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Nomenclature 

 

𝐵𝑖𝑠𝑛 Altaç angular integrated Bickley-Naylor functions 

𝐶𝑝 specific heat (𝐽𝐾−1) 

𝐶Ω unit disk of ℝ2: 𝐶Ω = {Ω ∈ ℝ2/ |Ω| ≤ 1} 

(𝑒𝑥, 𝑒𝑦) unit vectors of  𝑥, 𝑦 directions    

𝐺 volumic incident radiation (𝑊𝑚−3) 
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Abstract  

The present paper deals with an exact semi-analytical formulation of a combined conductive-

radiative heat transfer, applied to a two-dimensional semi-transparent medium carrying a square 

centered obstacle. The gray participating medium with black boundaries absorbs, emits but does 

not scatter radiation. One intends to evaluate the temperature and radiative heat flux distributions 

within the semi-transparent medium. The radiative transfer equation has been solved using an 

exact analytical expansion of Bickley-Naylor and Altaç angular integrated Bickley-Naylor 

functions, then solved numerically with Gauss quadrature. Energy equation has been directly 

discretized and approximated numerically using the centered finite differences method and 

consequently the dimensionless temperature has been obtained after an iterative scheme. The 

results of radiative quantities obtained have been verified with benchmark with an excellent 

agreement, both for simple and complex geometries. Simulations have been performed to obtain 

results for different sizes of the centered obstacle and the optical thickness. The effects of the 

conduction-radiation parameters, discrete directions and the size of the obstacle have also been 

investigated.   

 Keywords: conductive-radiative, semi-analytical, obstacle, semi-transparent medium 
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𝐺∗ dimensionless incident radiation  

𝐻 length of external cavity along 𝑥 and 𝑦 direction (𝑚) 
ℎ length of the inner square body (𝑚)   

(𝑖, 𝑗, 𝑝, 𝑞) cells numbering 

𝐼 one directional incoming radiation intensity (𝑊𝑚−2𝑆𝑟) 
𝐼0 black body radiation intensity (𝑊𝑚−2𝑆𝑟) 
𝑘 time index 

𝑘𝑎 absorption coefficient (𝑚−1) 
𝑘𝑐 thermal conductivity (𝑊𝑚−1𝐾−1) 
𝐾𝑖𝑛 Bickley-Naylor functions 

𝑙, 𝑚 angular and spatial numbering quadrature 

𝑁𝜑 , 𝑁𝑥, 𝑁𝑦 number of angular quadrature, and cells  

𝑁𝑡 maximum number of  time steps 

𝑁𝑝𝑙 conduction-radiation parameter 

�⃗�𝑟 radiative flux vector (𝑊𝑚−2) 
�⃗�𝑟
∗ dimensionless radiative flux vector (𝑊𝑚−2) 
�⃗�𝑐 conductive heat flux (𝑊𝑚−2)  
𝑞𝑥 𝑥-component of the conductive-radiative heat flux (𝑊𝑚−2) 
𝑞𝑦 𝑦-component of the conductive-radiative heat flux (𝑊𝑚−2)    

𝑆𝑟 radiative source vector (𝑊𝑚−3)    

𝑠 curvilinear abscissa 

𝑡 time (𝑠)    
𝑇 radiation temperature (𝐾)    
𝑇0 initial temperature in the medium  

𝑇𝑟𝑒𝑓 reference temperature 

𝑇∗ dimensionless temperature in the medium  

              𝑢 real number at which 𝐵𝑖𝑠𝑛 is evaluated 

                                 

Greek symbols 

 

           ∆𝑥, ∆𝑦              space step along 𝑥 and  𝑦 respectively (𝑚) 
            ∆𝑡        time step 

            ∆𝜉                   dimensionless step time 

          ∇⃗⃗⃗, ∆                   Gradient and Laplacian operators respectively 

            𝛽𝑙                    angular abscissa 

            𝜎𝐵                   Stefan-Boltzmann constant (5.67 10−8𝑊𝑚−2𝐾−4) 

            𝜑, 𝜃                 azimuthal and zenith angle of unit vector Ω⃗⃗⃗ 

            Ω⃗⃗⃗                     unit radiation propagation vector 

           ∇. �⃗�𝑟                 radiative flux divergence(𝑊𝑚−3)    
            𝛿                      radiative path length from boundary surface to attenuated point in the      

                                    Medium 

        𝜔𝑙, 𝜔𝑚                Gauss weights   

            𝛿𝑚                   spatial abscissa 

            𝜑𝑙                    azimuthal angle at position 𝑙 
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Subscripts 

 

𝜕𝒟𝑒 bounded domain of  the 2D enclosure  

𝜕𝒟𝑖 bounded domain of  the rectangular obstacle 

{𝒟} bounded domain of the participating medium in ℝ2 
 

 

 

1. Introduction 

         The conductive-radiative heat transfer in participating medium keeps getting attention of 

researchers, because it is encountered in various engineering applications such as heat transfer in 

the semi-transparent media, glass fabrication, fibrous thermal insulation, porous materials, 

industrial furnaces [1-3]. Hereafter, thermal radiation investigated in the present paper is applied 

within a cavity of complex or irregular shape at high level of temperature. Radiation contributes 

in the heat transfer because of absorption and emission processes inside the participating medium. 

           Up to now, an exact analytical solution of radiative transfer equation (RTE) is difficult to 

find for multi-dimensional complex geometries, but remains in strong demand to solve various 

thermal problems [2]. Numerous studies dealing with combined conduction-radiation heat transfer 

have already been examined, whose implementation was realized in the case of simple and 

complex geometries by using numerical techniques. Mostly, numerical methods used included 

various schemes such as the zonal method, the Monte Carlo method, the spherical harmonic 

method, the discrete ordinates method (DOM), the finite-volume method (FVM), the finite element 

method (FEM), the ray tracing/nodal-analyzing method (RTNAM) and the Discontinuous 

Galerkin method (DG). 

            In simple geometries, such as square enclosures containing semi-transparent medium, 

Yuen and Takara [1] considered a combined conductive-radiative heat transfer in a two 

dimensional enclosure with a gray medium. The authors applied a numerical procedure, based on 

tabulated values from a class of generalized exponential integral function 𝑆𝑛(𝑥), known to be 

particularly accurate and efficient in the case of pure radiation [4, 5]. Numerical data of 

temperature and flux fields were tabulated as benchmark solutions of the coupled problem, since 

exact analytical solutions are unable to obtain except for restricted one-dimensional problems. The 

authors successfully shown that for some ranges of optical thicknesses and conduction-radiation 

parameters, the diffusion approximation commonly used in practical engineering problems yields 

to significant errors on radiative quantities. Kim and Baek [2] studied the same problem by using 

the DOM combined to a diamond spatial scheme for the RTE, whereas the energy equation was 

discretized with a central finite differences scheme. Their results were compared with the literature 

in good agreement. Lee and Viskanta [3] investigated a combined conductive-radiative heat 

transfer by comparing the solutions in the case of a two-dimensional semi-transparent medium. 

The authors used the DOM and the Rosseland diffusion approximation to solve the RTE. The 
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authors claimed that, the results predicted by the DOM are in good agreement compared with those 

based on the 1D integral formulation but suffers from the numerical smearing. In the other hand, 

the diffusion approximation greatly underpredicts the radiative quantities; especially for optically 

thin medium. Mishra et al. [6] used the Lattice Boltzmann Method (LBM) to solve the conduction-

radiation energy equation inside a two-dimensional rectangular enclosure. The authors examined 

the case of a gray absorbing, emitting and scattering participating medium, enclosed inside a single 

cavity without inner obstacle. The FVM and LBM where applied to solve the energy equation, 

while the RTE was solved by using the collapse dimension method (CDM). The results of 

dimensionless temperature distributions were plotted, and the number of required iterations to 

reach steady-state solutions between the LBM and the FVM where compared. It was observed that 

the LBM converged faster than FVM in case of coupled radiation-diffusion. In fact, researchers 

such as Sakami et al. [7], Rousse et al. [8], Mahapatra et al.[9], Luo and Shen [10], Lazard [11], 

Ghattassi et al.[12], Keshtkar [13], have developed similar analysis with excellent results 

compared to benchmarks solutions, when the size of the obstacle is set to be zero.  

         For complex or irregular geometries shapes such as rectangular shaped geometries, Asllanaj 

et al. [14] analysed a transient conduction-radiation combined heat transfer for a gray absorbing-

emitting medium in a 2D cavity modelled with unstructured triangular meshes. The RTE has been 

solved with both a new FVM based on vertex scheme and a modified exponential scheme. Amiri 

et al. [15] studied a combined conductive-radiative heat transfer problem, applied to irregular 

geometries containing an anisotropic scattering participating medium. The authors used the FVM 

to solve the energy equation and the DOM to solve the radiative transfer equation. The results in 

terms of dimensionless temperature and radiative flux were compared to benchmark with a good 

accuracy. They also kindly discussed the influence of conduction-radiation parameters and optical 

properties on the values of radiative quantities. Lari and Gandjalikhan Nassab [16] analysed the 

combined radiative-conductive heat transfer in 3D complex geometries by using a block-off 

method. As applied in CFD even in two-dimensions, the FVM was used to solve the gas energy 

equation while the DOM was used to solve the RTE in the absorbing-emitting and linear 

anisotropic scattering medium. The results of the model were validated, and compared to the 

literature then, applied to analyze the effects of conduction-radiation parameters and radiative 

properties on the temperature and flux fields in the medium. Talukdar et al. [17] discussed on a 

new technique to perform combined conduction-radiation heat transfer in a complex porous 

structure. FVM and block-off methods based on Cartesian coordinates were used to evaluate the 

effective thermal conductivity for different temperature, emissivity, thermal conductivity of the 

solid and absorption coefficient of the fluid. The results of dimensionless temperature and heat 

flux distributions were compared to those obtained when using FLUENT 6.3, and remained in 

good agreement. Zare and Gandjalikhan Nassab [18] investigated the radiative-conductive heat 

transfer problem with a variable thermal conductivity inside 2D complex geometries. In fact, the  

FVM was used to solve the energy equation whereas the discrete ordinates method has been used 

to solve the RTE, by deducing the temperature and heat flux distributions in the medium. The 

blocked-off procedure in Cartesian coordinates has also been employed to treat both straight and 

curvilinear boundaries of the concerned geometries. The effects of a variable thermal conductivity, 

the non-uniformity of boundary heat fluxes due to the isotherm obstacle, both on temperature and 

heat flux distributions have been analysed and carefully discussed. Keshtkar and Amiri [19] 

simulated the combined radiative-conductive heat transfer in a 2D enclosure containing an 

isotherm rectangular obstacle located at the cavity’s center. The RTE and energy equation was 

solved by using the DOM and LBM respectively. The authors discussed how the radiative 
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properties, the conduction-radiation parameters, and the isotherm obstacle modify the temperature 

and heat flux distributions. Studies involving coupled radiation-convection inside rectangular 

enclosures with obstacles [20-21] are also available, for which similar methods as examined 

previously were implemented. 

