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Abstract
We present a model of pair interactions on rigid lattice to study the thermodynamic properties

of iron-nickel alloys. The pair interactions are fitted at 0 K on ab initio calculations of formation

enthalpies of ordered and disordered (special quasi-random) structures. They are also systemat-

ically fitted on the Gibbs free energy of the γ Fe-Ni solid solution as described in a CALPHAD

(CALculation of PHAse Diagrams) study by Cacciamani et al. This allows the effects of finite tem-

perature, especially those of magnetic transitions, to be accurately described. We show that the

ab initio and CALPHAD data for the γ solid solution and for the FeNi3-L12 ordered phase can be

well reproduced, in a large domain of composition and temperature, using first and second neighbor

pair interactions which depend on temperature and local alloy composition. The procedure makes

it possible to distinguish and separately compare magnetic, chemical and configuration enthalpies

and entropies. We discuss the remaining differences between the pair interaction model and CAL-

PHAD, which are mainly due to the treatment of the short-range order and configurational entropy

of the solid solution. The FCC phase diagram of the Fe-Ni system is determined by Monte Carlo

simulations in the semi-grand canonical ensemble and is compared with experimental studies and

other models. We especially discuss the stability of the FeNi-L10 phase at low temperature.

I. INTRODUCTION

Atomistic Monte Carlo simulations of phase transformation kinetics in metallic alloys

(precipitation, ordering, etc. [1–13]) require interaction models that allow a precise descrip-

tion of the thermodynamic and kinetic properties of the materials, while remaining simple

enough to model systems of a few million atoms over long periods of time (their evolution

being controlled by thermally activated diffusion mechanisms). Models using effective in-

teractions on rigid lattices – although limited to coherent problems – are among the most

widely used and have become more reliable since they are systematically fitted to ab ini-

tio calculations of materials properties at 0 K (such as the formation energies of ordered

phases or special quasi-random structures, point defect formation and migration energies,

etc.) [5, 7, 13].
∗ yimi.wang@cea.fr
† kangming.li@cea.fr
‡ frederic.soisson@cea.fr
§ charlotte.becquart@univ-lille.fr
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Evaluating non-zero temperature effects from ab initio methods is more difficult: calcu-

lations of vibration entropy, for example, are in principle possible but are computationally

expensive and are usually limited to simple systems (e.g. pure metals, perfectly ordered

phases, or dilute alloys). Modeling the effect of magnetic transitions and magnetic disorder

– especially important in iron based alloys – is also very challenging. Alternatively, the

temperature dependence of pair interactions can be adjusted on experimental data, for ex-

ample on phase diagrams, but these adjustments are often made on a case-by-case basis. We

propose here a new approach to systematically fit a pair interaction model both on ab initio

calculations at 0 K and, for high temperatures, on a CALPHAD-type model. CALPHAD

models provide an accurate description of the Gibbs free energies of the different phases

of an alloy, based on empirical thermodynamic models fitted (mainly) on large numbers of

experimental measurements. They also provide a specific description of some important con-

tributions (e.g. magnetic contributions in iron-based alloys). The objective of this paper is

to show how to establish a term-to-term correspondence between the empirical models used

in CALPHAD and the effective interactions of a lattice model; to show the improvements

that this brings to the description of a particular alloy; but also to discuss the limits of such

a correspondence.

FIG. 1. The phase diagram of the Fe-Ni system (from [14] and [15])

We apply this approach to Fe-Ni alloys with a face-centered cubic structure (FCC).

Recent ab initio [16, 17] and CALPHAD [18, 19] studies are available for this system. The

thermodynamic properties of Fe-Ni alloys have been much studied, because of their industrial
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interest and because they still raise unresolved questions. The phase diagram of the Fe-Ni

system (Fig. 1) is well known at temperatures above 400◦C [20]: the FCC solid solution γ

is stable over the whole composition range and over a wide temperature range. The body

centered cubic (BCC) solid solution α is stable below 912◦C, and only with nickel contents

below approximately 10%. A two-phase domain α − γ is observed in iron-rich alloys, and

an ordered FeNi3 phase (with the L12 structure) is formed below 516◦C.

