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Abstract

Scene understanding of large-scale 3D point clouds of an outer space is still a challenging task. Compared with
simulated 3D point clouds, the raw data from LiDAR scanners consist of tremendous points returned from all possible
reflective objects and they are usually non-uniformly distributed. Therefore, it’s cost-effective to develop a solution
for learning from raw large-scale 3D point clouds. In this track, we provide large-scale 3D point clouds of street
scenes for the semantic segmentation task. The data set consists of 80 samples with 60 for training and 20 for testing.
Each sample with over 2 million points represents a street scene and includes a couple of objects. There are five
meaningful classes: building, car, ground, pole and vegetation. We aim at localizing and segmenting semantic objects
from these large-scale 3D point clouds. Four groups contributed their results with different methods. The results show
that learning-based methods are the trend and one of them achieves the best performance on both Overall Accuracy
and mean Intersection over Union. Next to the learning-based methods, the combination of hand-crafted detectors are
also reliable and rank second among comparison algorithms.
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1. Introduction One is that the raw data from LiDAR scanners consist
of a tremendous amount points returned from all possi-
ble reflective objects, which brings in heavy computation
cost. Another reason is that the points are usually non-
uniformly distributed, unstructured and unordered, which
means that it is not easy to apply mature 2D deep convo-
lutional networks.

With the application of LiDAR sensors in many ar-
eas, such as autonomous driving and augmented reality,
efficient understanding of large-scale 3D point clouds is
a challenging task. Many LiDAR datasets [1, 2, 3, 4]
have been released as benchmarks for various 3D applica-
tions. Thee benchmarks usually provide cleaned 3D point
clouds with well-annoated labels ignoring the problems
of noises, sampling pattern difference and weak reflective
strength. However, it is still difficult to develop an effec-
tive and efficient solution. There are two main reasons:

Since the input point clouds are orderless and usually
sparse, feature learning methods for point clouds can be
divided into three categories in terms of the format of
input point clouds: projection based, voxel based and
point-set based. Projection-based methods [5, 6] try to
solve 3D problems via 2D approaches. Thus, 3D point
clouds are projected to 2D images through different view-
*Track organizers. points. Then, common 2D CNNs are capable to deal with
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Table 1: Summary of Train and Test datasets of our Street3D benchmark.

Split Num. of Num. of . thal _ Class Ratio '
Samples Per-sample Points Points Undefined Building Car Ground Pole  Vegetation

Train 60 2.40M - 4.6TM 217 8.37% 17.05% 2.82% 54.65% 0.47% 16.64%

Test 20 230M-450M  72.8M 6.08% 22.07%  2.19% 53.96% 0.78% 14.92%

3D tasks. Voxel based methods [7, 8] usually map raw
points to voxel representations first, then 3D CNNs are
adopted to extract features. However, such methods do
not naturally capture the inherent structure information
of 3D point clouds. Therefore, point-set based methods
are proposed to learn representative features directly from
point coordinates. PointNet [9] is the pioneer learning
point-wise features for 3D classification and segmenta-
tion tasks. Further work [10, 11, 12] have shown their
power in processing and learning from 3D point clouds.
However, due to the limited main memory and possible
information loss from downsampling large point clouds,
it’s still hard for these learning-based methods to train on
large point clouds without downsampling.

In this Shape Retrieval Challenge (SHREC) track on
3D Point Cloud Semantic Segmentation for Street Scenes,
we compare different frameworks to segment semantic
objects from large-scale 3D point clouds. Both hand-
crafted and learning-based methods are included for eval-
uation. The contributions are summaried as:

e We provide a large-scale 3D street-scene point cloud
dataset for 3D semantic segmentation.

o We evaluate different algorithms on the dataset and
help finding solutions for large-scale 3D point cloud
processing.

e The results show that point-set based end-to-end
learning methods can outperform hand-crafted meth-
ods.

