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Fig. 1. From an elevation map and user-sketched density (top left) our system automatically infers a canopy height model (bottom left) and then populates it
with an entire ecosystem composed of canopy, undergrowth and forest floor layers (evident in the succession of zoomed images to the right).

In computer graphics populating a large-scale natural scene with plants
in a fashion that both reflects the complex interrelationships and diversity
present in real ecosystems and is computationally efficient enough to support
iterative authoring remains an open problem. Ecosystem simulations embody
many of the botanical influences, such as sunlight, temperature, andmoisture,
but require hours to complete, while synthesis from statistical distributions
tends not to capture fine-scale variety and complexity.

Instead, we leverage real-world data and machine learning to derive
a canopy height model (CHM) for unseen terrain provided by the user.
Trees in the canopy layer are then fitted to the resulting CHM through
a constrained iterative process that optimizes for a given distribution of
species, and, finally, an understorey layer is synthesised using distributions
derived from biome-specific undergrowth simulations. Such a hybrid data-
driven approach has the advantage that it incorporates subtle biotic, abiotic,
and disturbance factors implicitly encoded in the source data and evidences
accepted biological behaviour, such as self-thinning, climatic adaptation,
and gap dynamics.

CCS Concepts: •Computingmethodologies→ Shapemodeling; Shape
modeling.

Additional Key Words and Phrases: Ecosystem simulation, natural phenom-
ena

Authors’ addresses: Konrad Kapp, University of Cape Town, South Africa, konrad.p.
kapp@gmail.com; James Gain, University of Cape Town, South Africa, jgain@cs.uct.ac.
za; Eric Guérin, Univ Lyon, INSA-Lyon, CNRS, LIRIS, France, eric.guerin@liris.cnrs.fr;
Eric Galin, Univ Lyon, Université Lyon 1, CNRS, LIRIS, France, eric.galin@liris.cnrs.fr;
Adrien Peytavie, Univ Lyon, Université Lyon 1, CNRS, LIRIS, France, adrien.peytavie@
liris.cnrs.fr.

ACM Reference Format:
Konrad Kapp, James Gain, Eric Guérin, Eric Galin, and Adrien Peytavie. 2020.
Data-driven Authoring of Large-scale Ecosystems. ACM Trans. Graph. 39,
6, Article 217 (December 2020), 14 pages. https://doi.org/10.1145/3414685.
3417848

1 INTRODUCTION
Plants are an important visual element in natural scenes for appli-
cations such as computer games, film, and virtual environments. At
a collective level this requires that plants be placed and assigned
attributes, such as species, height, canopy spread, age and vigour,
on a heightfield terrain. While stating this eco-placement problem is
straightforward, it is challenging to solve because of the wide range
of influencing factors and their subtle interactions, including envi-
ronmental conditions, such as temperature, slope, sunlight exposure,
and available soil moisture, and disturbance events, introduced by
disease, storms, fire, humans, and grazing animals. As mediated by
a plant’s species these factors affect the competitive establishment,
growth, seeding, and death of plant specimens in an ecosystem.

Most eco-placement systems address this challenge either through
ecosystem simulation or distribution synthesis. The former cate-
gory [Makowski et al. 2019] directly models botanical processes
but suffers from lengthy simulation times (on the order of hours
or even days), a general lack of user control beyond setting initial
conditions, and a failure in some cases to consider the full range
of influencing factors. The latter [Gain et al. 2017] can synthesise
ecosystems using distributions extracted from previous simulations
or from known botanical properties in interactive time and with
user guidance, but sacrifice realism due to the necessary abstraction.
The particular issue is that fine-scale variations tend to be averaged
away, leading to overly homogeneous outputs, unless substantial
authoring effort is invested by the user.
There is, however, a third path. Accurate real-world data from

satellite and airborne scans in the form of paired Digital Elevation
Models (DEMs), which encode terrain as gridded elevations, and
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Canopy Height Models (CHMs), which store height differences be-
tween ground and canopy over the same grid, are becoming ever
more readily available. Such data makes viable the enhancement of
eco-placement through machine learning. There is a caveat: canopy
maps do not explicitly represent the attributes of individual trees,
and their aerial perspective also occludes lower structural layers,
such as the understorey and forest floor (see Figure 3). Thus, to solve
the complete eco-placement problem while leveraging these data
sources requires a hybrid of machine learning, ecosystem simulation
and distribution synthesis.
In this paper, we present the first complete data-driven system

for authoring large-scale ecosystems (with on the order of several
million plants). Our process begins with a user providing an input
terrain over which they can optionally paint a discrete density model
(DDM) of desired forest density with one of three brushes (dense,
sparse, empty). Next, a Conditional Generative Adversarial Network
(CGAN) [Isola et al. 2017], previously trained on map triplets of
terrain (DEM), painted density (DDM), and canopy height (CHM), is
used to generate Canopy Heights over the terrain that accord with
the user’s paint map. This is followed by a constrained optimization
process that distributes trees to match the generated CHM and
user-specified species proportions. Finally, the understorey and
forest floor layers are synthesized using statistics derived from
custom data-driven simulations, to provide a complete renderable
ecosystem. The advantages of our approach are that it provides
flexibility through user control, performance sufficient for iterative
authoring, and plausible ecosystem patterns and behaviour.
We employed digital elevation, canopy height, and biome data

derived from a 380km2 area in Sonoma County, California [Dubaya
and Hurtt 2014] to validate our approach, interactively generating
large-scale ecosystems 1km × 1km in extent and on the order of a
million plants in under 5s, while supporting user editing through
density brushes and sub-biome constraints.

2 RELATED WORK
The realistic portrayal of natural environments is a longstanding
challenge in computer graphics. While we concentrate here on
the problem of eco-placement, modeling the geometry of individ-
ual plants and their rendering in a combined scene should not
be neglected. Early plant modeling focused on representational
issues, proposing fractals [Aono and Kunii 1984] and L-systems
[Prusinkiewicz 1986] as a means of encoding botanically-plausible
self-similar branching structures.More recently, the focus has turned
to the incorporation of context sensitivity [Benes et al. 2009; Hadrich
et al. 2017; Měch and Prusinkiewicz 1996; Prusinkiewicz et al. 2001],
where plants adapt to environmental conditions, such as obsta-
cles and light sources, and user-efficient generation from sketches
[Wither et al. 2009], components [Maréchal et al. 2010; Xie et al.
2016], images [Bradley et al. 2013], and videos [Li et al. 2011].

At the broader scale, the problem of populating a landscape with
a collection of plants (which we term eco-placement) has generally
been tackled in one of two ways: by top-down distribution synthesis
or bottom-up ecosystem simulation.