       From the literature survey dealing with the coupled conductive and radiative heat transfer 

within multi-dimensional complex geometries, mostly numerical methods have been developed to 

solve the problem. Moreover, the aim of the present paper is to establish an exact semi-analytical 

solution of the conductive-radiative heat transfer problem, applied to a 2D absorbing and emitting 

medium with a centered square obstacle. Exact expressions of the incident radiation from the RTE 

as developed in the case of radiation heat transfer [22, 23] are set and coupled with energy equation 

by using a centered finite scheme in order to derive the temperatures and heat flux distributions. 

An adequate numerical algorithm to solve the considered conductive-radiative problem is given 

and performed to obtain the numerical results of temperature and heat flux.  

 

1. Geometry 

One considers in the Fig. 1 a the semi-transparent medium enclosed in a two dimensional square 

cavity of length 𝐻, containing a square obstacle of length ℎ at a center position. From Djeumegni 

et al. [23], analytical expressions of the radiative quantities examined in this paper are those 

derived for the case 𝐻 = 3ℎ. Modelling involving geometries for which 𝐻 < 3, 3ℎ < 𝐻 ≤

(2 + √5)ℎ and 𝐻 > (2 + √5)ℎ are not developed here for conciseness. However, some numerical 

results and simulations are presented in the cases of 𝐻 = (2 + √5)ℎ and 𝐻 = 8ℎ. The bounded 

domain of the 2D enclosure denoted by  𝜕𝒟𝑒 and the one for the obstacle denoted by 𝜕𝒟𝑖 are both 

kept at constant imposed temperature 𝑇𝑟𝑒𝑓. Thus, the bounded domain concerning the participating 

medium denoted by {𝒟} is defined in the (𝑥, 𝑦) plane by: 

 {𝒟} = {(𝑥, 𝑦) ∈ [0, 𝐻] × [0, 𝐻]\ (]
𝐻−ℎ

2
,
𝐻+ℎ

2
[ × ]

𝐻−ℎ

2
,
𝐻+ℎ

2
[)}.                                         (1) 

 

 

 

 

 

 

 

 

Fig.1. Section of the semi-transparent medium in (𝑥, 𝑦) reference. 

𝐻 

𝐻 

ℎ 

ℎ 

𝑒
 
𝑦

 

𝑒
 
𝑥

 

𝜑 

𝑀𝑁 

𝑀 

𝑇(𝑥, 𝐻) 𝜀 = 1 

𝑇(𝑥, 0) 𝜀 = 1 

𝑇(0, 𝑦) 
𝜀 = 1 𝜀 = 1 

{𝒟} 

𝜕𝒟𝑖 

𝜕𝒟𝑒 

𝑇(𝐻, 𝑦) 



6 

 

Modelling of the combined heat transfer is done in the same plane (𝑥, 𝑦), implying no variation 

of radiative quantities along the 𝑧-axis.   

The incoming intensity depends of the direction vector Ω⃗⃗⃗ = (
𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜃
𝑐𝑜𝑠𝜃

), with 𝜑 ∈ [0,2𝜋] and 

𝜃 ∈ [0, 𝜋]. So, in the plane (𝑥, 𝑦) the third component 𝑐𝑜𝑠𝜃 is not taken in consideration but must 

not be forgotten in the integrated radiative quantities.  

 

2. Mathematical formulation 

 

2.1.Conductive heat transfer   

The energy equation for a transient combined conductive-radiative heat exchange without external 

heat source is written: 

𝜌𝐶𝑝
𝜕𝑇(𝑡,𝑠)

𝜕𝑡
= −∇⃗⃗⃗. (�⃗�𝑟(𝑡, 𝑠) + �⃗�𝑐(𝑡, 𝑠)),                                                           (2) 

where 𝜌 is the mass density of the medium and 𝐶𝑝 its specific heat. The different thermo-physical 

properties are assumed constant and the conductive heat flux is given from the Fourier’s law as: 

�⃗�𝑐(𝑡, 𝑠) = −𝑘𝑐 ∇⃗⃗⃗𝑇(𝑡, 𝑠) ,                                                                             (3) 

where, 𝑘𝑐 is the thermal conductivity of the participating medium. 

 On the other hand, the radiative source term is expressed by: 

𝑆𝑟(𝑡, 𝑠) = −∇⃗⃗⃗. �⃗�𝑟(𝑡, 𝑠) ,                                                                           (4) 

whence Eq. (2) is rewritten:  

𝜌𝐶𝑝
𝜕𝑇(𝑡,𝑠)

𝜕𝑡
− 𝑘𝑐∆𝑇(𝑡, 𝑠) = 𝑆

𝑟(𝑡, 𝑠),                                                                 (5) 

 for                   (𝑡, 𝑠) ∈ [0, 𝜍] × {𝒟} , 

in addition         𝑇(0, 𝑠) = 𝑢0(𝑠), for  𝑠 ∈ {𝒟}. 

where 𝑢0 is the temperature field at the boundary. From Eq. (4), temperature distribution 𝑇(𝑡, 𝑠) 

remains the major unknown. Hence, to overcome with this issue, the radiative source term 𝑆𝑟(𝑡, 𝑠) 

in term of temperature is needed solve Eq. (5), so it will be computed from the RTE in the next 

subsection. 
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2.2.Radiative Heat transfer   

In [23], it has been discussed that the present geometry (𝐻 = 3ℎ) reveals the existence of sixteen 

sub-domains, divided into four squares and twelve triangles as illustrated in Fig. 2-(b), where the 

different expressions of the useful radiative quantities to evaluate have not the same analytical 

expressions. Assuming a uniform grid representation of the domain, the latter one is divided into 

𝑁𝑥 × 𝑁𝑦 cells characterized either by their corresponding space coordinates (𝑥𝑖 , 𝑦𝑗)  or their nodes 

labelled (𝑖, 𝑗) in order to discretize the needed equations. Therefore, any point 𝑀𝑖,𝑗 of the 

participating medium is located by its discrete coordinates (𝑥𝑖, 𝑦𝑗) = [(𝑖 − 1)∆𝑥, (𝑗 − 1)∆𝑦], with 

a constant step length following 𝑥-axis given by ∆𝑥 = 𝑥𝑖 − 𝑥𝑖−1, while the one for 𝑦-axis is ∆𝑦 =

𝑦𝑗 − 𝑦𝑗−1. 

Radiation from a given point inside the semi-transparent medium that reaches any point  𝑀 ∈ {𝒟} 

follows a path length supported by the direction vector  Ω⃗⃗⃗. In the present paper, as illustrated in 

the Fig. 2-(a), only the bottom surface of the square section is hot at temperature 𝑇𝑟𝑒𝑓 and the other 

surfaces are set to be cold. As shown Fig. 2-(a), the radiation travelling from the bottom boundary 

surface up to the point 𝑀 follows the path of length 𝛿 such that 𝑀𝑠𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 𝛿Ω⃗⃗⃗. Similarly, any point 

on the same ray is characterized by a path length 𝛿′ given by 𝑀′𝑀⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗⃗  = 𝛿′Ω⃗⃗⃗. In the reference plane 

(𝑥, 𝑦), one has  𝛿 = −𝑦/𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜃 and 𝛿′ = (𝑦′ − 𝑦)/𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜃. 

The spatial relation linking any emissive point 𝑀′ within the participating medium and the 

calculation point 𝑀 on a same path for a given propagation direction, strongly depends on the 

angle 𝜑 and its positions 𝛿𝑚 ∈ [0,1]. One needs to calculate the temperature and the radiative flux 

at each node (𝑖, 𝑗), hence, 𝑥𝑖
′ − 𝑥𝑖 = ±𝛿𝑚𝑦𝑗𝑡𝑎𝑛𝜑 and  𝑦𝑗

′ = (1 − 𝛿𝑚)𝑦𝑗 where (𝑥𝑖
′, 𝑦𝑗

′) ∈ {𝒟}. 

 

 

 

 

 

 

 

 

Fig. 2. (a) Ray propagation within the semi-transparent medium, (b) mesh grid within the semi-transparent medium. 
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Therefore, following a similar procedure developed in [22, 23], all the locations of the calculation 

points in the medium are characterized by their Cartesian coordinates (𝑥𝑝, 𝑦𝑞). One has 𝑥𝑝 − ∆𝑥 ≤

𝑥𝑖
′ ≤ 𝑥𝑝 + ∆𝑥 and 𝑦𝑞 − ∆𝑦 ≤ 𝑦𝑗

′ ≤ 𝑦𝑞 + ∆𝑦, where 𝑥𝑝 = (𝑝 − 2)∆𝑥, and 𝑦𝑞 = (𝑞 − 2)∆𝑦. 

Since, 𝑥𝑖
′ and 𝑦𝑗

′ are respectively linked to 𝑥𝑖 and 𝑦𝑗, one obtains the integers (𝑝, 𝑞) in terms of 

(𝑖, 𝑗) as: 

 {
𝑝 = 𝐸[(𝑖 + 1) ± (𝑗 − 1)𝛿𝑚𝑡𝑎𝑛𝜑]

 
𝑞 = 𝐸[(1 − 𝛿𝑚)(𝑗 − 1) + 2]        

                                                                              (6) 

where, 𝐸(𝑎) denotes the integer part of the real 𝑎. 

