N
N

N

HAL

open science

Tractography-based connectomes are dominated by
false-positive connections
Klaus H Maier-Hein, Peter Neher, Jean-Christophe Houde, Marc-Alexandre
Coté, Eleftherios Garyfallidis, Jidan Zhong, Maxime Chamberland,
Fang-Cheng Yeh, Ying-Chia Lin, Qing Ji, et al.

» To cite this version:

Klaus H Maier-Hein, Peter Neher, Jean-Christophe Houde, Marc-Alexandre Coté, Eleftherios Gary-
fallidis, et al.. Tractography-based connectomes are dominated by false-positive connections. 2016.

hal-03007290

HAL Id: hal-03007290
https://hal.science/hal-03007290

Preprint submitted on 16 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03007290
https://hal.archives-ouvertes.fr

bioRxiv preprint first posted online Nov. 7, 2016; doi: http://dx.doi.org/10.1101/084137. The copyright holder for this preprint (which was
not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission.

Tractography-based connectomes are dominated by false-positive
connections

Klaus H. Maier-Hein*?, Peter Neher?, Jean-Christophe Houde®, Marc-Alexandre Co6té°, Eleftherios
Garyfallidis®, Jidan Zhong8, Maxime Chamberland®, Fang-Cheng Yeh", Ying-Chia Lin', Qing Jil, Wilburn
E. Reddick’, John O. Glass/, David Qixiang Chen*, Yuanjing Feng', Chengfeng Gao', Ye WU/, Jieyan Ma™,
H Renjie™, Qiang Li™", Carl-Fredrik Westin°, Samuel Deslauriers-Gauthier®, J. Omar Ocegueda
Gonzélez®, Michael Paquette®, Samuel St-Jean®, Gabriel Girard®, Frangois Rheault®, Jasmeen Sidhu®,
Chantal M.W. Tax", Fenghua Guo', Hamed Y. Mesri", Szabolcs David", Martijn Froeling®, Anneriet M.
Heemskerk", Alexander Leemans'’, Arnaud Boréd, Basile Pinsard®®, Christophe Bedetti®*", Matthieu
Desrosiersd, Simona Brambati?, Julien Doyon®, Alessia Sarica!, Roberta Vasta', Antonio Cerasat, Aldo
QuattroneY, Jason Yeatman', Ali R. Khan¥, Wes Hodges*, Simon Alexander*, David Romascano?,
Muhamed Barakovic?, Anna Auria%, Oscar Esteban®, Alia Lemkaddem?¢, Jean-Philippe Thiran®?, H.
Ertan Cetingul’, Benjamin L. OdryY, Boris MailheY, Mariappan S. NadarY, Fabrizio Pizzagalli*, Gautam
Prasad? Julio E. Villalon-Reina? Justin Galvis?, Paul M. Thompson?, Francisco De Santiago Requejo®,
Pedro Luque Laguna®, Luis Miguel Lacerda®, Rachel Barrett?, Flavio Dell'Acqua®®, Marco Catani?,
Laurent Petit?®, Emmanuel Caruyere, Alessandro Daducci?, Tim B. Dyrby"#, Tim Holland-Letz*, Claus
C. Hilgetag?, Bram Stieltjes®, Maxime Descoteaux*~°

*indicates corresponding authors.

a. Medical Image Computing Group (MIC), German Cancer Research Center (DKFZ), Heidelberg,
Germany

b. Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, Quebec,
Canada

c. University Hospital Basel, Radiology & Nuclear Medicine Clinic, Basel, Swizterland.

d. Signal Processing Lab (LTS5), Ecole Polytechnique Federale de Lausanne, Switzerland

e. Centre national de la recherche scientifique (CNRS), Institute for Research in IT and Random
Systems (IRISA), UMR 6074 VISAGES project-team, Rennes, France

f. Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging
and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark

g. Krembil Research Institute, University Health Network, Toronto, Canada

h. Department of Psychology, Carnegie Mellon University, USA

i. IMT - Institute for Advanced Studies, Lucca, Italy

j. Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, USA

k. University of Toronto Institute of Medical Science, Toronto, Canada

I. Institute of Information Processing and Automation, Zhejiang University of Technology,
Hangzhou, Zhejiang, China

m. United Imaging Healthcare Co., Shanghai, China

n. Shanghai Advanced Research Institute, Shanghai, China

0. Laboratory of Mathematics in Imaging, Harvard Medical School, Boston, MA, United States

p. Center for Research in Mathematics, Guanajuato, Mexico

g. Centre de recherche institut universitaire de geriatrie de Montreal (CRIUGM), Université de