Distribution synthesis generates plant positions according to an
underlying statistical distribution, which can be derived from observ-
able ecosystem properties, such as Poisson-like plant separation, or
analysis of real-world data. In this category techniques range from
relatively straightforward but computationally efficient half-toning
of density images [Deussen et al. 1998], dart throwing [Andújar
et al. 2014], and dominant-species placement using greedy cluster
merging [Li et al. 2018], to more complex field-of-neighbourhood
plant distributions placed onWang tiles [Alsweis and Deussen 2006],
probability density maps [Lane and Prusinkiewicz 2002] and inter-
and intra-species distribution histograms [Emilien et al. 2015; Gain
et al. 2017]. There has been a recent move from point-based to disc-
based synthesis [Ecormier-Nocca et al. 2019], since this represents
both trunk position and canopy extent and better captures biotic
interactions, such as the shadowing of shade-tolerant plants.

In this category, there is an under-explored opportunity to exploit
machine learning to analyse and reproduce real-world distributions.
A CNN connected to a feature extraction and patch-matching front-
end [Zhang et al. 2019] has been used to generate vegetation density
maps for unseen terrains. Unfortunately, this was only tested for
a single plant species and with procedurally-generated artificial
training data where plant placement was based solely on altitude
and slope. In contrast, we apply machine learning to real-world
canopy height models where interrelationships between terrain and
plants are considerably more complex.

To summarise, distribution synthesis tends to be computationally
efficient and hence applicable to large scenes. However, it has diffi-
culty in capturing the variability and complexity of real ecosystems.
Ecosystem simulations, on the other hand, come closer to real-

world fidelity by explicitly modeling plant growth under competi-
tion for sunlight and moisture, propagation through seeding, and
eventual death due to senescence or resource starvation. In the in-
terest of performance the complexities of individual plants are often
abstracted away using radial interactions [Alsweis and Deussen
2005; Deussen et al. 1998; Gain et al. 2017], L-systems [Lane and
Prusinkiewicz 2002] or agents [Bradbury et al. 2015; Ch’Ng 2013].
There is a need for balance since too much abstraction may sacri-
fice the involvement of biotic factors (principally competition for
resources between neighbouring plants), abiotic conditions (the
combined influence of temperature, moisture, sunlight, wind and
slope) and disturbance events (from fires, storms, humans and graz-
ing animals). There are some systems which stand out in this regard.
Ch’ng [2013] closely follows the botanical literature [Foley et al.
1996; Sato et al. 2007; Sitch et al. 2008] by incorporating different
forms of seed distribution, soil hierarchies, the seasonal differences
between evergreen and summergreen species, and the impact of for-
est fires. The work of Cordonnier et al. [2017] is noteworthy because
it accounts for the interplay between terrain erosion and vegetation
formation. For instance, plants act to inhibit erosion through soil
stabilisation but can also be swept away by rockslides. The syn-
thetic silviculture system [Makowski et al. 2019] is arguably the
least abstract and most accurate at a plant level as it considers the
phenotype of plants by instantiating and orienting branch templates
to create sunlight-adapted structural plant models during simula-
tion. Typically, other systems use parameters such as height, canopy
extent, age and vigour to select plant models as a post process.
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Fig. 2. An overview of ecosystem creation: starting from an elevation map H and a coarse vegetation density sketch P, we progressively generate the canopy
height model C and place canopy trees T accordingly, we then synthesize undergrowth U constrained by the previously computed canopy, and eventually
generate the forest floor G before rendering. The process is data-driven with inputs from a trained CNN generator and simulation statistics.

The downside of higher fidelity is that it usually comes at a per-
formance cost. For example, synthetic silviculture requires more
than 7 hours of simulation to create a mature ecosystem of 500, 000
plants with a timestep interval of one year. We compensate for this
in the same way as Gain et al. [2017] by running our simulation com-
ponent as a pre-process and deriving a database of distributions for
later on-line synthesis. Our point of departure is to use an existing
canopy derived by machine learning as a prior, which allows us to
concentrate on simulating the understorey, enabling both improved
realism and shorter simulation time spans.

3 OVERVIEW
An ecosystem can be naturally segregated into structural layers,
consisting of the canopy, understorey, and forest floor (see Figure 3).
Because these layers involve different spatial scales, and have differ-
ent data availability, it is natural to decompose our pipeline on the
same basis, using appropriate combinations of machine learning,
ecosystem simulation, and distribution synthesis, and producing
a set of canopy trees T , understorey plants U, and a forest floor
density map G for grasses and forbes.

Canopy layer C

Forest floor G

Understorey layer U

1

2

3

Fig. 3. It is common in botanical analysis to decompose a forest into struc-
tural layers. Our system treats each layer (canopy, understorey, and forest
floor) differently.

The data-driven components of our pipeline rely on raster data
products derived from Lidar scans, in particular: digital elevation
modelsH , representing bare-earth altitude samples across a terrain,
canopy height models C, encoding the height offsets from ground
to tree top, and, optionally, canopy density models D, capturing
the proportion of the forest floor shadowed by tree crowns for a
given raster cell. While such data is not universally available, these
formats follow well-defined standards and coverage is becoming
more widespread. It is important for our purposes that scans are co-
registered and of sufficient resolution, in order to effectively detect

and exploit correlations between terrain and vegetation. Throughout
this paper, we use data from Sonoma County, California, sampled
at a horizontal spacing of 0.914 m (3 feet).
The different stages of our ecosystem generation are detailed in

Figure 2. First, the user provides an input terrain and a rough painted
discrete density map P with three levels empty, sparse and dense,
for areas with no trees, scattered occupancy, or complete coverage,
respectively. Our system allows this paint map to be iteratively
adjusted as part of ecosystem authoring. From these inputs a canopy
layer is inferred (section 4) by using end-to-end cGANs to produce
first a canopy footprintF indicating the binary presence (or absence)
of trees over 3m in height, and then an associated canopy height
model C. The last step in canopy extraction (section 5) involves
running a constrained iterative optimization to place individual
canopy trees and assign their species. Next, the understorey plants
are synthesised (section 6) using statistics derived from previous off-
line biome-specific undergrowth simulations. Finally, a density map
is generated for the forest floor and the scene is ready for rendering.

4 DATA-DRIVEN CANOPY HEIGHTS
The first step in our pipeline is to generate canopy heights using
convolutional neural networks (CNNs) to map (H ,P) 7→ F 7→ C,
thus translating terrain and painted density input pairs (H ,P) via
an intermediate binary canopy footprint F to a canopy height model
C. In essence, the process is split into two steps: creating a map
for the presence or absence of forest canopy in a given terrain cell
(typically 0.914×0.914 m2) and from this inferring the canopy height
values for those cells.

