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Signaling pathways control a large number of gene regulatory networks (GRNs) during
animal development, acting as major tools for body plan formation [A. Pires-daSilva,
R. J. Sommer, Nat. Rev. Genet. 4, 39–49 (2003)], although only a few of these path-
ways operate during this period [J. J. Sanz-Ezquerro, A. E. M€unsterberg, S. Stricker,
Front. Cell Dev. Biol. 5, 76 (2017)]. Moreover, most of them have been largely con-
served during metazoan evolution [L. S. Babonis, M. Q. Martindale, Philos. Trans. R.
Soc. Lond. B Biol. Sci. 372, 20150477 (2017)]. How evolution has generated a vast
diversity of animal morphologies with such a limited number of tools is still largely
unknown. Here, we show that gain of interconnectivity between signaling pathways
and the GRNs they control may have critically contributed to the origin of vertebrates.
We perturbed the retinoic acid, Wnt, FGF, and Nodal signaling pathways during gas-
trulation in the invertebrate chordate amphioxus and zebrafish and compared the effects
on gene expression and cis-regulatory elements (CREs). We found that multiple devel-
opmental genes gain response to these pathways through vertebrate-specific CREs.
Moreover, in contrast to amphioxus, many of these CREs responded to multiple path-
ways in zebrafish, which reflects their high interconnectivity. Furthermore, we found
that vertebrate-specific cell types are more enriched in highly interconnected genes than
in tissues with more ancient origin. Thus, the increase of CREs in vertebrates integrat-
ing inputs from different signaling pathways probably contributed to gene expression
complexity and to the formation of new cell types and morphological novelties in this
lineage.

evolution j regulatory network j signaling pathway j amphioxus j zebrafish

During embryonic development, thousands of genes are expressed in a coordinated and
tightly regulated manner. This coordination is facilitated by complex hierarchical rela-
tionships between genes (1, 2), where the expression of a particular effector gene
triggers the transcription of many other genes in a multilevel cascade that can involve
hundreds of different targets (3). Signaling pathways control most of these genetic cas-
cades, interconnecting many genes and playing pivotal roles in more complex gene reg-
ulatory networks (GRNs). As a consequence, they are key substrates for the generation
of morphological diversity during evolution (4). However, the complexity of networks
is not only dictated by the number of nodes but also by the number and patterns of
interactions among them. In this context, effectors of signaling pathways constitute
hubs in GRNs.
It has already been demonstrated that after the vertebrate-specific whole genome

duplications (WGDs), many duplicated developmental genes were maintained in this
group (5). Furthermore, it is also known that regulatory landscapes in general, and
especially those of developmental genes, have been expanded in the vertebrate lineage
(6). Yet, it remains unclear how these features interplay to generate the highly complex
body plans of adult vertebrates. Here, we investigated the contribution of key signaling
pathways in the evolutionary transition from invertebrate chordates to vertebrates. To
study this question, we compared the effects of interfering with the retinoic acid (RA),
Wnt, fibroblast growth factor (FGF), and Nodal pathways during gastrulation in both
amphioxus (a cephalochordate) and zebrafish embryos. To do so, we used pharmaco-
logical compounds known to act either as agonists of the RA and Wnt or antagonists
of the FGF and Nodal pathways (7). We then examined the impact of these treatments
on global gene expression by RNA sequencing(RNA-seq) in both species (Fig. 1A and
SI Appendix, Fig. S1). Additionally, we performed assay for transposase accessible chro-
matin using sequencing (ATAC-seq) to identify open chromatin regions (8), including
enhancers and promoters, affected by these manipulations (Fig. 1A and SI Appendix,
Fig. S1).
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The WGDs at the base of the vertebrate lineage (5, 9) and the
additional WGD in the teleost lineage (10) resulted in gene num-
ber imbalances between amphioxus and zebrafish. To overcome
this limitation in our analysis, we used previously published data
(6) to retrieve all the vertebrate gene family members (i.e., paral-
ogy groups) corresponding to each amphioxus gene affected by
the treatments. For zebrafish, we used only affected genes.
The RNA-seq analyses revealed hundreds of differentially

