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3D vibrations reconstruction with only one camera

Franck Renauda,, Stefania Lo Feudoa, Jean-Luc Diona, Adrien Goellera

aSUPMECA, Laboratoire Quartz - EA7393, 3 rue Fernand Hainaut, 93400 Saint-Ouen

Abstract

In this paper, we propose a new method to measure the vibrations of a 3D mechanical
structure. It requires only a video sequence taken by a single camera and a Finite Element
model of the structure. First, the intrinsic and extrinsic parameters of the camera are
identified. Then, a collection of numerical deflection shapes and normal modes are projected
in the image frame of the camera. This is done thanks to a linearization of the perspective
projection model. Comparing the motion of targets seen by the camera and the motion of
Finite Element model at the same location gives the time evolution of modes amplitude.
Finally the motion of the model is reconstructed in 2D in the image frame and in 3D in the
world frame. By following this procedure, vibration amplitude can be magnified applying
a scale factor on a modal basis covering a large frequency bandwidth. A video graphical
abstract can be found on youtube, see [1].

Keywords: vibrations magnification / 3D vibrations reconstruction / modal expansion /
extrinsic calibration / camera / non-linear projection

1. Introduction

In the framework of experimental vibration analysis of civil and mechanical structures,
innovation on instrumentation and measurement techniques represents one of the major chal-
lenge of the next decades. From the practical point of view, current methods based on local
sensors (laser-Doppler vibrometers, laser displacement sensors, piezoelectric accelerometers
. . . ) allow to measure only a small and limited number of points, a transient full-field mea-
surement is not allowed, and each sensor requires long distance of wire and long preparatory
works. To overcome these problems, one can use high-resolution and middle-speed cameras,
as well as a network of cameras, in order to catch instantaneously the vibrational behavior of
a whole structure. Field vibration measurements based on cameras and video processing rep-
resent therefore a new promising way to perform experimental dynamic analysis. Moreover,
several methods such as optical flow, data assimilation, digital image correlation, phase-
based motion magnification, can be adopted for the image post-processing, cf. [2, 3, 4, 5].

Prior to vibration analysis, camera calibration has to be carried out in order to determine
the pose of the camera with respect to the measured object and to correct lens distortions.
For this purpose several camera models exist. In the model used by the authors, the Pinhole
Camera Model, camera is represented by a box with an infinity small hole on one side. Rays
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of light emitted by the 3D object pass through the hole and are caught by the camera sensor
upside-down. In the Thin Lens Model, aperture size is no longer negligible, and light rays
are refracted passing through the lens frame. More complex models take into account for the
lens thickness and the lens geometry, see [6, 7]. Concerning the evaluation of the distortion
parameters, in the so-called self-calibration methods, straight edges in the real world are
assumed to stay straight on the image. Prescott & McLean [8] proposed to minimize the
distance between each point on a given line and a parametric line equation. Devernay &
Faugeras [9] suggest to detect 3D edges on the image through a polygonal approximation,
and to choose distortion parameters in such a way to minimize the curvature of these lines.
Nonlinear distortion correction method proposed by Ricolfe-Viala & Sánchez-Salmerón [10]
need fulfillment of a set of restrictions, which are based on line straightness, parallelism and
fixed distance of a set of control point placed on a chessboard patter included into the image.

The pose of the camera is identified through extrinsic calibration. It involves estimation
of the rotation matrix between world frame and camera frame, as well as cameras relative
position if more than one camera is used. Notably, extrinsic parameters can be obtained
through homography properties between a planar surface and its image, cf. Zangh [11]. For
the 3D reconstruction, several methods exist. For example, matching points or vanishing
points can be used, cf. Guillou et al. [12]. Also, the video acquisition system can completed
with and inertial measurement unit able to rotate around two orthogonal axes, cf. Chen-
guang et al. [13]. A 3D scene can be also recovered by geometric shapes. Wilczkowiak et
al. [14] used parallelepipeds, whereas Fan et al. [15] applied a neural networks to approxi-
mate the measured shape with a cloud of small spheres. Applications of these techniques
can be found in several field of computer vision, such as building survey, vehicle and objects
detection.