A direct CNNmappingH 7→ C might seem a more obvious route,
but it removes the user agency embodied in the painted density map
P, which is necessary both for effective landscape authoring and
to compensate for the influence of disturbance events. To take one
example, the removal of forests through human intervention de-
pends on complex socio-economic factors that cannot reasonably
be inferred by machine learning from a terrain on its own. Fur-
thermore, practical experiments have shown us that, without this
two-stage user-guided mapping, the final canopy heights exhibit
significant blurring and loss of structure. The decomposition into
simpler sub-tasks also introduces opportunities for intermediate
user control, such as by editing the canopy footprint directly, and
has proven effective in other contexts [Zhang et al. 2017].
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Fig. 4. Two instances of source data (ground truth) are compared against
generated results (canopy footprint) using the same heightfield and a density
map (sketch) derived from the source by hand. Though our output does
vary in the details, it remains structurally similar.

For the training process, we employ conditional generative ad-
versarial networks (CGANs) [Isola et al. 2017], because these have
proven effective for comparable image translation problems, such as
generating realistic terrain heightfields from user-supplied sketches
[Guérin et al. 2017]. The CGAN learning process pits discriminator
and generator networks against each other, optimizing both simul-
taneously. The generator CNN is ready for use when a discriminator
is unable to distinguish between real and generated data.
For the canopy footprint generator, it is necessary to train a

CGAN on triples (H ,P,F ) so that the mapping (H ,P) 7→ F can
be learnt. The terrainH is obtained directly as a digital elevation
model, the canopy footprint F is derived by thresholding a canopy
height model (CHM) at a specific height ϵ to create a differentiation
between forested and open terrain (we use ϵ = 3 m in our experi-
ments because this height represents well-established trees), and
the painted density map is created by hand from F by a designer
using three types to represent empty, sparse, and dense forest re-
gions. Although such painting is time consuming it is part of the
training pre-process and does not impact the final end user. Existing
methods [Guérin et al. 2017] use an algorithmic approach to approx-
imate user sketches, but a three-class density classification of the
canopy footprint is not straightforward and, in any event, might
not correspond well with how a user would paint. Note that densely
painted areas in the user map P do no necessarily correspond to
complete coverage in the footprint F because of the presence of
small clearings and ragged forest boundaries.

For the canopy height generator, the CGAN training data is based
on another set of triples (H ,F ,C) and the associated mapping is
(H ,F ) 7→ C. The only significant difference is that we now use the
CHM data directly for C and do not threshold heights as before. In
runtime use, the output of the F -generator is fed as input to the
C-generator (see Figure 5). We provide two simple validations of
the learnt correlation between forest patterns and terrain. First (see
Figure 4), our generated canopy footprints while not identical at
a pixel level do show similar structural patterns when compared
to an unseen real-world ground truth. Second (see Figure 6), the
same painted density produces very different footprints on different
terrains, demonstrating that terrain adaptation is taking place.
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Fig. 5. Canopy height generation. On an elevation map H, the user sketches
a broad indication of vegetation structure P using empty, sparse and dense
brush settings. This is transformed by trained cGAN’s, first into a detailed
canopy footprint F and subsequently into a canopy height model C.

Our CGAN implementation is based on the standard pix2pix
framework [Isola et al. 2017] extended to deal with 16 bit per chan-
nel images better able to discriminate fine-differences in terrain
altitude. To handle larger landscapes without compromising quality,
we use maps downsampled to a quarter of the initial resolution
(from 0.91 m to 3.64 m per cell) for the canopy footprint and canopy
height generator. Input pairs, (H ,P) and (H ,F ), are multiplexed
into a single image using the red and green channels, respectively.
For the training phase we employ an image resolution of 512 × 512
thus covering 1.86 × 1.86 km2. Furthermore, we disable automatic
image flips and rotations during training, because landscape orien-
tation affects sunlight exposure and hence patterns of vegetation
growth. The strong performance of CGANs on a limited training
corpus [Kim et al. 2017] and the relatively simple building blocks of
our pipeline enables us to train on datasets with as few as 50 image
pairs.

5 CANOPY TREE PLACEMENT
The next task is to derive a collection of individual trees T i that
provides a best fit to the given terrain and canopy height model.
For each canopy specimen we seek to determine the trunk location,
species, height, and canopy radius. Ideally, the placement algorithm
should respect botanical norms while permitting users the flexibility
to adjust the relative proportion of different species.
As is to be expected, the problem of automatically delineating

tree crowns in scanned data has been well studied [Kaartinen et al.
2012; Zhen et al. 2016]. Unfortunately, many existing techniques
do not assign species during segmentation, rely on data, such as
dense point clouds and hyperspectral scans, that are not always
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Fig. 6. Terrain influence. The outcomes are markedly different when apply-
ing the same sketch P to different terrains H, particularly where the user
has painted sparse vegetation (pale red). Notice how features such as rivers
and steep slopes dictate structural patterns in the canopy.

readily available, and have poor accuracy relative to a ground truth,
particularly for dense forest stands, where there is little delineation
between the crowns of adjacent trees.
Thus, rather than seeking notionally-true plant positions, we

instead place plants according to botanical plausibility (specifically,
response to abiotic conditions as mediated by species) such that
the CHM is respected. This is achieved in two steps: first, a species
map is derived by segmenting the canopy footprint according to
dominant species in a way that targets species proportions provided
by the user while accounting for the abiotic conditions (soil moisture,
sunlight exposure, slope) of the landscape. Second, individual trees
are placed by a combination of sampling, in which trees are seeded
initially at local-maxima and later in exposed areas of the CHM, and
refinement, during which trees repulse each other in a particle-like
fashion. As part of this iterative optimisation process necessary
tree attributes are obtained by querying the terrain, canopy height
model, and species map.

5.1 Species Map
The species map stores the dominant species for each terrain po-
sition p, determined on the basis of local abiotic conditions. This
requires a derivation of co-registered abiotic maps B for the major
botanical influences, namely temperature Bt , soil moisture Bm ,
sunlight exposure Be , and slope Bд (see Figure 7). In this regard,
we borrow from existing approaches [Cordonnier et al. 2016, 2017;

Temperature Sun Moisture

Canopy trees Undergrowth

1 2

1

2

Fig. 7. Undergrowth simulation. Given monthly abiotic maps (top) and the
position of canopy trees, we simulate an undergrowth layer. Undergrowth
plants adapt to local characteristics of the terrain and canopy. For example,
Redwood Sorrel and Western Swordfern (both in blue) require shade and
moisture, whereas Tanoak (light green) is sun and drought tolerant.