Montréal, Montreal, Quebec, Canada

PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands

s. Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands

t. Neuroimaging Unit, Institute of Bioimaging and Molecular Physiology (IBFM), National Research
Council (CNR), Policlinico Magna Graecia, Germaneto (CZ), Italy

u. Institute of Neurology, University Magna Graecia, Germaneto (CZ), Italy

-


http://dx.doi.org/10.1101/084137

bioRxiv preprint first posted online Nov. 7, 2016; doi: http://dx.doi.org/10.1101/084137. The copyright holder for this preprint (which was
not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission.

v. Institute for Learning & Brain Sciences and Department of Speech & Hearing Sciences, University
of Washington, Seattle, WA, USA

w. Departments of Medical Biophysics & Medical Imaging, Schulich School of Medicine and
Dentistry, Western University, 1151 Richmond St N, London, Ontario, Canada

X. Synaptive Medical Inc, MaRS Discovery District, 101 College Street, Suite 200, Toronto, Ontario,
Canada.

y. Medical Imaging Technologies, Siemens Healthcare, Princeton, NJ, USA

z. Imaging Genetics Center, Stevens Neuro imaging and Informatics Institute, Keck School of
Medicine of USC, Marina del Rey, CA, USA

za. NatBrainLab, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK

zb. Groupe d’imagerie Neurofonctionnelle - Institut des Maladies Neurodégénératives (GIN-IMN),
UMR5293 CNRS, CEA, University of Bordeaux, Bordeaux, France

zc. Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany

zd. Biomedical Image Technologies (BIT), ETSI Telecom., U. Politécnica de Madrid and CIBER-BBN,
Spain

ze. Department of Radiology, University Hospital Center (CHUV) and University of Lausanne
(UNIL), Lausanne, Switzerland

zf. Department of Applied Mathematics and Computer Science, Technical University of Denmark,
Kongens Lyngby, Denmark

zg. Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d’'Imagerie Biomédicale
(LIB), 75013, Paris, France

zh. Center for Advanced Research in Sleep Medicine, Hopital du Sacré-Coeur de Montréal, Montreal,
Canada

zi. Department of Computational Neuroscience, University Medical Center Eppendorf, Hamburg,
Germany


http://dx.doi.org/10.1101/084137

bioRxiv preprint first posted online Nov. 7, 2016; doi: http://dx.doi.org/10.1101/084137. The copyright holder for this preprint (which was
not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission.

Abstract

Fiber tractography based on non-invasive diffusion imaging is at the heart of connectivity studies of
the human brain. To date, the approach has not been systematically validated in ground truth
studies. Based on a simulated human brain dataset with ground truth white matter tracts, we
organized an open international tractography challenge, which resulted in 96 distinct submissions
from 20 research groups. While most state-of-the-art algorithms reconstructed 90% of ground truth
bundles to at least some extent, on average they produced four times more invalid than valid
bundles. About half of the invalid bundles occurred systematically in the majority of submissions.
Our results demonstrate fundamental ambiguities inherent to tract reconstruction methods based
on diffusion orientation information, with critical consequences for the approach of diffusion
tractography in particular and human connectivity studies in general.
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Fiber tractography, a computational reconstruction method based on diffusion-weighted magnetic
resonance imaging (DWI), attempts to reveal the white matter pathways of the human brain in vivo
and to infer the underlying network structure, the structural connectome (1). Numerous algorithms
for tractography have been developed and applied to connectome research in the fields of
neuroscience (2,3) and psychiatry (4). Given the broad interest in this approach, the advantages and
shortcomings of tractography have been widely debated (1,5-9). Particularly, in vivo tractography of
the human brain was evaluated by subjective assessment of plausibility (10) or qualitative visual
agreement with post-mortem Klingler-like dissections (11,12). Reproducibility (13) or data prediction
errors (14-16) were evaluated in the context of tractographic model verification. However, these
evaluations cannot validate the accuracy of reconstructions (17). Moreover, ex vivo imaging and
tracing (17-25) or physically (26-32) and numerically simulated phantoms (33-37) allow validation
to some extent. The complexity of the nervous system, however, and the lack of precise ground
truth information on the trajectories of pathways and their origins as well as terminations in the
human brain make it hard to quantitatively evaluate tractography results and to determine which
discoveries are reliable when regarding brain connectivity in health and disease.

State-of-the-art tractography algorithms are driven by local orientation fields estimated from DWI,
representing the local tangent direction to the white matter tract of interest (1). Conceptually, the
principle of inferring connectivity from local orientation fields can lead to problems as soon as
pathways overlap, cross, branch and have complex geometries (Figure 1) (8,38,39). Since the
invention of diffusion tractography, these problems have been discussed in schematic
representations or theoretical arguments (8,9,40), but have not yet been quantified in brain imaging.
To determine the current state of the art in tractography, we organized an international
tractography competition (tractometer.org/ismrm_2015 challenge) and employed a novel
validation method based on simulated DWI of a brain-like geometry. This ground truth data set
represented 25 well-known valid bundles that covered approximately 70% of the human brain white
matter.

