Synthetic routes to novel fluorogenic pyronins and silicon analogs with far-red spectral properties and enhanced aqueous stability

Garance Dejouy^a, Kevin Renault^a, Ibai E. Valverde^a, Anthony Romieu^{a,*}

^{*a}Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Univ. Bourgogne Franche-Comté, 9, Avenue Alain Savary, 21000 Dijon, France*</sup>

Supplementary Data

Abbreviations	S4
S1 Determination of TFA in samples of (Si-)pyronin dyes	S4
S2 Synthesized compounds	S4
3-Bromo- <i>N</i> , <i>N</i> -bisallylaniline (S1) [188745-07-5]	S4
6-Bromo-1-methylindoline (9) [86626-30-4]	
4-(Diallylamino)-2-bromobenzyl alcohol (11) [1398756-54-1]	S5
Unsymmetrical bis(bromoaryl) derivative (12) [1617504-07-0] ³	S6
8-Bromojulolidine (10) [64230-25-7]	S6
Unsymmetrical bis(bromoaryl) derivative (13) [2219340-17-5] ³	S7
S3 Analytical data	S8
Fig. S1. IR (ATR) spectrum of compound 7	S8
Fig. S2. ¹ H NMR spectrum of compound 7 in CDCl ₃ (500 MHz)	S8
Fig. S3. ¹³ C NMR spectrum of compound 7 in CDCl ₃ (126 MHz)	S9
Fig. S4. LR mass spectrum (ESI, positive mode (left) and negative mode compound 7	le (right)) of
Fig. S6. IR (ATR) spectrum of pyronin 2	S10
Fig. S7. ¹ H NMR spectrum of pyronin 2 in CD ₃ OD (500 MHz)	S11
Fig. S8. ¹³ C NMR spectrum of pyronin 2 in CD ₃ OD (126 MHz)	S11
Fig. S9. ¹⁹ F NMR spectrum of pyronin 2 in CD ₃ OD (470 MHz)	S12
Fig. S10. LR mass spectrum (ESI, positive mode) of pyronin 2	S12
Fig. S14. TFA determination by IC - results for sample of pyronin 2	S14
Fig. S15. IR (ATR) spectrum of compound 8	S15
Fig. S16. ¹ H NMR spectrum of compound 8 in CDCl ₃ (500 MHz)	S15
Fig. S17. ¹³ C NMR spectrum of compound 8 in CDCl ₃ (126 MHz)	S16
Fig. S18. LR mass spectrum (ESI, positive mode (left) and negative mode compound 8	ode (right) ofS16
Fig. S19. RP-HPLC elution profile of compound 8 (system A, detection at 2	60 nm)S17
Fig. S20. IR (ATR) spectrum of pyronin 3	S17
Fig. S21. ¹ H NMR spectrum of pyronin 3 in CD ₃ OD (500 MHz)	S18
Fig. S22. ¹³ C NMR spectrum of pyronin 3 in CD ₃ OD (126 MHz)	S18
Fig. S23. ¹⁹ F NMR spectrum of pyronin 3 in CD ₃ OD (470 MHz)	S19
Fig. S24. LR mass spectrum (ESI, positive mode) of pyronin 3	S19