Generally, video-based methods for 3D vibration analysis of mechanical structures are
based on sterevision, where at least two cameras are used. Digital Image Correlation (DIC)
has been recently used for the full-field vibrations measurement. Beberniss & Ehrhardt [16]
used 3D-DIC for measurement of beam vibrations. They highlighted the effectiveness of
3D-DIC for modal testing, as well as the possibility to use cameras as virtual strain gauges
for deformation measurements. Nevertheless, a few drawbacks exist. The lighting system
may alter the signal frequency content, and a major concern is represented by the lack of
a temporal aliasing filter within the correlation algorithms [16]. Moreover, DIC allows a
full-field vibration measurement of complex structures only for modal displacements greater
then noise amplitude, and stereo acquisitions have to be performed, cf. [17, 18].

Concerning utilization of a single camera for 3D analysis, Pan et al. presented in [19]
a review of single camera 3D-DIC methods for full-field shape and displacement measure-
ments. Optical devices such as diffraction grating, bi-prism or set of planar mirrors allow to
capture an object from different point of views, thus simulating additional virtual cameras.
Yu & Pan [20] adopted a settlement composed by a high-speed camera and four mirrors
for the full-field 3D vibration measurement of a rectangular plate. Also Durand-Texte et
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al. [21] had validated this method on vibration of planar and non planar-objects. Despite
of this method reliability, some drawbacks lie on reduction in the spatial resolution, on the
difficulty of mirror setting and on the distortion due to mirror’s manufacturing errors.

In this paper, we will present an innovative method for the reconstruction of the 3D
vibrations of mechanical structures. It requires only a single camera video sequence and
a Finite Element model. The method is applied on the structure shown in Figure 2. The
structure is mounted on a dynamical shaker which moves with a sinus at 30 Hz during a
dozen of periods and then stops. As a result, the structure is subjected to an overall rigid
body motion plus modal vibrations causing multi-axial deflections. At high level of am-
plitude, we expect the mechanical structure to possibly exhibit non-linear behavior due to
micro-slip in the bolted lap joints, cf. Festjens et al. [22, 23, 24] or Peyret et al. [25]. Thus
normal modes of eigen frequencies higher than 30 Hz are expected to be excited as well.
When the shaker stops moving, the amplitude of the normal modes decreases.

The outer surfaces of the structure are bonded with circular targets, which are detected
and tracked with the MSER Region algorithm, cf. Matas et al. [26]. For the intrinsic cal-
ibration, a classical Pinhole Camera Model and a polynomial model accounting for radial
distortions and decentering distortion are used [27]. Then, an extrinsic camera calibration
method based on alignment between edges of the image and of a Finite Element model is
proposed. The Finite Element model allows to compute a collection of 3D deflection shapes
composed of normal modes. These 3D deflection shapes are transformed into 2D deflection
shapes thanks to a linearization of the perspective projection. Comparing the motion of
targets seen by the camera and the motion of 2D deflection shapes at target location gives
the time evolution of deflection shapes amplitude. Finally the motion of the model is re-
constructed in 2D in the image frame and in 3D in the world frame. Starting from the time
evolution of deflection shapes amplitude, one could estimate damping parameters.

One of the major innovation of this study consists in the 3D reconstruction by projection
on the image plane, not only of a static FE model, but also of a dynamic model under small
displacements. Moreover, our 3D reconstruction involves the complex shape of the structure
driven by discrete points corresponding to the bonded targets. Actually, these points act
as virtual sensors, and the projection of normal modes into the image plan is clearly an
example of augmented reality. As a result, this method greatly helps in the understanding
of the structure dynamics, residual errors being quantifiable.

Actually, the method proposed here can be seen as an alternative to the motion magni-
fication. Two major differences exist between these two methods. First of all, in the motion
magnification the choice of the magnification factor is arbitrary and affects the modal param-
eters identification [2, 28]. On the contrary, in our study magnification is obtained through
a scaling factor and it has only a display effect. Second, motion magnification is generally
restricted to some frequency bandwidth, and it does not allow separation of closely-spaced
modes [29]. On the other hand, our procedure is based on a truncated modal basis which
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can cover a large frequency bandwidth. It is worth noticing that this method could also
be used to validate a FE model and the assumption of linearity. Indeed, when excited at a
given eigenfrequency, the structure will vibrates according to the deflection shape of a single
normal mode. If the model is accurate, the numerical deflection shape of this mode is suf-
ficient to explain the observed target motion of the structures, otherwise several deflection
shapes will be required.

