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On-line parameter estimation for indirect adaptivecontrol:
a practical comparison of several techniques

G. Hardier, G. Ferreres, and M. Sato

Abstract— To be able to maintain their performance, the
Flight Control Systems in use on most transport aircraft should
be endowedwith resilient properties to deal with sensor/actuator
faulty conditions or any significant airframe changes. During
the H2020 VISION project, several adaptive controldesigns
have been developed by ONERA, and were flight testeo this
end using the MuPAL-a research aircraft of JAXA. One of
these solutions involve a gain-scheduled controlletesigned off-
line plus an estimation algorithm to track the time-varying
parameters on-line, permitting the values of the mia stability
and control derivatives required to schedule the controller to be
updated in real time. This paper focuses on the estimation part,
and provides an experimental comparison of some reks
achievedin strictly similar conditions by using either frequency
or time domain techniques. A new Hybrid StabilizedRecursive
Least-Squares (HSRLS) is also proposed, as well easmpeting
options regarding the aircraft modeling used by theestimator.

. INTRODUCTION

for aircraft Guidance, Navigation and Control (GNB&Y
developing vision-based systems (out of the scdpthie
papersee[23]) andadvancedletection and resilient methods
(w3.onera.fr/h2020_visign Today, the advanced=DD/FTC
methods developed by the academic community aréutipt
accepted by the aerospace industry yet, resulting gap
between the current know-how and the industrialctica
implemented aboard the planes [24]. Several reasqpigin
this gap: the low Technology Readiness Level (TBL}jhe
academic works, real-time implementation issues #re
certificationconstraintsThat is why pastprojectsjointly led
byindustryandEuropearacademicstakeholderée.g.projects
ADDSAFE or RECONFIGURE) have involved high fidelity
simulators and implementation constraints to addreslistic
issues [7]. On the other hand, the VISIPidjectintendedo
increase the TRL of the designs by implementing taesting
them on experimental platforms [23].

During VISION, ONERA has developed and flight tested

Fly-By-Wire (FBW) systems have paved the way foanindirect adaptive control strategyhichcan be seen as an

continuousmprovementsn thereliability andperformance of
the Flight Control Systems (FCS) used by most caritl
military aircraft. But these advanced capabiliiiesrease the
complexity of the FCS which, in turn, require madgta
sources to be available, such as the Angle of kt{aoA)
andthe CalibratedAir Speed CAS). Embedding resilience in

integratedFDD/FTC approach12]. A gain-scheduledlight
controllaw is designed off-line at firshy using a state-space
modal technique to synthesize a controller whicfinelfy
depends only on the major model aerodynamic pammet
[5]- Then, areal timeestimationalgorithmis implemented to
track these time-varying parameters on-line, andcteedule

the system thus becomes essential to deal withtyfauthe controller w.r.t. the provided estimates [11], i.e. the

situations of the corresponding sensors, in ordeavoid
switching to degraded control modes (i.e. to redumentrol
laws or flight envelope protections) [7]. When thelkey

updated values of the model stability and contenivdtives
(aerodynamic parameters). Considering their relesafor
industry, the scenarios evaluated during VISIONardimng

parameterareno moreavailable or reliable enough, it is still this adaptive strategy include a loss of airspedarmation
possible to schedule the control laws accordingsttimated (sensor fault), a loss of efficiency (actuator fpubr a
parameters instead of measured ones to keep the Isgal  variation or misknowledge of some aerodynamic ¢oieffits
of performances. Two possible alternatives ard¢o Xeplace (due to external phenomena like icing or a lossefdérence
the faulty measurement by an estimated valugtu@l conditionfollowing asensofault). Howevertheidentification
sensing and to keep going with a scheduling strategygisirschemecould be usedby itself for FDD purposes only, by

this estimate [9]; 2/ to schedule the laws with anotlgpe of
parametershamelysomeaerodynamiaoefficients[6]. This
paper is related to a design belonging to the skcategory.
TheunderlyingFDD/FTC (Fault Detectios Diagnosis/Fault

TolerantControl) scheme which has been developed is ba

on indirect adaptive contrahe principle is to identify some
of the model parameters (FDD) and to adjust a otiatron-
line in terms of the updated estimates (FTC).

monitoring the changes in the control or stabitigrivatives
to diagnose some unexpected behaviour [8].

