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Abstract. We show that deep learning techniques can be applied suc-
cessfully to fiber tractography. Specifically, we use feed-forward and re-
current neural networks to learn the generation process of streamlines
directly from diffusion-weighted imaging (DWI) data. Furthermore, we
empirically study the behavior of the proposed models on a realistic
white matter phantom with known ground truth. We show that their
performance is competitive to that of commonly used techniques, even
when the models are used on DWI data unseen at training time. We also
show that our models are able to recover high spatial coverage of the
ground truth white matter pathways while better controlling the num-
ber of false connections. In fact, our experiments suggest that exploiting
past information within a streamline’s trajectory during tracking helps
predict the following direction.

1 Introduction

Tractography is currently at the heart of human brain connectomics studies [15].
However, recent biases and limitations of existing tractography pipelines have
been highlighted [4], such as the reconstruction of many non-existent connections
(false positive streamlines), poor spatial extent of existing connections and the
difficulty of injecting anatomical priors beyond manual dissection and tissue
classes from T1-weighted segmentations.

Currently, tracking algorithms depend on local models with assumptions on
the nature of the underlying DWI signal. In 2015, [13] proposed a machine learn-
ing approach to fiber tractography based on a random-forest classifier. They suc-
cessfully demonstrated how a purely data-driven approach can be used to recon-
struct streamlines from the raw diffusion signal. Their method works well on 2D
synthetic data and shows promising qualitative results on in vivo data. However,
it has yet to be shown how well machine learning (and particularly deep learning)
approaches can perform quantitatively on more realistic data and how well they
can generalize to unseen data. In this paper, our main contributions are the first
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deep learning models for this problem and their evaluation, namely (1) a local
reconstruction model based on a multilayer perceptron, (2) a sequential recon-
struction model based on a recurrent neural network, (3) a careful quantitative
evaluation of performances on the phantom of the ISMRM 2015 Tractography
Challenge, and (4) a qualitative examination of the streamlines generated in un-
seen data during training. Our method outperforms or is competitive with the
current state-of-the-art deterministic and probabilistic tractography algorithms
robust to crossing fibers. In particular, out of 96 other tractography methods,
this is the only approach able to recover more than 50% of spatial coverage of
ground truth bundles while producing overreaching false connections below 50%.
Our recurrent neural network is a promising deep learning solution for tractog-
raphy based on raw DWI. It includes a notion of history of followed directions,
which makes it robust to crossing fibers, robust to a wide range of geometries
and allows the flexibility to include priors and learn how to reduce false-positive
connections.

2 Using Deep Learning for Tractography

Given a diffusion dataset and sequences of spatial coordinates, the goal is to train
a model to predict tracking directions to follow. In the context of tractography,
a deterministic model can be used in an iterative process for streamline creation.

We chose to focus on deep learning models because of their well-known ability
to discover and extract meaningful structures directly from raw data [9]. Our
models are based on two types of deep learning models : a Feed-Forward Neural
Network (FFNN), and a Recurrent Neural Network (RNN) [7]. While the FFNN
is a local model and serves as a good baseline, it has the same weaknesses as
existing methods, i.e. it is not able to learn streamline structures. To address
this weakness, we used an RNN, because this family of models can process whole
sequences as input. In our case, treating streamlines as sequences of coordinates
in 3D space, our hypothesis is that a recurrent model should be able to learn
the fiber or bundle structure through the diffusion signal in order to make better
predictions and solve classic problems like fiber crossing.

Model inputs: As in [13], to be independent of the gradient scheme, the raw dif-
fusion signal is first resampled to have D gradient encodings evenly distributed
on the sphere (we used D = 100). We also normalized each diffusion-weighted
images by the b=0 image. A streamline is represented as a sequence S of M
equally-spaced spatial coordinates Pi = (xi, yi, zi). The diffusion signal is eval-
uated at each of these points, using trilinear interpolation in the voxel space.
This results in a sequence of M vectors with D dimensions representing the dif-
fusion information along the streamline. In all our models, we also tried giving
the previous direction as a supplementary input, as in [13]. Note that the spatial
coordinates are not given as input to the model. This choice allows the model
to be invariant to brain size or translation, reducing the preprocessing needed
before feeding data to the model and improving generalization.
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(a) FFNN training (b) RNN training (c) RNN tracking

Fig. 1. Architecture of the proposed models. (a) Given a streamline S, diffusion
information is evaluated at each point Pi using trilinear interpolation (DWI(Pi)).

The resulting vector is provided to the FFNN to predict a direction d̂i (orange), which
is compared against its associated target direction di (green). (b) Unlike the FFNN,
the RNN has recurrence connexions through each step, allowing to send information
to itself through the sequence. (c) Given a starting point P0, a new streamline Ŝ is

generated by iteratively predicting a new direction d̂i, and feeding the estimated new
position P̂i+1 back to the model. Note how the predicted direction d̂i gets influenced
by prior information along the streamlines through hj<i.