2. Street3D Benchmark

2.1. Related Work
In recent years, several annotated datsets for outdoor
3D point cloud semantic segmentation have been pub-

lished. Semantic3D [1], recorded with a terrestrial laser
scanner (TLS), is a large outdoor 3D LiDAR dataset with
over a billion points and 8 class labels. However, it has
only 30 samples for training and testing, and the huge
amount of points per sample (because of high precision
of TLS) leads to heavy memory usage when training with-
out downsampling. KITTI [2] offers nearly 15 thousands
of scans of outdoor objects, but has only three classes
(car, pedestrian and cyclist) and is labelled with bounding
boxes instead of being point-wise annotated. It concerns
more on 3D object detection instead of 3D semantic seg-
mentation in large-scale scenarios. Paris-Lille-3D [3] is
another worth noting 3D LiDAR dataset with 50 classes
from which 10 classes are used for testing. It has over
143 million points with 7 different scans and is recorded
by a mobile laser scanner (MLS). DublinCity [4] provide
a manual annotation of over 260 million laser scanning
points with 13 hierachical classes in one scene. It has 3
coarse level classes (building, ground and vegetation) and
10 refined classes (e.g. door, tree and sidewalk). It is
one of the densest urban LiDAR dataset recorded with an
aerial laser scanner (ALS). These datasets have either the
problem of huge size of a single scan (Semantic3D and
DublinCity) or few scans for training and testing (Paris-
Lille-3D and DublinCity).

In contrast to these datasets, our Street3D dataset pro-
vides less dense but more scenes for outdoor 3D seman-
tic segmentation tasks. It consists of a large amount of
well annoated points with 5 classes and 80 different street
scenes. The size of each scene makes a trade-off between
precision and productivity. A comparison is summaried
in Tab. 2.

2.2. Dataset

The point cloud data is provided by Cyclomedia Tech-
nology, where we selected 80 3D point cloud for street
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Figure 1:

Examples of the Street3D datasets. The bottom right strings are the filename of each scene.

Table 2: Comparison of some outdoor 3D LiDAR datasets. For LiDAR type, TLS means Terrestrial Laser Scanning, MLS stands for Mobile Laser

Scanning and ALS, Aerial Laser Scanning.

Name LiDAR Type Num. of Points Num. of Scans Num. of Classes Annotation
Semantic3D [1] TLS 1660M 30 8 point-wise
KITTI [2] MLS 1799M 14999 3 bounding box
Paris-Lille-3D [3] MLS 143M 7 50 (training) and 10 (test) point-wise
DublinCity [4] ALS 260M 1 3 (coarse) and 8 (refined) point-wise
Street3D (Ours) MLS 290M 80 5 point-wise

scene and manually labelled them. The point clouds are
recorded using both a panoramic image capturing device
that capture every 5 meter together with a Velodyne HDL-
32 Lidar sensor that performs continues capturing on the
car. The recorded pointcloud is meshed, where for each
pixel in the panoramic images, we compute the intersec-
tion (by ray tracing) with the dense mesh from the orig-
inal pointcloud. The point of intersection provides us
both color from the panoramic images capturing device
together with position information.

Each point cloud represents a street scene and contains
a group of objects. We used the open source software
Cloud Compare [13] to manually label point clouds. Ob-
jects are labelled into 5 meaningful classes and an extra
undefined’ class. They are: ’Building’, *Car’, *’Ground’,
’Pole’ and ’Vegetation’. Only the five meaningful classes
will be evaluated. The 80 3D point clouds are randomly
divided into train and test sets with 60 for training and
20 for testing. For each point cloud, there are over two

million points. Summary information of the dataset is
in Tab. 1. Examples of the dataset are visualized in
Fig. 1. The dataset is made publicly available at https:
//kutao207.github.io.

2.3. Evaluation

We adopt the evaluation criteria that have been widely
applied in 3D semantic segmentation tasks, that is the
Overall Accuracy (OA) and mean Intersection over Union
(mloU).

Generally, OA reports the percent of points in the data
set which are correctly classified, and mloU is the average
of per-class IoU. The IoU of class i is defined as:

TP;
GT,’ + Pred,- - TP,

IoU; = )
where TP;, GT;, Pred; denote the correctly classified num-
ber of points, the ground truth point number, and the pre-
dicted point number for class i, respectively.