expressed genes following the different treatments in both
amphioxus and zebrafish (SI Appendix, Fig. S1). Interestingly,
we found transcripts of orthologous genes similarly altered in
both species upon the same treatment (Fig. 1B). Gene ontology
(GO) analysis for these commonly affected transcripts con-
firmed that they are highly associated with developmental
processes (e.g., mesoderm, endoderm, and hindbrain develop-
ment), which are known to be regulated by the tested signaling
pathways (7, 11, 12) (Fig. 1B and Dataset S1). Surprisingly,
only a few genes were similarly affected upon Wnt activation in

both species (Fig. 1B and Dataset S1). We then examined all
the genes affected by each of these treatments, and we observed
that the number of genes perturbed in zebrafish is higher than
that in amphioxus and, proportionally, more strongly associated
with development and signaling terms. Moreover, confirming
our experimental approach, the genes altered by these treat-
ments and their corresponding GO terms clearly associated
with developmental processes known to be regulated by these
pathways (7, 11, 12) (SI Appendix, Fig. S2 and Dataset S2).

Regarding the ATAC-seq regions modified by the treat-
ments, we observed a very different genomic distribution in
both species, with a big proportion of peaks near gene pro-
moters and very few distant enhancers in amphioxus and the
opposite trend in zebrafish (SI Appendix, Fig. S3), results that
were expected from our previous work (6). We next analyzed
the ATAC-seq data by searching for motifs enriched in peaks
either more accessible after treatment with RA or Wnt agonists
or less accessible upon treatment with Nodal or FGF inhibitors.
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Fig. 1. Experimental design and differential analyses. (A) Overall design of the experiment: zebrafish and amphioxus embryos were treated with four differ-
ent compounds at the blastula stage and dissociated at the late gastrula stage for RNA-seq and ATAC-seq library preparations. (B) GO term enrichment anal-
ysis for orthologous genes that are commonly affected in both amphioxus and zebrafish. Each panel shows GO enrichment visualization obtained with the
REVIGO tool for one of the treatments, taking into account only genes significantly modified upon the indicated treatment. Circles represent GO terms, and
the X and Y axes map the semantic space: the closer the terms appear in the plot, the more related they are. In order to facilitate direct comparisons, a
blue line surrounds GO terms associated with developmental processes. Gray boxes at the right of each panel show some of the developmental genes rep-
resented in the plot.
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The binding sites for transcription factors (TFs) that mediate
signaling of these pathways and/or well-known downstream
TFs of these pathways were found for all treatments in both
species (13–27) (SI Appendix, Fig. S4 and Dataset S3). Overall,
these results confirmed that the pharmacological treatments of
amphioxus and zebrafish embryos indeed perturbed the tar-
geted pathways in vivo. Using previously published ATAC-seq
data at different developmental stages in zebrafish and amphi-
oxus (6), we calculated the ATAC-seq signal dynamics during
embryonic development surrounding the differentially accessi-
ble regions upon treatments. We observed that, in general,
these regions were active during development and showed a
dynamic pattern of accessibility (SI Appendix, Fig. S5).

To better classify the genes that responded to perturbation of
the different signaling pathways, we performed a clustering
analysis of gene expression, which resulted in groups of genes
with similar transcriptional behavior (Fig. 2A). We then carried
out GO enrichment analyses of these groups. The RNA-
seq–derived clusters in zebrafish were mostly associated with
GO terms related to embryonic development, while in amphi-
oxus, we also detected many terms related to metabolism and
cell homeostasis (Fig. 2A and Dataset S4). In some cases, the
association of a single pathway with a specific function (as
defined by the GO terms) was well established. For example, in
amphioxus, retinol metabolism appeared as a main function in
genes up-regulated by RA treatment (dark blue cluster) and
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muscle cell differentiation in genes down-regulated by Nodal
inhibition (orange cluster). In zebrafish, heart formation and
somitogenesis were associated with Nodal and FGF inhibition,
respectively (dark orange and light blue clusters), while brain
development was associated with Wnt pathway activation (light
green cluster) (Fig. 2A). This cluster analysis also revealed that
in both amphioxus and zebrafish, the majority of developmen-
tal processes were influenced by several of the studied signaling
pathways.
In the case of ATAC-seq peak clustering, we assigned peaks