At the closing of the competition, we evaluated 96 distinct tractography pipelines submitted by 20
different research groups, in order to assess how well the algorithms were able to recover the
known connectivity. We also assessed essential processing steps to pinpoint critical flaws that many
current pipelines have in common. On average, submissions recovered only a third of the volumetric
extent of existing bundles. Also, most algorithms routinely extracted many false positive bundles,
even though they were not part of the ground truth. Some of these false-positive bundles resemble
previously reported pathways identified by in vivo tractography, such as the frontal aslant tract (41)
or the vertical occipital fasciculus (42). The average ratio of false-positive to true-positive bundles
was approximately four to one. This ratio could not be improved by employing higher quality data or
even using the gold standard field of local orientations, highlighting that current tractography
approaches are fundamentally ill-posed.

Results

Datasets and submissions

Prior investigations of tractography methodology have chosen artificial fiber geometries to construct
synthetic ground truth models (28,43). Here, we defined our ground truth based on the fiber bundle
geometry of a high-quality Human Connectome Project (HCP) dataset that was constructed from
multiple whole-brain global tractography maps (44) (Supplementary Figure 1). Following the
concepts introduced in (45), an expert radiologist (B.S.) extracted 25 major tracts (i.e., bundles of
streamlines) from the tractogram. These association, projection and commissural fibers covered
more than 70% of the white matter across the whole brain. The dataset features a brain-like macro-
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structure of long-range connections, mimicking in vivo DWI clinical-like acquisitions based on a
simulated diffusion signal. An additional anatomical image with T1-like contrast was simulated as a
reference. The final datasets and all files needed to perform the simulation are available online
(Supplementary Data 1).

20 research groups across 12 countries (Supplementary Figure 2a) participated in the competition
and submitted a total of 96 processing results comprising a large variety of tractography pipelines
with different pre-processing, local reconstruction, tractography and post-processing algorithms
(Supplementary Figure 2b, Supplementary Notes 2).

Performance metrics and evaluation

The Tractometer connectivity metrics (43) were used for evaluating submissions. Based on the
known ground truth bundles, we calculated true positives, corresponding to the valid connection
ratio (VC), that is, the proportion of streamlines connecting valid end points and the associated
number of valid bundles (VB), where a bundle is a group of streamlines. We also computed false
positives, corresponding to the invalid connection ratio (IC) and the associated number of invalid
bundles (IB), as well as reconstructed volumes, based on the bundle volumetric overlap (OL) and
volumetric overreach (OR) in percent (Supplementary Figure 3).

Tractography detects major bundles, but not to the full extent

While the tractography algorithms detected most existing bundles, the extent of their volumetric
reconstruction varied. Figure 2a groups identified valid bundles into three clusters of “very hard”,
“hard” and “medium” bundles. Figure 2b shows corresponding examples that were reconstructed by
different tractography techniques. Most submissions had difficulties identifying the smallest tracts,
that is, the anterior (CA) and posterior commissures (CP) that have a cross-sectional diameter of no
more than two millimeters, or one or two voxels (“very hard”). A family of “hard” bundles was
recovered by almost all algorithms, with a low overlap score of approximately 30%. Bundles of
"medium" difficulty were the corpus callosum (CC), inferior longitudinal fasciculus (ILF), superior
longitudinal fasciculus (SLF) and uncinate fasciculus (UF). These tracts span different shapes, lengths
and sizes, but were recovered most frequently, with above 45% overlap and around 40% overreach.

As shown in Figure 3, the submissions identified an average of 21 out of 25 valid bundles (median
23). No team detected all valid bundles, but three teams (10 submissions) recovered 24 valid
bundles, and 15 out of 20 teams (69 submissions) detected 23 or more valid bundles (Figure 4a, red
entries in connectivity matrix). However, tractography pipelines clearly need to improve their
recovery of the full spatial extent of bundles (Figure 3c). The mean value of bundle volume overlap
(OL) across all submissions was 31% + 17%, with an average overreach (OR) of 23% * 21%. At the
level of individual streamlines, an average of 54% + 23% connections were valid (Figure 3a).

Tractography identifies more invalid than valid bundles

Across submissions, 36% + 17% of the reconstructed individual streamlines connected regions that
were not actually connected. The fraction of streamlines not connecting any endpoints was 10% +
15%. Even though not part of the ground truth, these streamlines often occur in dense, structured
and coherent bundles. On average, submissions identified more than four times as many invalid
bundles as they identified valid bundles (Figure 3b). Submissions with at least 23 valid bundles
showed no fewer than 37 invalid bundles (mean 88 + 39, n = 69). Submissions with 23 or more valid
bundles and a volumetric bundle overlap of > 50% identified between 99 and 204 invalid bundles
(corresponding to more than four invalid bundles per valid bundle). The submissions produced an
average of 88 + 58 invalid bundles, demonstrating the inability of current state-of-the-art
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tractography algorithms to control for false positives (Figure 4a, blue entries in connectivity matrix).
41 of these invalid bundles occurred in the majority of submissions (Supplementary Figure 4).