Fig. S25. RP-HPLC elution profile of pyronin 3 (system A, detection at 260 nm) S20
Fig. S26. RP-HPLC elution profile of pyronin 3 (system A, detection at 450 nm) S20
Fig. S27. RP-HPLC elution profile of pyronin 3 (system A, detection at 500 nm)S21
Fig. S28. TFA determination by IC - results for sample of pyronin 3
Fig. S29. RP-HPLC elution profiles of impure <i>N</i> , <i>N</i> -diallyl Si-pyronin 14 (system A, detection at 220 nm) ^{<i>a</i>}
Fig. S30. LR mass spectrum (ESI, positive mode) of Si-xanthone (left) and <i>N</i> , <i>N</i> -diallyl Si-pyronin 14 (right)
Fig. S31. IR (ATR) spectrum of Si-pyronin 4
Fig. S32. ¹ H NMR spectrum of Si-pyronin 4 in CD ₃ CN (500 MHz)
Fig. S33. ¹³ C NMR spectrum of Si-pyronin 4 in CD ₃ CN (126 MHz)
Fig. S34. ¹⁹ F NMR spectrum of Si-pyronin 4 in CD ₃ CN (470 MHz)
Fig. S35. ²⁹ Si NMR spectrum of Si-pyronin 4 in CD ₃ CN (99 MHz)
Fig. S36. LR mass spectrum (ESI, positive mode) of Si-pyronin 4
Fig. S37. RP-HPLC elution profile of Si-pyronin 4 (system A, detection at 300 nm) S26
Fig. S38. TFA determination by IC - results for sample of Si-pyronin 4
Fig. S39. RP-HPLC elution profiles of impure N,N -diallyl Si-pyronin 15 (system A, detection at 300 nm) ^{<i>a</i>}
Fig. S40. LR mass spectrum (ESI, positive mode) of <i>N</i> , <i>N</i> -diallylamino Si-pyronin 15 S27
Fig. S41. RP-HPLC elution profiles of Si-pyronin 5 (system A, detection at 300 nm). S28
Fig. S42. LR mass spectrum (ESI, positive mode) of Si-pyronin 5
Fig. S43. TFA determination by IC - results for sample of Si-pyronin 5
Fig. S44. pH-Dependant maximum absorbance (626 nm or 620 nm) curve for Si- pyronins 4 (top) and 5 (bottom) (concentration: 5.0 μ M or 3.5 μ M in the corresponding buffer, 15 min of incubation before absorbance measurement) - fitted curves
Fig. S45 Picture of solutions (concentration: 3.5 μM) of Si-pyronin dye 5 in various buffer (top), under illumination at 365 nm (bottom)

Abbreviations

The following abbreviations are used throughout the text of the Supplementary data: AcOH, acetic acid; anal., analysis; aq., aqueous; Ar, argon; ATR, attenuated total reflectance; CH₃CN, acetonitrile; DCM, dichloromethane; DMSO, dimethylsulfoxide; equiv., equivalent(s); ESI, electrospray ionization; EtOAc, ethyl acetate; FA, formic acid; HPLC, high-performance liquid chromatography; IC, ion chromatography; IR, infrared; LR, low resolution; NMR, nuclear magnetic resonance; PE, petroleum ether; RP, reversed-phase; tBu, *tert*-butyl; TFA, trifluoroacetic acid; TLC, thin-layer chromatography.

S1 Determination of TFA in samples of (Si-)pyronin dyes

TFA has been assayed by IC using the methodology described below. All solutions were prepared in ultrapure H₂O. A TFA standard solution (ca. 1.0 g/L) was prepared by weighing. The mother liquor was diluted to the standard solutions of 1, 2.5, 5 and 10 mg/L before injection. A precisely weighed amount of each (Si-)pyronin dye was solubilized in DMSO (1 mg/mL) and then diluted in ultrapure H₂O so that the concentration of TFA fits with the calibration curve. Two different dilutions were performed for each sample (system S1). The resulting concentrations of TFA allowed to calculate the mass percentage of TFA contained in each sample. System S1: IC (Thermo Scientific Dionex Ion Pac AS11-HC analytical column, 4 μ m, 4 \times 250 mm) with the mixture aq. 30 mM NaOH / ultrapure H₂O (9:1, v/v) as eluent (isocratic mode, 15 min), flow rate: 1.5 mL/min; column temperature: 30 °C; injection volume: 10 μ L.

S2 Synthesized compounds

<u>Please note:</u> CH₃CN, DCM and toluene (HPLC-grade, Fisher Chemical or VWR) were dried over alumina cartridges immediately priorv to use, by means of a solvent purification system PureSolv PS-MD-5 model from Innovative Technology.

3-Bromo-*N*,*N*-bisallylaniline (S1) [188745-07-5]¹

To a suspension of anhydrous K_2CO_3 (3.2 g, 23.2 mmol, 2 equiv.) in dry CH₃CN (20 mL) were added 3-bromoaniline (1.26 mL, 11.6 mmol, 1 equiv.) and allyl bromide (3.48 mL, 40.6 mmol, 3.5 equiv.), and the mixture was stirred at 80 °C overnight. After cooling down to room temperature, the mixture was filtered over a dicalite[®] 4158 pad which was rinsed with CH₃CN. The filtrate was evaporated to dryness and the resulting residue was purified by column chromatography over silica gel (VWR 63-200 µm, eluent: heptane/EtOAc 40:1, v/v) to give pure 3-bromo-*N*,*N*-bisallylaniline **S1** as an oil (2.70 g, 10.7 mmol, yield 92%). R_f