The paper is organized as follows. In Section 2, intrinsic and extrinsic camera calibrations
are presented. Section 3 presents the projection of deflection shapes in the image frame
within linearization. Then, in Section 4 3D motion is reconstructed for each target. Modal
deflections are presented in Section 5 and method accuracy is discussed as well. Finally
some conclusions are drawn in Section 6.

2. Camera calibration

Let us denote u the coordinates of a point of the FE model and v the coordinates of a
point measured with the camera. Figure 1 presents the perspective projection model with
the point O as the pinhole. Let us define some coordinate systems and their notations
related to the frames shown in Figure 1:

� The world frame W has G as origin and uWM = {xWM , yWM , zWM }t are the 3D coordinates
of a point M in W

� The camera frame C has O as origin and uCM = {xCM , yCM , zCM}t are the 3D coordinates
of a point M in C

� The image frame I has O′ as origin and uIM ′ = {xIM ′ , yIM ′}t are the 2D coordinates of
a point M ′ in I

� The pixel frame P has A as origin and uPM ′′ = {xPM ′′ , yPM ′′}t are the 2D coordinates of
a point M ′′ in P

Cameras get pictures in the pixel frame of 3D objects described in the world frame. Let
us consider a point M described by uWM in the world frame. To model a camera, first a
rigid transformation is applied to find the coordinates uCM of M in the camera frame. Then,
the pinhole camera model is used to account for the perspective projection and to find the
coordinates uIM ′ of M ′ in the image frame. Finally the polynomial model is used to account
for lens distortions and to find the coordinates uPM ′′ of M ′′ in the pixel frame. The FE model
in the world frameW and the pictures measured by the camera in the pixel frame P will be
compared in the image frame I. Equation (1) shows the chain of transformations required
to make such a comparison.

FE model uWM → uCM → uIM ′

vIM ′ ← vPM ′′ Camera
(1)
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Figure 1: Pose of a camera and perspective projection with the point O as the pinhole.

To transform the coordinates of a point M from world frame to camera frame, a rotation
and a translation are applied. The rotation matrix RC←W between the world frame and the

camera frame is defined by an unitary quaternion e0+{e1, e2, e3}t such that e20+e21+e22+e23 =
1, cf. Chou [30]. The expression of the rotation matrix is given by Equation (2). The vector
uCG is the 3D coordinates of G in the camera frame. Then, for a point M with known
coordinates uWM in the world frame, its coordinates uCM in the camera frame are given by
Equation (3). It is worth noticing that the pose of the camera is given by the seven following
unknown extrinsic parameters: xCG, yCG, zCG, e0, e1, e2 and e3.

RC←W =


e20 + e21 − e22 − e23 2e1e2 − 2e0e3 2e0e2 + 2e1e3

2e0e3 + 2e1e2 e20 − e21 + e22 − e23 2e2e3 − 2e0e1

2e1e3 − 2e0e2 2e0e1 + 2e2e3 e20 − e21 − e22 + e23

 (2)

uCM = RC←W uWM + uCG (3)

Now, let us define f the distance of the image frame to the pinhole. In case of infinity
focus, f is also the focal length of the camera. For a point M with known 3D coordinates
uCM = {xCM , yCM , zCM}t in the camera frame, the 2D coordinates uIM ′ of its image M ′ in the
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image frame are given by Equation (4).

uIM ′ =
f

zCM

{
xCM
yCM

}
(4)

Equations (2), (3) and (4) allow to transform the points from the world frame W to
the image frame I. Next, let us transform a point M ′′ from the pixel frame P into a point
M ′ in the image frame I. This transformation is applied thanks to the polynomial model
in order to account for lens distortions. Parameters K1, K2 and K3 are needed to model
radial distortions and parameters P1 and P2 to model the decentering distortions, cf. Halcon
manual [27]. Let uPO′ = {xPO′ , yPO′}t denote the 2D coordinates of the optical center in the
pixel frame and Sx and Sy denote the pixel size in meters. Equations (5) and (6) allow to
transform points from the pixel frame P to the image frame I.