to their putative target genes using the GREAT algorithm (28)
in order to derive GO terms. In general, we observed a good
correlation between the average ATAC-seq signal around the
peaks in the different clusters, the GO terms of their putative
target genes, and the TF-binding motifs identified within these
peaks (Fig. 2B). Furthermore, open chromatin regions altered
upon treatments were mainly associated with development,
especially in zebrafish (Fig. 2B), which was consistent with our
RNA-seq analysis. For example, the zebrafish cluster of ATAC-
seq peaks that was, on average, more accessible upon Wnt stim-
ulation (blue cluster) was associated with brain development
(Fig. 2B). In addition, TCF3 motifs, usually bound by effectors
of the Wnt pathway, were found within these peaks (Fig. 2B).
Similarly, in both species, the clusters enriched following RA
treatment (dark purple cluster in amphioxus, dark green cluster
in zebrafish) were associated with response to RA and hindbrain
development (Fig. 2B) and contained RAR:RXR motifs (Fig.
2B). Importantly, genes belonging to clusters that responded to
the same pathways in both species shared similar functions,
according to the GO terms associated with them (SI Appendix,
Fig. S6 and Dataset S4). Nevertheless, clusters of ATAC-seq
peaks in zebrafish generally responded to more treatments than
in amphioxus, and for this reason, the similarities of clusters
found in both species were limited (SI Appendix, Fig. S6).
The majority of ATAC-seq peak clusters contained peaks

that changed in more than one signaling pathway, which was
similar to what we observed for the RNA-seq clustering. Several
signaling pathways thus seemed to act through the same regula-
tory elements, suggesting a certain level of interconnection
between the different pathways, especially in zebrafish (SI
Appendix, Fig. S7). The percentages of overlap between sets of
ATAC-seq peaks affected by different pathways were variable in
both species (from 0 to 72.4% in amphioxus and from 0 to 89.
1% in zebrafish; SI Appendix, Fig. S7B). Nevertheless, this over-
lap was significantly higher in zebrafish than in amphioxus (SI
Appendix, Fig. S7).
In order to combine the treatment effect at the transcrip-

tomic and regulatory levels, we intersected the differentially reg-
ulated genes (RNA-seq) with the genes associated to differential
ATAC-seq peaks for each treatment and species. The resulting
intersected gene lists are thereafter referred to as double-
selected genes (DSGs). In this analysis, we included both posi-
tively and negatively affected genes/regulatory elements.
Although the level of transcription of a gene did not necessarily
correlate with the degree of accessibility of its promoter, com-
parisons of the treatment effects at the transcriptomic and regu-
latory levels in both species showed a slight correlation between
them (SI Appendix, Fig. S8). The intersection resulted in a total
of 2,098 genes and 4,609 ATAC-seq peaks in zebrafish and
481 genes and 853 ATAC-seq peaks in amphioxus (Dataset
S5). Although the lower numbers of treatment-affected genes
and ATAC-seq peaks in amphioxus might be interpreted as a
loss of regulatory information in this species, it is generally
accepted that there was a general gain of regulatory input

during the invertebrate chordate–to-vertebrate transition (6). It
is thus very likely that this significant difference between zebra-
fish and amphioxus is indicative of a gain of response to these
signaling pathways in vertebrates through the incorporation of
cis-regulatory elements (CREs).

We then clustered the results of the GO enrichment analyses
corresponding to DSGs in amphioxus and zebrafish (Fig. 3 and SI
Appendix, Fig. S9). We found that the P values associated with the
enriched GO terms were, in general, much lower in zebrafish than
in amphioxus and that the number of GO terms significantly
affected by the different treatments was much higher in zebrafish
(Fig. 3). This suggests that the regulatory networks involved in
developmental processes are more complex in vertebrates than in
invertebrate chordates. The same effect was observed when we
analyzed gene families, which were not affected by the overestima-
tion of the number of genes in amphioxus due to the inclusion of
whole families of orthologous genes, instead of P values corre-
sponding to specific genes (SI Appendix, Fig. S9).

These results further supported the notion that there are more
genes controlled by the studied signaling pathways in vertebrates
than in invertebrate chordates. Among the DSGs identified in
zebrafish, we found significant numbers of TFs and regulators of
signaling pathways (Dataset S6). We also found that some GO
terms in zebrafish were significantly enriched for signaling path-
ways (e.g., targeting the FGF and Nodal pathways resulted in a
significant overlap of development-related terms; Fig. 3). These
two facts indicated that, in agreement with the results of our
previous clustering analysis, different signaling pathways are
interconnected and that the degree of connectivity is higher in
vertebrates than in invertebrate chordates. To directly test this
hypothesis, we counted the number of genes that were affected
by one, two, three, or four different signaling pathways in zebra-
fish and amphioxus. Interestingly, independently of considering
only RNA-seq data or combining RNA-seq and ATAC-seq
information, we found that the interconnection between path-
ways was higher in zebrafish than in amphioxus, with a higher
proportion of genes responding to two, three, or four perturba-
tions in zebrafish (Fig. 4A and SI Appendix, Fig. S10A). More-
over, we observed an increase of connectivity in vertebrates that
was independent of the number of genes retained after the
WGD events (SI Appendix, Fig. S10B). Nevertheless, we also
found that the more gene copies were retained, the higher the
gain of connectivity (SI Appendix, Fig. S10C).