At lower temperatures, the phase diagram is – as usual – more difficult to establish,

because of slow diffusion processes. However, irradiation experiments [21–23], observations

of meteorites [15, 24], and ab initio studies [16, 17] suggest that other ordered FCC phases

may be stable or metastable (notably the FeNi phase of L10 structure and the Fe3Ni phase

of L12 structure). Many CALPHAD studies have sought to complement the Fe-Ni phase

diagram by extrapolating at low temperatures the empirical thermodynamic models fitted

to experiments at high temperatures. This is especially difficult in the case of Fe-Ni, and

as a result, the proposed phase diagrams show significant differences [15, 18, 20, 25]. A

particular difficulty of this system is that the experimental data are obtained essentially in

paramagnetic phases, whereas the ordered phases are ferromagnetic. Magnetic contributions

are indeed taken into account in CALPHAD approaches, but again by empirical models using

experimental data and still under discussion [25].

Atomistic models combining the information from experiments and first principle methods

may provide additional insight on these issues. A few rigid lattice interaction models, fitted

to ab initio calculations, have been developed for Fe-Ni alloys: Mohri et al. [26] proposed a

cluster expansion to study the stability of the ordered compound FeNi-L10 in the framework

of a CVM approximation: they found an ordering temperature of 483 K (taking into account

the vibration entropy, which lowers it by about 40 K). But they did not study the FeNi3

phase, nor the effect of the ferro-to-paramagnetic transition. Effective interactions models

including an explicit description of the magnetic moments have been proposed for Fe-Ni

alloys, using Ising [27–30] or Heisenberg [30, 31] models for the magnetic interactions and

parameters fitted to the experimental transition temperatures. Similar magnetic models have

been also used in phase-field simulations of ordering and precipitation of the FeNi3 phase [32].

More recently Lavrentiev, Wrobel et al. [33, 34] developed a Magnetic Cluster Expansion

(MCE), based on a Heisenberg-Landau Hamiltonian, fitted to ab initio calculations. Its

properties have been studied by Monte Carlo methods, but the combined equilibration of
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the chemical and magnetic configurations is very costly in computational time, and the

complete phase diagram of the MCE model of Fe-Ni remains to be established.

In the present paper, we propose a pair interaction model (PIM) based on a rigid lattice

approximation, aiming at modelling the Fe-Ni system. The model does not describe ex-

plicitly the magnetic moments, nor the lattice relaxations, which makes it faster to process

in Monte Carlo simulations. It only involves pair interactions between atoms that depends

both on the local composition and temperature. Finite temperature effects of magnetic tran-

sitions or of lattice vibrations (harmonic and non-harmonic), on the energetic proprieties

are taken into account through these dependencies.

The outline of this article is as follows: section II is devoted to the thermodynamic models

of FCC phases in the Fe-Ni system. We briefly recall the Gibbs free energy models used in

the CALPHAD approaches, focusing on the recent study of Cacciamani et al. [18] (IIA);

then the available ab initio results on the properties of Fe-Ni alloys (in particular those of

K. Li and C.-C. Fu [17]) (II B). We then show how to reproduce these results with the PIM

in section (II C). In section III, we use Monte Carlo simulations in the semi-canonical grand

ensemble, to measure the Gibbs free energies of the FCC alloys, and to build the FCC phase

diagram.

II. THERMODYNAMIC MODELS

Our PIM is built using both a CALPHAD study and ab initio calculations. We therefore

recall the main information provided by these two approaches before to explain how it can

be reproduced with effective interactions on a rigid lattice.

A. CALPHAD Models

Several CALPHAD-type studies have been proposed for the Fe-Ni system: the most

recent are those of Cacciamani et al. [18] and Ohnuma et al. [19] (for older ones, see the

reviews in refs. [15, 20]). Within the CALPHAD framework, a Gibbs free energy model can

be defined for each of the phases to be considered (e.g. in the Fe-Ni system, the α and γ solid

solutions and the different ordered phases). This gives great flexibility to fit the parameters

to the experimental data. We will fit our PIM parameters to the study by Cacciamani
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et al. [18] (which will be hereafter simply referred to as the “CALPHAD model” or even

as “CALPHAD”), but the following presentation and procedure could easily be adapted to

other CALPHAD studies.