x =
(
xPM ′′ − xPO′

)
× Sx

y =
(
yPM ′′ − yPO′

)
× Sy

r =
√
x2 + y2

(5)

uIM ′ =

{
xIM ′

yIM ′

}
=

{
x(1 +K1r

2 +K2r
4 +K3r

6) + 2P1xy + P2(r
2 + 2x2)

y(1 +K1r
2 +K2r

4 +K3r
6) + P1(r

2 + 2y2) + 2P2xy

}
(6)

The digital camera used by the authors is a Vieworks VC-12MX-M/C 180 high-speed
and high resolution. The hardware and software of the R&D Vision company was used
for the measure. The intrinsic parameters of the camera identified with the pattern and
software of R&D Vision are: f = 0.037 m, K1 = 65.17 m.s−2, K2 = 2.26 · 105 m.s−4,
K1 = −8.36 · 108 m.s−6, P1 = 0.0102 m.s−1, P2 = −0.0016 m.s−1, Sx = 5.5 · 10−6 m,
Sy = 5.5 · 10−6 m, xPO′ = 2173 pixels and yPO′ = 248 pixels. In this study, dynamical
behavior of a scale model of an airplane wing has been filmed with only one camera, cf.
Figure 2. Several circular targers were bonded on the wing surface for video tracking. The
3D Finite Element (FE) model is depicted in Figure 3. In such case, one possible method
for identifying the seven extrinsic parameters is to match points of the world frame to points
in the pixel frame in the least square sense. This can be done, for example, thanks to the
Matlab Computer Vision Toolbox with the function “extrinsics”.

Figure 2: Picture (4096× 512) of the mechanical structure filmed with a camera

Here, we present an improvement of this approach for the cases were only few points
are available in the picture. Generally speaking, one can easily get by hand corner points
on the picture as the intersection of two structure’s edges. Morever, when corner points lie
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Figure 3: Finite element model of the mechanical structure

outside of the picture one can still rely on the edges. The idea here is to align matching
edges coming from the FE model in the world frame W and the picture in the pixel frame
P . Edges are defined by two points, A and B for the FE model and C and D for the picture,
cf. Figure 4. Assuming initial guess for the seven unknown extrinsic parameters: xCG, yCG,
zCG, e0, e1, e2 and e3, all points and lines of interest are transformed into the image frame I
thanks to equations (3), (4), (5) and (6). Let us denote lA, lB, lC and lD the distance in the
image frame between points A, B, C and D and their projection on the other line A′, B′,
C ′ and D′. When the sum of these length are minimal, the two lines are aligned.

Figure 4: Distance between matching edges on the FE model and on the picture transformed in the image
frame I

The improved objective function w, cf. Equation (7), is a sum of squared lengths: N
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lengths li between points of interest and the 4 ×M lengths lA, lB, lC and lD between the
lines of interests.

w =

√√√√ N∑
i

l2i +

√√√√ M∑
j

l2A + l2B + l2C + l2D (7)

The objective function w is minimized thanks to a classical optimization algorithm.
The authors have arbitrary used the Matlab function “fmincon”. The extrinsic parameters
minimizing w are: xCG = −0.435 m, yCG = −0.108 m, zCG = −3.008 m, e0 = 0.9277, e1 =
0.2596, e2 = 0.0262 and e3 = 0.2670. Figure 5 shows the picture superimposed with the FE
model in the image frame I after application of the transformation described by Equation (1)
with the identified intrinsic and extrinsic parameters.

Figure 5: Superimposition of the picture and the FE model. Only N = 73 targets were correctly tracked.
They are represented with a blue circle.

