ 0.0882 is obtained by

the equivalent formulas (3) or (6), that is

d11(A1, s
⋆
1) =

|S11 − S⋆
1 |

|Smax
1 − Smin

1 |
=

|10.5− 12|
|12− (−5)|

≈ 0.0882

The step 4 of SPOTIS yields the following normalized
average distances d(Ai, s

⋆) =
∑N

j=1 wjdij(Ai, s
⋆
j )

d = [d(Ai, s
⋆)] ≈


A1 0.1989
A2 0.3707
A3 0.3063
A4 0.7491


Sorting the distances vector d in ascending order we get

d(A1, s
⋆) < d(A3, s

⋆) < d(A2, s
⋆) < d(A4, s

⋆)

which means that A1 is the closest alternative to ISP. The final
preference order result of SPOTIS method for this example is
therefore:

A1 ≻ A3 ≻ A2 ≻ A4.

Suppose now that we take out one alternative, say A2, of the
MCDM problem for this example. Then, we have to consider
now the following modified (reduced) score matrix

Sreduced =


C1 C2 C3

A1 10.5 −3.1 1.7
A3 8.1 0.3 1.3
A4 3.2 7.3 −5.3


Applying SPOTIS steps 3 and 4 we gets the same normalized
distances and average distances for the alternatives of the
reduced MCDM problem, that is

dreduced
ij = [dij(Ai, s

⋆
j )] ≈


C1 C2 C3

A1 0.0882 0.1812 0.2538
A3 0.2294 0.3937 0.2846
A4 0.5176 0.8313 0.7923


and

dreduced = [d(Ai, s
⋆)] ≈

A1 0.1989
A3 0.3063
A4 0.7491


from which we have

d(A1, s
⋆) < d(A3, s

⋆) < d(A4, s
⋆)

and one deduces the final preference order

A1 ≻ A3 ≻ A4.

which is naturally consistent with the previous result, i.e. there
is no rank reversal.

Similarly, suppose we introduce a new alternative A5 com-
patible with min and max bounds of criteria in the MCDM
problem so that the modified (augmented) MCDM problem
is characterized by the following (augmented) score matrix as
follows

Saugmented =



C1 C2 C3

A1 10.5 −3.1 1.7
A2 −4.7 0 3.4
A3 8.1 0.3 1.3
A4 3.2 7.3 −5.3
A5 −3 2 4.2


From SPOTIS steps 3 and 4 we get now

daugmented
ij = [dij(Ai, s

⋆
j )] ≈



C1 C2 C3

A1 0.0882 0.1812 0.2538
A2 0.9824 0.3750 0.1231
A3 0.2294 0.3937 0.2846
A4 0.5176 0.8313 0.7923
A5 0.8824 0.5000 0.0615


and

daugmented = [d(Ai, s
⋆)] ≈


A1 0.1989
A2 0.3707
A3 0.3063
A4 0.7491
A5 0.3572


from which we have

d(A1, s
⋆) < d(A3, s

⋆) < d(A5, s
⋆) < d(A2, s

⋆) < d(A4, s
⋆)

and one deduces the final preference order

A1 ≻ A3 ≻ A5 ≻ A2 ≻ A4.

which is also naturally consistent with the previous results of
preference orderings, i.e. there is no rank reversal.

Suppose that the score values of A5 meet exactly the ISP,
that is S5,1 = 12, S5,2 = −6 and S5,3 = 5 then it is naturally
expected that A5 will be the most preferred alternative. It can
be easily verified that this is exactly the solution that SPOTIS
method provides because in this case

daugmented
ij = [dij(Ai, s

⋆
j )] ≈



C1 C2 C3

A1 0.0882 0.1812 0.2538
A2 0.9824 0.3750 0.1231
A3 0.2294 0.3937 0.2846
A4 0.5176 0.8313 0.7923
A5 0 0 0


and the averaged normalized distances

daugmented = [d(Ai, s
⋆)] ≈


A1 0.1989
A2 0.3707
A3 0.3063
A4 0.7491
A5 0





It can be also verified that if the score values of A5 meet
exactly the Worst Solution Point (WSP) when S5,1 = −5,
S5,2 = 10 and S5,3 = −8, then the alternative A5 will become
the least preferred solution provided by SPOTIS method which
makes perfectly sense with what is naturally expected. Indeed,
we will get in this case

daugmented = [d(Ai, s
⋆)] ≈


A1 0.1989
A2 0.3707
A3 0.3063
A4 0.7491
A5 1


B. Example 2 (Car selection problem)

Here we examine a more concrete example analyzed in [22]
about car selection MCDM problem. We consider a set of four
cars {A1, A2, A3, A4} as follows:

• A1 = TOYOTA YARIS 69 VVT-i Tendance;
• A2 = SUZUKI SWIFT MY15 1.2 VVT So’City;
• A3 = VOLKSWAGEN POLO 1.0 60 Confortline;
• A4 = OPEL CORSA 1.4 Turbo 100 ch Start/Stop Edition;

We consider the following five criteria for making the choice
of the best car to buy:

• C1 is the price (in e);
• C2 is fuel consumption (in L/km);
• C3 is the CO2 emission (in g/km);
• C4 is the fuel tank volume (in L);
• C5 is the trunk volume (in L);
The score matrix S = [Sij ] is built from information ex-

tracted from car-makers technical characteristics available on
the world wide web13. For the chosen cars, the corresponding
score matrix is given by

S =

15000 4.3 99 42 737
15290 5.0 116 42 892
15350 5.0 114 45 952
15490 5.3 123 45 1120


We consider that the min and max bounds for each criterion

are as follows

[Smin
1 , Smax

1 ] = [14000, 16000] (in e)

[Smin
2 , Smax

2 ] = [3, 8] (in L/km)

[Smin
3 , Smax

3 ] = [80, 140] (in g/km)

[Smin
4 , Smax

4 ] = [35, 60] (in L)

[Smin
5 , Smax

5 ] = [650, 1300] (in L)

For criteria C1, C2 and C3 the smaller is better. For criteria
C4 and C5 the larger is better, so that the ISP is given by

S⋆ = (14000, 3, 80, 60, 1300)

For simplicity, the importance imp(Cj) of each criteria Cj

takes a value in {1, 2, 3, 4, 5}, where 1 means the least impor-
tant, and 5 means the most important. In this example we take
imp(C1) = 5, imp(C2) = 4, imp(C3) = 4, imp(C4) = 1 and

13http://www.choisir-sa-voiture.com

imp(C5) = 3 which means that the price of a car (criteria
C1) is the most important criteria for us, and the volume
of fuel tank (criteria C4) is the least important one. From
these importance values and after normalization, we get the
following vector of relative weights of criteria

w = [
5

17

4

17

4

17

1

17

3

17
]

= [0.2941 0.2353 0.2353 0.0588 0.1765]

Intuitively, based on the score matrix S and importances
of criteria, the choice of car A1 is anticipated to be the best
choice because the three most important criteria meet clearly
the highest values for the car A1.

If we apply the SPOTIS method for this MCDM problem,
we get

dij ≈


C1 C2 C3 C4 C5

A1 0.5 0.26 0.3167 0.72 0.8662
A2 0.6450 0.4 0.6 0.72 0.6277
A3 0.6750 0.4 0.5667 0.6 0.5354
A4 0.7450 0.46 0.7167 0.6 0.2769


and the weighted average distances to ISP as follows

d = [d(Ai, s
⋆)] ≈


A1 0.4779
A2 0.5781
A3 0.5558
A4 0.5801


Hence the SPOTIS preference ordering is

A1 ≻ A3 ≻ A2 ≻ A4

which fits with what we expect because the car A4 has the
worst score for the most important criterion C1, C2 and C3.

If we apply the classical TOPSIS approach [13], [14], one
gets A4 ≻ A1 ≻ A3 ≻ A2, that is A4 would be the best car
to buy, whereas A2 would be the worst one. TOPSIS result is
not good and counter-intuitive because in this very simple and
concrete example A1 should have been selected as the best
choice without ambiguity by any rational decision-maker.