1. The γ solid solution

The Gibbs free energy per atom of the solid solution γ (FCC) Fe1−xNix with a Ni con-

centration of x, is:

Gγ = Gγ
ref +Gγ

ex +Gγ
mag +Gγ

id (1)

This is the total Gibbs free energy, including the entropy of configuration. (Note that in

CALPHAD one rather uses molar energies, in J.mol−1. We convert them in energies per

atom, in eV).

Gγ
ref is the non-magnetic contribution of pure metals:

Gγ
ref = (1− x)Gγ

Fe − xG
γ
Ni (2)

where Gγ
Fe and G

γ
Ni are the Gibbs free energy of pure Fe and pure Ni.

Gγ
ex is the excess Gibbs free energy, written as a sum of Redlich-Kister polynomials:

Gγ
ex = x(1− x)

∑
i

Lγi (T )(1− 2x)i (3)

(from i = 0 to 2 in [18])

Gγ
mag is the magnetic contribution:

Gγ
mag = −kBTf(τ) ln(β(x) + 1) (4)

τ = T/Tc(x), where Tc(x) is the Curie temperature, β(x) the average magnetic moment of the

γ solid solution and f(τ) is a polynomial function of the reduced temperature. Tc(x) and β(x)

are also given by Redlich-Kister polynomials of the composition x, fitted to experimental

measurements. Different expressions and values have been proposed [25], those used by

Cacciamani et al. are given in [18].

Gγ
id corresponds to an ideal entropy of configuration:

Gγ
id = −TSγid = kBT [x lnx+ (1− x) ln(1− x)] (5)
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i.e. to the configuration entropy of a perfectly disordered solid solution with no short-range

order. Note that the excess term (eq. 3) may include a non-ideal configurational part, but

it is not identified as such.

Finally, the Gibbs free energy of mixing is:

Gγ
mix = Gγ − (1− x)G′γFe − xG

′γ
Ni (6)

where G′γFe = Gγ
Fe + Gγ

mag(x = 0) and G′γNi = Gγ
Ni + Gγ

mag(x = 1) are the total Gibbs free

energies of the pure metals, including the magnetic part.

2. Ordered Phases

In the study by Cacciamani et al. [18], the ordered phases FeNi3 (L12), Fe3Ni (L12) and

FeNi (L10) are modeled within the framework of the Compound energy formalism (CEF)

with 4 sublattices. An additional term is added to the Gibbs free energy of the γ phase,

which depends on the distribution of species on the different sublattices and on interaction

energies (limited to the first nearest neighbors) fitted to ab initio calculations of the formation

enthalpy of the perfectly ordered phase.

In the present work, we will use more detailed ab initio studies, involving both ordered

and disordered configurations and summarized in the following section.

B. Ab initio calculations

1. Density functional theory method

In this work, the 0 K formation enthalpies of Fe-Ni ordered and disodered phases are

fitted to those computed in the ab initio study of Ref. [17]. The essential computational

points are presented in the following.

The ab initio calculations were performed using density functional theory (DFT) with the

projector augmented wave method [35, 36] as implemented in the VASP (Vienna Ab-initio

Simulation Package) [37–39]. The generalized gradient approximation for the exchange-

correlation functional in the Perdew-Burke-Ernzerhof parametrization [40] was employed.

All the calculations are spin-polarized. 3d and 4s electrons were considered as valence

electrons. The plane-wave basis cutoff was set to 400 eV. The Methfessel-Paxton broadening
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scheme with a smearing width of 0.1 eV was used [41]. The k-point grids were generated

according to the cell size to achieve a k-sampling equivalent to a cubic unit cell with a

16×16×16 shifted grid following the Monkhorst-Pack scheme [42]. The zero-point energies,

which can be significant for light elements, have been calculated in the ordered phases. Their

contribution to the mixing enthalpies is very small (typically 0.001 to 0.003 eV) and has been

neglected in the following. FCC solid solutions were represented by Special Quasirandom

Structures (SQS) [43] minimizing Warren-Cowley short-range order parameters [44, 45], with

128-atom and 108-atom supercells for anti-ferromagnetic-double-layer and ferromagnetic

phases, respectively.

2. Ordered Phases

TABLE I. Formation enthalpies of FCC ordered phases in Fe-Ni (DFT calculations from [17]).