The RTE in its general form for a unit refractive index is written:  

1

𝑐

𝜕𝐼(𝑡,𝑠,Ω)

𝜕𝑡
+ Ω⃗⃗⃗. ∇⃗⃗⃗𝐼(𝑡, 𝑠, Ω) = −𝑘𝑎{𝐼(𝑡, 𝑠, Ω) − 𝐼𝑏[𝑇(𝑡, 𝑠)]},                                                 (7) 

             with  (𝑡, 𝑠, Ω) ∈ [0, 𝜍] × {𝒟} × 𝐶Ω,  

for boundary conditions: 

   𝐼(𝑡, 𝑠, Ω) = 𝐼𝑏[𝑇(𝑡, 𝑠)], for (𝑡, 𝑠, Ω) ∈ [0, 𝜍] × {𝜕𝒟𝑒 ∪ 𝜕𝒟𝑖} × 𝐶
Ω ,                             (8)  

where, 𝜍 is a given time, 𝑘𝑎 denotes the absorption coefficient of the medium, 𝑐 =

2.997930 108 𝑚𝑠−1 in the vacuum and 𝐼𝑏[𝑇] is the radiation intensity of the blackbody, 

depending of transient temperature in the medium and expressed by:  

 𝐼𝑏[𝑇] =
𝜎𝐵𝑇

4

𝜋
 ,                                                                                                                  (9) 

where, 𝜎𝐵 = 5.6698 × 10
−8 𝑊.𝑚2. 𝐾−4 is the Stefan-Boltzmann constant. Among the main 

applications in the semi-transparent media, the radiative propagation time is much faster compared 

to the thermal response of the medium, consequently 
1

𝑐

𝜕𝐼(𝑡,𝑠,Ω)

𝜕𝑡
≈ 0. Then, although temperature 

may vary slowly with time in the medium, the radiation is considered at steady state. 

The incoming radiation, for a given direction of propagation Ω⃗⃗⃗ is given by: 

 𝐼(𝑡, 𝑠, Ω) =
𝜎𝐵𝑇𝑟𝑒𝑓

4

𝜋
𝑒−𝑘𝑎.𝛿(𝑠,Ω) +

𝑘𝑎.𝜎𝐵

𝜋
∫ 𝑇4
𝛿

0
(𝑡, 𝑠′)𝑒−𝑘𝑎.𝛿

′(𝑠′,Ω)𝑑𝛿′,                           (10) 

where the boundary is at a prescribed temperature 𝑇𝑟𝑒𝑓. The incident radiation at any point 

𝑀(𝑥, 𝑦) ∈ {𝒟} at a given instant 𝑡 defined as: 
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𝐺(𝑡, 𝑠) =  ∫ 𝐼(𝑡, 𝑠, Ω)𝑑Ω
 

Ω=4𝜋
 ,                                                                                    (11) 

and the corresponding radiative heat flux is written: 

�⃗�𝑟(𝑡, 𝑠) = ∫ 𝐼(𝑡, 𝑠, Ω)Ω⃗⃗⃗𝑑Ω
 

Ω=4𝜋
.                                                                                  (12) 

The radiative flux field divergence is classically given by: 

𝑆𝑟(𝑡, 𝑠) = 𝑘𝑎(𝐺(𝑡, 𝑠) − 4𝜋𝐼𝑏[𝑇(𝑡, 𝑠)]) .                                                                        (13) 

Therefore, in order to combine radiation and conduction, incident radiation must be evaluated from 

radiative transfer equation. 

2.2.1. Incident radiation 

The semi-analytical formulation of incoming radiation developed actually will enable to combine 

it with energy equation given at Eq. (5), since they are strongly coupled by the incident radiation 

𝐺(𝑡, 𝑠) and the temperature distribution 𝑇(𝑡, 𝑠).   

From Eq. (10), at instant t, when only the bottom boundary surface is hot at imposed temperature 

𝑇𝑟𝑒𝑓, and the others are cold, the incoming radiation is expanded in (𝑒𝑥, 𝑒𝑦) plane by: 

𝐼(𝑡, 𝑥, 𝑦, 𝜃, 𝜑) =
𝜎𝐵𝑇𝑟𝑒𝑓

4

𝜋
𝑒
−𝑘𝑎{

𝑦

𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜃
}
+
𝑛2𝑘𝑎𝜎𝐵

𝜋
∫ 𝑇4(𝑡, 𝑥′, 𝑦′)𝑒

−𝑘𝑎{
𝑦−𝑦′

𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜃
} 𝑑𝑦′

𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜃

𝑦′=𝑦

𝑦′=0
  ,     (14)   

       ∀(𝑡, 𝑥, 𝑦) ∈ ([0, 𝜍]) × (]0,
𝐻−ℎ

2
[ × ]0,

𝐻−ℎ

2
[),  

The transient incident radiation at a time t is deduced using the relation: 

 𝐺(𝑡, 𝑥, 𝑦) = 2∫ ∫ 𝐼(𝑡, 𝑥, 𝑦, 𝜃, 𝜑)𝑠𝑖𝑛𝜃𝑑𝜃𝑑𝜑
𝜃=

𝜋

2
𝜃=0

𝜑2

𝜑1
 ,                                                           (15) 

with, 𝜑𝑠1 = 𝑡𝑎𝑛
−1 {

𝑥

𝑦
} and 𝜑𝑠2 = 𝑡𝑎𝑛

−1 {
𝐻−𝑥

𝑦
}. 

Following a similar procedure proposed in [22, 23], a first set of Bickley-Naylor functions [24] is 

introduced and set by: 

𝐾𝑖𝑛(𝑢) = ∫ 𝑒−
𝑢

𝑠𝑖𝑛𝜃(𝑠𝑖𝑛𝜃)𝑛−1𝑑𝜃
𝜃=

𝜋

2
𝜃=0

, 𝑛 ∈ ℕ, 𝑢 ∈ ℝ+ .                                                     (16) 

In order to eliminate the variable 𝜃 in the first integrals of Eq. (14), The Altaç functions [24] are 

introduced to eliminate the 𝜑 dependence in Eq. (10) and expressed for 𝑛 ∈ ℕ, 𝑢 ∈ ℝ+ by: 

𝐵𝑖𝑠𝑛(𝑢, 𝜃) = ∫ 𝐾𝑖𝑛 (
𝑢

𝑐𝑜𝑠𝜑
) (𝑐𝑜𝑠𝜑)𝑛−2

𝜑=𝜃

𝜑=0
𝑑𝜑 .                                                                     (17) 
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For any point 𝑀(𝑥, 𝑦) located in the square sub-domain sharing the left and south boundary 

surfaces of the participating medium, the exact dimensionless expression of the incident radiation 

𝐺𝑖,𝑗
∗  for rays covering aperture 𝜑𝑠1 + 𝜑𝑠2 is calculated. Its discretized form when using a regular 

grid with square cells (∆𝑥∗ = ∆𝑦∗) is then given by: 

        𝐺𝑖,𝑗
∗ =

1

2𝜋
{𝐵𝑖𝑠2 (𝑘𝑎(𝑗 − 1)∆𝑦

∗, 𝑡𝑎𝑛−1 {
𝑖−1

𝑗−1
}) + 𝐵𝑖𝑠2 (𝑘𝑎(𝑗 − 1)∆𝑦

∗, 𝑡𝑎𝑛−1 {
𝑁−𝑖+1

𝑗−1
})} ,   

               +
𝑘𝑎

2𝜋
(𝑗 − 1)∆𝑦∗𝑡𝑎𝑛−1 {

𝑖−1

𝑗−1
}∑ 𝜔𝑙 

𝑁𝜑
𝑙=1

∑
𝜔𝑚

𝑐𝑜𝑠𝜑𝑙1

𝑀
𝑚=1  𝑇𝑘,𝑝,𝑞

∗4  𝐾𝑖1 (
𝑘𝑎(𝑗−1)∆𝑦

∗𝛿𝑚

𝑐𝑜𝑠𝜑𝑙
) ,              

    +
𝑘𝑎

2𝜋
(𝑗 − 1)∆𝑦∗𝑡𝑎𝑛−1 {

𝑁−𝑖+1

𝑗−1
}∑ 𝜔𝑙 

𝑁𝜑
𝑙=1

∑
𝜔𝑚

𝑐𝑜𝑠𝜑𝑙1

𝑀
𝑚=1  𝑇𝑘,𝑝,𝑞

∗4  𝐾𝑖1 (
𝑘𝑎(𝑗−1)∆𝑦

∗𝛿𝑚

𝑐𝑜𝑠𝜑𝑙
)          (18) 

with, 𝜑𝑙1 = 𝛽𝑙 × 𝑡𝑎𝑛
−1 {

𝑖−1

𝑗−1
} and  𝜑𝑙2 = 𝛽𝑙 × 𝑡𝑎𝑛

−1 {
𝑁−𝑖+1

𝑗−1
}  where, 𝛽𝑙 is the angular abscissa, 𝜔𝑙 

and 𝜔𝑚 are the Gauss weights, 𝑘 is a time index, and 𝑁𝜑 denotes the order of the Gauss quadrature 

used to approximate the respective integrals.  

When a point 𝑀(𝑥, 𝑦) belongs to the other triangles or square subdomains delimited by broken red 

lines in Fig. 2-(a), incident radiation have different analytical expressions due to the geometry in 

the medium. For any point in the domain such that, {]2, 𝑁𝑥 − 1[ × ]2, 𝑁𝑦 − 1[}\ {]2, 𝐸 (
𝐻−ℎ

2∆𝑥
)[ ×

]2, 𝐸 (
𝐻−ℎ

2∆𝑦
)[}, the associated equations, are not presented there for conciseness, but can be denoted 

as (𝐺𝑙
∗)𝑖,𝑗, where 𝑙 ∈ {1,2, … 20} represents the number of subdomains that contribute to the 

combined heat transfer.  

Once 𝐺 is calculated for all the grid’s cells including the boundary surfaces, Eqs. (12-13) are used 

to compute the radiative heat flux vector �⃗� 
𝑟 and the radiative source 𝑆 

𝑟 = −∇.⃗⃗⃗ ⃗ �⃗� 
𝑟. 

2.3.Combined conductive-radiative heat transfer 

Inserting the radiative source 𝑆𝑟 from (13) into Eq. (5) leads to the general energy equation which 

depends on the incident radiation at the calculation point: 

 {
𝜌𝐶𝑝

𝜕𝑇(𝑡,𝑠)

𝜕𝑡
− 𝑘𝑐∆𝑇(𝑡, 𝑠) = 𝑘𝑎(𝐺(𝑡, 𝑠) − 4𝜋𝐼𝑏[𝑇(𝑡, 𝑠)]),

 
𝑇(0, 𝑠) = 𝑣0(𝑠),

                                   (19) 

for                                             (𝑡, 𝑠) ∈ [0, 𝜍] × {𝒟}, 

where, 𝑣0 denotes the temperature field at a boundary surface for 𝑡 = 0. Eq. (18) is modified and 

converted into dimensionless form, by using some dimensionless parameters detailed in Appendix 

A. Consequently, one replaces each of dimensionless parameters set above in Eq. (19), that 
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characterizes the transient heat transfer by conduction and radiation within each subdomain located 

by the label 𝑙 as:  

{

𝜕𝑇𝑙
∗(𝜉,𝑠∗)

𝜕𝜉
− ∆𝑇𝑙

∗(𝜉, 𝑠∗) = 𝜂 (𝐺𝑙
∗(𝜉, 𝑠∗) − 𝑇𝑙

∗4(𝜉, 𝑠∗)) = 𝜂𝑆𝑙
𝑟∗ ,

 
𝑇𝑙
∗(0, 𝑠∗) = 𝑣𝑙,0

∗ (𝑠∗),                   

                            (20) 

where, 𝜂 = 𝑘𝑎
2𝐻2/𝑁𝑝𝑙. When 𝜕𝜉  ∞, the steady state is reached and one obtains: 

∆𝑇𝑙
∗(𝑠∗) = 𝜂 (𝑇𝑙

∗4(𝑠∗) − 𝐺𝑙
∗(𝑠∗)) = −𝜂𝑆𝑙

𝑟∗ ,                                                       (21) 

 

2.3.1. Semi-analytical solution of combined conductive-radiative heat transfer  

Several numerical methods already exist to solve this problem dealing with combined radiation 

and conduction. In this paper, one implements a discrete finite differences scheme regarding its 

simplicity and accuracy on results.  