2.1 Models

FFNN The FFNN sees all streamline coordinates as individual, independent
local data points. The output of the model is a 3-dimensional normalized vector.
The model is represented in Figure 1(a). To remove the directional ambiguity
when no previous direction is given, we choose to consider the output vector as
an undirected axis instead of a direction. To this end, the loss function is defined
as the negative squared cosine similarity.

RNN The general idea behind the RNN is to model an internal state that is
updated with each new observation in the input sequence and can be used to
make predictions. Through its updatable internal state, the model can “remem-
ber” relevant features about the past. In this case, we used a Gated Recurrent
Unit (GRU) [3] type of RNN.

Figure 1(b) shows that for each point Pi in the streamline, the diffusion
information DWI(Pi) is used to update the internal state hi of the model.
From there, at each step along the streamline, the model makes a prediction
of the direction to follow d̂i. The loss function is defined as the mean squared
error (MSE) between the model’s prediction d̂i and the target di (i.e. the next
normalized segment of the streamline).
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2.2 Tractography

Tractography is performed by using a fully trained model. Streamlines gener-
ation follows an iterative process as in classical streamline-based tractography
techniques [11] as illustrated in Figure 1(c). From a seed point P0 = (x0, y0, z0),

a new streamline is created with the initial seed Ŝ = {P0}. Next, the model is
given the DWI data at the previous streamline coordinate Pi to obtain a pre-
dicted direction d̂i. A next point Pi+1 = Pi + αd̂i is then computed, where α
is a chosen step size, as in standard streamline-based tractography algorithms.
Points are generated to iteratively produce a streamline until a desired crite-
rion is met (e.g. too high curvature, exiting WM mask). The whole process is
repeated as many times as required to produce a full tractogram.

3 Related Work

The work of Neher et al. [13] hypothesizes that tractography can be improved by
considering local neighborhood features, adding a directional prior to promote
straight fibers, and using a fiber deflection protocol to help the model recover
from mistakes. More precisely, their model makes predictions based on a voting
mechanism, using local direction proposals from multiple sample positions in
the vicinity of the current location. Each direction proposal is obtained by a
classification over 100 possible directions (weighted using the previous direction),
along with a streamline termination probability. If fiber termination is the more
likely option, a deflection is attempted by rotating the sample point 180° around
the previous direction and classifying a second time.

In our current approach, the problem is framed as a regression task over nor-
malized directions instead of a vote over discretized directions. This means that
to produce a prediction, fewer computations are needed at the output, compared
to computing and voting over many proposals. Regression also allows the model
to output more precise directions and thus be more suitable at exploiting smaller
variations in direction. In addition, if straight fibers are supported by the data,
a directional prior should not be necessary and a deep learning model should be
able to learn the right structure, which is why our model does not include such
a prior.

While Neher et al. consider the neighborhood of the current position, they do
not consider the full evolution of the streamline up to each point. Our hypoth-
esis is that there are high-order dependencies between the next direction in the
streamline and all previous directions. Consequently, our recurrent approaches
have a natural mechanism for integrating past information along the streamline
to predict a next direction. These two approaches are not exclusive however, and
would probably benefit from each other.

Finally, in a deep learning context, learning a stopping criterion along with
the direction to follow is more complex. It would require careful engineering and
balancing of the loss function in order for one not to overcome the other during
training, especially using a recurrent approach. This is beyond the scope of this
paper and left for future work.
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4 Experiments

We quantify the performance of our methods on the 2015 ISMRM challenge
dataset [10] and evaluate using the Tractometer connectivity metrics [4]. In doing
so, we can compare ourselves to the 96 original challenge submissions [1]. We
then qualitatively evaluate our method when tracking on in vivo data.

Tracking parameters: Tracking was done using 1/2 voxel step size (1.0 mm for
ISMRM challenge, 0.625 mm for HCP). Seeding was done using 1 seed per voxel
in the WM mask, and tracking was done using a dilated WM mask. All stream-
lines leaving the dilated mask were automatically terminated and streamlines
shorter than 20 mm or longer than 200 mm were discarded. Streamlines with a
half-cone curvature higher than 20° were also discarded.

4.1 ISMRM2015 Challenge

For the first experiment, we choose to reproduce the training environment of
Neher et al. [13], by using training data generated specifically for the subject
of interest. They determined the optimal method for generating their training
data to be a constrained spherical deconvolution (CSD) deterministic streamline
tractography (DET) of MRtrix [14]. Staying coherent with their approach, a trac-
togram was generated using CSD-DET on a denoised and distortion-corrected
version of the ISMRM2015 challenge dataset. The resulting 92K streamlines were
then split into training and validation sets (using splits of 90% and 10%).

We trained models with one to four layers, varying the layer size between
500 and 1000, and used the Adam optimizer with early stopping. Full code is
available online5. For each type of model, the one with the best validation error
was chosen for tracking & tractometer evaluation.