Ordered phase Hfor (eV/atom)

Fe7Ni-cI32 0.039273

Fe3Ni-L12 -0.01636

Fe3Ni-Z1 -0.04414

Fe2Ni-C11f -0.06991

FeNi-L11 -0.04040

FeNi-L10 -0.10797

Fe2Ni-C11f -0.08064

FeNi2-L12 -0.10879

FeNi7-cI32 -0.04541

The formation enthalpies of nine ordered structures on the FCC lattice, calculated by

Kangming et al. [17] using the DFT method presented in the previous section, are given in

Table I and Fig. 2. The ordered structures are ferromagnetic, except for Fe7Ni-cI32 which is

ferrimagnetic. The formation enthalpies are defined with the anti-ferromagnetic FCC iron

and the ferromagnetic FCC nickel as reference states. The trends are the same as in a

previous study by Mishin et al. [16]: only the FeNi-L10 and FeNi3-L12 phases are located

on the convex hull (Fig. 2) and must therefore be stable at low temperature on the FCC

18



-0.10

-0.05

0.00

0.05

 0  0.2  0.4  0.6  0.8  1

CI32

L12

Z1

C11f

L11

L10

C11f

L12

CI32

H
fo

r 
(e

V
/a

to
m

)

x

FIG. 2. Formations enthalpies of ordered FCC structures at 0 K (DFT calculations from [17]).

lattice. However the FeNi7-cI32 and Fe2Ni-C11f phases are close to the stability limit.

3. Special Quasi-Random Structures

The formation enthalpies Hfor of special quasi-random structures (SQS) of different com-

positions have also been calculated in the same study with different magnetic states. These

structures are representative of random solid solutions. They were generated by standard

methods, with a minimization of Warren-Cowley short-range order parameters. They are

described in Ref. [17], with a detailed analysis of their volume and magnetic moments. We

just recall here the energetic results used for the PIM parametrization.

The most stable SQS are found to be double-layered anti-ferromagnetic for x < 0.184 and

ferromagnetic for x > 0.184 (red circles in Fig. 3). One observes an asymmetrical evolution

of Hfor with the composition, as already predicted in the study by Cacciamani et al., with

mainly negative values (i.e. a tendency to order) and a minimum in the vicinity of the

composition of the FeNi3 phase. However, the SQS values are significantly larger than the

CALPHAD ones (Fig. 3), and are even slightly positive for x < 0.20 (as already obtained

by Sansa et al. [46], using a tight-binding approach).

C. Pair interaction model

We propose to reproduce the properties of Fe-Ni alloys with a model of concentration-

and temperature-dependent pair interactions on a perfect FCC lattice. This pair interaction

model (PIM) is based on a similar one developed for Monte Carlo simulations of BCC Fe-Cr
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FIG. 3. Formations enthalpies at 0 K of quasi-random FCC structures (DFT calculations [17]) and

FCC solid solutions (CALPHAD [18], with separate magnetic and excess contributions).

alloys [9, 47], which had however not been fitted systematically on a CALPHAD model, and

did not explicitly distinguish a magnetic contribution.

The essential assumption of the PIM is that the Gibbs free energy (per atom) of a given

configuration, i.e. a given distribution of nFe Fe atoms and nNi Ni atoms (N = nFe + nNi)

on the FCC lattice, can be written as a sum of interactions g(n)ij (x, T ) between pairs of i and

j atoms on nth neighboring sites:

Gconf =
1

N

∑
ij

g
(n)
ij (x, T ) (7)

The pair interactions depend on the temperature, T , and the Ni concentration, x (we

will omit these dependencies in the following, to simplify the notations). The dependence

on concentration is required to reproduce an asymmetric evolution of formation enthalpies,

as observed in Fig. 2 and Fig. 3. The dependence on temperature describes the entropic

contributions (electronic, vibrational and magnetic) other than the configuration entropy,

so the g(n)ij are indeed “pair Gibbs free energies” and can be written as: g(n)ij = h
(n)
ij − Ts

(n)
ij

[48].

To facilitate the comparison with CALPHAD models, each interaction g(n)ij is written as

a sum of a non-magnetic (nm) and a magnetic term (mag). Gconf is therefore the sum of:

Gnm
conf =

1

N

∑
ij

g
nm(n)
ij (8)

which accounts for the chemical and vibrational contributions, and of:

Gmag
conf =

1

N

∑
ij

g
mag(n)
ij (9)
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The total Gibbs free energy of the alloy is:

G = Gconf − TSconf (10)

where Sconf is the entropy of configuration, which will be evaluated from Monte Carlo

simulations.