With BF-TOPSIS methods (1, 2, 3 and 4) [22] we get the
same satisfactory preference order A1 ≻ A3 ≻ A2 ≻ A4,
which also coincides with AHP solution [12], and with the
SAW (Simple Additive Weighting) method [8], [23] in this
example. But contrary to aforementioned methods, SPOTIS
approach is by construction free of rank reversal once the min
and max bounds of criteria have been chosen by the MCDM
system designer, and SPOTIS approach is very simple to
apply which gives an advantage with respect to other MCDM
methods.

It could be argued that the SPOTIS method is more difficult
(or risky) to use because of the freedom left in the choice of
min and max bounds of the criteria. We consider that this
is not a very serious problem of SPOTIS method because
in most of practical problems we have good insight of the
(physical) bounds/limits of the criteria involved in the MCDM,



and because a sensibility analysis of the choice of the bounds
can always be conducted to see how SPOTIS method behave
for the ill-defined MCDM problem if one doubts on the chosen
bounds of the criteria. What is the most important is that
SPOTIS is RRF once the original ill-defined MCDM problem
has been transformed into a well-defined MCDM thanks to
the choice of the criteria bounds.

V. APPLYING SPOTIS WITH A CHOSEN ESP
In this section we show that SPOTIS method can also be

applied (if one wants) using any chosen Expected Solution
Point (ESP) rather than using the best Ideal Solution Point
(ISP). The only condition is that each coordinate S⋆

j of ESP
must be between the bounds [Smin

j , Smax
j ] of each criteria Cj ,

j = 1, 2, . . . , N of the well-formulated MCDM problem. We
illustrate the application of the SPOTIS method working with
ESP in the previous MCDM car example for convenience.

Example 2 (continued): We consider the same MCDM car
problem as in example 2, but we are now interested in the
preference ordering of the four cars with respect to a chosen
expected car that would satisfy our following five desiderata
for each criteria

S⋆ = [15300 4 115 50 900]

S⋆ corresponds to our chosen expected solution point.
We can verify that the coordinates of the chosen ESP

are between the chosen bounds of each criteria because
S⋆
1 = 15300 ∈ [Smin

1 , Smax
1 ] = [14000, 16000], S⋆

2 = 4 ∈
[Smin

2 , Smax
2 ] = [3, 8], S⋆

3 = 115 ∈ [Smin
3 , Smax

3 ] = [80, 140],
S⋆
4 = 50 ∈ [Smin

4 , Smax
4 ] = [35, 60], and S⋆

5 = 900 ∈
[Smin

5 , Smax
5 ] = [650, 1300]. For this car selection problem

we recall that the score matrix is given by

S =

15000 4.3 99 42 737
15290 5.0 116 42 892
15350 5.0 114 45 952
15490 5.3 123 45 1120


and the weights of criteria are

w = [0.2941 0.2353 0.2353 0.0588 0.1765]

We can apply the formula (3) to compute the normalized
distance of each alternative to the expected solution point for
each criteria. One gets the following distance matrix dij =
[dij(Ai, s

⋆
j )] whose numerical components are

dij ≈


C1 C2 C3 C4 C5

A1 0.1500 0.0600 0.2667 0.3200 0.2508
A2 0.0050 0.2000 0.0167 0.3200 0.0123
A3 0.0250 0.2000 0.0167 0.2000 0.0800
A4 0.0950 0.2600 0.1333 0.2000 0.3385


After obtaining their weighted average (step 4 of SPOTIS

method), we get finally

d = [d(Ai, s
⋆)] ≈


A1 0.1841
A2 0.0734
A3 0.0842
A4 0.1920



Therefore the SPOTIS preference ordering of cars based on
this chosen ESP is

A2 ≻ A3 ≻ A1 ≻ A4

This result makes intuitively sense because the car A2

(Suzuki car) is very close to ESP coordinate S⋆
1 for the

most important criterion C1, and it is also quite close to
coordinate S⋆

3 for a second most important criteria. Note
that the normalized average distance 0.0734 for the first best
choice A2 and the normalized average distance 0.0842 for the
second best choice A3 are actually very close so that in this
particular problem, one could consider both choices A2 and
A3 acceptable from practical standpoint. To make the decision
more easier one could also introduce an (or several) additional
criterion of course.