Gain et al. 2017]: temperature is specified at sea level and decreases
with altitude according to the standard lapse rate; soil moisture
is based on a drainage and absorption model, with special consid-
eration given to riverbanks so that riparian sub-biomes emerge
naturally; sunlight exposure accounts for terrain self-shadowing
using ray-casting from the sun along a simulated trajectory, which
varies depending on time of year, latitude and terrain orientation;
and slope is the standard local deviation from vertical. Temperature,
moisture and sunlight maps all have monthly variation, which we
average over the span of a year. Next, we define a vigour function
vs : R → [0, 1], specific to each potential species s for a position p,
and dependent on abiotics:

vs (p) = αs min(ft (Bt (p)), fm (Bm (p)), fe (Be (p)), fд(Bд(p))). (1)

r
-0.2

1 g (d)

0

d0

Fig. 8. Adaptability.

Here, αs is a weighting factor to en-
able user control and ft , fm , fe and fд are
adaptation functions of the general form
f = д ◦ d with d(x) = |x − c | denoting
the distance of the abiotic value from the
species ideal, and д defined as:

д(d) = (1 + a)e(d/r )
4.5 ln(0.01) − a

where a is a vertical shift that captures
stress as negative vigour on the margins
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(we set a = 0.2), c is the abiotic ideal, and r is the distance at which
the function attains a value near −a.

The parameters c and r are particular to each species and abiotic
condition (see Table 3 for our particular choice of values), Figure 8
shows a plot of the suitability function, for c = 0, r = 0.8, and
a = 0.2. To populate the species map, we simply select the most
vigorous species for each position (thus, arg maxs vs (p)).

This treatment of vigour supports Leibig’s law of the minimum
[Cade et al. 1999] (that the least suitable abiotic resource is the lim-
iting factor on growth) and is also in line with previous work [Cor-
donnier et al. 2017; Gain et al. 2017]. Our point of departure is the
use of Equation 5.1 to replace a piecewise linear function. This al-
ternative has the advantage of reducing the number of parameters
and providing higher derivative continuity, while still containing a
hat-like central optimal zone.
Users are afforded control over species assignment by speci-

fying the percentage target occupancy (ts ∈ [0, 1],
∑
s ts = 1)

for a particular species s . This controls the area occupied by that
species as a proportion of the whole. The vector of weighting terms
α = (α0, . . . ,αn ) from Equation 1 is the key to achieving these tar-
gets. In this regard, it has several useful properties. If all weights
have the same value then the most vigorous species will always
prevail for a given location. Adjusting a particular αs serves to make
that species more or less suitable relative to its competitors, but can-
not force its placement when completely unsuitable (vs (p) = 0 ∀ αs ).
We thus cast the problem of meetings the target occupancies as an
optimisation of α that minimises the objective function:

h(α) = (ts − As (α))
2,

where the functionAs calculates the relative pixel count of a partic-
ular species s over a region R subject to the weighting vector α . We
note that the function As (α) is monotonically (but not strictly) in-
creasing with respect to αs and h(α) can thus be minimized through
a simple bisection search. Allowing simultaneous control over mul-
tiple species targets, while certainly achievable, would require multi-
parameter optimization and complicate user interaction.
This optimisation can be done at any region granularity R. We

support both global and local options: species proportions can be set
for the entire landscape or attached to a brush and painted locally
over portions of the landscape (see Figure 7).

5.2 Tree Positioning
Given a set of derived data maps it is now possible to fully instantiate
a tree at a given position p, by assigning a height h = C(p) from the
canopy height model at that position, a species s = S(p) from the
species map, and a canopy radius r by allometry. The latter requires
further explanation. An allometry in our context is a species-specific
relationship between plant quantities, such as height, biomass, and
canopy radius. Specifically, we obtain canopy radius r from tree
height h by applying the allometric formula:

r = ea+b lnh (2)

Parametersa,b for each species are drawn from one of four archetypes
[Pretzsch et al. 2015] as listed in Table 3. While an allometric ap-
proach is botanically valid, given fixed plant geometry rather than
procedural generation on the rendering side, it is often not possible

to apply the correct height to canopy scaling without introducing
visible distortion. In our rendering pipeline, we simply apply the
aspect ratio of the geometric model instead of eqn. 2.

ALGORITHM 1: Iterative Tree Positioning
Initial Seeding
while CHM not covered or iteration threshold not reached do

Calculate sun-visible crowns for all trees
Remove sun-starved trees
Move remaining trees to centroid of visible crown
Seed new trees

end

These attributes are central to our tree positioning process, which
takes place as follows (see Algorithm 1). To begin, in an initial
seeding phase new trees are placed at local maxima of the canopy
height model. Note that this is a common starting point for crown
delineation [Zhen et al. 2016], because the assumption is that a tree’s
trunk often lies beneath the highest part of its crown.

For the purpose of tree placement we approximate a tree T i as a
sphere suitably scaled to match the canopy radius and positioned
in 3D space so that it is centred horizontally over p with its apex at
pz + h. After the initial sampling, iterative cycles of refinement are
undertaken until the collection of trees provides acceptable coverage
of the CHM or an iteration cutoff is reached. Strictly speaking this is
a voronoi-based spacing process and not a simulation. Nevertheless,
it does roughly emulate certain physical behaviours.
During each refinement step, we first calculate the unoccluded

sky-exposed area of each tree crown by performing a top-down
orthographic rendering of the tree spheres, with each one’s index
coloured to uniquely identify pixels from the exposed crown area.
We also exploit OpenGL and CUDA interoperability to perform pixel
counts and other necessary operations entirely on the GPU.

C iC j

δ

C i
C j

C k

C k

δ

Fig. 9. Repositioning canopy trees. Every tree is displaced to the centroid of
its visible area. Unobstructed trees Ci and C j retain their center unchanged.
Trees partially covered by higher neighbours tend to shift towards clear
areas (Ck ).

If the exposed crown of a tree falls below an area threshold it is
deemed nonviable due to sun-starvation and removed. Next, sur-
viving trees are shifted to the centroid of their visible pixels (see
Figure 9). This acts to distribute trees apart in a Poisson-disk fash-
ion and is inspired by classic centroidal voronoi diagrams. In the
last step of each iteration, new trees are seeded circularly around
existing trees and retained if their trunk position does not intersect
an existing crown in T i , thus sampling an uncovered region of the
CHM.
In certain cases, sampled tree canopies may extend beyond the

CHM. This is partly mitigated but not prevented by the fact that
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trees toward forest edges tend to be smaller. Despite this weakness,
there are several benefits to our approach: it mimics competition
for sunlight since crown visibility affects the initiation, spacing,
and removal of candidate trees; it incorporates and accounts for
tree species directly, and it admits an efficient GPU implementation,
which, since it is iterative, can be cut short as necessary.

6 UNDERSTOREY GENERATION
With the canopy trees T in place it remains to generate a consistent
understorey layer U containing saplings, shrubs, forbs and grasses
(see Figure 10). Unfortunately, there is no corresponding source of
suitably registered undergrowth data to match the quality of Canopy
Height Models. Instead, we turn to simulation as a source. Recog-
nizing that simulation on its own is several orders of magnitude too
slow for interactive authoring we use it as a basis for disk-based
statistical run-time synthesis of undergrowth [Ecormier-Nocca et al.
2019; Gain et al. 2017].