3. Methods

In this part, we introduce four novel methods as well
as a baseline method — PointNet++ for our 3D point
cloud semantic segmentation task. The architectures of
these four novel methods are varied. PAUCC is a non-
learning framework of a four-staged pipline which aims
to classify the 5 classes progressively. Spherical DZNet
projects 3D point clouds to 2D images and train a CNN
model for semantic segmentation. Then the results are
back-projected to 3D world and interpolated for 3D point
clouds. ResGANet adopts graphs to encode the geometric
information of 3D point clouds and use a residual graph
attentional network to train an end-to-end model to pre-
dict point cloud semantic labels. GRandD-Net combines
multi-scale features and Unet architecture to build a pow-
erful model for the 3D point cloud semantic segmentation
task. More details are described as follows.

3.1. P4UCC: Progressive 4-staged Urban Cloud Classi-
fier

Raw Final
cloud 1. Ground 2. Car | 3.Pole 4. Building | [classification
detector detector detector detector

Feature maps

Pipeline

Figure 2: Multi-stage architecture of the vehicle-borne point cloud seg-
mentation process.

This method is contributed by authors Sebastidn Or-
tega, Agustin Trujillo, José Pablo Suarez, José Miguel
Santana, and Cristian Ramirez. Our proposal is a four-
staged pipeline that aims to progressively classify ground,
car, pole, building, and vegetation points in vehicle-borne
point clouds. Its general architecture can be seen in Fig.
2. Each stage aims to identify only a certain class. The
first one is dedicated to ground point detection and also
generates pixel-wise features which are useful for subse-
quent stages. Stage 2 looks for the detection of car points,
Stage 3 filters pole points and Stage 4 splits the remaining
points between building and vegetation classes. The code
is available at https://github. com/Chano0T/P4UCC.

3.1.1. Ground Detector
Ground detection starts by dividing the cloud horizon-
tally in a grid with squared cells of 1m?. Pixel features are

computed using the points in each cell: minimum height,
H [14]; point accumulation, A; and geometric features
such as omnivariance, O; and eigensum, E [15]. Mini-
mum height is used to select the ground candidates: all
points in the cloud with height lower than H;; + 0.25.
Those points are then grouped using a hierarchical ap-
proach, euclidean distance and cutoff of 0.5 m. Cluster
centroids and their inclination angles with respect to the
LiDAR sensor are computed. In case the sensor position
is not known, the mean of point positions of the maximum
Ajj can be used as approximation. This can be seen in Fig.
3. The point clusters deemed ground are the ones with
an inclination angle lower than the one of the vehicle in
which the sensor is mounted. For the SHREC benchmark,
it was approximated to 1.5 degrees. The cluster with the
largest point size is also added.

3.1.2. Car Detector

Points from cells with E;; < 1.25 are considered for
car detection. These points are grouped using the same
hierarchical clusters of Stage 1. A cell descriptor is cal-
culated as AX * AY. A planarity descriptor [16] is also
calculated per cluster. A cluster is considered to represent
a car when its area is shorter than 40m? and the planarity
is greater than 0.2. Examples of this can be seen in Fig.
4, right.

3.1.3. Pole Detector

Points from cells with O;; < 2 are considered for pole
detection and clustered. Curvature change [15], dominant
component, minimum relative height and deviation of the
XY component values are computed per cluster. Point
clusters are classified as poles when the dominant com-
ponent is Z, the curvature change is lower than 0.01, the
relative minimum height is lower than 1 and the deviation
of the values is lower than 1 in both X and Y components.
This can also be seen in Fig. 4 (left).

3.1.4. Building Detector

The remaining points are grouped as well. A recur-
sive algorithm for extraction of vertical planes based in
MLESAC [17] is applied to each cluster. Clusters with a
majority of points in a vertical plane and with AZ > 2.5m
are considered to represent buildings. Otherwise, they are
classified as vegetation. This leads to the final result that
can be seen in Fig. 5.



Figure 3: Minimum height clusters and sensor position (left figure,
sensor in red) vs final ground cells (right).
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Figure 4: Examples of pole (left, green) and car (right, green) clusters
in two clouds.
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Figure 5: Final result in 5SD4KVPG4 cloud. Building, pole, vegetation, car and ground are represented with red, blue, green, magenta and yellow

colors, respectively.

3.2. Spherical DZNet
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Figure 6: Workflow of automatic point cloud segmentation.