¹ Egawa T, Koide Y, Hanaoka K, Komatsu T, Terai T, Nagano T. Development of a fluorescein analogue, TokyoMagenta, as a novel scaffold for fluorescence probes in red region Chem. Commun. 2011; 47: 4162-4164. <u>https://doi.org/10.1039/c1cc00078k</u>

(heptane/EtOAc 40:1, v/v) = 0.48; IR (ATR): ν 3080, 3007,2980, 2911, 2862, 1642, 1587, 1554, 1487, 1444, 1416, 1384, 1355, 1331, 1231, 1177, 1094, 981, 949, 917, 829, 794, 755, 679, 661, 553, 436; ¹H NMR (500 MHz, CDCl₃): δ 7.03 (t, J = 8.2 Hz, 1H), 6.83-6.77 (m, 2H), 6.60 (d, J = 8.2 Hz, 1H), 5.83 (m, 2H, H₂C=C<u>H</u>-allyl), 5.22-5.14 (m, 4H, <u>H</u>₂C=CH-allyl), 3.94-3.87 (d, 4H, C<u>H</u>₂-allyl); ¹³C NMR (126 MHz, DMSO-*d*₆): δ 150.0, 133.4, 130.4, 123.5, 119.2, 116.4, 115.2, 111.0, 52.8.

6-Bromo-1-methylindoline (9) [86626-30-4]²

NaBH₃CN (1.6 g, 25.5 mmol, 5 equiv.) was added slowly to a solution of commercial 6bromoindole (1.02 g, 5.1 mmol, 1 equiv.) and paraformaldehyde (1.53 g, 51 mmol, 10 equiv.) in glacial AcOH (50 mL). The resulting reaction mixture was stirred at room temperature for 2 h. The reaction was checked for completion by TLC (PE/EtOAc 5:1, v/v). Thereafter, the reaction was quenched with aq. sat. NaHCO₃ solution (150 mL). The resulting aq. phase was extracted with DCM (3×100 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and finally evaporated to dryness. The resulting residue was purified by column chromatography over silica gel (VWR 63-200 µm, eluent: PE/EtOAc 10:1, v/v) to give pure 6-bromo-1-methylindoline **9** as a yellow oil (674 mg, 3.2 mmol, yield 62%). R_f (PE/EtOAc 10:1, v/v) = 0.48; IR (ATR): v2947, 2920, 2841 (broad), 1601, 1576, 1490, 1467, 1435, 1407, 1369, 1325, 1267, 1216, 1195, 1162, 1116, 1058, 989, 953, 870, 825, 801, 781, 711, 644, 579, 538, 467, 424; ¹H NMR (500 MHz, CDCl₃): δ 6.89 (d, J = 7.7 Hz, 1H), 6.75 (dd, J = 7.7 Hz, J = 1.6 Hz, 1H), 6.55 (d, J = 1.6 Hz, 1H), 3.33 (t, J = 8.2 Hz, 2H), 2.89 (t, J = 8.2 Hz, 2H), 2.74 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 154.9, 129.4, 125.4, 121.2, 120.2, 110.1, 56.3, 35.8, 28.4.

4-(Diallylamino)-2-bromobenzyl alcohol (11) [1398756-54-1]³

To a solution of 3-bromo-*N*,*N*-bisallylaniline **S1** (1.5 g, 5.97 mmol, 1 equiv.) in dry toluene were added dry DMF (600 μ L, 7.76 mmol, 1.3 equiv.) and POCl₃ (675 μ L, 7.20 mmol, 1.2 equiv.) under an Ar atmosphere. The resulting reaction mixture was stirred at 80 °C overnight. After cooling to room temperature, 50 mL of aq. 2.0 M NaOH was added to the mixture which was stirred for further 10 min. Thereafter, the aq. phase was extracted with DCM (3 × 90 mL) and the combined organic layers were dried over anhydrous Na₂SO₄, filtered and finally evaporated to dryness. The residue was dissolved in absolute EtOH (15 mL) and NaBH₄ (225 mg, 5.97 mmol, 1 equiv.) was added. Then the resulting reaction mixture was stirred at room temperature for 50 min. Thereafter, solvent was evaporated under reduced pressure, then deionized H₂O was added to the residue and the aq. phase was extracted with DCM (3 × 20 mL). The combined organic layers were dried over anhydrous