3. 2D linearized deflection shapes in the image frame

About one hundred targets have been stuck on the mechanical structure, cf. Figure 2.
The position of targets are denoted vk when recorded by the camera and they are denoted uk
when estimated with the FE model. Target detection and video tracking has been performed
through MSER region algorithm, by following the procedure presented in Goeller [31]. Only
N = 73 targets were correctly tracked by this algorithm. They are shown with a blue circle
in Figure 5. As a result, the position vPk of the center of the target k with k ∈ [1..N ] in the
pixel frame P is known with a subpixel accuracy. Then, the position vIk of the target k has
been computed in the image frame I by applying Equations (5) and (6).
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As explained in the introduction the structure was experiencing vibrations. Eigenvalue
analysis has been carried out with the FE model, and the firtst M normal modes of the
structure have been computed. For the work presented in this paper, the chosen deflection
shapes ψW

i
, with i ∈ [1..M ], are modal ones plus a rigid body motion. One could also choose

to use a collection of deflections shapes obtained with different boundary conditions (free,
clamped, . . . ) and even static deflections. Figure 6 shows ψW

1
the rigid body motion and

Figures 7, 8, 9 and 10 show ψW
2

, ψW
3

, ψW
6

and ψW
8

. Notably, ψW
i

gives the motion of all

the degrees of fredom (dof) of the FE model. Considering uW0 the initial position of the FE
mesh and ΨW the horizontal concatenation of modal deflection shapes ψW

i
with unknown

amplitudes qi(t), we obtain Equation (8). Let q(t) = {. . . , qi(t), . . .}t denote the vector of
modal amplitudes.

uW(t) = uW0 +
M∑
i=1

ψW
i
qi(t) = uW0 + ΨW q(t) (8)

Let us denote φW
i|k the deflection shape ψW

i
restricted to the target k, wherein φW

i|k is a 3

rows vector. It has to be pointed out that the nodes of the FE mesh do not perfectly match
with the targets position, thus an interpolation has been performed over uW0 and ψW

i
. The

position of a target in the world frame is the sum of its initial position uW0|k and its modal

deflection shapes φW
i|k. Let ΦW|k = [. . . , φW

i|k, . . .] denote the 3D modal basis ΨW restricted to

the target k with three rows and M columns. Thus we can assume that the position of the
targets in the world frame W is given by:

uWk (t) = uW0|k +
M∑
i=1

φW
i|kqi(t) = uW0|k + ΦW|k q(t) (9)

Figure 6: First deflection shape ψW
1

. This is the rigid body motion.
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Figure 7: Second deflection shape ψW
2

Figure 8: Third deflection shape ψW
3

Figure 9: Deflection shape ψW
6
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Figure 10: Deflection shape ψW
8

The goal of the work presented here is to identify q(t). It is worth noticing that q(t) is
the same for all the targets. Using Equation (3), the position of the targets in the camera
frame C is given by:

uCk(t) = uC0|k + ΦC|k q(t) (10a)

uC0|k = RC←W uW0|k + uCG (10b)

ΦC|k = RC←W ΦW|k (10c)

Let’s now consider the restriction of the modal shapes of the target k to the x, y and
z axis of the camera frame C. This is represented by (ΦCx|k)t, (ΦCy|k)t and (ΦCz|k)t which are

respectively the first, second and third rows of the matrix ΦC|k. Using Equation (4), the

position of the targets in the image frame C is given by:

uIk(t) =
f

zC0|k + (ΦCz|k)t q(t)

{
xC0|k + (ΦCx|k)t q(t)

yC0|k + (ΦCy|k)t q(t)

}
(11)

Equation (11) is non linear with respect to q(t). However, in the present case, the

maximal amplitude of displacement at the end of the wing was about 10−2 m, whereas zC0|k
is about 3 m, so that zC0|k + (ΦCz|k)t q(t) ' zC0|k. Thus, the linearisation at first order of

Equation (11) is expected to produce an accurate estimation. Its expression is given by:

uIk(t) = uI0|k + ΦI|k q(t) + o(||q(t)||) (12a)

uI0|k =
f

zC0|k

{
xC0|k
yC0|k

}
(12b)