In 2017-2018, a number of ground and flight tesésew

S%E'jhieved to implement and to evaluate this adaptorgrol

strategy aboard the MuPAd.-aircraft of JAXA. During these
works, a Frequency Domain (FD) technique was used
perform the estimation task (see [6,11] for a dpton of
the techniques and [12] for results). In 2019, taddal Time

This work took place as part of the recent H202Domain (TD) estimation methods were also develoged

European/JapanepeojectVISION (Validation of Integrated
Safety-enhanced Intelligent flight cONtrol). Thejexdiive of

implemented: 1/ to be compared to the FD approactne
same experimental conditions since they are muciplser

this project(2016-2019) was to validate smarter technologieandlessdemanding2/ becaussuch techniques were required
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for estimatinghecontrollergainsof adirectadaptiveapproach

(also tested during VISION). This work reports sorasults

of the ground tests achieved to complete this jmalct
comparison (unfortunately, flight testing could lomger be

performed in 2019 due to technical issues of therat).



The paper is organized as follows. The principlethe 0</4<1 is introduced, resulting in decaying weights foe t
TD estimation techniques are given in 8ll, inclglithe oldest dataContrary to the standard LS where the algorithm
proposed new HSRLS algorithm. Two possible formofet attaches less and less importance to new samplésience
of the aircraft model are also described in §llhdaa is not suited to the estimation of time-varyinggaeters. EF
comparison of the test results achieved thanks h® tfavors fast adaptationsith time by discountingthe oldest

experimental platform of JAXA is presented in 8IV. measurements, thereby allowing parameter to be gelthn
based on the most recent information. Assuning, =0, a
Il. TIME DOMAIN ESTIMATION ALGORITHMS recursive formulation is preferred for on-line impientation,

and yields estimation updates as soon as a newsdatple

A. The basics in a nutshell ; L
(Xe+1, Yk+1) becomes available following:

On-line identification makes up a special classnoflel- . . .
based FDD methods as the residuals refer to pagasnet O(k+1) = O(k) + K(k +1)[ Yy +1 ~ Re+1 O(K)] 3)
instead of system variables. Estimating the modedmeters K(k +1) = P(k +1) R,

in real time faces several problems: lack of me&®ent \\here the covariance matrix (inverse of the infdiama
redundancy, external disturbances (turbulence) paod data  ,5trix P(k) = H (k) ) is computed by applying the matrix

content (e.g., using only the control signals @lé about a jnyersion lemma (hence avoiding a matrix inversion)
steadyflight condition).Thechallengas to design a technique
RIWRG1Rea | P(K) @

that can be quite insensitive to the disturbancesén detect Pk+1) =1, —

unexpected events within a short delay. Contratpéobatch m Res AR +4 | 4
case, the use of enriched excitation inputs is ipited, and
advanced methods must be developed to deal witkilgps
ill-conditioned problems by including strong formkregula-
rization in the process. Both TD and FD techniqoas be
considered for such purposes. Whatever it takeseplathe
FD or in the TD, estimation can be based on reearsi
algorithms (making use of continuous measurementan
astheyare available)pr on sequential procedures (processin
moving data windows with a lower sampling rateptoduce

a succession of piecewise constant estimates.isnptper, 52 ":Z-k [yi - R &(i)]2 /(k—m) (5)
we will consider only recursive algorithms, and qame the _ =l .

FD implementation of [12] with some of the TD algoms. ChoosingA =0 will allow rapid changes of the parameters to

Lookinafor thesimol h imol . _be tracked, since only recent samples will contdb the
ookingfor thesimplest approaches w.r.t. imp ementat'oQestimates, but will also result in increasing ttesnsitivity to

'?‘Sue;’ we will asilléme |ndtrlle sequgzl of §(|j| thateBr-in-  yho noise. On the opposite, choosing=1 will provide a
;[ e|r-|ara|r|netehrs (LP) m(()j €ls can TE' used to regeae g, o adaptation and a better robustness to ndike.
east locally, the system dynamics. This assumpdemits o |action of the right value offi must be a compromise

gn-lir;e mgthohds basetljl on quuationIErrorfminimimttn) be between the adaptation speed and the accuracy ef th
eveloped, that usualy involve only a iew paranr.mlm estimates. Usual values are chosen in the ran§el[Cand
practical applications. The LP will be written metform: kept constant during the process, but algorithmsliing a