The Gibbs free energy of mixing Gmix is:

Gmix = G− (1− x)G′Fe − xG′Ni (11)

G′Fe is the Gibbs free energy of pure iron, on the same FCC lattice:

G′Fe = Gnm
Fe +Gmag

Fe (12)

=
∑
n

zn
2

(g
nm(n)
FeFe + g

mag(n)
FeFe ) (13)

=
∑
n

zn
2
g
(n)
FeFe (14)

where zn is the coordination number for the nearest neighbors n. The same expressions

apply to pure nickel.

1. High temperatures: fitting of the pair interactions to CALPHAD

In the PIM, the Gibbs free energy of mixing of a perfectly disordered solid solution is:

Gmix(x, T ) = x(1− x)
∑
n

znvn(x, T )− TSid (15)

where the ordering parameters vn are defined as:

vn(x, T ) = g
(n)
FeNi −

1

2

(
g
(n)
FeFe + g

(n)
NiNi

)
(16)

To reproduce the properties of the CALPHAD model, we identify the non-magnetic part

of the ordering parameters (in eq. 15) to the excess Gibbs free energy of CALPHAD (eq. 3):∑
n

vnmn (x, T ) =
Gγ
ex

x(1− x)
(17)

and their magnetic part to the magnetic Gibbs free energy of CALPHAD (eq. 4):∑
n

vmagn (x, T ) =
Gγ
mag

x(1− x)
(18)
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The fitting of the PIM parameters on CALPHAD can be summarized to the equations

16-18. It is worth to notice that it is based on an approximation: eq. 15 is exact only for

a disordered solid solution, i.e. at sufficiently high temperatures. In the real solid solution,

a short-range order may exist, and the configuration entropy does not reduced to an ideal

term.

2. Low temperatures: fitting of the pair interactions to ab initio calculations

To reproduce the properties of a solid solution at 0 K, the same method can be used

by fitting vn(x, T ) on the formation enthalpies of SQS calculated by DFT. The magnetic

part remains fitted to the magnetic model of CALPHAD (eq. 18) and the non-magnetic

part is fitted so that the sum of the magnetic and non-magnetic contributions of the PIM

reproduces the DFT formation enthalpies. A good agreement is obtained with a Redlich-

Kister polynomial of order 5 (instead of 2 for Gγ
ex in ref. [18]), as shown in Fig. 4 (with

respectively the magnetic part, the non-magnetic part and the total mixing enthalpies of

the PIM). The fitting coefficients LDFTj of the polynomial are given in Table II, corresponding

to the orange curve in Fig. 4. As mentioned above, this gives mixing enthalpies above those

predicted by CALPHAD at 0 K.
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FIG. 4. Formations enthalpies of quasi-random FCC Structures at 0 K: ab initio calculations (DFT)

and pair interaction model (PIM, with the excess and magnetic contributions). The formations

enthalpy of the γ solid solution of CALPHAD is also shown for comparison.

This fit of pair interactions (using eq. 15) to the CALPHAD model or to the formation

enthalpies of SQS, only involves the sum of vn and can be done with any range n of interac-
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TABLE II. The coefficients LDFTj of the Redlich-Kister polynomial for the excess enthalpy of mixing

of the γ solid solution of the PIM (in eV).

LDFTj in eV LDFT0 LDFT1 LDFT2 LDFT3 LDFT4 LDFT5

Value -0.03696 0.09631 -0.04722 0.21141 -0.04752 -0.18389

tions. However, it is well known that in FCC ordered structures, the phase diagram and in

particular the order-disorder temperatures, depend strongly on the ratio = v2/v1 [49]. The

fit is also independent of the choice of the composition x (local or global) in eq. 18 and 17.

Therefore, it does not provide a very accurate description of the interatomic interactions in

Fe-Ni alloys.

To get a better description of the thermodynamic properties, the range of interactions

and the ratio between the interactions at different distances is fitted to the DFT calculations

of the formation enthalpies of the ordered phases (Table I).