ΦI|k =
f

(zC0|k)2

{
(ΦCx|k)t zC0|k − xC0|k (ΦCz|k)t

(ΦCy|k)t zC0|k − yC0|k (ΦCz|k)t

}
(12c)
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After concatenation for all targets we get:

uI(t) = uI0 +
M∑
i=1

ΦIi qi(t) = uI0 + ΦI q(t) (13a)

uI(t) = [. . . , (uIk(t))t, . . .]t (13b)

uI0 = [. . . , (uI0|k)t, . . .]t (13c)

ΦI = [. . . , (ΦI|k)t, . . .]t (13d)

Therefore, for N targets and M normal shapes, the matrix ΦI has 2N rows and M

columns. ΦI is the horizontal concatenation of targets deflection shapes in the image frame

φI
i
. Figure 11 shows the target deflection shape φI

1
associated with the rigid body motion

shown in Figure 6. Figures 12, 13, 14, 15 respectively show the target deflection shapes φI
2
,

φI
3
, φI

6
and φI

8
associated with the 3D deflection shapes shown in Figures 7, 8, 9 and 10.

Figure 11: First deflection shape φI
1
. This is the rigid body motion.

Figure 12: Second deflection shape φI
2
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Figure 13: Third deflection shape φI
3

Figure 14: Deflection shape φI
6

Figure 15: Deflection shape φI
8
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The unknown vector q(t) may be computed through the pseudo-inverse of ΦI . Thus ΦI

is required to be full column rank. Although ΨW in the world frame is an orthogonal basis,

its restriction to all the targets, giving ΦW , combined with the perspective projection, has

induced the loss of the orthogonality property for ΦI . Moreover, if one keeps to many modal
shapes and too few targets, i.e. if M > 2N , the full column rank property is certainly lost.
Even when M ≤ 2N , the full column rank is not ensured, depending on the distribution of
the targets on the vibrating mechanical structure. For example, the 3D deflections shapes
ψW

2
and ψW

3
shown in Figures 7 and 8 are symmetrical modes. As a half of the structure

is filmed, the 2D target deflection shapes φI
2

and φI
3

shown in Figures 12 and 13 are almost

identical. Thus in the present case ΦI is not full column rank or at least is close to singular.

Thus ΦI must be modified.

For ΦI to be a basis, we recommand to have M � 2N and to remove quasi-colinear
columns as described by the algorithm below. This algorithm is inspired by the Gram-
Schmidt process, but a vector is kept in the basis only if its angle with the rest of the basis
is greater than a given threshold. The major point is to obtain the list ` of vector to be kept
in the basis:

1. Initialisation of:

� the index i = 1

� the list of vectors to be kept ` = 1

� the angle threshold in radian tol = 5
π

180

� the basis T =
φI
1

||φI
1
||

.

2. Increment the index i := i+ 1.

3. Project the ith column on T to get:

� its parallel part φI
i ‖ = T T t φI

i

� its perpendicular part φI
i ⊥ = φI

i
− φI

i ‖

4. Compute the angle α = arctan

(
||φI

i ⊥||
||φI

i ‖||

)
5. If α > tol:

� Normalize and add its perpendicular part to the basis T :=

[
T ,

φI
i ⊥

||φI
i ⊥||

]
� add the index to the list ` := [`, i]

6. If i < M go back to 2.
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` is the list of the columns ΦI that produce a basis. Said differently, ` is the list of
deflection shapes which produce sufficiently different motions that can be distinguished in
the image frame. For example, ` contains 2 but not 3, meaning that φI

2
must be kept but

that φI
3

must be removed. Thus we will now restrict ΦI to its columns listed in `. Let us

denote ΘI such a matrix and L the length of the vector `. The matrix ΘI has 2N rows and
L columns in the image frame. Finally, Equation (14) express the coordinates of all targets
in the image frame with the deflections shapes kept in the list `. In the next section, the
motion of the mechanical structure observed with only one camera will be reconstructed in
the world frame based the kept deflection shapes.

uI(t) = uI0 + ΘI q(t) (14)