This method is contributed by authors David Duque-
Arias, Santiago Velasco-Forero, Jean-Emmanuel De-
schaud, Francois Goulette and Beatriz Marcotegui. We
propose an automatic algorithm for point cloud segmen-
tation using only geometrical data [x,y, z]. The proposed
methodology is based on 2D projections. The main pro-
cess relies on a spherical projection from the sensor point
of view while bird eye view (BEV) projection is used for
ground detection. The FAISS library [18] is used in order
to reduce computational cost at several steps in the pro-
cess. The proposed algorithm is presented in Fig. 6 and
it is mainly divided into four steps: 1) Coarse ground de-
tection from Bird-Eye View (BEV) by means of quasi-flat
zones; 2) Spherical projections and feature extraction; 3)
Train Deep Learning model with 2D images; 4) Postpro-
cessing and backprojection 2D predictions to 3D using

a kNN classfier (with k = 3). The code is available at
https://github.com/daduquea/sphericalDZ.

3.2.1. Coarse Ground Detection

High class imbalance is a typical issue in point cloud
segmentation. In order to reduce it, ground points are
identified first. A simple quasi-flat zones algorithm from
the BEV projection [19] is used for this purpose, assum-
ing that ground elevation varies smoothly.

3.2.2. Segmentation in 2D projections

In the spherical projection, each point cloud is repre-
sented by an image of 1024 X 64 pixels corresponding
to the azimuthal and elevation angles, respectively. A
set of five features is selected in this study: z coordi-
nate, depth (distance to sensor) and the normal vector in
3D coordinates denoted by (N, Ny, N;). A very simple
normal estimation based on depth image gradient [20] is
used. Only points that have not been classified as ground
are projected. If several 3D points fall in the same pro-
jected pixel, the classical approach to project the closest
3D point to the scanner at each pixel of the 2D image is
used. Spherical projection has been chosen because the
dataset is acquired with a terrestrial scanner. The scanner



Ground truth

Figure 7: Crops of spherical projections of point cloud.

position is not given. We estimate it from the BEV as the
barycentre of the empty space surrounded by the highest
point density. Fig. 7 shows ground truth and computed
features of ’5SD4KVPBP’ from train set after ground ex-
traction.

We trained a Deep Learning model using a variation of
Unet architecture [21] as presented in Fig. 8. This choice
was motivated by its capability to include input features
at different steps of the decoding stage of the network.
Specifically, the original input is directly concatenated to
the features computed by the network as a shortcut con-
nection, as is shown in the Fig. 8. Including shortcuts in
the model has demonstrated several advantages in image
segmentation tasks [22] such as increasing convergence
speed and stabilizing weight updates. Two strategies have
been tested: 1) Predict labels using trained model (The
code is available at https://github.com/daduquea/
sphericalDZ); 2) Remove last layer of the model and
predict labels using kNN classifier. Results were slightly
better and faster in the second case.

As the model is trained in 2D, it is required to back-
project predicted labels to point clouds. In a similar way
as proposed by [23], we perform kNN to label every 3D
point that is not projected in 2D image. We experimen-
tally found that best results are obtained with £ equal to

three.

3.2.3. Postprocessing

In order to improve the classification of some points,
we propose an automatic postprocessing step to correct
some of the predicted labels using mathematical morphol-
ogy. We performed the postprocessing in three steps:

Poles: Poles are thin structures in front of other larger
structures. Thus, they appear as regional minima in the
depth projection. Those minima are added to the detected
poles. Then, only structures with a geodesic elongation
[24] larger than 20 are preserved.

Building: In the BEV, structures higher than 2.5 meters
and with an elongation larger than 20 are considered as
buildings.

Small regions: Regions classified as vegetation or
building, with less than 100 pixels in the spherical view
are given the class label of the large surrounding neigh-
bors.

3.3. ResGANet: Residual Graph Attentional Networks

This method is contributed by authors Tao Ku, Remco
C. Veltkamp and Bas Boom. We introduce the Residual
Graph Attentional Networks (ResGANet) for the 3D point
cloud semantic segmentation task. The ResGANet takes
the semantic segmentation task as a supervised learning
task. We use the 60 point clouds with semantic labels in
training dataset to train and validate our model. As shown
in Fig. 9, the whole pipeline is composed of three parts:
preprocessing, model training & evaluation, and backpro-
jection. As our model training is based on the proposed
Residual Graph Attentional Networks (ResGANet) and
the input is in a fixed point number, we need to have a
voxel subsampling first and then sampling the point cloud
to a fixed size. After training and evaluation, we also
need to back-project the valuation results on downsam-
pled point clouds to the original ones. The code is avail-
able at https://github. com/keruast/ResGANet.