One discretizes uniformly the time domain 𝜉 ≥ 0 by setting ∆𝜉 = 𝜉𝑘+1 − 𝜉𝑘 with 𝜉𝑘 = 𝑘 ∆𝜉 for 

any 𝑘 ∈ [0, 𝑁𝑡], where 𝑁𝑡 is the maximum number of time steps.  

 Temperature distribution 

The temperature distribution is evaluated using a finite difference method and Dirichlet boundary 

condition applied to the dimensionless energy equation. At time index 𝑘, and at node labelled (𝑖, 𝑗), 

Eq. (19) is rewritten as: 

(
𝜕𝑇𝑙
∗

𝜕𝜉
)
𝑖,𝑗

𝑘

− [(
𝜕2𝑇𝑙

∗

𝜕𝑥∗2
)
𝑖,𝑗

𝑘

+ (
𝜕2𝑇𝑙

∗

𝜕𝑦∗2
)
𝑖,𝑗

𝑘

] = 𝜂[(𝐺𝑙
∗)𝑖,𝑗
𝑘 − (𝑇𝑙

∗4)𝑖,𝑗
𝑘 ]                                (22) 

The left side of Eq. (22) is approximated by a finite differences method. The temperature is then 

approximated by a first order time forward difference method and set as: 

  (
𝜕𝑇𝑙
∗

𝜕𝜉
)
𝑖,𝑗

𝑘

≈
(𝑇𝑙
∗)
𝑘+1 

−(𝑇𝑙
∗)
𝑘

∆𝜉
+ 0(∆𝜉)                                                                                 (23) 

where, ∆𝜉 = 𝜉/𝑁𝑡. 

The second order of the partial differential equation, which represents the spatial variation of 

temperature in the (𝑥, 𝑦) reference is also given when using a central finite differences scheme as: 

(
𝜕2𝑇𝑙

∗

𝜕𝑥∗2
)
𝑖,𝑗

𝑘

≈
(𝑇𝑙
∗)
𝑖−1,𝑗

𝑘
−2(𝑇𝑙

∗)
𝑖,𝑗

𝑘
+(𝑇𝑙

∗)
𝑖+1,𝑗

𝑘

(∆𝑥∗)2
+ 0[(∆𝑥∗)2]                                                         (24) 
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(
𝜕2𝑇𝑙

∗

𝜕𝑦∗2
)
𝑖,𝑗

𝑘

≈
(𝑇𝑙
∗)
𝑖,𝑗−1

𝑘
−2(𝑇𝑙

∗)
𝑖,𝑗

𝑘
+(𝑇𝑙

∗)
𝑖,𝑗+1

𝑘

(∆𝑦∗)2
+ 0[(∆𝑦∗)2]                                                         (25) 

where, ∆𝑥∗ = ∆𝑥/𝐻 and ∆𝑦∗ = ∆𝑦/𝐻 . 

Substituting Eq. (23-25) into Eq. (22), implies: 

          
(𝑇𝑙
∗)
𝑘+1 

−(𝑇𝑙
∗)
𝑘

∆𝜉
− [

(𝑇𝑙
∗)
𝑖−1,𝑗

𝑘
−2(𝑇𝑙

∗)
𝑖,𝑗

𝑘
+(𝑇𝑙

∗)
𝑖+1,𝑗

𝑘

(∆𝑥∗)2
+
(𝑇𝑙
∗)
𝑖,𝑗−1

𝑘
−2(𝑇𝑙

∗)
𝑖,𝑗

𝑘
+(𝑇𝑙

∗)
𝑖,𝑗+1

𝑘

(∆𝑦∗)2
]  

= 𝜂[(𝐺𝑙
∗)𝑖,𝑗
𝑘 − (𝑇𝑙

∗4)𝑖,𝑗
𝑘 ]                                                                                 (26) 

with a truncation error of 0[(∆𝑥∗)2 × (∆𝑦∗)2 + ∆𝜉], as shown in [26]. 

Once 𝐺𝑖,𝑗
∗  is evaluated, it is integrated inside the energy equation Eq. (26) in order to deduce the 

dimensionless temperature (𝑇∗)𝑖,𝑗
  at the time index 𝑘 + 1. Using uniform cells, with ∆𝑥∗ = ∆𝑦∗ =

∆∗ and introducing the dimensionless Fourier number 𝐹0
∗ = ∆𝜉/∆∗2 leads to: 

             (𝑇𝑙
∗)𝑖,𝑗
𝑘+1 = 𝐹0

∗ [(𝑇𝑙
∗)𝑖−1,𝑗
𝑘 + (𝑇𝑙

∗)𝑖+1,𝑗
𝑘 + (𝑇𝑙

∗)𝑖,𝑗−1
𝑘 + (𝑇𝑙

∗)𝑖,𝑗+1
𝑘 − (4 −

1

𝐹0
∗) (𝑇𝑙

∗)𝑖,𝑗
𝑘 ]  

                           + 𝜂∆∗2[(𝐺𝑙
∗)𝑖,𝑗
𝑘 − (𝑇𝑙

∗4)𝑖,𝑗
𝑘 ]                                                                               (27) 

The stability condition of this previous equation is ensured by 𝐹0
∗ ≤ 1/4, while the maximum 

number of uniform cells to used is set by 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑚𝑎𝑥 ≤ 𝐸 (
1

√4∆𝜉
+ 1), where 𝐸 denotes 

integer part of the real concerned. When the dimensionless time 𝜉  ∞, then 𝐹0
∗  1/4; 

consequently the steady state is achieved and similar calculations yield to the same solution: 

                  (𝑇𝑙
∗)𝑖,𝑗
𝑘+1 =

1

4
{(𝑇𝑙

∗)𝑖−1,𝑗
𝑘 + (𝑇𝑙

∗)𝑖+1,𝑗
𝑘 + (𝑇𝑙

∗)𝑖,𝑗−1
𝑘 + (𝑇𝑙

∗)𝑖,𝑗+1
𝑘 }  

+ 𝜂∆∗2[(𝐺𝑙
∗)𝑖,𝑗
𝑘 − (𝑇𝑙

∗4)𝑖,𝑗
𝑘+1]                                                                         (28) 

Practically, the non-linearity of Eq. (28) is analyzed using a Taylor series truncated at the linear 

term following the relation: 

(𝑇𝑙
∗4)𝑖,𝑗

𝑘+1 = (𝑇𝑙
∗4)𝑖,𝑗

𝑘 + 4(𝑇𝑙
∗3)𝑖,𝑗

𝑘 [(𝑇𝑙
∗)𝑖,𝑗
𝑘+1 − (𝑇𝑙

∗)𝑖,𝑗
𝑘 ]                                                   (29) 

However, for one labelled subdomain of the participating medium, the dimensionless temperature 

appearing in Eq. (27) as the unknown variable, will be evaluated in the next section by numerical 

computation. A Crank-Nicolson scheme can also be involved for time discretization [12] and 

provides accurate solutions. Once the dimensionless temperature distribution 𝑇𝑙
∗ is deduced in a 
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subdomain labelled by 𝑙, it is used to calculate the conductive and the total heat flux distributions 

in the medium: thus, an iterative scheme is designed and proposed at Section 3. Consequently, one 

can deduce the dimensionless temperature distribution in the participating medium from the 

contribution of all the labelled sub-domains such that: 

 𝑇∗(𝜉, 𝑠∗) = ∑ 𝑇𝑙
∗(𝜉, 𝑠∗)20

1                                                                                        (30) 

 Heat flux distribution 

The total heat flux in the medium �⃗� (𝑡, 𝑠) = 𝑞𝑥
 𝑖 + 𝑞𝑦

 𝑗 is deduced from the summation of both 

conductive heat flux �⃗�𝑐(𝑡, 𝑠) and radiative heat flux �⃗�𝑟(𝑡, 𝑠). Similarly with the expressions of 

radiative heat flux developed in Ref. [24] when 𝐻 = 3ℎ , one has the relation below:   

�⃗� (𝑡, 𝑠) = −𝑘𝑐 ∇⃗⃗⃗𝑇(𝑡, 𝑠) + ∑ �⃗�𝑙
𝑟20

𝑙=1  ,                                                      (31) 

where the radiative heat flux is calculated at internal points with the temperature equation Eq. (28) 

using the relation: 

�⃗�𝑙
𝑟 = ∫ 𝐼𝑙(Ω)|Ω⃗⃗⃗. �⃗⃗�|𝑑Ω

 

Ω=4𝜋
 ,   𝑙 = 1,… 20                                                    (32) 

where �⃗⃗� denotes the outward normal to the considered boundary surface.  

In a dimensionless form, the total heat flux is set along 𝑥 and 𝑦 directions as: 

𝑞𝑥
∗ = −𝑁𝑝𝑙

𝜕𝑇∗

𝜕𝜏𝑥
+

𝑞𝑥
𝑟 

4𝜎𝐵𝑇𝑟𝑒𝑓
4                                                                          (33) 

and, 

𝑞𝑦
∗ = −𝑁𝑝𝑙

𝜕𝑇∗

𝜕𝜏𝑦
+

𝑞𝑦
𝑟 

4𝜎𝐵𝑇𝑟𝑒𝑓
4                                                                         (34) 

where 𝑞𝑥
𝑟  and 𝑞𝑦

𝑟 represent the expressions of the radiative heat flux along 𝑥 and 𝑦 axis; 𝜏𝑥 and 𝜏𝑦 

denote the optical thickness of the medium along the two 𝑥 and 𝑦 directions.  