4. Modal amplitude and 3D reconstruction

Let the 2 rows vector vIk(t) denote the 2D coordinates obtained with the camera for
the target k in the image frame, similar to the notation uIk(t) used for the FE model in
Equation (12). Let vI(t) = [. . . , (vIk(t))t, . . .]t denote 2D coordinates of all targets in the
image frame I obtained with the camera. In a least square sense, these coordinates are
equal to the ones of the FE model described by Equation (14): vI(t) = uI(t). As a result,
the amplitude q(t) of deflection shapes is obtained by:

q(t) =
(
(ΘI)t ΘI

)−1
(ΘI)t

(
vI(t)− uI0

)
(15)

As the extrinsic calibration is performed on the first picture at t=0, we have uI0 = vI(0).
Thus, Equation (15) can be written:

q(t) =
(
(ΘI)t ΘI

)−1
(ΘI)t

(
vI(t)− vI(0)

)
(16)

If no interpolation had been used on FE mesh to get the position exactly corresponding
to the center of the targets, then uI0 would not be exactly equal to vI(0) but just very close
to instead. In that case Equation (16) would give better results than Equation (15) since
it compensates for the static error occuring when no mesh interpolation are used. However
in the present case the authors have used mesh interpolation and both equations give the
same results.

Finally, with q(t), the 3D coordinates of the whole FE model can be recovered along with
time in the world frame W thanks to Equation (17). This is a modal expansion similar to
Equation (8) where the collection of deflection shapes ΨW is replaced by ΨW|` , its restriction

to the columns listed in `. Moreover the coefficient s is a scale factor for display purpose:

uWEF(t) = uWEF 0 + s×ΨW|` q(t) (17)

In a similar manner, the 2D coordinates of the whole FE model can be recovered along
with time in the image frame I thanks to Equation (18). The collection of deflection shapes
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ΨW|` is replaced by ΨI|`, which is its linearized projection in the image frame:

uIEF(t) = uIEF 0 + s×ΨI|` q(t) (18)

Let us point out that applying the perspective projection, Equations (3) and (4), on
uWEF(t) given by Equation (17), will produce a uIEF(t) different from the one given by Equa-
tion (18). This is due to the linearized deflections shapes ΨI|`. But since the scale factor s

has no physical meaning in Equation (17), the authors prefered to use Equation (18).

5. Results

The choice of the basis ΨW is of great importance. It is worth noticing that it can be
a truncated modal basis, or a concatenation of several modal basis obtained for different
boundary conditions: free, clamped, ... One can also add some static deflection shapes.
In case of concatenation of too close deflection shapes, the selection algorithm presented
in Section 3 will avoid any problem. But concatenating too much deflection shapes tends
to lose the physical meaning. Here the authors have chosen to concatenate the rigid body
translation along the direction of the shaker with the modal basis of the mechanical struc-
ture clamped in its center part.

Figure 16 shows the trajectories of each target in the image frame along with time
with a scale factor equal to 5. This means that the green lines are obtained by plotting
vIk(0) + 5×

(
vIk(t)− vIk(0)

)
. It clearly shows that the targets placed at the right end of the

wing have the larger displacements due to modal deflections, while the targets placed at the
center of the structure just exhibit the rigid motion displacement.

Figure 16: Targets displacement trajectories along with time in the image frame I, scale factor=5.

Figure 17 shows the evolution along with time of the amplitude q
i
(t) of some of the

retained deflection shapes. The motion seems to be dominated by the second deflection
shape, see ψW

2
and φI

2
in Figures 7 and 12. The rigid body motion is also present with great

amplitude around t = 1.2 s, due to the shaker motion, see ψW
1

and φI
1

in Figures 6 and 11.
The shaker motion become neglectable around t = 1.8 s. The other modes have neglectable
contributions to the overall motion.

The method presented here may be subject to some errors due to: mistakes in the
intrinsic and extrinsic calibration of the camera, targets detection and tracking, FE model
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Figure 17: Evolution along with time of the amplitude q
i
(t) of some of the retained deflection shapes.

accuracy (material, geometry, mesh refinement, boundary conditions, ...), choice of deflection
shapes, linearization of the deflection shapes in I, ... To estimate the displacement error
after reconstruction, we can compare the identified motion given by Equation (14) and the
motion vI(t) measured with the camera. This comparison is done in the image frame and
gives an estimation of the true error occuring in the world frame. The error estimator ∆L(t)
and the maximal displacement ∆0(t) over all targets are given by Equations (19). ∆L(t) is
obtained when keeping L modes, i.e. q(t) has been computed with a L-columns matrix ΘI

in Equation (16).