Fig. 10. A combination of simulation and statistical synthesis allows a range
of understorey patterns: Alpine-like slopes (top-left), creek-beds (top-right),
and deciduous-conifer combinations (bottom).

6.1 Simulation
Our undergrowth simulation model can be categorised as individu-
ally based and spatially explicit [Perry and Enright 2006], with the
distinguishing feature that the canopy layer is treated as a fixed prior.
We characterize simulated plants by their species, root position, age,
height, canopy extent, and vigour, but do not include detailed branch
morphology. To begin, the landscape is discretized using a fine-scale
simulation grid (with cell dimensions of 20 × 20cm) in order to
manage competition for resources and seeding. Undergrowth simu-
lation, as summarized in Algorithm 2 and Table 3, progresses on a
monthly basis with vigour calculations over the grid contributing
to a per-plant carbon pool, in which overflows initiate growth and
underflows potential mortality. Once per year each simulation cell
is also evaluated for possible seedling germination.

Growth. The vigour function of Equation 1 accounts for abiotics
and can be used as the basis for monthly growth. However, the ex-
isting formulation does not factor in direct competition for sunlight
and moisture among neighbouring plants. Instead, we follow the
approach of Gain et al. [2017]. For sunlight, we sort occupying plants

ALGORITHM 2: Understorey Simulation
Initialise seedbank
while Simulation end duration not reached do

for every understorey plant Ui do
Increment pool with vigor Ri+ = vs (Ui )

if in growth period and Ri overflows then
grow Ui

end
Test for mortality using Ri underflow
Germinate from seedbank once per year
Advance time by one month

end
end

in a given cell by decreasing height and successively reduce sunlight
according to species alpha (recorded in Table 3) to simulate deepen-
ing shade from canopy to forest floor. For moisture, we allocate a
defined minimum to plants in height order. If any moisture remains
it is spread equally among all incident plants, with a single share
retained for seeding. In this way deep-rooted plants get first access
to water in cases of scarcity. A plant’s vigour is then calculated on
the basis of the average of its abiotic share for all the cells that it
occupies. The remaining sunlight and moisture after depletion are
allocated to potential plant germination.
Plants use reserves of non-structural carbon to fuel growth and

survive environmental stress and disturbance, although the under-
lying dynamics have yet to be completely elucidated [Dietze et al.
2014]. In a departure from Gain et al. [2017], we mimic this by me-
diating growth and stress through a simple carbon-reserve pool
for each plant Ri , with a capacity set so that a plant can survive 3
months of maximum stress. Monthly vigour scores either top up or
deplete this pool. If the pool overflows during the growing season
(which is a species-specific period, see Table 3) then this gives rise
to plant growth. On the other hand, if the pool underflows then this
contributes to plant mortality.

What remains is to link pool overflow o to a change in tree height
and canopy radius. Note that processes of biological growth over
time often follow a sigmoidal pattern, and plants are no excep-
tion [Pödör et al. 2014]. We posit a growth function hs (t) relating
age t to height h for an idealized plant specimen that reaches max-
imum height h′s at the end of its maximum lifespan ℓ, using the
sigmoid-like third-order smoothstep:

hs (t) = s(t/ℓ)h
′
s s(x) = (−2x3 + 3x3). (3)

A plant’s new height is then be obtained by advancing its current
growth age by the simulation timestep (∆t is a month in our case)
scaled according to pool overflow ∆t · o and applying Equation 3.
Note that the actual age and idealized growth age will diverge if the
plant’s growth is stunted in any way during its lifespan. Finally, the
updated canopy radius is obtained by allometry using Equation 2.
Note that it is quite possible for understorey plants to interpenetrate
as they do in nature, but in such cases one or both will be stunted
over time by lesser access to resources.
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Seeding. Plant propagation takes a variety of forms (such as
animal-, wind- and water-borne vectors) but most seeds land surpris-
ingly close to their source, rarely beyond a few dozenmeters [Nathan
andMuller-Landau 2000]. In such localised cases, the chance of seed-
ing can be modelled as a radial probability density kernel centred
on the progenitor plant [Clark et al. 1999]. Long-distance dispersal
is more challenging to model [Nathan et al. 2008], but, fortunately,
it is not necessary in our case because the predetermined canopy
already provides an indicator of likely species.
In ecosystem simulations seeding is often the most computa-

tionally expensive subsystem. To circumvent this we precompute
a seeding probability and seed package for each cell in the simula-
tion grid based on the provided canopy. Per canopy tree T i , with
position pi and canopy radius ri , we apply a seeding probability
kernel centred at pi to the simulation map. This adds a constant
probability γ to all cells within 4ri of pi , with a linear fall-of to zero
out to a distance of 12ri . The seeding constant γ determines the
rate of seedling establishment and we found that γ = 0.003 worked
well in practice. Based on the species of T i we also allocate a seed
package to the affected simulation cells. These packages represent a
sub-biome of co-occurring plants. For instance, species such as Red-
wood, Franco Douglas-Fir, Redwood Sorrel, and Western Swordfern
(sub-biome 1 in Table 3) are often found together in the Sonoma
County biome.
During simulation on a yearly basis each grid cell is tested for

germination against the stored seedbank probability. If germination
is triggered at a location p, we use roulette wheel selection to assign
a species to the seedling, using the following weighting:

w = max(0, v̄s (p)/m
β
s ) (4)

where v̄s (p) is the species vigour averaged over the previous grow-
ing season based on the unexploited abiotic resources at p,ms is the
maximum species age used to account for short-lived plants reach-
ing seed-bearing maturity sooner, and β is a weighting exponent
that controls the balance between short- and long-lived plants (we
use β = 1.2 throughout). Specifically, for v̄s (p) the unexploited sun-
light is that which reaches the forest floor after being filtered by all
incident plants, and moisture is the leftover share after distribution
among incident roots.