3.3.1. Preprocessing

In this part, we downsample the large 3D point clouds
to smaller sizes. We apply a voxel subsampling method
[12] with voxel size set to 0.1m so that dense areas can be
forced to be sparse while still contain enough information.
Then, we adopt a farthest point sampling [9] algorithm to
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Figure 9: Pipeline of the proposed ResGANet method.

sample the reduced point clouds to a fixed point number
8096.

3.3.2. ResGANet Architecture

Our propose Residual Graph Attentional Networks to
learn representative features directly from point coordi-
nates. It consists of four main parts, namely, Graph Con-
struction, Residual Graph Convolution Module, Graph
Pooling and Attentional Module. The overall architecture
is shown in Fig. 10.
Graph Construction

The graph construction module aims at creating graph
representations over point clouds. Given a 3D point cloud
with N points, matrix X € RV denotes the input co-
ordinates. Though there are many methods to construct
a graph, in this paper, we define a graph using k-nearest
neighbor (kNN) algorithms. Namely, for each point in a
point cloud, we query the k nearest neighbors and con-
nect the point with these neighbors. Considering that our
graph is undirected, but kNN searching cannot ensure the
graph is symmetrical, we define the adjacency as follows,

AG, j) = 2200 ; D) ot 2

where 6;(j) is an indicator function indicating whether

node j is in the k-nearest neighbors of node i. If node
Jj is in the k-nearest neighbors of node i, §;(j) = 1, oth-
erwise, d;(j) = 0. x; denotes the feature vector of node
i. In our approach, we set the kNN query number as 16
throughout our experiments.
Residual Graph Convolution Module

Similar to the residual block in ResNet [25], we define
our residual graph convolution module by two graph con-
volution units and a skip connection from the input to the
output addition. We adopt the graph convolution concept
in [26] as

Y = AXW (€)

where X € R¥*C is the input features, ¥ € R¥*P is the

filtered output, W € RP is the weight matrix. Notice

that the A also encodes a (K + 1)-scalar weight variables.
Further, the residual block is defined as

Yies = G(G(X.A,d),A,d) + X “

where X denotes the feature input, A is the corresponding
adjacency matrix and d is the degree which denotes the
highest power of the dajacency matrix. G(-) is the graph
convolution function.
Graph Pooling

We use kNN max pooling to define our graph pooling.
Given the point cloud coordinates X, € R">3, in order
to preserve the structure of point clouds, farthest point
sampling [9] is used to iteratively choose the desired N,
points. Based on that, we obtain the reduced point coor-
dinates X; € RY>3 and the corresponding index in Xj.
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Suppose the input feature is Fy € R¥*P, Then, for each
point in the reduced points, kNN is used to find the K
nearest features in Fy such that we obtain a feature matrix
of size N; X K x D . Finally, max pooling operation is
applied to get the new feature of each selected point. An
illustration of graph pooling is shown in Fig.11.

Note that graph pooling changes the point cloud struc-
ture. Thus, the adjacency matrix in afterwards graph con-
volutions needs to be updated by pooled points’ coordi-
nates.

Attentional Module

As attention has been successfully applied in many ar-
eas, the proposed graph attention module focuses on gath-

ering information from important points. That is, the at-
tention module tries to model point relations by finding
out the importance of one point over all other points, and
strengthening the feature of strong points while supress-
ing weak point representations.

The attention module has three branches. Two branches
are to calculate pairwise similarity, then the similarity out-
put is fed into a sigmoid function to generate the attention
matrix. Each element of the matrix indicates the relative
influence one point has on another point compared to all
other points. Instead of directly applying pairwise vec-
tor production, we first use two graph convolution layers
to dynamically learning different representations of the
identical input feature. Then, in case of rapid gradient
descending, we use a residual-like operation by adding
the attention output with the original input feature to get
the final output. In this way, we re-balance the features of
different points by considering each point’s influence on
others.