Vi = F(x¢) = z’J“ o ri(xi) = Re o (1) controlled variation ofd with time were also developed.

where x, represents the independent variables available at Actually, whena <1, itis easy to infer from (4) thai(k)
sample k (e.g. the state and control derivatives), and tHedn become very large in case of non persisteritation
measurementy, is assumed to be scalar in the sequel #ith P(k+1)=P(k)/A>P(k). This phenomenon, known as
alleviate the developments (e.g. the system owtptite state Covariance wind-up or blow-up, results in a greatsitivity
derivative to be modeled). The functiongx) represent the t0 Small perturbations in the regressors that carse large
regressorsyhile 8; (© vector)are the regression parameterdariations of the estimated parameters [15]. Thallehge
to be determined during the estimation processeieme that improved algorithms try to take up is therefdo get
also suppose that the number of regressors is defined aSOme guarantees that is kept bounded ag,| < P(k) < &5l ,
priori. On the other hand, we do not make any aptom the T part of the inequality ensuring that the algoritbem
about the regressons, which can represent either directlytrack time-varying parameters reasonably well @it gain
the explanatory variables or some nonlinear funeti(e.g., VeCtor K(k) will remain away from 0), while the "2
the monomials of a polynomial expansion). Frdmdata condition permits the stability of the algorithm toe
samples(x,, y,) available at time, , the minimization of the guaranteed [4,19].
estimation errors yields to consider a criterionhef type: Consequently, a great deal of propodatsnew refined
_NK ki 2 algorithmshasbeendoneduring the last 30 years, that are
(.:(k)_zizl/]_ O f(x'))_ [JTCReg] . @) re?ated either to the originaIgEF version 0>r/ to iEmKF
where adding an [optional] regularization term pésnfor  formulations of the algorithm [10]. The recursioriten
instance large variations of the); parameters to be focuses on the information matrix instead of theacance
penalized, and thus to improve the conditioning toé matrix since the regularization term generally pres from
problem. In the weighted version (2) of Least-S@ga(LS) the derivation of a simple formulation by using tmatrix
[19], called Exponential Forgetting (EF), a forgejtfactor inyersion lemma (as it is the case when this teroniitted).

For initializing the procedure in the absence oibipr
knowledge,©(0) can be set to 0 and the (diagonal) variances
of P to large values to enforce a fast adaptation. @ifise,
assuming that the modeling errerhas zero mean value and
a constant diagonal covarianeg! (homoscedasticity), the
covariance of the estimation errors can be compasd

ov[&(K)] = o?H "L(k) = 0?P(k) . As ¢ is usually unknown,
must be estimated from the estimation errors:



Hence, most advanced techniques destroybdautyof the
Recursive LS (RLS) algorithm, that avoids a maimwersion
of orderm (or having to solve a linear system of equatid¢os)
compute the gain vectok(k). To comply with the stringent
implementation constraints on aircraft computeushsheavy
computations are prohibited beyond>3 and recursive
factorization algorithms are required to enable lio@-
implementation. Fortunately, such algorithms dosexiet's
quote Potter's Square Root [15], Bierman's U-D¢t]AUDI
[17] algorithms. Taking the implementation aspetito
account whenever it can lead to promising variais,most
famous (amongst the number of RLS variants propesent
the beginning of the 80s) are briefly describeflLby.

Apart from implementation constraints, the othesiba
point to be considered is the sheer necessity alfingd
regularization in the estimation process, notaldgause all
the parameters involved in (1) will not be idemtifie from
poor control signals. Actually, two conflicting isss arise for
parameter estimation, that are difficult to rectmcihe first
one is related to time-varying parameters whichuireg a
quick adaptation property, and hence a short menibing
second one results from data collinearities indusititer by
steady (trimmed) flight conditions and herammstantstates
and controls, or by closed-loop behavior with atdua
deflections computed as (linear) functions of tteges, or by
the coupling of some surfaces to enforce aerodynaffects
by symmetrical or opposite deviations. These cedliities
do not ensure persistent excitation, even withva lkvel of
noise, and hence require a longer memory to avibid
conditioning and parameter divergence. To overcdhig
dilemma and to prevent those numerical problemsified
versions of the RLS were early developed [2, 14}es'léhrely
on the introduction of a regularization tei@keq in the cost
(2). Two examples of such an approach are Muglified
Sequential Least Square@VMSLS) [22] and the SRLS
algorithm summarized in 8l1.B.