  

3. Numerical results 

Suitable calculations dealing with the combined conductive-radiative heat transfer in a 2D semi-

transparent medium, with a centered obstacle of length ℎ have been carried out in the present paper. 

Now, one intends to evaluate the accuracy of the present method by displaying numerical results 

both at steady and transient states. One applied it to a simple (ℎ = 0) and complex (ℎ ≠ 0)  

geometries. All calculations have been performed with a computer DELL, Intel(R) Core(TM) i7-

8700 CPU@ 320 3.19 GHz, using a FORTRAN software.    
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The numerical computation follows an iterative scheme and the main steps are the following ones: 

a. Initialize the temperature 𝑇0 in the whole medium and at the boundary surfaces. 

b. Solve RTE by using the exact semi-analytical method for each subdomain labelled by 𝑙 at 

each point located by (𝑖, 𝑗) following the algorithm: 

 Compute the incident radiation 𝐺𝑖,𝑗
∗  from Eq. (18) at radiative equilibrium 

 Evaluate the radiative heat flux �⃗� 
𝑟  and the radiative source 𝑆𝑟. 

c. Solve the energy equation Eq. (20) to obtain dimensionless temperature distribution 𝑇∗ 

from Eq. (28). 

d. Repeat steps c until convergence with the criterion 𝑀𝑎𝑥 [
(𝑇𝑖,𝑗
∗ )
𝑘
−(𝑇𝑖,𝑗

∗ )
𝑘−1

(𝑇𝑖,𝑗
∗ )
𝑘−1 ] ≤ 10−5. 

The number of required iterations depends on the conduction radiation parameter, the quadrature 

and the number of cells choice. When running the studied cases, the results of 𝐺𝑖,𝑗
∗  have been 

obtained with less than 500 iterations with the same criterion indicated at step d. Contrariwise for 

the results of  𝑇𝑖,𝑗
∗ , less than 100 iterations have been useful at transient state to reach the steady 

one. 

3.1. Simple geometry : ℎ = 0 

The concerned geometry consists in a square cross section of 𝐻 ×𝐻 = 1 × 1 𝑚2 containing an 

absorbing, emitting but non-scattering medium. The thermal conductivity 𝑘𝑐 is constant, all the 

boundary surfaces are black (𝜀 = 1). The south boundary surface is hot, maintained at a reference 

constant temperature  𝑇𝑟𝑒𝑓 = 𝑇𝑠 = 100 𝐾 and the other one are cold at  𝑇𝑁 = 𝑇𝑊 = 𝑇𝐸 = 𝑇𝑟𝑒𝑓/2 ; 

temperature in the medium is initially imposed to be cold at 𝑇0 = 𝑇𝑟𝑒𝑓/2. With these conditions, 

dimensionless temperature distributions, 𝑇∗ = 𝑇/𝑇𝑟𝑒𝑓 and heat fluxes 𝑞∗ = 𝑞/4𝜎𝐵𝑇𝑟𝑒𝑓
4  are 

computed by an iterative process until convergence, then displayed and discussed. 

3.1.1. Steady-state 

The problem has already been investigated by several authors at steady-state such as Yen and 

Takara [1], Kim and Baek [2], Sakami et al. [7], Ismail and Salinas [25], where each of them used 

different methods such as FVM, finite element method (FEM), and DOM. When using the present 

method in the 2D enclosure, Fig. 3-(a) shows the evolution of the dimensionless temperature 𝑇∗ 

along the centerline position 𝑥/𝐻 = 0.5. The results have been obtained with the conduction-

radiation parameters 𝑁𝑝𝑙 ∈ {0.01, 0.1, 1}, 𝐻 = 1𝑚, a unit absorption coefficient 𝑘𝑎 = 1 𝑚
−1 

corresponding to a unit optical thickness (𝜏 = 𝑘𝑎𝐻) have also been validated with the numerical 

solutions proposed by Mishra et al. [6] at steady state conditions. The subsequent computation has 

been done with a choice of 21 × 21 rectangular grids to facilitate the validation of results. The 

same Fig. 3-(a) shows a great matching between the dimensionless temperature distribution given 

by Mishra et al. [6], taken as benchmark results and the present one. One can argue on a good 
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agreement with the literature according to the maximum relative error between the two shapes 

estimated at  
|𝑇𝑀𝑖𝑠ℎ𝑟𝑎
∗ −𝑇𝑃𝑟𝑒𝑠𝑒𝑛𝑡

∗ |

𝑇𝑀𝑖𝑠ℎ𝑟𝑎
∗ ≤ 10−5. 

 

 

 

 

 

 

 

Fig.3. Dimensionless temperature at = 𝐻/2 , ℎ = 0: (a) 𝑁𝑝𝑙 ∈ {1, 0.1, 0.01} and 𝑘𝑎 = 1𝑚
−1, (b) 𝑘𝑎 ∈

{5, 1, 0.1}𝑚−1 and 𝑁𝑝𝑙 = 0.1. 

 

The respective values assigned to the conduction-radiation parameter 𝑁𝑝𝑙 = 𝑘𝑐𝑘𝑎/(4𝜎𝑇𝑟𝑒𝑓
4 ) exist 

to show the influence of both conduction and radiation on the temperature distribution in the 

participating medium. When 𝑁𝑝𝑙 = 1, conduction predominates, hence only the hot boundary 

surface contribute substantially to heat transfer. The solution obtained remains similar with the 

case of pure conduction seen as the main mode of heat transfer. When 𝑁𝑝𝑙 = 0.1, neither 

conduction nor radiation predominates one over the other. Consequently, when the Planck number 

𝑁𝑝𝑙 decreases and reaches 0.01, the values of temperature increase but stay less than the case of 

pure radiation. In this condition, radiation heat transfer predominates over conduction. Sakami et 

al. [27], Rousse et al. [28], and Talukdar et al. [29] have already proven this analysis. At steady 

state, one can also observe on Fig. 3-(a) that, as 𝑘𝑎 increases, the participating medium does not 

enable radiations coming from boundary surfaces to penetrate in the medium. Fig. 3-(b) illustrates 

the effect of absorption coefficient 𝑘𝑎 on the dimensionless temperature profile at 𝑥 = 𝐻/2. One 

can note that when 𝑘𝑎 increases and reaches a large value such as 𝑘𝑎 = 5 𝑚
−1 for the present case, 

the shape of 𝑇∗ displayed becomes similar to a straight line, whereas in the opposite direction one 

can observe a curvilinear shape. For this purpose, it means that the medium becomes thick and the 

energy generated by radiation is very quickly dissipated by absorption process. When 𝑘𝑎 =

0.1 𝑚−1, the medium still participates weakly to radiative heat transfer, whereas from up to 𝑘𝑎 =

1 𝑚−1  there is a strong participation.  

3.1.1.1. Tabulated data of conductive-radiative quantities 
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In this section, the numerical results of 𝑇∗ are compared with the literature as well as the effect of 

cell numbers on 𝑇∗. The CPU time obtained for different values of 𝑁𝑝𝑙 and 𝑀𝜃 ×𝑀𝜑 is also 

presented. 

 

Table 1 

Comparison of dimensionless temperature 𝑇∗ at steady state for 𝑥 = 𝐻/2 at location 𝑦/𝐻 ∈

{0.3, 0.5, 0.7}, for 𝜏 = 1.0. 

𝑁𝑝𝑙 𝑦/𝐻 Wu and Ou [30] Yuen and Takara [1] Mishra et al [31] Mishra and Roy [32] Present 

     FDM-FVM LBM-FVM  

 

1.0 

0.3 0.733 0.737 0.737 0.737 0.737 0.733 

0.5 0.630 0.630 0.630 0.630 0.630 0.630 

0.7 0.560 0.560 0.564 0.564 0.564 0.563 

 

 

0.1 

0.3 0.760 0.763 0.759 0.759 0.759 0.755 

0.5 0.663 0.661 0.663 0.664 0.663 0.661 

0.7 0.590 0.589 0.594 0.596 0.596 0.591 

 

 

0.01 

0.3 0.791 0.807 0.789 0.782 0.783 0.789 

0.5 0.725 0.726 0.725 0.726 0.725 0.726 

0.7 0.663 0.653 0.666 0.676 0.677 0.662 

 

Table 2 

Effects of cell numbers on dimensionless temperature 𝑇∗ at 𝑥 = 𝐻/2, 𝑁𝑝𝑙 = 0.1, and  𝑘𝑎 = 1𝑚
−1, ℎ = 0 

using quadrature 𝑀𝜃 ×𝑀𝜑 = 6 × 6. 

𝑁𝑥 × 𝑁𝑦 𝑦/𝐻 = 0.2 𝑦/𝐻 = 0.5 𝑦/𝐻 = 0.7 

81 × 81 0.81224 0.65977 0.58941 

101 × 101 0.81387 0.65965 0.58935 

125 × 125 0.81400 0.65956 0.58879 

251 × 251 0.81542 0.66171 0.59134 

 

Table 3 

Computational time to obtain a converged solution of 𝑇∗ at ℎ = 0, 𝑘𝑎 = 1𝑚
−1, 𝑁𝑥 × 𝑁𝑦 = 251 × 251. 

 

 

 

 

Table 1 highlights the values of  𝑇∗ that correspond to the absorbing-emitting medium computed 

when the optical thickness takes a value 𝜏 = 1. The results are presented at three locations along 

the centerline 𝑥 = 𝐻/2  for three values of the conduction-radiation parameter 𝑁𝑝𝑙 and compared 

with those reported in the literature [1] and [30-32]. For all aspect ratios in the LBM+DTM, 

LBM+DOM, LBM+FVM with 6 × 12 rays used for numerical integrations, there is not a 

significant difference on results obtained using the present method compared with the literature. 

CPU time 
 

 

ℎ = 0 

𝑀𝜃 ×𝑀𝜑 𝑁𝑝𝑙 = 1 𝑁𝑝𝑙 = 0.1 𝑁𝑝𝑙 = 0.01 

4 × 4 6min 45s 6min 45s 6min 43s 
5 × 5 10min 2s 10min 8s 10min 8s 
6 × 6 13min 53s 14min 6s 14min 8s 
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In this case where we are dealing with a simple geometry (without obstacle), the advantage to be 

noted is related to the ease of handling and computing the semi-analytical solutions of the problem.  

Using the present method, Table 2 presents the effects of cell numbers on dimensionless 

temperature 𝑇∗ set at three locations, 𝑦/𝐻 = 0.2, 0.5 and 0.7 along the centerline 𝑥 = 𝐻/2. From 

the same table, 𝑀𝜃 ×𝑀𝜑 = 6 × 6 directions have been used, and there is no significant variation 

on results obtained for small and large values of cell numbers. 