∆L(t) = max
k

∣∣∣∣∣∣vIk(t)− vIk(0)−ΘI|k q(t)
∣∣∣∣∣∣ (19a)

∆0(t) = max
k

∣∣∣∣vIk(t)− vIk(0)
∣∣∣∣ (19b)

Figure 18 shows the evolution of the maximal displacement ∆0(t) in blue. Because the
structure is vibrating, its goes back to its equilibrium position periodically, thus ∆0(t) is
equal to zero periodically. This is the reason why a relative error estimator has no sense in
this case. The maximal displacement error are plotted in green for ∆2(t) and in yellow for
∆15(t). It can be seen from Figure 18 that ∆2(t) and ∆15(t) are almost equal and very small
compared to ∆0(t). This means that the two first deflection shapes φI

1
and φI

2
are sufficient

to described the motion observed by the camera.

After motion identification with 15 deflection shapes, Figure 19 shows the trajectories
of each target residual displacement in the image frame along with time with a scale factor
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Figure 18: Evolution of the maximal displacement over all targets, ∆0 in blue and evolution of the maximal
displacement errors over all targets, ∆2 in green and ∆15 in yellow when keeping respectively 2 and 15
deflections shapes for the motion identification.

equal to 250. This means that the green lines are obtained by plotting vIk(0) + 250 ×(
vIk(t)− vIk(0)−ΘI|k q(t)

)
. Let us compare the displacement in Figure 16 with a scale

factor equal to 5 and the residual displacement in Figure 19 with a scale factor equal to
250. The biggest green lines have almost the same length, thus the residual displacement is
around 2% of the displacement. In Figure 19, along the bolted junction between the center
of the structure and the wing, the residual displacements do not seem to be random. The
autors think that at least one deflection shape is missing to describe what happens here,
maybe local slipping in the bolted junction.

Figure 19: Targets residual displacement trajectories in the image frame I after motion identification with
15 deflection shapes, scale factor=250.

Figures 20 and 21 shows the 2D and 3D deflection shapes a t = 1.231 s reconstructed
with Equations (17) and (18) with a scale factor s = 25. The time instant t = 1.231 s is
shown on Figure 17. It corresponds to the largest response of the structure.
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Figure 20: Displacement reconstruction in the image frame I at t=1.231 s, scale factor=25.

Figure 21: Displacement reconstruction in the world frame W at t=1.231 s, scale factor=25.

6. Conclusion

The goal of the work presented in this paper is to reconstruct the 3D motion of a me-
chanical structure based on the video measurements performed with a single camera and by
knowing a collection of deflection shapes of a Finite Element model of the structure. This
method can be related to modal analysis.

The intrinsic parameters of the camera have been obtained by following the camera man-
ufacturer procedure. The extrinsic parameters of the camera have been found according to
an improvement of the matching point method: by adding matching edges. The motion in
the video is measured by tracking targets bounded on the structure with the MSER region
algorithm.

The Finite Element deflection shape collection has been transformed from 3D world frame
to 2D image frame thanks to linearization of the perspective projection. An algorithm of de-
flection shape selection has been used to ensure that the collection was a basis, otherwise the
method fails. The projection of the targets motion on this basis provides the amplitudes of
the deflection shapes along with time. These amplitudes are the same in the 2D image frame
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and in the 3D world frame. Finally, the 2D and the 3D motion of the Finite Element model
are reconstructed with the selected deflection shapes. Starting from the time evolution of
deflection shapes amplitude, one could estimate damping parameters or validate a FE model.

The accuracy of the method is estimated thanks to the residual displacement in the im-
age frame. The residual displacements appear to be small compared to the overall motion.
Looking at the residual displacements trajectories can also give some clues to potentially
missing deflection shapes.

One major advantage of the method presented here is that it can be applied with several
cameras, without any overlapping field of view. Also, this can be used to magnify the
vibration amplitudes of a large frequency bandwidth by selecting the corresponding modal
basis of the FE model.
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