B. Stabilized Recursive Least Squares (SRLS)

This algorithm, developed by Bodson [3], relies am
approximated update of the dispersion mattix (k) . SRLS
aims at improving the stability of the estimatesn&dering
the presence of noise and other modeling erroyslintiting
the deviations of the estimates from their previeaisies:

o) =Y A7y RO +nlek) -ek-1°  (6)
This is a peculiar case of the MSLS algorithm, dredbatch-
type updating law thus becomes:

609=| T ARTR +mﬁzf ARy, +né(k—1)] ()

which can be expressed aak-a(k)- H (k) G(K) .
denotmgﬂ( P(k)=H (k) (for consistency with §IIA) the
SRLS image of the covariance matrix, the
expression involved by (k) updating is [3]:

R = ARG +RER+7(1-A) 8)
As opposed to a standard weighted LS for which
straightforward use of the matrix inversion lemnllaves a
recursive update of, to be derived in terms of,_,, the
presence of the regularization term in (6) prevéas using
the same technique. To circumvent this problem Rtjgest
to replace the global regularization process (allameter

variations are penalized at the same time) by an
approximately equivalent one for which the paramsetae
alternately considered one by one. After a cyclmmaising

m successivéerations, every parameter has been considered
and their variations constrained, and a new cyele start
again. A sequence of vectotgn)=[0 - 01 0 --- 0]" is
thus defined accordmgly, where only thé" is not 0. This
trick permits the matrix inversion lemma to be agghlby
using an intermediate matrix! =[R] Jmy(1-2) un)] of
size mx 2, leading to the updating formula [3]:

P =[Rc-1~RtM IMTRM + A1, IMTR1/4 - (9)

which just involves to invert a matrix of siz2 (so-called
improved version of the SRLS algorithm). Otherwigezan
also be shown that the parameter updates obey:

O = O-1+ AR & + AN R[O1 ~ O] (10)

where &, =y, ~R,O,_; . The major advantage of the SRLS
algorithm lies in the fact that botR and P are bounded
[2]. Unlike RLS, P do not tend towards zero when there is
continuous excitation (stopping the adaptation), amike
weighted LS,P do not tend towards infinity in the absence
of persistent excitation (resulting in ill-conditing and
divergence). It is also noteworthy that two SLSoallpms
were also proposed earlier by [14], that are mereegal than
the SRLS of [2,3]. Finally, the asymptotic converge of
SRLS to the true parameter values can be estatilisinghe
batch-type version of (7), and more recent stufli&$ also
advocated the advantages of SRLS in terms of &ahsi
ibehavior and computational issues (flops).

C. A new Hybrid Stabilized Recursive Least Squares

Unfortunately, despite its interesting propertibg, SRLS
algorithm suffers from some major drawbacks. Hirstt
allows only the rate of parameter variations towsgghted,
but a necessary stability condition is tiRt< /7)1 ,,, i.e. a
trade-off between this weighting and the initialrgraeter
uncertainty should be defined that prevents frortirge
Py - o and 7 - « at the same time (it would be nice to
strongly weight parameterariationswhile keeping a large
initial uncertainty). On the other hand, it doeg atbow the
departure from initial values to be weighted (aogpri
knowledgepsachievedy standardatchLS algorithmsusing
Bayesianregularization.Yet, benefitingfrom both forms of
regularization is desirable and achievable, esppdiawe
relax the requirement of avoiding a matrix invensido be
able to combine both forms, (6) should be repldned

i 2
C(k) = Z:‘zl/}k" lyi -R Ok]2 +/7“@k —@kE“ (11)
where the'f component ofe is g} = g R
0,i if idl 2

. and I, represent 2 user-defined subsetqiof]. Setting

reCUfS'Vﬁc(k)/a@(k) 0 leads to:

| ZATRIR +01 |6= S ARy #1000 (12)

l&we switch to a more general form permitting thewveights
to be different from each other(=diagln;, 75 -+ 7m]):

. -1
Re=| S RTR 7] %) @3)
and ;Y= AR, +RIR +(1-A)/ . As a result:

(with Py =71



RO =RV AR O +M1O0-164]  (14)

Otherwise, we can infer from the aboRg! expression that:

APRC O =[A R -ARER - (- R/ 161 (15)
and finally, by combining (14) and (15), we obtain;