Mortality. It has long been acknowledged that, apart from obvious
causes such as pests, fires and lightning strikes, the mechanisms
behind plant death are not well understood [Franklin et al. 1987]. In
the absence of a sound theoretical grounding, a simple probabilistic
or regression approach is often adopted [Hawkes 2000]. We favour
the former because it can be difficult to obtain the species-specific
data required for a regression fit.
Plant mortality is tested for each individual plant on a monthly

basis by comparing a uniform random number d ∈ [0, 1] against a
probability of death µ = min(µb + µs , 1). This includes background
µb and stress-induced terms µs , thereby unifying aspects of gradual
decline and sudden stress-induced mortality [Seidl et al. 2012]. Our
constant background mortality µb = 1 − P

1/ℓ
s uses discrete survival

statistics to allow an expected proportion of a species (Ps , typically
0.01 in our simulations) to survive to a terminal age ℓ, such that
Ps = (1 − µb )

ℓ . For stress, underflow of the carbon pool is used

µs = max(−Ri , 0) as it combines the effects of both environmental
conditions (abiotics) and local competition (biotics). Furthermore,
this accounts for plant reserves so that, unlike using vitality directly,
a single anomalous stressor month does not lead to death. It might
seem that an additional weighting factor for µs is warranted, but
we found in practice that parameter a in Equation 5.1 is sufficient
for tuning stressor mortality. Finally, we summarily kill off any
undergrowth that reaches canopy height in order to preserve the
sanctity of the canopy layer.

6.2 Synthesis
Although simulation provides botanically plausible outcomes it is
simply too slow for iterative authoring. Instead, we use it as a source
for data-driven undergrowth synthesis. We perform representative
simulations with a diversity of sub-biomes and abiotic conditions,
then analyse the undergrowth patterns using a disk-based distribu-
tion method [Gain et al. 2017]. This quantifies species-specific plant
densities, size distributions, and most importantly the separation
between specimens both within and across species. These distribu-
tions enable us to reproduce undergrowth patterns with appropriate
adaptation on a target terrain through rapid sampling optionally
followed by slower refinement.

Analysis. Disk-based distribution analysis requires a degree of
homogeneity in plant patterns, similar to the stationarity require-
ment in texture synthesis. This means that our source simulations
must be segmented into structurally similar regions before analysis.
We perform clustering separately for each subset of sub-biomes
because these dictate a unique combination of plants. For example,
a patch within the seeding radius of a Redwood, Black Oak and
Gray Pine would have a certain mix of plants drawn from their
respective sub-biomes. With b sub-biomes there are 2b − 1 possible
combinations (ignoring the empty case). In our simulations, b = 4
(see Table 3) giving rise to 15 sub-biome combinations. For each
such combination we then perform k-means clustering using abiotic
conditions averaged over the span of a year (4 dimensions). Subse-
quently, we undertake separate disk-based distribution analysis and
computation of other basic measures, such as plant density, species
proportions, and size histograms, to derive statistics for each cluster
distinguished by its sub-biome combination.

Sampling. It is useful for authoring purposes to have to hand
a rapid GPU-accelerated preview of the undergrowth layout. To
achieve this we compute a cluster mapK that assigns a cluster index
from the source simulations to each point p on the target terrain
based on the overlapping canopy species and abiotics at p, and then
employ a dart throwing strategy for undergrowth placement.

Sampling passes continue until the expected plant density, species
proportions and size distributions for each cluster are approximated
or an iteration limit is reached. For each cell, a plant is sampled with
tapering probability according to the seeding radii of nearby canopy
trees (12ri ), in a fashion that matches the seeding component of
the simulation. Next, we access the pre-computed cluster map to
obtain the plant density of the cluster for that cell k = K(p). If the
cluster’s current plant density is lower than the expected density, the
candidate is added to the undergrowth and assigned a species (using
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Table 1. Performance statistics, recording scene dimensions, number of canopy trees #T , number of undergrowth plants #U, total number of plants #(T + U),
performance of the canopy placement and sampling phases, and the total time (in seconds).

Landscape # T # U #(T + U) Canopy Placement (s) Sampling (s) Total Time (s)
Avg. time Stddev Avg. time Stddev

1024 × 1024 ~70k ~499k ~569k 2.51 0.17 1.3 0.08 3.81
2048 × 2048 ~357k ~1,957k ~2,314k 11.6 0.33 3.04 0.176 14.64
3072 × 3072 ~745k ~4,623k ~5,368k 58.98 4.24 10.84 0.64 69.82

Simulation Sampling Refinement

Fig. 11. A comparison between simulated, sampled and subsequently re-
fined undergrowth on a 256 × 256 terrain with a Redwood and Franco
Douglas-Fir sub-biome. To reduce bias the statistics for sampling and re-
finement were derived on a different 1024 × 1024 terrain. The distribution
of species is roughly similar in all three cases.

roulette wheel selection) and size (using a table lookup). Finally, the
plant density for k is updated and we move on to the next cell.

Disk-based refinement. After the rough initial placement of the
sampling phase, undergrowth can be further refined using disk-
based distribution synthesis [Gain et al. 2017]. The only significant
adaptation required is that canopy trees, even though incorporated
into disk spacing calculations, are treated as immutable and not
optimized in the same way as undergrowth plants. This is the most
time-consuming component of the pipeline and best left as a post-
process or applied only to areas of the landscape likely to be closely
scrutinised.

Figure 11 represents a comparison of the outcomes of simulation
and synthesis using matching terrain, abiotics and canopy. This
indicates that undergrowth species from simulation are replicated
in the same areas during sampling and refinement. Note that the
simulation source for synthesis was a separate and distinct 1× 1 km
landscape, albeit with a similar proportion of canopy species.

6.3 Forest Floor
In order to layer the forest floor with visual detail, such as grasses,
forbs, and literfall, we generate density maps with the same res-
olution as the terrain (0.914 × 0.914 m2 per cell). For grasses and
forbs, this density (which translates directly to height) is based in
the first instance on abiotic conditions, since, as with other plants,
their growth is also determined by access to resources. Subsequently,
density is reduced by the alpha value of incident plant canopies
to emulate the effects of shadowing, as in Gain et al. [2017]. The
literfall map, representing the density of dead branches, leaves, and
humus, involves the reverse. Litterfall density is directly propor-
tional to cumulative alpha, which is used as a proxy for canopy

density and its detritus. During rendering these grass height and
litterfall density maps are finally sampled onto the terrain using a
Poisson disk tile to instantiate mixed grass/fallen leaf patches on
the ground.

7 RESULTS
We implemented our framework primarily in C++, with some Python
for integration with the Pix2Pix framework and data extraction. Ex-
periments were performed on a desktop computer equipped with
an Intel®Core i5-3570, clocked at 3.4 GHz with 12 GB of RAM,
and an NVidia GTX 1070 graphics card. The output of our system,
consisting of plant positions and dimensions, was submitted to a
custom Mitsuba 0.6 [Jakob 2010] renderer setup in order to produce
the photorealistic landscape renderings. A library of 50 different
artist-authored 3D models was used to populate the scenes, with
the lifespan of each species represented by 2 − 5 seperate models.
Canopy trees, understorey plants, and grass patches were instan-
tiated as 3D models, and an appropriate texture mapped onto the
ground to improve verisimilitude. The most complex scenes con-
sist of the equivalent of several thousand billion triangles, and are
rendered in about half an hour by Mitsuba. The complete imple-
mentation of the method can be found at the following repository:
https://github.com/jgain/EcoLearn.git.