Given a feature matrix of X with N points, our attention
output can be modeled as:

vD

Y, = sigmoid( YoX)+ X ®)

where fy(-), fi(-) and f>(-) are feature extractors, and D is
the number of feature channels.



3.3.3. Interpolation

In this part, we need to backward project the downsam-
pled predicted labels to the raw point clouds. We use kNN
to do the interpolation. Give the downsampled point co-
ordinates with predicted labels and raw point coordinates,
we determine the raw per-point label with k& = 3 for the
kNN search.

3.4. GRanD-Net: Grid subsampling, RandLA-Net and
Dilated Convolutions

This method is contributed by authors Kiran Akadas
and Shankar Gangisetty. We propose a deep-learning
based 3D semantic segmentation of point clouds inspired
from the works of RandLLA-Net [12] known as GRanD-
Net shown in Fig. 12. We improve the RandLA-
Net [12] by considering point features in terms of
(x,¥,7) coordinates, subsample using Grid subsampling
and adopting dilated convolutions [27] to gain better effi-
ciency for semantic segmentation of large-scale 3D point
clouds. The code is available at https://github.com/
KiranAkadas/GRanDNet.

3.4.1. Data Preparation

To efficiently process data of such large-scale 3D
scenes, we down-sample the point clouds using grid sub-
sampling of KPConv [11] with a fixed grid size 0.06m.
In order to get back the original number of semantic la-
bels from the predictions, we index projections for up-
sampling the point clouds. The training dataset is aug-
mented by scaling and rotation.

3.4.2. Data Loading

To load the data in batches, we generate the data flow
for each batch. For a given batch size n and the steps
in each epoch s, (n X s) point clouds are reserved for
each epoch. To avoid ordered learning by the GRanD-Net
model, we feed the data randomly. The k-Nearest Neigh-
bours (kNN) algorithm is used with a pre-defined set of k
neighbours being selected of all the sub-sampled points.
If the sampled points are less than the given predefined
k points, we pick the points with replacement. To pre-
pare a batch of point clouds, we generate the neighbour
indices for every point in a point cloud. These are used
to get the relative point features. We then randomly sam-
ple 25 % of points to be reduced in the next phase while

down-sampling and simultaneously track the indices for
up-sampling. The pooling indices are obtained using kKNN
search for every sampled point.

3.4.3. Training

We train the sampled point clouds over several batches
of data. The loaded point clouds of dimensions (N, di,),
where N is the number of points in the point cloud and
din is the number of features associated with each point
in the point cloud, are processed using the dilated resid-
ual blocks (DRBs) shown in Fig. 12. Each of the DRB
includes multiple units of local spatial encoding and at-
tentive pooling stacks. The DRBs are connected through
skip-connections as proposed in RandLA-Net [12]. Un-
like normal convolutions used in RandLA-Net, we use di-
lated/atrous convolutions [27] to implement the DRB in
order to increase the receptivity of the filters without af-
fecting the resolution and gain better efficiency shown in
Fig. 13. The dilated convolutions incorporate multi-scale
features, essential for semantic segmentation. These di-
lated convolutions make our proposed GRanD-Net faster
and more efficient since we are increasing the area of filter
coverage without increasing the parameters and affecting
the feature learning, thus reducing the number of convo-
lutions. The local spatial encoding in DRB uses the cen-
tre points and their kNN neighbours to encode the point
cloud using relative positional information. At each step,
we apply random sampling with DRB using the points we
loaded earlier to reduce the size of input point cloud to
25%. The attentive pooling is used as a replacement to
max-pooling in order to compute the attention score for
every feature which is further aggregated to avoid loss of
information and learn important local information. We
use GeLU [28] as the activation layer in our GRanD-Net
model for better learning of non-linear features. GeLU
prevents strong negative activations which may affect the
model. The curvature and non-monotonicity of GeLU is
used to learn complex functions much better compared to
ReLU and leaky ReLU. The output of the stacked DRBs
is up-sampled and passed through multi-layer perceptrons
(MLP) followed by fully connected layers shown in Fig.
12. The use of skip-connections and MLP while up-
sampling ensures that the labelling is accurate. Our ap-
proach follows an all-inclusive up-sampling approach that
refines labels gradually unlike simple interpolation, which
would result in a single label for a group of points ignor-
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Figure 13: Convolutions: (left) 3 x 3 regular convolution mostly used
in CNNs. (right) 3 x 3 dilated convolution with d=2 covering an area of
5 x 5 is used in GRanD-Net resulting in lesser strides and parameters.