The bundles illustrated in Figures 4b and 4c were systematically found by more than 80% of
submissions without being part of the ground truth. Interestingly, several of these invalid streamline
clusters exhibited similarities to bundles known or previously debated in tractography literature.
They anatomically resemble the following pathways: 1) the frontal aslant tract (FAT) (41), 2) the
arcuate fasciculus (AF) (46,47), 3) bundles passing through the temporal stem (48), such as the
inferior-frontal occipital fasciculus (IFOF) (49,50), middle longitudinal fasciculus (MdLF) (51,52) and
the extreme capsule fasciculus (EmC) (53), 4) the superior fronto-occipital fasciculus (SFOF) (49,54)
and 5) the vertical occipital fasciculus (VOF) (42). The existence of the FAT, SFOF and VOF is
controversial (41,42,49,54).

Higher image quality does not solve the problem

To confirm that our findings revealed fundamental properties of tractography itself and are not
related to effects of our specific phantom simulation process, we ran additional tractography
experiments directly on the ground truth field of fiber orientations (Supplementary Figure 5 and
Supplementary Notes 3), that is, without using the diffusion-weighted data at all. This setup was,
thus, independent of image quality, artifacts and many other influences from specific pipeline
configurations and the phantom generation process. Based on the ground truth orientations, the
tractography pipelines achieved much higher overlap (71% * 2%) and lower overreach (20% + 0.2%)
scores, while achieving valid connection ratios between 75% and 81%. However, they still generated
more than three times as many invalid bundles than valid bundles (at least 82 invalid bundles).

Tractography is fundamentally ill-posed

Our results show that the geometry of many junctions in the brain is too complex to be resolved by
current tractography algorithms, even when given a perfect ground truth field of orientations. In the
temporal lobe, for example, multiple bundles overlap and clearly outnumber the count of fiber
orientations in most of the voxels. As illustrated in Figure 5, single fiber directions in the diffusion
signal regularly represent multiple bundles (see also Supplementary Video 1). Such funnels embody
hard bottlenecks for tractography, leading to massive combinatorial possibilities of plausible
configurations for connecting the associated bundle endpoints as sketched in Figure 5c.
Consequently, for the real dataset as well as the synthetic phantom, dozens of structured and
coherent bundles pass through this bottleneck, exhibiting a wide range of anatomically reasonable
geometries as illustrated in Supplementary Video 2. A tractogram based on real HCP data exhibits
whole families of theoretically plausible bundles going through the temporal lobe bottleneck even
though, locally, the diffusion signal often shows only one fiber direction (cf. Figure 5d).

Statistical analysis of processing steps

Effects of the methodological setup of the different submissions on the results were investigated in a
multivariable linear mixed model and revealed the influence of the individual processing steps on
the tractography outcome (Supplementary Table 1, Supplementary Notes 4). The choice of
tractography algorithm, as well as the post-tracking filtering strategy and the underlying diffusion
modeling had a strong effect on overall scores, revealing a clear tradeoff between sensitivity and
specificity.

Discussion

We assessed current state-of-the-art fiber tractography approaches using a ground truth dataset of
white matter tracts and connectivity that is representative of the challenges that occur in human
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brain imaging in vivo. Advanced tractography strategies in combination with current diffusion
modeling techniques successfully recovered most valid bundles, covering up to 76% of their
volumetric extent. This sensitivity comes at a high cost. Tractography systematically also produced
thick and dense bundles of plausible looking streamlines in locations where such streamlines did not
actually exist. When focusing on the 64 bundles that were systematically recovered by the majority
of submissions, 64% of them were in fact absent from the ground truth. Currently even the best
tractography pipelines, or tracking of the ground truth fiber orientations, produce more false-
positive than true-positive bundles. These findings expose the degree of ambiguity associated with
whole-brain tractography and show how the computational problem of tractography goes far
beyond the local reconstruction of fiber directions (1,8) and issues of data quality. Our findings,
therefore, present a core challenge for the field of tractography and connectivity mapping.