² Koide Y, Urano Y, Hanaoka K, Piao W, Kusakabe M, Saito N, Terai T, Okabe T, Nagano T. Development of NIR Fluorescent Dyes Based on Si–rhodamine for in Vivo Imaging J. Am. Chem. Soc. 2012; 134: 5029-5031. https://doi.org/10.1021/ja210375e

³ Hanaoka K, Kagami Y, Piao W, Myochin T, Numasawa K, Kuriki Y, Ikeno T, Ueno T, Komatsu T, Terai T, Nagano T, Urano Y. Synthesis of unsymmetrical Si-rhodamine fluorophores and application to a far-red to near-infrared fluorescence probe for hypoxia Chem. Commun. 2018; 54: 6939-6942. https://doi.org/10.1039/c8cc02451k

Na₂SO₄, filtered and finally evaporated to dryness. The resulting residue was purified by flash-column chromatography over silica gel (VWR 63-200 µm, eluent: heptane/EtOAc 9:1, v/v) to give benzyl alcohol **11** as an oil (1.22 g, 4.3 mmol, yield 72%). R_f (heptane/EtOAc 9:1, v/v) = 0.25; ¹H NMR (500 MHz, CDCl₃): δ 7.21 (d, *J* = 8.5 Hz, 1H), 6.87 (d, *J* = 2.6 Hz, 2H), 6.61 (dd, *J* = 8.5 Hz, *J* = 2.6 Hz, 1H), 5.82 (m, H₂C=C<u>H</u>-allyl, 2H), 5.18 (m, <u>H</u>₂C=CH-allyl, 4H), 4.63 (d, *J* = 6.4 Hz, 2H), 3.90 (d, *J* = 4.7 Hz, C<u>H</u>₂-allyl, 4H), 1.78 (t, *J* = 6.4 Hz, O<u>H</u>, 1H); ¹³C NMR (126 MHz, CDCl₃): δ 149.6, 133.3, 130.6, 127.2, 124.6, 116.5, 116.2, 111.6, 65.2, 52.9.

Unsymmetrical bis(bromoaryl) derivative (12) [1617504-07-0]³

To a solution of benzyl alcohol **11** (309 mg, 1.10 mmol, 1 equiv.) and 6-bromo-1methylindoline **9** (232 mg, 1.10 mmol, 1 equiv.) in dry DCM (20 mL) was added BF₃·Et₂O (276 μ L, 2.20 mmol, 2 equiv.). The resulting reaction mixture was stirred at room temperature for 5 h. Thereafter, the reaction mixture was quenched with deionized H₂O (10 mL) and extracted with DCM (3 × 20 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The resulting residue was purified by column chromatography over silica gel (VWR 63-200 μ m, eluent: PE/DCM 7:3, v/v) to give **12** as a brown oil (452 mg, 0.95 mmol, yield 86%). R_f (PE/DCM 7:3, v/v) = 0.27; ¹H NMR (500 MHz, CDCl₃): δ 6.91 (d, *J* = 2.6 Hz, 1H), 6.80 (d, *J* = 8.6 Hz, 1H), 6.73 (s, 1H), 6.65 (s, 1H), 6.55 (dd, *J* = 8.6 Hz, *J* = 2.6 Hz, 1H), 5.87-5.78 (m, H₂C=C<u>H</u>-allyl, 2H), 5.17 (m, <u>H</u>₂C=CH-allyl, 4H), 3.97 (s, 2H), 3.87 (d, *J* = 4.9 Hz, C<u>H</u>₂-allyl, 4H), 3.29 (t, *J* = 8.1 Hz, 2H), 2.73 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 153.1, 148.1, 133.5, 130.7, 130.2, 128.1, 127.0, 126.1, 125.5, 123.1, 116.3, 115.9, 111.6, 110.9, 56.3, 52.8, 40.2, 36.1, 28.4.