To address the question of whether this gain of connectivity is
species-specific or a general distinction of vertebrates and inverte-
brates, we performed experiments in two additional species, the
invertebrate hemichordate Ptychodera flava and another verte-
brate, the amphibian Xenopus tropicalis. Embryos from both spe-
cies were treated during gastrulation with the same antagonists of
the FGF and Nodal pathways (SI Appendix, Fig. S11). The
results of these experiments suggest that increased connectivity is
a general tendency of vertebrates compared to invertebrates, since
we observed a similar distribution of connectivity in P. flava and
amphioxus (P value 0.545, χ2 test), and a higher degree of con-
nectivity in X. tropicalis (P values 0.006 and 0.048 against P. flava
and amphioxus, respectively, χ2 test). Although the connectivity
in X. tropicalis was lower than in zebrafish, in which the complex-
ity of GRNs might have been further increased due to the extra
round of WGD characterizing all teleost, this difference was not
statistically significant (P value 0.196, χ2 test).

The gain of complexity observed in the vertebrate species
could be the product of the addition of new TF binding sites
to the available regulatory regions during evolution or the gen-
eration of new regulatory regions. In order to shed light on this
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issue, we interrogated the seven regulatory regions known to be
conserved between vertebrates and invertebrates (29), searching
for TF-binding sites in the orthologous sequences of both
zebrafish and amphioxus. We were unable to identify a signifi-
cant increase in the number and/or complexity of the binding
sites in the sequences of both species (SI Appendix, Figs. S12
and S13). Pointing in the same direction, we found that newer
regulatory regions presented a higher level of connectivity in
zebrafish than more ancient enhancers (SI Appendix, Fig. S14).
Thus, according to these results, the gain in regulatory com-
plexity in vertebrates might have been driven by the WGD-
dependent increase in the number of regulatory regions. This
hypothesis is coherent with the results of a previous study
reporting a higher number of enhancers per gene in zebrafish
when compared to amphioxus (6).

Using already available single-cell RNA-seq data (30) in
zebrafish, we observed that, interestingly, tissues that appeared
as novelties during the invertebrate chordate–to-vertebrate
transition, such as neural crest or sensory placodes, showed a
statistically significant enrichment in the expression of highly
connected genes, while in more evolutionary ancient tissues
such as muscles or intestine, expression of highly and lowly
connected genes was very similar (Fig. 4B and SI Appendix, Fig.
S15). Finally, we used the Cytoscape tool (31) to visualize all
connections between genes and the different signaling pathways
in amphioxus and zebrafish (Fig. 4C). This plot clearly showed
that developmental GRNs associated with the four targeted sig-
naling pathways were more interconnected in vertebrates.

By comparing epigenomic and transcriptomic data in amphi-
oxus, zebrafish, and other vertebrates, we recently showed that
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the invertebrate chordate–to–vertebrate transition was associated
with an increase of regulatory information in the latter lineage
and that this increase likely contributed to the spatial and func-
tional specialization of some duplicated genes (6). Here, we go
one step farther and demonstrate that some of the vertebrate
CREs contribute to a more complex interconnection between
the RA, Wnt, FGF, and Nodal signaling pathways. An increased
interconnection between these four key developmental signaling
pathways likely facilitated the restriction of the expression
domains of some duplicated developmental genes, which, in
turn, contributed to the increment of tissue complexity required
to generate morphological novelties in vertebrates.