High invalid-connection ratios were previously reported under simplified conditions (28,43)
(www.tractometer.org), and some of the underlying ambiguities in tractography have been
discussed using schematic representations and theoretical arguments (1,8,9,40). Regions of white
matter bottlenecks have been discussed in the past (38) and have been highlighted as critical with
respect to tractographic findings (39). The present results reveal and quantify the consequences of
such limitations under conditions found in human brain studies in vivo, addressing important
guestions that previously remained speculative. The findings were derived from a brain-like
geometry that encompasses some of the major known long-range connections and covers more
than 70% of the white matter. Future versions of the phantom are planned to include additional
bundles such as the middle and inferior temporal projections of the AF, the MdLF and the IFOF as
well as smaller U-fibers, medial forebrain fibers, deep nuclei and connections between them. In
addition, more advanced diffusion modeling methods will allow generating even more realistic DWI
signals, potentially simulated at increased spatial and g-space resolutions. These developments,
however, will not resolve the fundamental ambiguities which tractography faces and thus will only
have a limited effect on the main findings of our study. We showed that false-positive bundles occur
at similar rates even when using the maximal angular precision of the signal, that is, using ground
truth orientations. Increasing the anatomic complexity of the phantom by adding more bundles will
most likely lead to even increased false-positive rates. The construction process of the current
phantom resembles a potential limitation, since it involves tractography itself and thus raises self-
validation issues. This should be considered in direct method comparisons as there may exist a
possible bias towards algorithms that equal the algorithm used for phantom generation. This caveat,
however, has only a very limited effect on our general findings. It can be expected that the identified
limitations of tractography will become even more pronounced in phantoms of higher anatomic
complexity that might be achievable by involving independent methods such as polarized light
imaging (PLI) (55). In summary, our observations confirm the fundamental ill-posedness of the
computational problem that current tractography approaches strive to solve.

The large number of invalid bundles that were systematically identified by most state-of-the-art
algorithms can only be resolved by substantial methodological innovation. Several directions of
current research might improve the specificity of tractography. Streamline filtering techniques can
optimize the signal prediction error in order to reduce tractography biases (14,16,56). Such
techniques can increase the reproducibility and quality of tractograms. Teams 13, 16 and 17 applied
such filtering techniques, showing a positive effect (albeit not significant) on the valid connection
ratio, the invalid bundle count and the overreach score, at the expense of decreasing valid bundle
counts and decreasing overlap. The mentioned techniques are part of the more general trend to
integrate non-local as well as advanced diffusion microstructure modeling information that goes
beyond the raw directional vectors (57-62). Recent advances in machine-learning-driven
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tractography also show high potential in improving the specificity of tractograms (63). Future
versions of our phantom will be generated with multiple b-values, better signal-to-noise ratio (SNR)
and fewer artifacts to further encourage research in these directions.

In addition, tractography should employ reliable anatomical priors, such as from animal
experiments, for optimal guidance. While manual or automated clean-up of streamlines may help
(see our results), the real challenge is our limited knowledge of the anatomy to be reconstructed.
Currently, post-mortem dissection with Klingler’'s method reveals the macroscopic organization of
the human brain white matter (11,64-66). In the future, the community will have to gain further
insights into the underlying principles of white matter organization and increasingly learn how to
leverage such information for tractography (1,67,68).

Another limitation of tractography as emphasized by our results is highly relevant for the field of
connectomics: The traditional metrics that require streamlines to exactly end in head or tail regions
of a bundle are far too restrictive for bundle dissection and connectivity assessment. None of the
submissions generated exact overlaps of streamlines with ground truth bundles and dilated
endpoint masks. This finding raises an important warning for connectomics and structural
connectivity studies, where a voxel-wise definition of parcellations on the T1 image is the state-of-
the-art method for selecting relevant streamlines. This finding is in line with previous reports which
found termination of tracts in the grey matter to be inaccurate (6). Future versions of our phantom
will include ground-truth parcellations of the white matter/gray matter cortical band to encourage
further developments for tackling these problems and extend the evaluation method to apply to
graph theory metrics.

DWI is the only tool to map long-range structural brain connectivity in vivo and is essential for
comparing brains, detecting differences and simulating functions (69). However, our findings should
foster the development of novel tractography methods that are carefully evaluated using the
presented approach. The most important goal for the next generation of tractography algorithms
will no longer be to find existing valid connections, but to reconstruct the full spatial extent of tracts
while controlling for the many false-positive connections polluting the tractograms. A tighter
integration of advanced diffusion microstructure modeling and multi-modality imaging in
tractography should help resolve ambiguities in the signal and overcome current limitations of
tractography (62,70). Fundamentally, tractography will require severe methodological innovation to
become tractable (1,8).
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Online Methods

Generation of ground truth fiber bundles

The set of ground truth long-range fiber bundles was designed to cover the whole human brain and
feature many of the relevant spatial configurations, such as crossing, kissing, twisting and fanning
fibers, thus representing the morphology of the major known in vivo fiber bundles. The process to
obtain these bundles consisted of three steps. First, a whole-brain global tractography was
performed on a high quality in vivo diffusion-weighted image. Then, 25 major long-range bundles
were manually extracted from the resulting tractogram. In the third step, these bundles were
refined to obtain smooth and well defined bundles.