ing the demarcation of classes. The use of interpolation
would further require the use of a post-processing tech-
nique to refine the output. Finally, the predicted semantic
labels for every point are obtained as the output of the
model with dimensions (N, doy), Where dy is the number
of classes in the dataset.

3.4.4. Experimental Settings

We train our proposed GRanD-Net model for 50 epochs
with a train-validation split of 3:1 for the 5 classes leaving
the undefined class. A four layered network is used with
feature sizes of 16, 64, 128, and 256 while training. We
train GRanD-Net using the Adam optimizer with a learn-
ing rate of 0.01 and a decay rate of 0.05. A grid size of
0.06 is fixed for grid-subsampling while training and we
select k = 16 nearest neighbours to be queried. To train
our model, we sample a fixed number (N) of 65,536 points
from each point cloud as the input and use a batch size of
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Figure 14: Qualitative results of GRanD-Net on the test set
(5D4KVQIU and 5D4KX3TQ point clouds).
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Figure 15: Qualitative results of GRanD-Net on the test dataset. The
black circle shows the pole mislabelled as building.



Table 3: Evaluation results of our Street3D benchmark.

Method OA (%) mloU (%) Building Car Ground Pole Vegetation
Baseline 91.30 66.39 82.52 40.13  89.10 39.46 80.72
P4UCC 94.13 72.25 84.35 60.51 9646  40.18 79.75
Spherical DZNet ~ 93.89 67.30 83.16 4993 9646 27.52 79.41
ResGANet 93.55 71.39 82.96 57.66 9440 3294 88.98
GRanD-Net 97.83 86.40 93.66 8392 98.10 61.79 94.55

4 with 500 steps per epoch. The best performing GRanD-
Net model is frozen with a mean intersection over union
(mloU) of 84.11%. The frozen model is used to predict
segments for the 20 test point clouds that contain a total
of 72,753,747 points. The resulting mloU is 86.4% with
an overall accuracy (OA) of 97.83% for 5 classes shown
in Tab. 3.

3.5. PointNet++

We choose PointNet++ [29] as our baseline method for
the evaluation. PointNet++ takes point coordinates as in-
put and is able to learn deep features efficeiently and ro-
bustly. It’s a very popular base algorithm for many 3D
point cloud related tasks.

The implementation for semantic segmentation task
is available via https://github.com/intel-isl/Open3D-
PointNet2-Semantic3D.

4. Results and Discussion

4.1. Experimental Results

The evaluation results are shown in Tab. 3. Overall
accuracy (OA) and mean Intersection over Union (mloU)
are evaluated for all classes, and for each class, the IoU
metric is also calculated. We also plot the confusion ma-
trix of each algorithm in Fig. 16 to help investigate the
weakness of each model.

There are 5 methods under evaluation: Baseline
(PointNet++), PAUCC, Spherical DZNet, ResGANet and
GRanD-Net. P4UCC is based on a combination of
4 hand-crafted detectors, the other four methods are
learning-based. In these four learning-based methods,
Spherical DZNet is a two-stage approach with a ground
detector and a projection based deep learning architec-
ture for training and predicting, while the other three take
point coordinates as input and learning representations di-
rectly from points in an end-to-end way.
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4.2. Computation Complexity and Timing

In Tab. 4, we show the number of trainable parameters
and inference time as criterias for computation complex-
ity and timing, since these 5 methods are run on different
platforms and each has very different architecture and in-
put format. We list the time as a reference.

4.3. Discussion

As shown in Tab. 3 and Fig. 16, we have the following
observations:

e From obtained results with Spherical DZNet, we
have identified some drawbacks related to spherical
projections: 1) Objects size strongly depends on dis-
tance to sensor; 2) High variation of objects shape
according to sensor perspective. Both of them may
affect the capability of the model to learn. In addi-
tion, we identified a particularly low score in pole
class. We think it is mainly due to the presence of
traffic sign of point-cloud SD4L1RWS. Few traffic
signs are present in the dataset. Moreover, this one
is close to the scanner and has over 150 thousand 3D
points.