O =1+ ARk & +R O 161~ (1-1) 6] (16)
Alternatively, the right hand side of (12) becomes:

S ARy +rof=5+rof (17)
and the proposed resulting Hybrid SRLS algorithrBRHS)
comes down to the recursive equations:

RI=ARL+RIR +@-A)/ (withPyt=7) (18)
followed by:

O =01+ RR( & +R O-16L-1-1) 6] (19)
The estimates can also be iteratively computed thia
simpler recursion (frong, =0):

S=ASa* Ry and: o =R S+ 6]
Remark 1: In the case wherel =1 and OEf &, (18) and
(19) reduce toR1=R4L +RIR, and 6, =6,_; + R R! &,
which are the standard RLS update equations (rgefting
factor and regularization included Ry = /).

Remark 2: In addition, the trick (9) is preserved, thatmis
the matrix inversion lemma to be applied by usingatrix

M =[Ry \my,@-1) un)] of size mx2, where y;, is the
n " componenbf thediagonamatrix /7~ . Over m successsive
iterations, the diagonal g8 is incremented byny,, (1- 1),

just as if 1-A) /~ was added at each of the iterations.

(20)

A. Standard formulation of the modeling

During the VISION project, the longitudinal motievas
considered, hence we focus on the aircraft lifgtpand load
factor equations that characterize the short-pedigthmics.
In the context of the adaptive scheme, at a giVaghtf
condition, the stability derivatives to be trackzhysical

AIRCRAFT MODELING EQUATIONS

parameters of the aerodynamic model) appear asdpseu

constants in a linearized aerodynamic model inagdhe
four statesa, q, €, V and the outpuNz (a and q are the
AoA and the pitch ratey is the true airspeedd, is the

(denoted in square brackets) are weakly identiiaii-line,
especially at a trimmed flight condition. Howevewnen if
these parameters should be strongly constrainet te.their
initial values, they must be kept in the equatidmsavoid
biasing the equation errors. A LP model is obtained

[6 ¢ Nd"=0[a q 5, VIT (22)

where the® matrix includes the parameters to be tracked
and estimated (12 at most), and the variableseof Bxmodel
(regressors) should be understood as departures tiim
values. In the context of the adaptive schemejthim goal

of the estimator is to update the values of theaihmontrol
and stability derivativeZ,,M,, My, M4, N, [12] used for
schedulingthoughall thecoefficientshave to be estimated.

This Standard Formulation (SF) requires the timavee
tives of @ and g signals to be computed to get the two first
outputs of equation (22). Different filters shoudd applied
to the raw measurement data before using themtimads
the stability and control derivatives. The genedsa is to
implement exactly the same HP and LP filtering &
signals in order to avoid any phase lag in ther#t values
used by the estimation process. The HP filter is'@rder
one (with a time constant of 1.5s), whereas thefilters
(used alone or in conjunction with a derivation r@per) are
2" order Bessel-type ones (with a cut-off frequenic§tdz).

B. Alternative formulation of the modeling

For longitudinal motion, the Linear Time InvarighfT1)
state vector usually includes the 4 stdiesw q 4], i.e. the
linearized values of the forward component of aificspeed
(body axis), the vertical component of aircraft egpgbody
axis), the pitch rate, and the pitch angle. Thewutector
also includes the load factdvz, related to the states by:

W=-gNz+gcosfd+qu (23)
Another equivalent formulation of the state vectsr
[V a q 6], see (21). They are linked by the relationships
u=Vcosa and w=Vsina, or more simply bytana =w/u,
which leads toa = atar(w/u) , and:

@ =(uw-wu)/(u? +w?) (24)
Assuming weak lateral motion, steady flight wittmakt
constant speed about a trimmed flight conditigg a,) , we

can assume that=V,u=0 and u?>+w?=V2. As a result,
a=w/V and a=w/V. On the other part, using real

elevator input, andNz is the load factor output). The accelerations instead of load factors, (23) carebeitten as:

influence of the altitude variations | are neglected, as the

aerodynamic coefficients only indirectly dependon
G=Z,0+72Q+Z55, [+2Z,V]
4=Maa+Mg@+Ms3, [+M\V]
6=q
V= Xqa+ Xq0+ X 50+ XyV
Nz =Nga+Ngg+Nsde [+NyV]

(21)