We chose one of the diffusion-weighted datasets included in the Q3 data release of the Human
Connectome Project (71), subject 100307, to perform whole-brain global fiber tractography (57,72).
Amongst other customizations, the HCP scanners are equipped with a set of high-end gradient coils,
enabling diffusion encoding gradient strengths of 100 mT m™. By comparison, most standard
magnetic resonance scanners feature gradient strengths of about 30 to 40 mT m™. This hardware
setup allows the acquisition of datasets featuring exceptionally high resolutions (1.25 mm isotropic,
270 gradient directions) while maintaining an excellent SNR. All datasets were corrected for head
motion, eddy currents and susceptibility distortions and are, in general, of very high quality (73-77).
Detailed information regarding the employed imaging protocols as well as the datasets themselves
may be found on http://humanconnectome.org.

Global fiber tractography was performed using MITK Diffusion (78) with the following parameters:
900,000,000 iterations, a particle length of 1 mm, a particle width of 0.1 mm and a particle weight of
0.002. Furthermore, we repeated the tractography six times and combined the resulting whole-brain
tractograms into one large dataset consisting of over five million streamlines. The selected
parameters provided for a very high sensitivity of the tractography method. The specificity of the
resulting tractogram was of lesser concern since the tracts of interest were extracted manually in the
second step.

Bundle segmentation was performed by an expert radiologist using manually placed inclusion and
exclusion regions of interest (ROI). We followed the concepts introduced in (45) for the ROI
placement and fiber extraction. 25 bundles were extracted, covering association, projection and
commissural fibers across the whole brain (Figure 1): corpus callosum (CC), left and right cingulum
(Cg), Fornix (Fx), anterior commissure (CA), left and right optic radiation (OR), posterior commissure
(CP), left and right inferior cerebellar peduncle (ICP), middle cerebellar peduncle (MCP), left and
right superior cerebellar peduncle (SCP), left and right parieto-occipital pontine tract (POPT), left and
right cortico-spinal tract (CST), left and right frontopontine tracts (FPT), left and right inferior
longitudinal fasciculus (ILF), left and right uncinate fasciculus (UF) and left and right superior
longitudinal fasciculus (SLF). As mentioned in the Discussion section, the inferior fronto-occipital
fasciculus (IFOF), the middle longitudinal fasciculus (MdLF) as well as the middle and inferior
temporal projections of the arcuate fasciculus (AF) were not included.

After manual extraction, the individual long-range bundles were further refined to serve as ground
truth for the image simulation as also shown in Figure 1. The original extracted tracts featured a
large number of prematurely ending fibers and the individual streamlines were not smooth. To
obtain smooth tracts without prematurely ending fibers, we simulated a diffusion-weighted image
from each original tract individually using Fiberfox (www.mitk.org (35)). Since no complex fiber
configurations, such as crossings, were present in the individual tract images and no artifacts were
simulated, it was possible to obtain very smooth and complete tracts from these images with a
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simple tensor-based streamline tractography. Supplementary Figure 6 illustrates the result of this
refining procedure on the left CST.

Simulation of phantom images with brain-like geometry

The phantom diffusion-weighted images (Supplementary Video 3) were simulated using Fiberfox
(www.mitk.org (35)), which is available as open-source software. We employed a four-compartment
model of brain tissue (intra and inter-axonal), grey matter (GM) and cerebrospinal fluid (CSF) (35).
The parameters for simulation of the four-compartment diffusion-weighted signal were chosen to
obtain representative diffusion properties and image contrasts (compare (79) for details on the
models). The intra-axonal compartment was simulated using the stick model with a T2 relaxation
time of 110 ms and a diffusivity of 1.2 x 10° m?/s. The inter-axonal compartment was simulated
using the zeppelin model with a T2 relaxation time of 110 ms, an axial diffusivity of 1.2 x 10° m?/s
and a radial diffusivity of 0.3 x 10° m?/s. The grey matter compartment was simulated using the ball
model with a T2 relaxation time of 80 ms and a diffusivity of 1.0 x 10° m?/s. The CSF compartment
was also simulated using the ball model with a T2 relaxation time of 2500 ms and a diffusivity of
2.0 x 10° m?/s.

Using Fiberfox, one set of diffusion-weighted images and one T1-weighted image were simulated.
The final datasets as well as all files needed to perform the simulation are available online
(Supplementary Data 1).