It is worth noting that P4UCC is the only non-
learning-based approach but still outperforms 3
learning-based methods (Baseline, Spherical DZNet
and ResGANet) by using four detectors to identify
point categories progressively. It shows that hand-
crafted method is still reliable and may outperform
learning-based methods.

GRanD-Net achieves superior performance on four
of the classes, except pole. We observe that the re-
sulting IoU of ground, vegetation, building, and car
classes are segmented accurately as the dataset dis-
tribution in these classes is high and learnt better. We
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Figure 16: Confusion matrix for all the five comparison algorithms. The x-axis represents the predicted labels while the y-axis denotes the
groundtruth labels. In this figure, each subfigure shows clearly the classification ability of each algorithm. We normalized each row of the
confusion matrix so that it is intuitive to show the probability of correct predictions and incorrect predictions.

also performed a qualitative analysis of GRanD-Net
model on the test set shown in Fig. 14. Visual in-
spection shows that our model performance is good
and close to ground truth. As the pole class IoU is
low to figure out the misclassification we plotted the
confusion matrix for the GRanD-Net shown in Fig.
16 (5). Based on the confusion matrix and visual in-
spection, we observe that few instances of the pole
class are mislabelled as building shown in Fig. 15,
due to their proximity to the building points and also
the insufficiency of the pole training points.

It is obvious that ‘Building* and ‘Ground‘ are easy
to be correctly classified while ‘Car‘ and ‘Pole‘ are
hard to be segmented. Considering the proportion of
‘Car’ and ‘Pole’ in the train/test set is 2.82%/2.19%
and 0.47%/0.78%, all four learning-based methods
cannot segment minority classes well. Non-learning-
based PAUCC performs better on minority classes.

We also observe that all three point-set learning-
based methods (Baseline, ResGANet and GRanD-
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Net) have to downsample the large point clouds be-
fore model training due to the limit of hardware com-
putation power. It may more or less result in infor-
mation loss and influence the segmentation perfor-
mance.

It is obvious that the end-to-end learning approaches
are the trend to tackle with the 3D point cloud seman-
tic segmentation task. They usually have powerful ability
to segment certain classes, however they may also suf-
fer from imbalanced data. The traditional hand-crafted
method may not outperforms learning-based methods on
certain classes but when the data is imbalanced, they can
show their robustness and reliability.

Another issue worth noting is the limited classes of our
Street3D dataset. For the 3D semantic segmentation task,
it’s sufficient to have 5 classes. However, it may not be
enough for specific tasks. For example, ‘road’ is an impor-
tant category for autonomous driving application. How-
ever, Street3D has ’ground’ instead of "ground’. It’s not
easy to recover road from only 3D ’ground’ points. But



our Street3D can still contribute to training and validating
deep learning networks for autonomous driving applica-
tion. The 4 learning-based methods in this paper can be
easily transferred to or finetuned on a dataset with a "road’
label as what have usually been done in 2D CNN applica-
tions.

5. Conclusions

In conclusion, this track has drawn attention on 3D
point cloud semantic segmentation for street scenes us-
ing multiple approaches. We provide a street scene
dataset composed of 80 scans which are well annotated
with five class labels. We introduce four novel and
different methodologies that outperform a state-of-the-
art deep learning based method (PointNet++) for the
new Street3D benchmark. As there is a non-learning
method (P4UCC) which also outperforms learning-based
approaches, it shows that well-designed feature descrip-
tors for the classification could have more importance in
the segmentation than the learned features, specifically
with unbalanced data. The four methods have focused not
only on different architectures but also on different fea-
tures (covariance-based features in P4AUCC, multi-scale
features in GRanD-Net, graph representations in Res-
GANet, spherical descriptors in Spherical DZNet), which
opens the possibility of combining some of the descriptors
from each discussed proposal in a new architecture. The
task is still challenging as small data size classes (’Car’
and ’Pole’) are still hard to be classified. More work need
to be done for solving the performance imbalance over
classes.
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