The aircraft is supposed to fly about a steadyhflig

condition, and a constant engine thrust is assuffedeed
the gain scheduled controller [6,12], only somedimf (21)
need to be estimated in practice, i.e. those qoorafing to
the fast longitudinal stateg, gand Nz. Hence, only (21.1),
(21.2) and (21.5) are considered in the sequid.diso worth
noting that the stability derivatives relative teetairspeed

W= A7 +qV (25)
where the vertical acceleration at CG position dam
computed from the measured one at the IMU positien
AS =AM +x,, 4 (x,, representing the coordinate of the
IMU w.r.t. the CG position on the longitudinal axis

If we return now to the lift and pitch equationsatth
characterize the short-period dynamics, and incldie
stability derivatives to be tracked and estimatimd state
equations (21.1) and (21.2) need to be consideraiit{ng

the coefficients related to airspeed):
a=Z,a+Zq+Zs50
{q:Maa"'qu"'Mb'a_e (26)

The value ofz, is generally close to unity, and hence we are
left with the C}ive major control and stability deatives



Zgi Mg, Mg,
that we wis% to estimate on-line. By deriving thegeations,
and using (25), we can set the two alternative gous

G=WIV = A IV +G=Z(AS IV +Q)+ 244+ 250, 27)
G=Mg(AZIV+0Q)+ MG+ M50
Finally, this yields to (Withdeq = (A;"™ + X,y @)1V +q):
C.i'eq:Za[jeq"'qu"'zb'é—e. (28)
szadeq"'quJrMb'Je

These equations mean that the standard estimati

problem involving the regressorkr q J] and the two

outputsa and g (which are not directly measured and henc

need to be estimated at first by pseudo-derivatiow and
g measurements) can be replaced by an alternateavih
the regressorgda., q J,] and the two outputsi,, and g,
permitting the same regression paramet&s, Z;,M,,
My, M to be estimatedZ, =1).

Regarding the missindN, coefficient (among the five
major derivatives), some extra computation is ndedy
using (23) again, and linearized departure values fthe
trim condition (including a centered load factde), we can
establish that:

a=w/V=q-gNz/V=-gNyalV+-- (29)

As a result, the missing\, coefficient can be inferred
indirectly from thez, estimated value afN, =-VZ,/g.

Of coursethemaininterestof this AlternativeFormulation
(AF) is to avoid using the AoA measurement whiclomdy
available from specific clinometric probes, heneguiring
sometediouscalibrationto berelatedto inertial measurements
in terms of delays for instance. On the other hathis
formulation requires the accelerometer signalsyebas the
pitch rate, to be derived, which is not without almgwbacks
as these signals contain higher frequencies andmene
sensitive to noises in their pseudo-derivativkan their
counterpartse and g measurement#s for the standardrD
estimationschemewhich makes use of the AoA information,
the general idea is to implement exactly the safeahid LP
filtering for all signals in order to avoid any ealag inthe

filtered valuesusedby the estimation process. The HP and

Ms,N, used to schedule the controller, anc
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Figure 1 MuPAL-a aircraft (left) and its HILS facility (right)

To evaluate the adaptive scheme for FDD/FTC puipose
apartial Losof Efficiency (LoE) is introduced itheelevator
control channeldontrol derivative} in addition to an initial
r?f?sknowledge of the other model coefficientstapility
derivative3 emulating some model uncertainty or a loss of
feference flight point (e.g., a sensor fault legdim a lack of
airspeed information). The actuator fault was idtreed and
parameterized in the embedded C code, to possibhifyn
the elevator efficiency in-flight via the controfders while
being invisible from the estimator input signal2].1

Though the design of the controller is out of thepe of
this paper (please report to [6,12]), before digplty test
results, it is useful to stress that the architectf the flight
control law is of C*-type [18], a standard choice fongitu-
dinal control laws (e.qg., for Airbus aircraft), atiht relies on
load factor commands:

d—e = KNZNZ+ qu + KNzintI(Nz_ Nzc)dt+ Kszre(,NZc (30)

where Nz, is the reference acceleration input, computed via
a first order filter from the stick input pilot ceds. The
feedforward term is typically chosen &,prec= ~A* Kygzint»
where the multiplicative facto”A is used to tune the closed
loop step responses. In addition, the time resmosbkeuld
remain homogeneous in the domain and some perfaenan
criteriashouldbemetby thecontroller [7]:® dynamics should
be closeto a 1% orderfor tracking a referenceNz, setting,
with small overshoots iy and Nz and a given settling time;
= no steady state error should occur in trackingréference
signal; m aircraft responses to external inputs should bsecl
to the open loop behavior with improved damping.