Methods

Animal Husbandry and Treatment of Embryos. Zebrafish (Danio rerio)
embryos were manipulated following the protocols that have been approved by
the Ethics Committee of the Andalusian Government (license number
182–41106) and the national and European regulations established. All

experiments with zebrafish were carried out in accordance with the principles of
3Rs (replacement, reduction, and refinement). Zebrafish embryos at 30% epiboly
were treated by adding different drugs to the medium. In the case of SB505124,
embryos were treated at the 256-cell stage (SB505124 is an inhibitor of trans-
forming growth factor (TGF)-β type I receptors that blocks signaling through Nodal
and other related TGF-β molecules; we will refer to this compound as Nodal inhib-
itor for simplicity). The final concentrations of drugs were all-trans retinoic acid
(ATRA) 0.1 μM (cat no. R2625, Sigma-Aldrich Merck), SU5402 20 μM (cat no.
SML0444, Sigma-Aldrich Merck), BIO 14 μM (cat no. B1686, Sigma-Aldrich
Merck), and SB505124 30 μM (cat no. S4696, Sigma-Aldrich Merck). These mole-
cules were dissolved in dimethyl sulfoxide (DMSO) (cat no. D2438, Sigma-Aldrich
Merck). As a control experiment, the same volume of DMSO was added to the
medium. Drugs were removed by changing the medium several times when
embryos were at 80% epiboly stage. After that, embryos were carefully transferred
to a glass Petri dish, and the chorion was removed using pronase.

Amphioxus (Branchiostoma lanceolatum) adults were collected at the Racou
beach in Argel�es-sur-Mer (France). Spawning was induced as previously described
(32, 33), and the fertilization of eggs was carried out in vitro. Amphioxus embryos
were manipulated in filtered seawater unless otherwise specified. After fertilization,
embryos were dechorionated in a Petri dish covered with agarose (0.8% agarose
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in filtered seawater) by pipetting them toward the border of the dish and then
gently transferred to a small Petri dish. Drugs were dissolved in DMSO, and the fol-
lowing final concentrations were used: ATRA 1 μM (cat no. R2625, Sigma-Aldrich
Merck), SU5402 25 μM (cat no. 572630, Sigma-Aldrich Merck), BIO 1 μM (cat no.
B1686, Sigma-Aldrich Merck), and SB505124 50 μM (cat no. S4696, Sigma-
Aldrich Merck). SB505124 was added to filtered seawater 3 h after fertilization,
while the other drugs were added 5 h after fertilization. Control embryos were
treated with 0.1% DMSO. At 15 h after fertilization, treated embryos were washed
several times with filtered seawater to remove the drugs from the medium.

Western clawed frog (X. tropicalis) embryos were treated with the antagonists
for the FGF and Nodal pathways from late blastula (stage 9) to late gastrula stage
(stage 12). Drugs were dissolved in DMSO, and the following final concentra-
tions were used: 5 μM SU5402 (cat no. SML0444, Sigma-Aldrich Merck) and
100 μM SB505124 (cat no. S4696, Sigma-Aldrich Merck). Control embryos were
treated with 0.1% DMSO. After treatment, embryos were washed with medium
and subsequently used for total RNA extraction.

P. flava adults were collected from Penghu Islands, Taiwan. Methods for
spawning induction and embryo culture were described previously (34). P. flava
embryos were treated with DMSO (control), SU5402 (20 μM) (35), or SB505124
(10 μM) at the late blastula stage (18 hpf) and collected at the late gastrula
stage (43 hpf) for RNA-seq.