7.1 Performance
The authoring performance of the system is detailed in Table 1
with an end-to-end update rate of 10s on average for a 1024 × 1024
terrain, excluding full undergrowth synthesis, which can be run
as a post-process. Larger landscapes usually imply more plants, so
computation times increase for these, as expected.
While parts of the pipeline are implemented on the GPU, there

is definitely room for improvement in this regard. For instance, an
expensive check for duplicates (which dominates 3/4 of the canopy
placement runtime for a 3072 × 3072 terrain) is currently executed
entirely on the CPU.

7.2 Validation
We have undertaken a variety of validations of the CNN-driven
canopy height derivation, the undergrowth simulation and the sys-
tem as a whole.

From an undergrowth perspective, plant placement appropriately
follows abiotic gradients. For example, as can be seen in Figure 7,
shade-loving Redwood Sorrel and Western Swordfern occur in the
deep shade of Redwoods, while other more sun-tolerant species
(Toyon and Tanoak) occupy forest fringes and clearings. The latter
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Sparse brush Dense brush Mixed brushes

Fig. 12. The impact of brush density, with different combinations of sparse and dense painting.

is an indication of gap dynamics, in which growth flourishes where
there is an opening in the canopy, further demonstrated in Figure 13.
Other emergent phenomena [Bornhofen and Lattaud 2009; Deussen
et al. 1998; Makowski et al. 2019] include self-thinning (a progressive
decline in density as smaller plants are crowded out by larger more-
mature specimens), succession (where slower-growing but more
climatically-suited species eventually dominate over fast-growing
competitors) and dynamic equilibrium (where germination, growth
and death processes lead to a balance in terms of the composition of
species and their maturity). These are evident in Figure 14 and the
accompanying graph in Figure 15: a proliferation of small plants (at
25y) is gradually replaced by larger specimens (at 75y and beyond)
both within species (self thinning) and across species (succession)
and a dynamic equilibrium of the ecosystem is achieved around the
125-year mark.

Fig. 13. In the absence of disturbance, undergrowth density tends to be
higher at a forest’s edge due to gap dynamics. The canopy trees have been
made transparent (left) and removed (right) to make the effect more visible.

A valid question is whether the full complexity of our model
is really required. Could not a simpler model achieve the same
outcomes? To this end we substituted the implicit abiotic-mediated
competition in our model with the more direct intersection-based
competition of Deussen et al. [1998]. Note that all other aspects of
our model (namely mortality and seeding) were retained. We found
that this damaged some of the clustering and succession properties
(see Figure 20).

In terms of canopy footprint and canopy height generation, we
performed both replicability and adaptation experiments. For the
former (see Figure 4), we compared a ground truth canopy footprint
against our generated result (with the elevation and user sketch
kept constant). Of course, this does require user involvement since
a sketch first needs to be inferred from the real canopy footprint.
Nevertheless, it is evident that broad structure is reproduced even if

small details differ (such as the absence of road clearance in the gen-
erated maps). For the latter (see Figure 6), we used the same sketch
but applied it to different elevation maps with varied outcomes that
demonstrate terrain adaptation.

Canopy trees

50 y 75 y

100 y 125 y

25 y

Fig. 14. An undergrowth simulation in progress under a canopy (top left)
dominated by Franco Douglas-Fir and Redwood. The symbolic renders
at 25 year intervals demonstrate self-thinning (plants become larger but
less dense), succession (blue Western Swordferns are overtaken by yellow
California Laurel) and ultimately a state of dynamic equilibrium.

In an overarching test of the entire pipeline we compared our
structural outcomes with aerial views of the Sonoma county region
from Google Maps®. In the examples provided in Figure 16 we did
not employ any of the brush tools but instead covered the entire
landscape with sparse or dense vegetation.

7.3 Control
From an authoring perspective we offer two forms of user control:
density and species-allocation brushes. These represent successively
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Fig. 15. A graph plotting the number of plants in each species over the
course of the simulation in Figure 14 sampled at yearly intervals. Note
how species populations peak and subside (self-thinning) to a steady state
(dynamic equilibrium), except for California Laurel in yellow, which grows
more slowly than many other shrubs but comes to dominate in regions
where it is more suited (succession).

Google maps Our result

Fig. 16. Real vs. Authored. This comparison shows aerial views of densely
and more sparsely populated regions of Sonoma County taken from Google
Maps®. Qualitatively similar vegetation patterns are obtained from our
system by setting the global density as high and low, respectively.

finer levels of control: from the broad specification of empty, sparse
and dense regions of the canopy layer C with density brushes,
to control over species proportions among canopy trees T using
species-allocation brushes.

Table 2. Statistics, including number of canopy trees #T, undergrowth
plants #U, total number of plants #(T + U), and scene dimensions.

Figure #T #U #(T +U) Dimensions

Figure 1 52k 837k 889k 1024 x 1024
19 Top 5k 186k 191k 512 × 512
19 Middle 7k 185k 192k 512 × 512
19 Bottom 6k 186k 192k 512 × 512
17 Left 95k 7,100k 7,195k 2048 × 2048
17 Middle 136k 8,100k 8,236k 2048 × 2048
17 Right 78k 8.040k 8,118k 2048 × 2048
21 334k 14,990k 15,324k 3072 × 3072

The impact of density brushes on the canopy can be seen both
in a side-by-side comparison in Figure 12 and in the context of an
authoring session in Figure 17 (see also the accompanying video
for an interactive session). Note the economy of design: a few rapid
brush strokes are sufficient to create landscapes with varied cluster-
ing characteristics, including isolated trees, small stands, and dense
tranches. It is also possible to forego painting and control species
proportions over the entire landscape (see Figure 18), with the stipu-
lation that species are never placed where they would incur a nega-
tive vigour. Figure 19 illustrates the application of species-allocation
brushes to locally and iteratively alter the species distribution, while
retaining cohesion, respecting the abiotic conditions, and blending
with surrounding trees.