stick input real behavior
Stick inp gdl D&l

| doublet-type
pilot orders

LP filters (used alone or in conjunction with a idation
operator) are identical to those defined in 8llIl.A.

expected behavior

I-elevator angle

— L elevator order

IV. TEST RESULTS ACHIEVED ONVIUPAL-0 AIRCRAFT

5 10 is 20
simulated data

MuPAL-a is aresearchairplanebasedn Dornier DO228-
200, introduced to Japan Aerospace eXploration Age
(JAXA) in 1988 (Fig. 1), and improved with an exipeental
FBW system in 2000 [16,20]. The FBW computer reegiv
information from Air Data Sensor and Inertial Naafign
System, and controls a set of conventional cordelices
(ailerons, rudder, elevator, throttle levers) asll was
additionalDirectLift Control(DLC) flaps[16]. Theflexibility
of theFBW system permits controllers to be changed ghfli
(within the related safety regulations), and FDDZFdesigns
to be easily implemented and flight testedeal conditions.
Before flying, ground and safe validation testshef designs

[ . o
fNZlN‘ZC/vV\sﬁ- .

}-real load factor

Y filtered load
~factor command
(unfiltered)

5 10 15 20

Figure 2 Performance of the controller at 120kts/2200ft ioderate
turbulence and without adaptation (right) vs expégierformance at the
design stage for flight points between 100 and 20(kft)

Figure 2 is a template of the plots of §IV disphayithe
results of the flight or HIL tests. Note that dflet figures
similar to this template include the following sidys: pilot
stick input (upper plots), centered values of devarder
Oec In blue and real deflectiod, in black (medium plots),
load factor referenceNz, (filtered in black, non filtered in

areachievedirst thanks to a simulation of the nonlinear flightblue) and realNz value in red (lower plots). They also

dynamics using the actual onboard equipment (Rig.hls is
referred to as Hardware-In-The-Loop Simulation (HJL

include the plots of the airspedd, (in black) and ground
speedVy (in red) expressed in knots. As shown by Figog, f



stick input doublet signals, a satisfactory behavior of the
control law is achieved, which corresponds to thpeeted
aircraftresponseat the design stage (left part of the figure).

stick input ()
0o
%
=

These doublets are classically used by aircraftstrgt to
check the performances of the control laws; they @so
used by the pilots for altitude capture followinigaoges in
the flight conditions. Hence, these signals shoaldo
provide information to the estimation algorithm tfwa rather
poor excitation level) for tracking the changeshie model
parameters. Here, a series of doublets is usedst of the
tests for several purposes: 1/ to provide inforamatio the
estimation process at the beginning of the tesaftar the
occurrence of the actuator damage 2/ to check ¢tméral
performances before adaptation 3/ to display tharotter
performances after the adaptation is activated. dbjective
is not to consistently excite the system (which Mfawot be
realistic), but to be able to visualize the positaffects of the
adaptation within a single test of limited duration

In the following figures of 81V, additional plotsn(the
bottom part of the figures) also display the estadavalues
of the five main coefficients (in black solid line)sed to
schedule the controller [6,12], compared with tho$ehe
LTI pre-flight models (in blue dotted line). Fav 5, the red
dotted line represents the LiHeoreticalvalueincluding the
LoE reduction, which is usually properly estimagtthe end
of the first doublet input following its occurrence
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The tests displayed in Fig. 3-6 take full advantafjéhe
HILS facility by replaying the same scenarios irfatient
mastered wind conditions. The idea is to evaluadridirect
adaptive control strategy and to compare the FD &Bd
estimators in more and more challenging conditions.
Consequentlythe results displayed are divided in two subsets
of tests: (a) with no turbulence at first, (b) witttrong
turbulence. Large variations of the speed are talspated in
order to check the behaviour of the process ndtghsut a
steadyflight condition (e.g., 100-150kts in Fig. 3b).