Table 3 shows the computational time taken to obtain the converged results of  𝑇∗ at steady state 

using the present method. The number of cells used in computation is 𝑁𝑥 ×𝑁𝑦 = 251 × 251.  For 

𝑁𝑝𝑙 = 1, there is dominance of conduction compared to radiation and since conduction is a local 

phenomenon, the results converge faster with almost all the values of  𝑀𝜃 ×𝑀𝜑 involved in the 

table. In contrast to 𝑁𝑝𝑙 = 0.01, there is dominance of radiation compared to conduction, and 

convergence on results is reached with a difference of 15 s with 𝑀𝜃 ×𝑀𝜑 = 6 × 6; 6 s with 𝑀𝜃 ×

𝑀𝜑 = 5 × 5 and 2 s with 𝑀𝜃 ×𝑀𝜑 = 4 × 4 respectively. The more the number of directions 𝑀𝜃 ×

𝑀𝜑 increases, the more the CPU time also increases. From these tabulated results on can assert 

with good confidence, the accuracy and fastness of the method expanded.  

3.1.1.2. Numerical simulation of conductive-radiative quantities 

In this section, the numerical simulations of dimensionless temperature and heat flux are presented 

for different values of the conduction-radiation parameter.   

 

 

 

 

 

 

Fig.4. Dimensionless temperature distribution 𝑇∗: 𝜏 = 1, 𝜀 = 1, ℎ = 0, 𝑁𝑝𝑙 ∈ {0.01,0.1,1}. 

Fig.4 highlights three main numerical simulations of dimensionless temperature 𝑇∗ in a semi-

transparent medium enclosed in a 2D enclosure when there is no obstacle (ℎ = 0) and for the 

values of 𝑁𝑝𝑙 = 0.01, 0.1 and 1. The aim is to show the behavior of  𝑇∗ with the conduction-

radiation parameter 𝑁𝑝𝑙. The respective simulations have been displayed at steady state; it enables 

to observe the variation of 𝑇∗ during a long time until convergence. 𝑇∗ decreases from hot to cold 

points belonging the semi-transparent medium. Thus, when the value of 𝑁𝑝𝑙 increases, the set of 

𝑇∗ ℎ = 0 

𝑁𝑝𝑙 = 1 

1 

𝑇∗ ℎ = 0 

𝑁𝑝𝑙 = 0.1 

1 

𝑇∗ ℎ = 0 

𝑁𝑝𝑙 = 0.01 

1 
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cold points neighboring the north, est and west boundary surfaces increase, because of lack in 

radiation propagation. The medium absorbs more radiations and temperature distribution depends 

straight with the value imposed at the south boundary surface.  

 

 

  

 

   

   

   

Fig.5. Dimensionless conductive-radiative heat flux 𝑞𝑦
∗  following y-direction for 

𝑁𝑝𝑙 ∈ {0.01, 0.1, 1}, 𝜀 = 1, 𝑘𝑎 = 1𝑚
−1, ℎ = 0. 

Fig.5 shows simulations of the dimensionless conductive-radiative heat flux following 𝑦-direction 

computed for 𝑁𝑥 = 𝑁𝑦 = 251, 𝜀 = 1, 𝑘𝑎 = 1𝑚
−1, and 𝑁𝑝𝑙 ∈ {0.01, 0.1,1}. When, 𝑁𝑝𝑙 = 0.01 

conduction in the medium remains ineffective compared to radiation. Hence, the simulation takes 

quietly a view similar to Fig. 8 in the Ref. [23] when 𝜏 = 1. At once 𝑁𝑝𝑙 starts to increase from 

0.01 to 1, energy transfer becomes straightly dominated by conduction heat transfer due to the hot 

boundary surface. Regardless the difference on magnitude of each simulation presented, there is a 

symmetry with respect to the centerline position  𝑥/𝐻 = 0.5. The numerical data of conductive-

radiative heat flux obtained to display Fig. 5 using Eq. (34), can also be used to deduce the 

evolution of heat flux at the boundaries as already discussed in [12, 15, 33]. The authors have 

shown in 1-D, the heat flux by radiation and/or conduction at the hot wall of the 2-D enclosure. 

3.1.2.  Transient state 

In this section, the results of 𝑇∗obtained with the present method are compared with the literature 

and the numerical simulations of the dimensional temperature distribution at different times 𝜉 are 

presented.   

3.1.2.1. Numerical verification 
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Fig.6. Dimensionless temperature 𝑇∗ in the participating medium when ℎ = 0, 𝑘𝑎 = 1𝑚
−1 at different 

instant, with 𝑁𝑝𝑙 ∈ {0.01,1, 0.1} for (a), (b) and (c) respectively. 

 

Mishra and Lankadasu [6], have used the LBM and the collapse-dimension method (CDM) to 

solve energy equation and radiative information. The authors have analyzed it in a 2D geometry 

with unstructured grids, no longer with the one proposed by Mishra et al. [32] using LBM-FVM 

and/or FVM-FVM. It is shown on Fig. 6-(a) to Fig. 6-(c), an evolution of dimensionless 

temperature along the centerline 𝑥 = 𝐻/2 at various instants 𝜉 and for different conduction-

radiation parameters 𝑁𝑝𝑙 = 0.01, 0.1 and 1. A dimensionless time step has a constant value of 

∆𝜉 = 5. 10−4, where ∆𝜉 = 𝜉/𝑁𝑡. Steady state is reached at 𝜉 = 28 × 10−2 by increasing gradually 

the number of time index 𝑘; thereby one can also refer to Eq. (28) to get the same result. On the 

other hand, the steady-state condition has been achieved when the maximum variation of 

dimensionless temperature at any location between two consecutive time levels obeys to 

|𝑇𝑀𝑖𝑠ℎ𝑟𝑎
∗ −𝑇𝑃𝑟𝑒𝑠𝑒𝑛𝑡

∗ |

𝑇𝑀𝑖𝑠ℎ𝑟𝑎
∗ ≤ 10−5. Obviously, the present results displayed on Fig. 6-(a) to Fig. 6-(c) 

converge suitably with those existing in the literature. According to the present study, some 

investigations can also be done using Dirichlet and Robin boundary conditions [12]. Indeed, the 
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use of the thermal Robin boundary conditions requires the knowledge of the convective exchange 

coefficient ℎ𝑐 of the wall; the surrounding temperature 𝑇∞ and the Biot number 𝐵𝑖 =
ℎ𝑐𝐻

𝑘𝑐
 and one 

can neglect the gain and losses by radiation for sake of complexity on equations to expand.   

3.1.2.2. Numerical simulations 

 

 

 

 

 

 

 

Fig.7. Transient dimensionless temperature distribution 𝑇∗: 𝜏 = 1, 𝜀 = 1, ℎ = 0, 𝑁𝑝𝑙 = 0.1, 𝜉 ∈ {1,5,15} × 10−3. 

In this section, three simulations of the transient dimensionless temperature distribution are 

presented for a simple geometry (𝐻 = 1𝑚). In this case, one used a dimensionless time step ∆𝜉 =

10−6 and 𝑁𝑥 × 𝑁𝑦 = 251 × 251 cells. This choice of parameters has been done in order to respect 

the condition of stability 𝐹0 ≤ 1/4 in Eq. (27) and to display suitable simulations. The choice of 

𝑁𝑝𝑙 = 0.1 is only because neither radiation nor conduction predominates in the process of heat 

transfer. However, the simulations show that heat spreads through the medium as time increases. 

For 𝜉 = 0.001, the program takes 58 s to generate the results, whereas for 𝜉 = 0.005, it takes 4 

min 17 s and for 𝜉 = 0.015 it takes 14 min 5s. Therefore, even if one increases or decreases the 

value of 𝑁𝑝𝑙, the proposed simulations would have kept their symmetrical shapes, but with 

different CPU time to obtain the results.  

Finally, it should be noted that the computational time needed to reach convergence using the 

present method as shown in Table 3, increases when the conduction-radiation parameter 𝑁𝑝𝑙 

decreases. So, in contrast to Ghattassi et al. [12] where the Galerkin method has been used, less 

important the contribution of the radiative part, a more quickly steady state was reached.  

3.2.Complex geometry: ℎ ≠ 0 

In this section, one intends to present the numerical results of dimensionless temperature and heat 

flux involved for the conductive-radiative heat transfer. Computation has been performed at steady 

and transient state when 𝐻 = 1𝑚, to show how heat transfer propagates in the semi-transparent 
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medium. The predicted dimensionless temperature 𝑇∗ and heat flux distributions have been 

displayed and discussed.  

3.2.1. Steady state 

In this sub-section, the impact of the obstacle, the cell numbers, the discrete directions and the 

conduction-radiation parameter are presented and discussed for 𝐻 = 3ℎ. Some numerical 

simulations of dimensionless temperature 𝑇∗ distribution are also given for 𝐻 = 3ℎ, 𝐻 =

(2 + √5)ℎ and 𝐻 = 8ℎ. 

 

 

 

 

 

 

 

Fig.8. Dimensionless temperature profile when 𝐻 = 3ℎ, 𝑘𝑎 = 0.1𝑚
−1: for (a) 𝑁𝑝𝑙 = 1, 

𝑥/𝐻 ∈ {0.2, 0.5, 0.7}, for (b)  𝑁𝑝𝑙 ∈ {0.1, 0.5, 1}. 

 

On Fig.8, the profile of  𝑇∗ is plotted using an 𝑀6 ×𝑀6 angular discretization, additionally the 

boundary and initial conditions are those stated in sub-section 3.1. Hence, Fig. 8-(a) informs kindly 

that, the maximum values of  𝑇∗ are reached along the symmetry position 𝑥/𝐻 = 0.5. At the same 

line, when 𝑦/𝐻 ∈ ]
1

3
,
2

3
[, the medium doesn’t participate to heat transfer that is why the profile is 

segmented into two parts because of the centered obstacle. On the other hand Fig. 8-(b) suitably 

shows the effect of  𝑁𝑝𝑙 on the dimensionless temperature profile at 𝑥/𝐻 = 0.5. Higher the 

parameter 𝑁𝑝𝑙 is and higher the decrease of  𝑇∗ and the computation time is optimized. At the 

center line position, when 𝑦/𝐻 ≥ 1/3, the obstacle blocks any particle carrying heat from the 

participation and releases at 𝑦/𝐻 ≥ 2/3, that is why there is an empty space when 𝑦/𝐻 ∈ ]
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3
,
2

3
[.  
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Fig.9. Dimensionless temperature 𝑇∗along the centerline position, 𝑥 = 𝐻/2 for 𝐻 = 3ℎ, 𝑘𝑎 ∈ {0.1,1,5}𝑚
−1 and 

𝑁𝑝𝑙 = 0.1, 𝑁𝑥 × 𝑁𝑦 = 251 × 251, 𝜀 = 1. 