7.4 Limitations
As with all data-driven techniques we rely on the availability of
high-quality source data, in our case paired digital elevation and
canopy height models. Such data is not always readily available
and this is one reason for our focus on Sonoma County, California.
However, the scope of airborne scanning campaigns is increasing
and we expect that data coverage will progressively expand.
In our undergrowth simulation we have striven in terms of ab-

straction for a balance between model fidelity and computational
complexity. Our model is rich enough to capture emergent proper-
ties, such as abiotic gradients, self-thinning, succession, and dynamic
equilibrium. Nevertheless, we have chosen to exclude disturbance
events and detailed plant morphology. Specifically, unlike Cordon-
nier et al. [2017] and Ch’ng [2013] we do not directly account for
disturbance events, such as fire and avalanches. These can have lo-
calised (e.g., lightning strikes) and even species specific effects (e.g.,
pests and logging) and, usually, require the design of a temporal
scenario or longitudinal source data. One consequence is that we
do not know the age of different subsections of undergrowth and
perforce assume that they have all reached dynamic equilibrium.
Furthermore, beyond determining height, canopy radius, species,
and vigour, we do not account for the phenotype of individual trees.
This includes the particular tropism-induced structural arrangement
of a trees branches, which effects both sunlight absorption and fil-
tering to shaded plants. In this regard, there are less abstract models
in the Botany literature [Sato et al. 2007; Seidl et al. 2012] and within
Computer Graphics [Makowski et al. 2019], but these come with
a concomitant computational overhead. In summary, while these
elements could be incorporated into our simulations and user inter-
face, perhaps through an EcoBrush-like painting mechanism [Gain
et al. 2017] that draws from many Monte Carlo simulations, this
would significantly extend pre-processing times.

The other significant limitation lies in the time and effort required
to tune undergrowth simulation parameters, a process that is neces-
sary for each major biome and that is inherent to any simulation
method. Our model requires 14 parameters per species, which is
on the low end for an ecosystem simulation. While rough initial
settings can sometimes be gleaned from the literature, for instance,
we use the allometry groupings of Pretzsch et al. [2015] and crown
density and leaf transmission values from Randolph et al. [2010], it
is still necessary to hand tune parameters. This is exacerbated by
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Fig. 17. Three steps in an authoring session. A few strokes are all that is required to create a complex landscape composed of many different species.

Fig. 18. Adjusting species proportions. The overall balance of species can
be controlled for any given terrain and canopy height model. From top
to bottom: a default mix of sub-biomes, Gray Pine dominant, and Oregon
White Oak dominant. In some cases a species cannot be assigned with
positive vigour to fit the canopy height model and such areas remain empty.

lengthy simulation runs and interdependencies between species. De-
veloping an auto-parametrisation framework would thus be highly
beneficial, but we leave this as future work.

8 CONCLUSION
We have introduced a novel approach to interactively authoring
ecosystems that occupy large terrains. Our method synthesizes the
different vegetation layers: canopy trees, which are the most salient
element from a panoramic perspective, and the understorey and
forest floor layers, which are crucial for visual plausibility at ground-
level. The results accord with emergent botanical phenomena, such

Fig. 19. A species-allocation brush is applied to interactively alter the pro-
portion of species in particular areas.

as succession, self-thinning, and abiotic adaptation, and also demon-
strate the varied clustering patterns exhibited by real-world canopy
height models. Our method is based on a combination of three com-
plementary steps: deep learning inference for the canopy, statistical
synthesis from simulation for the undergrowth, and a grass simula-
tor for the forest floor. Different stages of the pipeline are supported
by different authoring tools: the structure of the canopy footprint
can be locally controlled through density brushes and the species
composition through species-allocation brushes. Finally, unlike com-
putationally intensive ecosystem simulations, our system supports
(see Figure 21) the authoring of large-scale natural scenes of up to
3 × 3 km2 in extent and featuring on the order of 15 million plants,
generated in under 2 minutes.
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Table 3. A summary of species parameters for our biome simulations, indicating their general characteristics (sub-biome membership, form, longevity,
maximum height, and crown transparency), parametric response to abiotic sunlight, moisture, temperature and slope factors, growth period (S = 6 months, L =
9 months) and allometry code. The key indicates the shape and colour used for symbolic renderings. Bold type in the form column is for trees that participate
in the canopy as well as the undergrowth (as saplings). The parameters that correspond to the allometry codes are as follows: A (a = −0.58, b = 0.92), B (
a = −1.52, b = 0.97), C (a = −1.81, b = 1.14), D (a = −0.72, b = 0.65), with E being a simple linear mapping (r = 4h).

Common name Scientific name Sub- Form Max Max Alpha Sun Moisture Temp. Slope Growth Allom-
biome age hght c r c r c r c r period etry

Redwood Sorrel Oxalis Oregano 1 Herb 6 0.25 0.60 3.5 7 100.0 160 13.5 43 30 60 L E

California Sagebrush Artemesia Californica 2, 3 Shrub 100 2.5 0.60 11.5 7 52.5 95 13.5 43 35 70 L A

Chamise Adenostoma Fasciculatum 2, 3 Shrub 60 3.5 0.68 11.5 7 72.5 135 0 70 35 70 S A

Western Swordfern Polystichum Munitum 1 Herb 5 1.2 0.68 3.5 7 100.0 160 0 70 30 60 L A

Whiteleaf Manzanita Arctostaphylos Manzanita 3, 4 Shrub 100 4.5 0.60 9.5 11 52.5 95 0 70 35 70 S A

Toyon Heteromeles Arbutifolia 1, 2, 3 Shrub 150 9.0 0.68 9.5 11 76 128 13.5 43 35 70 S A

Pacific Poison Oak Toxicodendron Diversilobum 2, 4 Shrub/Vine 80 4.0 0.34 7 6 76.0 128 13.5 43 35 70 S A

Tanoak Notholithocarpus Densiflorus 1 Shrub/Tree 300 45 0.35 9.5 11 96.0 168 19 32 30 60 L A

Coast Live Oak Quercus Agrifolia 2, 3, 4 Shrub/Tree 150 25.0 0.31 11.5 7 56 88.0 19 32 30 60 L C

Oregon White Oak Quercus Garryana 4 Shrub/Tree 300 35.0 0.30 11.5 7 72.5 135 0 70 30 60 S C

California Black Oak Quercus Kelloggii 2, 4 Shrub/Tree 500 39 0.34 7 6 76 128 13.5 43 35 70 S C

California Laurel Umbellularia Californica 1, 2, 4 Shrub/Tree 250 30 0.36 5 8 100.0 160 0 70 35 70 L B

Pacific Madrone Arbutus Menziesii 1, 4 Tree 350 30 0.33 5.5 3 92.5 175 21.5 27 35 70 S D

Gray Pine Pinus Sabiniana 1, 3 Tree 250 45 0.43 9.5 11 52.5 95.0 21.5 27 35 70 S B

Franco Douglas-Fir Pseudotsuga Menziesii 1, 4 Tree 250 49 0.43 7 6 96 168 19 32 35 70 S D

Redwood Sequoia Sempervirens 1 Tree 800 110 0.45 9.5 11 100 160 19 32 35 70 S D

Deussen 1998 Ours

Fig. 20. A side-by-side comparison of the Deussen et al.’s [1998] competition
model (left) and ours (right). The former is more evenly spaced and does not
exhibit the clustering found in nature. Furthermore, succession behaviour
is suppressed. In this instance California Laurel (yellow species) is slower
growing but slightly more competitive in semi-shade and should come to
dominate those areas in the longer term.
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