Various scenarios are also simulated for this coispa,

thesudderLoE occurring before or after the adaptation starts. s e s o 50

In the latter case (Fig. 4-5), a double type ofpdaldonis (b) strong turbulence

achievedx at t=40theperformancesreimproved thanks t0  rigyre 3 FD estimation (top: no turbulence, bottom: stramtlence)
estimated values compensating for a wrong initiednmatch with adaptation from t=80 and elevator 50% LoE=t

(emulating an error of 50 knots in the airspeedi@alsed to

schedule the initial controllery;from t=70, the performances pyt that the parameter accuracy finally improvesasn as
degraded by the LoE are progressively recoveresbas as the amplitude of the excitation signals increasgter the
newinformationis fedinto theestimatiorprocessy excitation  adaptation is activated and proper values of timrebgains
signals and th9\/|5 estimatetendsto thefaultyvalue.TheZ” tend to be recovered. It is also worth noting tthet FD
improvement might be more progressive as the e#ina process acts as a memory that accumulates infamatid

Ms parameter should converge again to the real effti. hence the convergendime dependson the value of the
However, usually,M; converges rapidly to the faulty valueforgetting factor introduced in the algorithm. Rbese tests,
(remember that the red dotted line in the bottom pathe 3 value A = 0995 was used, and this contributes to a slow and
figures represents the LTeoreticavalueincluding the LOE  progressive improvement of the estimates. Apannfithis
reduction). The general trend is that the contrafleminal transient behaviour, the performance (estimator and
performances are recovered as soon as the adaptivess is controller) is not impaired by the disturbancesafy, let us
activated and fed with estimated scheduling parerset remark that a slight overshoot can be observedhenidad

As regards the FD estimation (Fig. 3), we can rémafactor responses to the doublet solicitations (Bag.from
that, in very unfavourable conditions (small extita and =20), which does not exist in the flight tests J1Zhis is
largedisturbances}heconvergencef theestimatess slightly ~ €XPlained by the variation of the actuator gainrfriight to

degradedandsloweddown (seeFig. 3b fromt=40to t=80), ~ 9round conditions (a ratio of about 0.7) which wast
compensated in the controller gains for these ldHtst
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Figure 4 TD-SF estimation (top: no turbulence, bottom: strturbulence)
with adaptation from t=40 and elevator 50% LoE=atx

As regards the TD estimation (Fig. 4-5), with low t

medium turbulence, both formulations give satisfact
performances in terms of control, even if some dseand
forerunners can be observed for the AF when théagxm

levelis low. However fromonly amediumlevel of turbulence,
some estimates are strongly degraded (8g.M,) in the

AF case. As a result, the controller behaviour beED
oscillatory in transient stages (about t=80 on Blg), till the

estimates possibly improve thanks to the excitatmmnease
(medium turbulence not shown here). It is notewpittiat,

thanks to the HSRLS algorithm, both estimators wared
to improve their robustness to the disturbancesicelgin
case of strong turbulencthe performanceof the adaptive
controller remains acceptable in the SF case @Y. but the
improvement was not sufficient to get satisfactperfor-

mances in the AF case (Fig. 5b), due to large biassome
estimates.
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Figure 5 TD-AF estimation (top: no turbulence, bottom: sggon
turbulence) with adaptation from t=40 and elev&@¥ LoE at t=70

Finally, Fig. 6 shows the results achieved by sating
realistic continuous changes in altitude or in @ed in
medium turbulence conditions, to check the robisstred the
adaptive process in operational scenarios. In &ag.the TD
SF-based estimation is used during a scenario iithwh
airspeed varies between 190kts and 100kts and a 50%
elevator LoE occurs at t=60. After the adaptatias started
(at t=30), the performances are satisfactory, tirgetting
factor permitting most of the parameters to bekidcquite
correctly with some delay despiteeir high rateof variation.

In Fig. 6b,the FD estimator is used in a different scenario
simulating a change of altitude (climb from 200tft2700ft

in the ' half of the test, followed by a descent back to@0

in the 2% half) during which a 50% elevator LoE also occurs
at t=60. Despite a very low level of excitation yided by
the pilot during the climb, thé1 ; ends up converging to the
right value.
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(b) FD estimation in varying flight conditions (&ltde changes)
Figure 6 Tests in varying flight conditions, medium turbuenand
elevator LoE at t=60 (top: airspeed changes, botdtitude changes)

V. CONCLUSIONS
To sum up, the various tests displayed in §hdwthat

the SF-base8&D and TD algorithms give satisfactory results,

and much better than the TD one based on the AE.FIh
estimator appears to be more robust to higher dewdl

disturbance, especially regarding some of the estisy such
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