Fig. 9 indicates how the obstacle modifies the temperature profile along the centerline position of 

the medium. For optically thick medium (𝑘𝑎 = 5 𝑚
−1), the heat blockage effect is significant, the 

medium behaves like a solid semi-transparent medium, and the CPU time elapsed to reach the 

convergence has been 18min 51s. On the other hand, when the medium becomes relatively thin 

(free path), the obstacle does not have a considerable influence on the heat propagation, the CPU 

time has decreased to 15min 14s and 13min 7s when 𝑘𝑎 = 1 𝑚
−1 and 𝑘𝑎 = 0.1 𝑚

−1 respectively. 

3.2.1.1. Tabulated data of conductive-radiative quantities 

 

Table 4 

Effect of cell numbers on dimensionless temperature 𝑇∗ at 𝑥/𝐻 = 0.5, 𝐻 = 3ℎ, 𝑘𝑎 = 0.1𝑚
−1, 

𝑁𝑝𝑙 = 0.1. 

𝑇∗ 
𝑁𝑥 × 𝑁𝑦 𝑦/𝐻 = 0.2 𝑦/𝐻 = 0.7 𝑦/𝐻 = 0.9 

51 × 51 0.8247 0.6063 0.5369 

151 × 151 0.8260 0.6120 0.5372 

251 × 251 0.8260 0.6110 0.5364 

 

Table 5 

Effect of discrete directions on dimensionless temperature 𝑇∗ at  𝑥/𝐻 = 0.5, 𝐻 = 3ℎ 𝑘𝑎 = 0.1𝑚
−1, 

𝑁𝑝𝑙 = 0.1, 𝑁𝑥 ×𝑁𝑦 = 201 × 201. 

𝑇∗ 

𝑀𝜃 ×𝑀𝜑 𝑦/𝐻 = 0.2 𝑦/𝐻 = 0.7 𝑦/𝐻 = 0.9 

4 × 4 0.8266 0.6123 0.5374 

5 × 5 0.8266 0.6124 0.5374 

6 × 6 0.8235 0.6123 0.5374 
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Table 6  

Computational time to obtain a converged solution of 𝑇∗for 𝐻 = 3ℎ, 𝐻 = (2 + √5)ℎ, 

 at 𝑘𝑎 = 1𝑚
−1, 𝑁𝑥 × 𝑁𝑦 = 251 × 251. 

 

 

 

 

 

 

Table 4 shows how the cell numbers modify quantitatively the values of  𝑇∗ in the medium. So, 

higher the cell numbers are, more the results are approximated accurately. The series expansions 

of 𝐵𝑖𝑠𝑛(𝑢, 𝜃), with 𝑢 ∈ [0, 𝑘𝑎𝐻] and 𝜃 ∈ ]0,
𝜋

2
[ remain accurate up to the value of 𝑢 ≤ 8. Then, 

one should be careful on the choice of the number of terms in the series above this limit because 

of the round-off errors; why a double precision programming is recommended to evaluate the 

results expected [24]. Table 5 shows the effects of discrete directions in the computation of  𝑇∗ 

values. One can note that, when 𝑦/𝐻 = 0.9  there is no a significant change on results when the 

discrete directions variate. This is because heat transfer by radiation, becomes weak when 𝑦/𝐻 ≥

0.9 and 𝑁𝑝𝑙 = 0.1. In contrast, there is a slight change on results when one reaches close to the hot 

boundary surface. Table 6 gives prominence to the fact that, as the dimensions of the square 

obstacle increase, the CPU time also increases. This is because the number of sub-domains where 

the integral solutions of the radiative transfer equations have been calculated and computed had 

increased. So, one can also note that the CPU time is greater in the case of complex geometry 

compared with the one of simple geometry (ℎ = 0) and as 𝑁𝑝𝑙 increases, the CPU time increases 

slightly for this complex geometry. 

3.2.1.2. Numerical simulation of conductive-radiative quantities  

 case: 𝐻 = 3ℎ  

 

 

 

 

 

 

 

 

 

CPU time 

 

 

𝐻 = 3ℎ 

𝑀𝜃 ×𝑀𝜑 𝑁𝑝𝑙 = 1 𝑁𝑝𝑙 = 0.1 𝑁𝑝𝑙 = 0.01 

4 × 4 7 min 32 s 7 min 34s 7 min 35 s 
5 × 5 10 min 49 s 10 min 50 s 10 min 52 s 
6 × 6 14 min 52 s 14 min 54 s 14 min 56 s 

 

 

𝐻 = (2 + √5)ℎ 

4 × 4 11 min 56 s 12 min 1s  12 min 2 s 

5 × 5 15 min 50 s 15 min 52s 15 min 59 s 

6 × 6 20 min 11 s 20 min 15s 20 min 16s 
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Fig.10. Dimensionless temperature distribution 𝑇∗ and total heat flux 𝑞𝑦
∗ : 𝐻 = 3ℎ, south boundary surface is 

hot, 𝑘𝑎 = 1𝑚
−1, 𝑁𝑥 = 𝑁𝑦 = 251, 𝑁𝑝𝑙 ∈ {0.01, 0.1, 1}. 

 

Fig. 10 illustrates the effect of conduction-radiation parameter on the dimensionless temperature 

and the total heat flux fields, when 𝐻 = 3ℎ, 𝑘𝑎 = 1𝑚
−1 and 𝑁𝑥 = 𝑁𝑦 = 251. The results of 𝑇∗ 

presented inform that, more 𝑁𝑝𝑙 increases, less heat transfer propagates in the participating 

medium. Similar simulations have been shown in the case of radiation heat transfer [23], but with 

different physical profiles. When 𝑁𝑝𝑙 = 0.01, there are more hot points in the participating 

medium, but those hot points decrease when 𝑁𝑝𝑙 increases because of the medium that strongly 

absorbs radiations. Thus, similar observations are made at Fig. 4 in the sub-section 3.1.1, except 

the fact; there is an obstacle in this case. The results of 𝑞𝑦
∗  show that, when 𝑁𝑝𝑙 = 0.01, heat 

transfer in the medium is ensured by radiation. This analysis remains in accordance with Eq. (34), 

and the profile is very close to Fig. 5 obtained when there is no obstacle, but with different data 

because some rays have been blocked. When 𝑁𝑝𝑙 reaches the unit value, conduction heat transfer 

takes over, mostly the hot south boundary surface contributes to energy transfer, and the wall heat 

fluxes can be deduced. 
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Fig.11. Dimensionless temperature distribution 𝑇∗: 𝐻 = (2 + √5)ℎ, south boundary surface is hot, 

𝑘𝑎 = 1𝑚
−1, 𝑁𝑥 = 𝑁𝑦 = 251, 𝑁𝑝𝑙 ∈ {0.01, 0.1, 1}. 

 

When the size of the centered obstacle decreases on Fig. 11, the number of hot points in the 

medium increases. Since conduction heat transfer is looked as a local phenomenon, when 𝑁𝑝𝑙 =

1, the obstacle doesn’t modify temperature profile because the effect of radiation becomes not 

effective. Whereas, at 𝑁𝑝𝑙 = 0.01, the blockage of radiations from hot boundary surface modifies 

the curve shape of  𝑇∗, but keep the symmetry because of the geometry. When 𝑁𝑝𝑙 = 0.1, it is one 

of the best cases to analyze the combined conduction-radiation phenomenon, because neither 

conduction, nor radiation predominates. 

 Case : 𝐻 = 8ℎ 

 

  

 

 

 

 

 

 

Fig.12. Dimensionless temperature distribution 𝑇∗: 𝐻 = 8ℎ, external boundary surfaces of the centered 

obstacle are hot, 𝑘𝑎 = 1𝑚
−1, 𝑁𝑥 = 𝑁𝑦 = 251, 𝑁𝑝𝑙 ∈ {0.01, 0.1, 1}. 
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Numerical simulations shown at Fig. 12 have been performed when the external surfaces of the 

centered obstacle are kept hot 𝑇𝑟𝑒𝑓, but the boundary surfaces of the 2D enclosure are maintained 

cold, at the initial temperature in the medium 𝑇0. Absorption coefficient is 𝑘𝑎 = 1𝑚
−1, 

corresponding to a unit optical thickness (𝜏 = 𝑘𝑎𝐻), with 𝐻 = 1𝑚. In this case, the size of the 

centered obstacle is small and for 𝑁𝑝𝑙 = 0.1, neither conduction nor radiation predominates one 

on the other. The curves describing the set of hot points in the participating medium follow concave 

profiles around the centered obstacle. The number of the hot points concerned variates with the 

conduction-radiation parameter. Therefore, more 𝑁𝑝𝑙 increases, better the number of hot points is. 

When 𝑁𝑝𝑙 increases and reaches a high value, the number of hot points also increases and reaches 

a threshold; because only conduction predominates at this moment in the process of heat transfer.  

With regard to the suitable previous simulations, the complexity of the geometry makes increase 

the number of sub-domains where the semi-analytical solutions are calculated. Therefore, each 

given geometry corresponds to different kind of equations modelling the problem and the smaller 

the dimensions of the obstacle, the greater the difficulty on simulations. By the way, as compared 

with the numerical methods like DOM, the present one doesn’t suffer from ray effect when one 

solves the radiative transfer equation [23] before combining it to the energy equation.  

3.2.1.3. Effect of the obstacle on conduction-radiation temperature 

The aim of this subsection is to present how the obstacle modifies quantitatively heat transfer in 

the participating medium. Therefore, Table.5 illustrates it with the corresponding values of  𝑇∗ for 

ℎ = {0, √5 − 2, 1/3}𝐻 along the y-direction of the 2D enclosure. Thus, the choice of 𝑁𝑝𝑙 = 0.1 is 

made because there is a good interaction between conduction and radiation heat transfer. So, there 

is a slight difference on the values of  𝑇∗ obtained when ℎ = 0, compared with those of ℎ ≠ 0, 

because of blockage of rays in the medium. When, ℎ = (√5 − 2)𝐻,and  ℎ = 𝐻/3, the radiation 

contributes less because the size of the obstacle becomes more important, then some rays from 

top, bottom,  left and right sides of the participating medium are blocked. Consequently, more the 

size of the obstacle decreases more the values of  𝑇∗ converges to those computed with  ℎ = 0. If 

one continues this investigation for low value of 𝑁𝑝𝑙, some results already established for pure 

radiation [23] can be used. On the other hand, if  𝑁𝑝𝑙 takes large values, radiation heat transfer 

becomes ineffective and the obstacle does not affect heat transfer, because conduction heat transfer 

is a local phenomenon.  