8-Bromojulolidine (10) [64230-25-7]⁴

3-Bromoaniline (632 µL, 5.8 mmol, 1 equiv.), Na₂CO₃ (2.44 g, 23.2 mmol, 4 equiv.) and 1bromo-3-chloropropane (4.6 mL, 46.4 mmol, 8 equiv.) were stirred at 140 °C for 12 h. DMF (8 mL) was added and the reaction mixture was stirred at 160 °C for 6 h. After cooling to room temperature, excess of 1-bromo-3-chloropropane and DMF were removed under reduced pressure. Deionized H₂O (10 mL) was added and the resulting mixture was extracted with DCM (5 × 20 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The resulting residue was purified by column chromatography over silica gel (VWR 40-63 µm, eluent: heptane/EtOAc 9:1, v/v) to give **10** as a yellow oil (884 mg, 3.5 mmol, yield 60%). R_f (Heptane/EtOAc 9:1, v/v) = 0.56 ; ¹H NMR (500 MHz, CDCl₃): δ 6.76 (d, *J* = 8.0 Hz, 1H), 6.64 (d, *J* = 8.0 Hz, 1H), 3.09-3.15 (m, 4H), 2.78 (t, *J* = 6.7 Hz, 2H), 2.70 (t, *J* = 6.7 Hz, 2H), 2.01-1.92 (m, 4H).

⁴ Lei Z, Li X, Luo X, He H, Zheng J, Qian X, Yang Y. Bright, Stable, and Biocompatible Organic Fluorophores Absorbing/Emitting in the Deep Near-Infrared Spectral Region Angew. Chem., Int. Ed. 2017; 56: 2979-2983. https://doi.org/10.1002/anie.201612301

Unsymmetrical bis(bromoaryl) derivative (13) [2219340-17-5]³

To a solution of benzyl alcohol **11** (537 mg, 2.14 mmol, 1 equiv.) and 8-bromojulolidine **10** (634 mg, 2.25 mmol, 1.05 equiv.) in dry DCM (20 mL) was added BF₃·Et₂O (836 µL, 6.42 mmol, 3 equiv.). The resulting reaction mixture was stirred at room temperature for 3 h. Thereafter, the reaction mixture was quenched with deionized H₂O (10 mL) and extracted with DCM (3×20 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The resulting residue was purified by column chromatography over silica gel (VWR 40-63 µm, eluent: heptane/EtOAc 9:1, v/v) to give **13** as a colorless oil (874 mg, 1.7 mmol, yield 79%). ¹H NMR (500 MHz, CDCl₃): δ 6.90 (d, J = 2.7 Hz, 1H), 6.79 (d, J = 8.6 Hz, 1H), 6.54 (dd, J = 8.6 Hz, J = 2.7 Hz, 1H), 6.49 (s, 1H), 5.86-5.79 (m, 2H), 5.18 (dd, J = 7.8 Hz, J = 1.6 Hz, 2H), 5.15 (t, J = 1.6 Hz, 2H), 3.96 (s, 2H), 3.90-3.85 (m, 6H), 3.11-3.06 (m, 4H), 2.82 (t, J = 6.7 Hz, 2H), 2.64 (t, J = 6.7 Hz, 2H), 2.04-1.89 (m, 4H); ¹³C NMR (126 MHz, CDCl₃): δ = 148.1, 143.0, 133.6, 130.6, 128.6, 127.2, 126.9, 125.6, 125.5, 121.3, 120.8, 116.3, 115.9, 111.7, 52.8, 50.1, 49.5, 40.8, 29.4, 27.5, 22.3, 22.0

S3 Analytical data

Fig. S1. IR (ATR) spectrum of compound 7

Fig. S2. ¹H NMR spectrum of compound 7 in CDCl₃ (500 MHz)

Fig. S3. ¹³C NMR spectrum of compound 7 in CDCl₃ (126 MHz)

Fig. S4. LR mass spectrum (ESI, positive mode (left) and negative mode (right)) of compound 7

Fig. S5. RP-HPLC elution profile of compound 7 (system A, detection at 260 nm)

Fig. S6. IR (ATR) spectrum of pyronin 2

Fig. S8. ¹³C NMR spectrum of pyronin 2 in CD₃OD (126 MHz)

Fig. S9. ¹⁹F NMR spectrum of pyronin 2 in CD₃OD (470 MHz)

Fig. S10. LR mass spectrum (ESI, positive mode) of pyronin 2

Fig. S11. RP-HPLC elution profile of pyronin 2 (system A, detection at 260 nm)

Fig. S12. RP-HPLC elution profile of pyronin 2 (system A, detection at 450 nm)

Fig. S13. RP-HPLC elution profile of pyronin 2 (system A, detection at 500 nm)