We report in Table 1 the valid connections ratio and the associated number
of valid bundles (true positives), the invalid connections ratio and the associated
number of invalid bundles (false negatives), the volumetric bundle overlap and
overreach in percentages. Drawing conclusions from only one of these last two
metrics can be misleading (e.g. a model can have both the best overlap and the
worst overreach). These metrics are related to precision and recall measures, and
are combined into the F1-measure. Note that the “ PD” model suffix indicates
when the previous direction was given as input to the model. We report as
baselines the ISMRM mean results and submission 6 1[1], which is a CSD-DET
based method comparable to what was used to generate our training data.

We see that the local model (FFNN) is already competitive with the mean
ISMRM challenge scores. Its ability to estimate the main diffusion axis and tun-
ing its predictions according to the streamlines seen during training allows it to
improve all mean scores except number of invalid connections (+3.9 VC, +7.6
IC, -10 NC, +1.6 VB, -214 IB, +12.2 OL, -1.6 OR, +11.6 F1). Surprisingly,
adding the previous direction as input worsened the model’s performance. We

5 https://github.com/ppoulin91/learn2track/tree/miccai2017_submission
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Table 1. Quantitative evaluation on the ISMRM 2015 Tractography Challenge.

Model
Connections (%) Bundles Avg. Bundle (%)
Valid Invalid No Valid Invalid Overlap Overreach F1

ismrm mean results 53.6 19.7 25.2 21.4 281 31.0 23.0 44.2
ismrm submission 6 1 69.9 26.2 3.9 23 74 47.7 32.3 56.0

ffnn 57.5 27.3 15.2 23 67 43.2 21.4 55.8
ffnn pd 14.8 64.2 21.1 22 100 36.7 40.7 45.3
rnn 66.1 25.3 8.6 21 36 7.7 12.0 14.2
rnn pd 41.6 45.6 12.8 23 130 64.4 35.4 64.5

(a) predicted (b) ground truth (c) overlap (d) overreach

Fig. 2. a) Left CST generated by the RNN model using the ISMRM2015 challenge
data. b) Ground truth mask as defined by the ISMRM2015 challenge. c) Overlapping
and d) overreaching voxels of the generated bundle with respect to the ground truth
mask.

think that the optimization process allowed the model to achieve a good perfor-
mance by generally simply copying the previous direction given as input. Indeed,
we looked at the generated streamlines, and while they do a good job of covering
the brain (the FFNN PD model recovered 22 bundles out of 25), they are mostly
straight and miss important connections.

Going from the local model to the recurrent model (RNN) provided different
insights. Without the previous direction as input, the model generated more rel-
ative valid connections, but overall very few streamlines (as seen in the overlap
metric, 7.7%). With the previous direction however, the model achieved very
good coverage of the challenge bundles (64.4% overlap), while dropping a bit
below 50% VC. It achieved the best F1 score over all our models. In compari-
son, no submission in the ISMRM2015 challenge achieved an overlap
higher than 50% while keeping overreach under 50% [1,10]. Figure 2
shows how the left CST is reconstructed with high coverage and low overreach.
We believe that the recurrent model, being able to accumulate “memories” about
the past of the streamline, is able to extract information of the previous direc-
tion without committing the same mistakes as the local model. This ability to
“memorize” is what makes this model stand apart from classic methods.
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Fig. 3. Expert, FFNN and RNN bundles obtained in experiment 4.2. Colored bundles
(in order) : [CST], [Cingulum, ILF, MCP], [Rostrum, Genu, Rostral Body, Anterior
Midbody, Posterior Midbody, Isthmus, Splenium].

4.2 In vivo tracking

Using the models trained in the first experiment (section 4.1), we tracked on
an unseen brain (HCP subject #100307). As a gold standard we used a virtual
ROI-based dissection made by an expert neuroanatomist [12,2]. Streamlines used
for the dissection were generated using Particle Filtering Tractography [6] using
default parameters and based on a spherical harmonics 8 multi-shell constrained
spherical deconvolution reconstruction [5,8]. The resulting bundles are shown in
Figure 3. Visual evaluation shows results that are in line with the first experi-
ment. The local model does a good job of recovering the bundles, but has poor
coverage. The recurrent model is much more similar to the expert segmentation
in most of the recovered bundles. We suspect that the RNN would gain even
more by training on much larger datasets with multiple subjects.

5 Conclusion

We propose the first deep learning alternatives to traditional local modeling
approaches to tractography based on raw DWI. Our FFNN model provides the
first performance baseline for local deep models. We also present a novel approach
where the past of the streamline is considered by a recurrent model in order to
make better predictions. Compared to the other ISMRM2015 submissions, this
proved to be the only technique able to recover more than 50% of spatial coverage
while producing overreaching false connections below 50%. We show that deep
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learning models can generalize to new DWI unseen at training time. These novel
results show that deep learning is a promising approach to tractography.

While we believe that deep learning will be able to discover new pathways
by learning the global streamline structure, we still do not have enough accurate
data to explore this area of research. In future works, as data become available,
we plan on training on incomplete datasets (i.e. removing one or more bundles)
in order to see the reconstruction and discovery capabilities of our models. Fur-
thermore, we will explore how modifying the output of the RNN (e.g. predicting
the parameters of a distribution) can improve the power of the model.
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