The acquisition parameters that we report below were chosen to simulate images that are
representative for a practical (e.g., clinical) setting, specifically a 5-to-10-minute single shot EPI scan
with 2 mm isotropic voxels, 32 gradient directions and a b-value of 1000 s/mm?2. The chosen
acquisition setup represents a typical scenario for an applied tractography study and embodies a
common denominator supported by the large majority of methods. Since acquisitions with higher b-
values, more gradient directions and fewer artifacts are beneficial for tractography, we additionally
report a least upper bound tractography performance under perfect image quality conditions using a
dataset that directly contains ground truth fiber orientation distribution functions and no artifacts
(Supplementary Figure 5 and Supplementary Notes 3).

The parameters are a matrix size of 90x108x90, echo time (TE) 108 ms, dwell time 1 ms; T2’
relaxation time 50 ms. The simulation corresponded to a single-coil acquisition with constant coil
sensitivity, no partial Fourier and no parallel imaging. Phase encoding was posterior-anterior. Two
unweighted images with posterior-anterior/anterior-posterior phase encoding were also generated.

Since Fiberfox simulates the actual k-space acquisition, it was possible to introduce a number of
common artifacts into the final image. Complex Gaussian noise was simulated yielding a final SNR
relative to the mean white matter baseline signal of about 20. 10 spikes were distributed randomly
throughout the image volumes (Supplementary Figure 7a). N/2 ghosts were simulated
(Supplementary Figure 7b). Distortions caused by By field inhomogeneities are introduced using an
existing field map measured in a real acquisition and registered to the employed reference HCP
dataset (Supplementary Figure 7c). Head motion was introduced as random rotation (+-4° around z-
axis) and translation (+-2mm along x-axis) in three randomly chosen volumes. Volume 6 was rotated
by 3.36° and translated by -1.74 mm, volume 12 was rotated by 1.23° and translated by -0.72 mm,
and volume 24 was rotated by -3.12° and translated by -1.55 mm.

The image with the T1-like contrast was generated at an isotropic resolution of 1 mm, an SNR of
about 40 and no further artifacts as an anatomical reference.
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Performance metrics and evaluation

The Tractometer definition of a valid connection is extremely restrictive for current tractography
algorithms, as it requires streamlines 1) not to exit the area of the ground truth bundle at any point
and 2) to terminate exactly within the endpoint region that is defined by the dilated ground truth
fiber endpoints (Supplementary Figure 8 and Supplementary Figure 9) (43). Hence, we propose an
alternative definition that relaxes these strict criteria based on robust shape distance measures (80)
and clustering between streamlines (81), as detailed in Supplementary Notes 1. The bundle-specific
thresholds were manually configured to account for bundle shape and proximity to other bundles.
The following distances were used, with identical distances on both sides for lateralized bundles: 2
mm for CA and CP; 3 mm for CST and SCP; 5 mm for Cingulum; 6 mm for Fornix, ICP, OR and UF; 7
mm for FPT, ILF and POPT; 10 mm for CC, MCP and SLF. The full script used to run this bundle
recognition implementation was based on the DIPY library (82) (www.dipy.org) and is available
online (Supplementary Software 1).

Once valid connections are identified, the remaining streamlines can be classified into invalid
connections and non-connecting streamlines. The details of this procedure are described in
Supplementary Notes 1. We clustered the remaining invalid streamlines using a QuickBundles-based
clustering algorithm (81). The best matching endpoint regions for each resulting cluster were
identified by majority voting of the contained streamlines. If multiple clusters were assigned to the
same pair of regions, they were merged. Streamlines that were not assigned to any cluster or that
fell below a length threshold were labelled as non-connecting.

On the basis of this classification of streamlines, the following metrics were calculated:

e Valid connection ratio (VC): number of valid connections / total number of streamlines
(percentage between 0 and 100).

e Valid bundles (VB): For each bundle that has a valid streamline associated with it, this
counter is incremented by one (integer number between 0 and 25).

e Invalid bundles (IB): With 25 bundles in the ground truth, each having two endpoint regions,
there are 1,275 possible combinations of endpoint regions. Taking the 25 valid bundles out
of the equation, 1,250 potential invalid bundles remain (integer number between 0 and
1,250).

e Overlap: Proportion of the voxels within the volume of a ground truth bundle that is
traversed by at least one valid streamline associated with the bundle. This value shows how
well the tractography result recovers the original volume of the bundle (percentage between
0 and 100).

e Overreach: Fraction of voxels outside the volume of a ground truth bundle that is traversed
by at least one valid streamline associated with the bundle over the total number of voxels
within the ground truth bundle. This value shows how much the valid connections extend
beyond the ground truth bundle volume (percentage between 0 and 100). This value is
always zero for the traditional definition of a valid connection but can be non-zero for the
relaxed evaluation.