 

Table.7  

Effect of the obstacle on conductive-radiative dimensionless temperature, 𝑁𝑝𝑙 = 0.1, 𝑘𝑎 = 1𝑚
−1, 𝑁𝑥 = 𝑁𝑦 = 251 

at the centerline position 𝑥/𝐻 = 0.5. 

 



27 

 

 

 

 

 

 

 

 

 

3.2.2. Transient state 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑇∗ 

𝑦/𝐻 ℎ = 0 ℎ = (√5 − 2)𝐻 ℎ = (1/3)𝐻 

0.0 1.000 1.000 1.000 

0.1 0.896 0.895 0.894 

0.2 0.818 0.814 0.812 

0.3 0.755 0.745 0.744 

0.4 0.703 … … 

0.5 0.661 … … 

0.6 0.624 … … 

0.7 0.591 0.584 0.582 

0.8 0.560 0.550 0.550 

0.9 0.530 0.530 0.530 
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Fig.13. Transient dimensionless temperature 𝑇∗ in the participating medium when 𝐻 = 3ℎ, 𝑘𝑎 = 1𝑚
−1 at different 

instant 𝜉,with 𝑁𝑝𝑙 ∈ {0.01,0.1, 1} for (a), (b) and (c) respectively. 

 

The numerical results of 𝑇∗ at different instant 𝜉 and with different values of 𝑁𝑝𝑙 along a centerline 

position 𝑥/𝐻 = 0.5 are presented in the case of 𝐻 = 3ℎ, ∆𝜉 = 5. 10−4, 𝑁𝑥 = 𝑁𝑦 = 21. The 

numerical simulations of dimensionless temperature distribution at different instant 𝜉 are also 

displayed and discussed when 𝐻 = 3ℎ and 𝐻 = (2 + √5)ℎ. 

When 𝑁𝑝𝑙 ∈ {0.01,0.1, 1}, one can observe through the shape of the curves shown in Fig. 13 that 

one gets closer to the steady state as the time increases. Unfortunately, the steady state is not 

reached there during the same elapsed time, because the more  𝑁𝑝𝑙 decreases, the faster it is 

reached. In this case dealing with complex geometry, the obstacle blocks rays coming from north, 

south, est and west sides of the 2-D enclosure. When the value of 𝑁𝑝𝑙 decreases and facilitates the 

predominance of radiation, all the rays will not fully participate in the heat transfer because of the 

obstacle which will block them. Consequently, in the same conditions when the values of 𝑁𝑝𝑙 

decrease, the obstacle modifies quantitatively and qualitatively the field of conduction-radiation 

temperature in the semi-transparent medium. 

3.2.2.1.Numerical simulations  

The numerical simulations presented concern the geometries 𝐻 = 3ℎ, and 𝐻 = (2 + √5)ℎ. The 

dimensionless step time ∆𝜉 = 10−6 and 𝑁𝑥 = 𝑁𝑦 = 251 have been used to respect the condition 

of stability and to display suitable simulations. 

 Case: 𝐻 = 3ℎ 

 

 

 

 

 

 

 

 

Fig. 14. Transient dimensionless temperature distribution 𝑇∗ for  𝐻 = 3ℎ, south boundary surface is 

hot, 𝑘𝑎 = 1𝑚
−1, 𝑁𝑥 = 𝑁𝑦 = 251, 𝑁𝑝𝑙 = 1, 𝜉 = {1,5,20}×10−3. 
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Fig. 15. Transient dimensionless temperature distribution 𝑇∗ for  𝐻 = 3ℎ, south boundary surface is 

hot, 𝑘𝑎 = 1𝑚
−1, 𝑁𝑥 = 𝑁𝑦 = 251, 𝑁𝑝𝑙 = 0.1, 𝜉 = {1, 5,20}×10−3. 

 

Fig. 16. Transient dimensionless temperature distribution 𝑇∗ for  𝐻 = 3ℎ, south boundary surface is 

hot, 𝑘𝑎 = 1𝑚
−1, 𝑁𝑥 = 𝑁𝑦 = 251, 𝑁𝑝𝑙 = 0.01, 𝜉 = {1,5,20}×10−3. 

 

 

When 𝑁𝑝𝑙 = 1 and 𝜉 = {1, 5, 20} × 10−3, heat spreads slowly from the south boundary to the 

north one of the participating medium but keeps it symmetry with respect to the line 𝑦 = 0.5. 

Steady state takes considerable time to reach when 𝑁𝑝𝑙 = 1, because of conduction predominance. 

When 𝑁𝑝𝑙 = 0.1 there is a faster propagation of heat between 0.001 < 𝜉 ≤ 0.005 compared with 

the case of 𝑁𝑝𝑙 = 1. This is because radiation spreads fastly there during a short time; furthermore, 

when  𝜉 > 0.02 one tends towards steady state. When 𝑁𝑝𝑙 = 0.01, radiation imposes that heat 

propagates very quickly by deflecting the obstacle until reaching the north boundary in a very short 

time. Consequently, at 𝜉 = 0.005 steady state is already reached compared with those cases where 

𝑁𝑝𝑙 takes the values of 1 and 0.1. These proposed numerical simulations also approve the behavior 

of the 1D numerical results presented in Fig. 13.  
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 Case: 𝐻 = (2 + √5)ℎ 

 

 

 

 

 

 

 
 

Fig. 17. Transient dimensionless temperature distribution 𝑇∗ for  𝐻 = (2 + √5)ℎ, south boundary surface is 

hot, 𝑘𝑎 = 1𝑚
−1, 𝑁𝑥 = 𝑁𝑦 = 251, 𝑁𝑝𝑙 = 1, 𝜉 = {1,5,20}×10−3. 

 

 

 

 

 

 

 

 

Fig. 18. Transient dimensionless temperature distribution 𝑇∗ for  𝐻 = (2 + √5)ℎ, south boundary surface is 

hot, 𝑘𝑎 = 1𝑚
−1, 𝑁𝑥 = 𝑁𝑦 = 251, 𝑁𝑝𝑙 = 0.1, 𝜉 = {1, 5,20}×10−3. 
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Fig. 19. Transient dimensionless temperature distribution 𝑇∗ for  𝐻 = (2 + √5)ℎ, south boundary surface is 

hot, 𝑘𝑎 = 1𝑚
−1, 𝑁𝑥 = 𝑁𝑦 = 251, 𝑁𝑝𝑙 = 0.01, 𝜉 = {1,5,20}×10−3. 

 

 

Fig. 17, Fig. 18, and Fig. 19 above illustrate the numerical simulations of  𝑇∗ with the use of 

parameters 𝑁𝑝𝑙 ∈ {001, 0.1, 1} at different instant 𝜉 ∈ {1, 5, 20} × 10−3 and when the size of the 

obstacle obeys to 𝐻 = (2 + √5)ℎ. The behavior of the simulations here is not far from those 

presented on Fig. 16, but the obstacle is smaller and enables more rays travel from south to north 

boundaries. There is a slight problem of symmetry there because it becomes difficult to mesh the 

geometry when the size of the obstacle is small. 

With regard to the deep analysis carried out, although the present method uses the exact calculation 

of the integral form of radiative transfer equation, it provides suitable results for optically thick 

medium [23]. Nevertheless, for the combined conductive-radiative heat transfer, when 𝑁𝑝𝑙 

becomes close to zero with an optical thickness 𝜏 ≥ 5 the present method leads to slight errors in 

computations. 

4. Conclusion 

An investigation on the combined conduction-radiation heat transfer in 2D semi-transparent 

medium with a centered obstacle has been carried out. Exact semi-analytical and then, numerical 

formulation of the problem has been presented. Modelling of radiation heat transfer has been 

established similarly with a ray tracing method adapted for the present geometry, and energy 

equation have been computed with the centered finite differences method. Conduction-radiation 

temperature and the total heat flux have been calculated, simulated then displayed both for simple 

and complex geometries. The effect of the conduction radiation parameter, the cell numbers, the 

discrete directions and the size of the cavity have been discussed. Numerical results of 

dimensionless temperature when there is no obstacle in the medium have been compared with the 

literature in good accuracy, both at steady and transient states. Several simulations of the semi-

transparent medium have also been proposed when there is variation of the conduction-radiation 

parameter and the size of the obstacle. The present method used to solve the conductive-radiative 

problem in complex geometry, have been realized with satisfactory computation time and without 

ray effect from radiation. Without some difficulties encountered with the use of regular grids in 

this irregular geometry, the method is promising to solve the conductive-radiative heat transfer in 

complex geometries. Later, one intends to combine convection-conduction and radiation of real 

gases or fluid flow filled in a similar geometry with diffusely reflecting boundaries.  
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Appendix A.   Dimensionless parameters 

Time: 𝜉 =
𝐷

𝐻2
𝑡, where 𝐷 is the thermal diffusivity given by 𝐷 = 𝑘𝑐/𝜌𝐶𝑝. 

Space coordinates:                   𝑥∗ =
𝑥

𝐻
 ;             𝑦∗ =

𝑦

𝐻
 . 

Temperatures:                          𝑇∗ =
𝑇

𝑇𝑟𝑒𝑓
 ;         𝑇0

∗ =
𝑇0

𝑇𝑟𝑒𝑓
 . 

Radiative quantities:                𝐺∗ =
𝐺

4𝜎𝐵𝑇𝑟𝑒𝑓
4 ;   𝑞𝑟

∗
=

𝑞𝑟
 

4𝜎𝐵𝑇𝑟𝑒𝑓
4   and  𝑆𝑟

∗
=

𝑆𝑟

4𝜎𝐵𝑇𝑟𝑒𝑓
4  . 

Total heat flux:                        𝑞𝑥
∗ =

𝑞𝑥
 

4𝜎𝐵𝑇𝑟𝑒𝑓
4  ;    𝑞𝑦

∗ =
𝑞𝑦
 

4𝜎𝐵𝑇𝑟𝑒𝑓
4 . 

Planck number:                       𝑁𝑝𝑙 =
𝑘𝑐𝑘𝑎

4𝜎𝐵𝑇𝑟𝑒𝑓
3  .  
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