This example may appear too simple for readers familiarized
with more complicated MCDM problems, but we think it is
sufficiently interesting to show how our SPOTIS method works
in a classical problem. Application of this method for risk
analysis in mountains will be investigated in some of our future
research works.

VI. CONCLUSIONS

In this work, we have presented a new Stable Preference
Ordering Towards Ideal Solution (SPOTIS) method to solve
MCDM problem. The SPOTIS method is free of rank reversal
because of introduction of min and max bounds of each criteria
entering in the definition of the well-formulated MCDM
problem. This method is very simple to apply and it works
also with any expected solution point chosen in the bounds
of criteria. We have shown how it works on a simple car
selection problem comparatively to other classical methods.
The adaptation of this new SPOTIS method for working with
missing and imprecise data is under investigation.

APPENDIX 1

Proof of theorem 1:
To prove that d(x,y) is a true distance, we must prove the

four properties
1) Positiveness: ∀(x,y) ∈ E2, d(x,y) ≥ 0
2) Symmetry: ∀(x,y) ∈ E2, d(x,y) = d(y,x)
3) Separation: ∀(x,y) ∈ E2, d(x,y) = 0 ⇔ x = y
4) Triangular inequality: ∀(x,y, z) ∈ E3,

d(x, z) ≤ d(x,y) + d(y, z)

Because d1(x1, y1) is a true distance defined in E1, one has
d1(x1, y1) ≥ 0 for all (x1, y1) ∈ E1×E1, and because w1 ≥ 0,
one has w1d1(x1, y1) ≥ 0. Similarly d2(x2, y2) being a true
distance in E2 and w2 ≥ 0, one has always w2d2(x2, y2) ≥ 0
for all (x2, y2) ∈ E2×E2. Hence the quantity w1d1(x1, y1)+
w2d2(x2, y2) ≥ 0, which proves the positiveness of d(x,y).

Because symmetry holds for d1 and d2, one has ∀(x,y) ∈
E2 d(x,y) = w1d1(x1, y1)+w2d2(x2, y2) = w1d1(y1, x1)+
w2d2(y2, x2) = d(y,x) which proves the symmetry property
of d(x,y). Because separation holds for d1 and d2, that is



d1(x1, x1) = 0 and d2(x2, x2) = 0, one has ∀(x,x) ∈ E2 the
following equality d(x,x) = w1d1(x1, x1) + w2d2(x2, x2) =
w1 · 0 + w2 · 0 = 0, which proves the separation property of
d(x,y). Let’s verify also that the triangular inequality holds.
Because d1 and d2 are true distances, they satisfy the triangular
inequalities. That is, for all (x1, y1, z1) ∈ E1 × E1 × E1

d1(x1, z1) ≤ d1(x1, y1) + d1(y1, z1)

and for any multiplicative factor w1 ≥ 0, one has also

w1d1(x1, z1) ≤ w1d1(x1, y1) + w1d1(y1, z1)

Similarly, one has for any multiplicative factor w2 ≥ 0

w2d2(x2, z2) ≤ w2d2(x2, y2) + w2d2(y2, z2)

By adding the two positive (or null) left-hand sides, and
the two positive (or null) right-hand sides of the previous
inequalities, we get (after rearranging terms) the following
inequality which is always valid

w1d1(x1, z1) + w2d2(x2, z2) ≤
w1d1(x1, y1)+w2d2(x2, y2)+w1d1(y1, z1)+w2d2(y2, z2)

This valid inequality can be expressed equivalently as
d(x, z) ≤ d(x,y)+d(y, z), which proves that d(x,y) satisfies
the triangular inequality for all (x,y, z) ∈ E3. This completes
the proof of the theorem.

By induction, this proof can be directly extended to the
general case involving n > 2 metric spaces, proving that for
any wi ≥ 0 and using any distance di chosen in Ei, i =
1, 2, . . . , n,

d(x,y) =

n∑
i=1

widi(xi, yi)

is also a true distance.
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