Fig. S14. TFA determination by IC - results for sample of pyronin 2

Concentration	1.0 mg/mL in DMSO	
Sample dilution factor	100	50
Raw data ppm	3.421	6.918
Content in wt %	34.21	34.59
Average content in wt %	34.40	

Fig. S15. IR (ATR) spectrum of compound 8

Fig. S16. ¹H NMR spectrum of compound 8 in CDCl₃ (500 MHz)

Fig. S17. ¹³C NMR spectrum of compound 8 in CDCl₃ (126 MHz)

Fig. S18. LR mass spectrum (ESI, positive mode (left) and negative mode (right) of compound 8

Fig. S19. RP-HPLC elution profile of compound 8 (system A, detection at 260 nm)

Fig. S20. IR (ATR) spectrum of pyronin 3

Fig. S22. ¹³C NMR spectrum of pyronin 3 in CD₃OD (126 MHz)

Fig. S23. ¹⁹F NMR spectrum of pyronin 3 in CD₃OD (470 MHz)

Fig. S24. LR mass spectrum (ESI, positive mode) of pyronin 3

Fig. S25. RP-HPLC elution profile of pyronin 3 (system A, detection at 260 nm)

Fig. S26. RP-HPLC elution profile of pyronin 3 (system A, detection at 450 nm)

Fig. S27. RP-HPLC elution profile of pyronin 3 (system A, detection at 500 nm)

Fig. S28. TFA determination by IC - results for sample of pyronin 3

Concentration	1.0 mg/mL in DMSO	
Sample dilution factor	100	50
Raw data ppm	3.352	6.906
Content in wt %	33.52	34.53
Average content in wt %	34.03	

Fig. S29. RP-HPLC elution profiles of impure N,N-diallyl Si-pyronin 14 (system A, detection at 220 nm)^{*a*}

^{*a*}peak at $t_R = 3.6$ min assigned to residual DDQ, peak at $t_R = 4.2$ min assigned to Si-xanthone and peak at $t_R = 4.6$ min assigned to Si-pyronin 14.

Fig. S30. LR mass spectrum (ESI, positive mode) of Si-xanthone (left) and *N*,*N*-diallyl Si-pyronin 14 (right)

Fig. S32. ¹H NMR spectrum of Si-pyronin 4 in CD₃CN (500 MHz)

Fig. S33. ¹³C NMR spectrum of Si-pyronin 4 in CD₃CN (126 MHz)

Fig. S34. ¹⁹F NMR spectrum of Si-pyronin 4 in CD₃CN (470 MHz)

Fig. S36. LR mass spectrum (ESI, positive mode) of Si-pyronin 4

Fig. S37. RP-HPLC elution profile of Si-pyronin 4 (system A, detection at 300 nm)

Fig. S38. TFA determination by IC - results for sample of Si-pyronin 4

Concentration	1.0 mg/mL in DMSO	
Sample dilution factor	100	50
Raw data ppm	3.641	7.577
Content in wt %	30.60	31.84
Average content in wt %	31.22	

Fig. S39. RP-HPLC elution profiles of impure N,N-diallyl Si-pyronin 15 (system A, detection at 300 nm)^{*a*}

^{*a*}peak at $t_R = 3.6$ min assigned to residual DDQ, peak at $t_R = 4.8$ min assigned to pyronin 15.

Fig. S41. RP-HPLC elution profiles of Si-pyronin 5 (system A, detection at 300 nm)

Fig. S42. LR mass spectrum (ESI, positive mode) of Si-pyronin 5

Concentration	1.0 mg/mL in DMSO	
Sample dilution factor	100	50
Raw data ppm	3.418	6.957
Content in wt %	34.18	34.79
Average content in wt %	34.48	

Fig. S43. TFA determination by IC - results for sample of Si-pyronin 5

Fig. S44. pH-Dependant maximum absorbance (626 nm or 620 nm) curve for Sipyronins 4 (top) and 5 (bottom) (concentration: 5.0 μ M or 3.5 μ M in the corresponding buffer, 15 min of incubation before absorbance measurement) - fitted curves

Fig. S45 Picture of solutions (concentration: 3.5 μ M) of Si-pyronin dye 5 in various buffer (top), under illumination at 365 nm (bottom)

Left: NaOAc buffer (100 mM, pH 3.2) Middle: PBS (100 mM, pH 7.4) Right: NaHCO₃-Na₂CO₃ buffer (66 mM, pH 10.2)