Statistical multi-variable analysis

Effects of the experimental settings were investigated in a multivariable linear mixed model. The
experimental variables describing the methods used for the different submissions were included as
fixed effects (Figure 2b). The valid connection ratio, the valid bundle count, the invalid bundle count,
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the bundle overlap percentage and the bundle overreach percentage were modeled as dependent
variables, each of which is used for the calculation of a separate model. The submitting group was
modeled as a random effect. The software SAS 9.2, Proc Mixed, SAS Institute Inc., Cary, NC, USA was
used for the analysis.
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Figure 1. Ambiguous correspondences between diffusion directions and fiber geometry. The three
illustrations at voxel, local and global level exemplarily illustrate ambiguities in apparent diffusion
imaging information, leading to several potential tract reconstructions. The intra-voxel crossing of
fibers in the hypothetical ground truth (first row) leads to ambiguous imaging information at voxel
level (8). Similarly, the imaging representation of local fiber crossings (second row) can be explained
by several other configurations (8). At a global level (third row), white matter regions that are shared
by multiple bundles (“bottlenecks”, dotted rectangle) (38) can lead to many spurious tractographic
reconstructions (39). With only two bundles in the hypothetical ground truth (red and yellow
bundle), four potential false-positive bundles emerge.
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Figure 2. Tractography detects major bundles, but not to the full extent. (a) Overview of scores
reached for different bundles in ground truth. Average overlap (OL) and overreach (OR) scores for
the submissions (red: “very hard”, green: “hard”, blue: “medium”, for abbreviations see
Supplementary Figure 1). (b) Representative bundles for diffusion tensor imaging (DTI) deterministic
(DET) tracking come from submission 6 / team 20, high angular resolution diffusion imaging (HARDI)
deterministic tracking from submission 0 / team 9 and HARDI probabilistic (PROBA) tracking from
submission 2 / team 12 (see Supplementary Notes 5 for a discussion of these submissions). The first
column shows ground truth valid bundles for reference. The reported OL and OR scores correspond
to the highest OL score reached within the respective class of algorithms.
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Figure 3. Tractography identifies more invalid than valid bundles. Overview of scores reached by
the different teams. (a) Percentage of streamlines connecting valid regions. (b) Number of detected
valid and invalid bundles (data points are jittered to improve legibility). (c) Volume overlap (OL) and
overreach (OR) scores averaged over bundles. Black arrows mark submissions used in the following
figures (see Supplementary Notes 5 for discussion).

21


http://dx.doi.org/10.1101/084137

bioRxiv preprint first posted online Nov. 7, 2016; doi: http://dx.doi.org/10.1101/084137. The copyright holder for this preprint (which was
not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission.

Red: valid

.found by 1

.found by 24
. found by 48
. found by 72

Blue: invalid

.found by 1

.found by 24
Bl found by 48
I found by 72

85% of teams

llvo F”

81% of teams 81% of teams

88% of teams

Figure 4. Overview of valid (red) and invalid (blue) bundles. Clusters of invalid streamlines exhibit
similarities to previously reported, yet unconfirmed bundles from the literature. (a) Each entry in
the connectivity matrix indicates the number of submissions that have identified the respective
bundle. The two rows/columns per bundle represent the head-endpoint and tail-endpoint regions of
a bundle. (b, c) The shown invalid bundles have been consistently identified by more than 80% of the
teams, but do not exist in the ground truth. As discussed in the main text, some of these bundles
exhibit a high similarity to bundles that are known to exist, as shown in (b), including the arcuate
fasciculus (AF) and bundles traversing the temporal stem such as the middle longitudinal fasciculus
(MdLF) and the inferior-frontal occipital fasciculus (IFOF). Other bundles — shown in (c) — are not
known to exist and are debated in literature. These include the frontal aslant tract (FAT), the
superior fronto-occipital fasciculus (SFOF) and the vertical occipital fasciculus (VOF).
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Figure 5. Fundamental ill-posedness of tractography. (a) Visualization of six ground truth bundles
converging into a nearly parallel funnel in the bottleneck region of the left temporal lobe (indicated
by square region). The bundles per voxel (box “# Valid bundles”) clearly outnumber the peak
directions in the diffusion signal (box “# Signal peaks”). (b) Visualization of streamlines from a
Human Connectome Project (HCP) in vivo tractogram passing through the same region. (c)
Exemplary invalid bundles that have been identified by more than 50% of the submissions, showing
that tractography cannot differentiate between the massive amount of plausible combinatorial
possibilities connecting different endpoint regions (see Supplementary Video 1). (d) Automatically
Quickbundle-clustered streamlines from the in vivo tractogram going through the temporal region of
interest. The clustered bundles are illustrated in different shades of green. These clusters represent
a mixture of true-positive and false-positive bundles going through that bottleneck area of the HCP
data set (see Supplementary Video 2).
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