ATAC-seq. ATAC-seq assays were performed in at least two biological replicates.
Forty-five amphioxus embryos and 20 zebrafish embryos were dissociated into
individual cells. After the number of cells was counted, around 70,000 cells were
transferred to another tube to perform the experiment. ATAC-seq experiments
were performed as previously described (6, 8). ATAC-seq data analyses were per-
formed using standard pipelines (6, 8). Reads were aligned with Bowtie2 using
GRCz10 (danRer10) and Bl71 (6) assemblies for zebrafish and amphioxus sam-
ples, respectively. Reads that were separated by more than 2 kb were filtered out
of the analysis. The exact position of the Tn5 cutting site was determined as the
position �4 (reverse strand) or +5 (forward strand) from the read start, and this
position was extended 5 kb in both directions. BED files were transformed into
BigWig using the wigToBigWig University of California, Santa Cruz (UCSC) tool.
Reads were extended 100 bp in order to visualize the data in the UCSC Genome
Browser (36). Macs2 (37) software was used to perform the peak calling in each
sample, using the parameters –nomodel, –shift 45, and –extsize 100. The differ-
ent called peaks of each sample were merged into a unique set of peaks, taking
into account the replicates (two per sample). Using Bedtools (38), the number of
reads per called peak and per sample in both treatment and control conditions
was subsequently computed, and a differential analysis was performed using
DESeq2 v1.18.0 in R 3.4.3 (39). A corrected P value <0.05 was set as cutoff for
statistical significance of the differential accessibility of the chromatin in ATAC-seq
peaks. Motif enrichment was calculated using the program FindMotifsGenome.pl
from the Homer tool suite (40). k-means clustering of the ATAC-seq signal was
performed using Deeptools 2.0 (41) and seqMiner (42). The assignment of
ATAC-seq peaks to genes was done using the GREAT tool (43), with default
parameters for basal plus extension regions calculation. We verified that the
results were robust regardless of the peak-to-gene association method by com-
paring the GREAT association using the basal plus extension with an association
to the closest genes. The overlap of genes associated by both methods was high
(SI Appendix, Fig. S16), and their functions were similar. Indeed, we calculated a
GO enrichment overlap score of 0.94 out of 1 using the GOSemSim R package.
GO analyses were carried out with the TopGO R package, using the elim test for
selecting the most specific GO-enriched terms.

RNA-seq. RNA-seq experiments were performed in three biological replicates
for each species. RNA samples were extracted from 15 zebrafish, 100 amphi-
oxus, or 20 western clawed frog embryos following previously published proto-
cols (6). For the data analysis, reads were aligned against GRCz10 (danRer10)
and Bl71 assemblies using STAR v2.5.3a (44) and were assigned to genes using
the HTSeq toolkit v0.11.2 (45). In the case of P. flava and X. tropicalis, reads
were pseudoaligned to the set of longest isoforms of the currently available tran-
scriptome of P. flava (46) and to the set of primary coding DNA sequences of the
XenTrop v10.0 transcriptome (47), respectively, using Kallisto with standard
parameters (48). Differential gene expression analyses were performed using
DESeq2 v1.18.0 (39). A corrected P value <0.05 and an absolute log2 fold

change (FC) >1 were used as thresholds for calling differential genes. The enrich-
ment of biological process GO terms was calculated using the TopGO R package.
Gene clustering was performed using the Pheatmap 1.0.12 R package, with
k-means as clustering method. The integration of differential ATAC-seq peaks and
differential expressed genes was performed at the gene level in both species. The
gene lists that resulted from these analyses were intersected for a given treat-
ment to identify genes with a differential RNA-seq signal and one or more associ-
ated differential ATAC-seq peaks. Since there is currently no functional annotation
available for the amphioxus genes, the orthologous zebrafish genes were used
for completing the GO term enrichment analysis. Amphioxus versus zebrafish
orthologous genes were already available from previous studies (6) (Dataset S7).

Connectivity Analyses. In order to categorize genes that respond to more
than one treatment, we computed a connectivity score based exclusively on
genes responding at both the ATAC-seq and the RNA-seq levels. Each gene was
assigned a discrete score ranging from 1 to 4 and corresponding to the number
of different treatments that it responded to. Cytoscape (31) networks were gener-
ated to better represent the connectivity of responsive genes. The connectivity
tables are provided in Dataset S7. Statistical analyses were performed using the
programming language R.

Single-Cell RNA-seq (scRNA-seq) Analysis. We selected genes with high con-
nectivity (≥3) and low connectivity (=1) from the previously published scRNA-seq
zebrafish developmental atlas (30) and explored their expression levels in a set of
ancient and vertebrate-specific novel tissues. A gene was defined as expressed in
a cell if its normalized expression in that cell was greater than 0. For a given tis-
sue, we calculated the proportions of cells that expressed a certain gene and
aggregated these proportions for genes with high or low connectivity scores in a
boxplot. To determine which genes were expressed in each tissue, we defined a
threshold of a minimum of 5% of the cells of that specific tissue. Subsequently,
for a direct comparison between a set of ancient tissues (present in both zebrafish
and amphioxus) and a set of vertebrate-specific tissues, we computed—and repre-
sented in barplots—the ratios between genes with high connectivity scores and
genes with low connectivity scores expressed in a given tissue. Wilcoxon test (P <
0.05) was used in order to look for statistically significant differences.

Data Availability. Data sets presented in this study have been deposited in the
Gene Expression Omnibus (GEO) database (accession no. GSE148783) (49, 50).
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