With only first nearest neighbors (nn) interactions (Fig. 5(a)), the PIM model underesti-

mates the formation enthalpies of the ordered phases, especially those of the FeNi-L10 and

FeNi3-L12 phases.

A better result (Fig. 5(b)) is obtained with first and second nn pair interactions, taking

a constant ratio α = v2/v1 = −0.7 (the agreement is very sensitive to the value of α, except

in the range α ∈ [−0.6,−0.7]). The formation enthalpies obtained with first and second

nn interactions are close to those of the DFT calculations, in particular for the two stable

phases FeNi-L10 and FeNi3-L12 (Fig. 5). The least well reproduced is that of the iron-rich

cI32 phase, which is unstable.

Note that in this fitting procedure, the local composition around a Fe-Ni pair has been

defined as the average Ni atomic fraction around the first and second nearest neighbors of

the pair, excluding the two atoms which compose it. An atom neighboring the two atoms of

the pair is counted twice (so that with 12 first and 6 nearest neighbors, a pair is surrounded

by 0 to 34 Ni atoms). Using this definition, the formation enthalpies of the different ordered

phases are the functions of v2 and v1 given in Table III, together with the values of the local

composition x1 and x2 around the first and second nn Fe-Ni pairs. Other definitions of the

local composition are possible and we have tested some of them (taking into account the

two atoms of the pairs, or counting each surrounding Ni atom only once). The definition
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chosen here gives a slightly better fit, although the differences are small.

We did not obtain significantly better results by introducing third and fourth nn inter-

actions. In the following we will therefore restrict to the PIM with first and second nn

interactions and α = −0.7, corresponding to the results shown in Fig. 4 and 5(b).
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FIG. 5. Formations enthalpies of FCC ordered phases at 0 K: ab initio calculations (DFT, full

circles) and pair interaction model (PIM, open circles) with (a) only first nn interactions, (b) first

and second nn interactions, α = v2/v1 = −0.7

3. Transition between parameters at high and low temperatures

The final PIM will therefore use first and second neighbor pair interactions with a constant

α = v2/v1 = −0.7 ratio:

- At 0 K the variations of v2 and v1 with the composition are fitted to the formation

enthalpies of SQS and ordered structures calculated by Li and Fu [17] using DFT methods,
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TABLE III. Formation enthalpies of FCC ordered phases in a pair interaction model with first and

secong nearest neighbor interactions.

Ordered phases x1 x2 HPIM
for

Fe7Ni-cI32 1
34

5
34

3
2v1 + 3

4v2

Fe3Ni-L12 9
34 0 3v1

Fe3Ni-Z1 11
34

9
34 2v1 + 1

2v2

Fe2Ni-C11f 6
17

6
17

8
3v1 + 2

3v2

FeNi-L11 1
2

1
2 3v1 + 3v2

FeNi-L10 1
2 0 4v1

FeNi2-C11f 11
17

11
17

8
3v1 + 2

3v2

FeNi3-L12 25
34 1 3v1

FeNi7-cI32 33
34

29
34

3
2v1 + 3

4v2

as summarized in fig. 5 and 4;

- At high temperatures the variations of v2 and v1 with the composition are fitted to

the Gibbs free energies of the γ solid solution, from the CALPHAD study of Cacciamani et

al. [18];

These two sets of parameters differ only in the non-magnetic part of parameters v2 and

v1, which is described by Redlich-Kister polynomials having different order and coefficients

(respectively LDFTi and LCALPHADi ). The final parameters are obtained by using coefficients

LPIMi (T ) which evolves gradually from one to the other according to:

LPIMj (T ) = exp

(
− T
Tj

)
LDFTj

+

[
1− exp

(
− T
Tj

)]
LCALPHADj (T )

(19)

with Tj = 400 K for j = 0, 1, 2 and Tj = 80 K for j = 3, 4, 5. The example of coefficient

LPIM2 is given in fig. 6. The temperatures Tj have been chosen so as to give the Gibbs free

energy of CALPHAD for T > 1000 K, at temperatures where it is derived from numerous

and reliable experimental data. The influence of these transition temperatures on the phase

diagram will be discussed later.

Let us note finally that the Gibbs free energy of mixing of the solid solution, the formation

enthalpies of of SQS or ordered structures and the FCC phase diagram, depend only on the
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parameters vn. We have chosen to take g(n)FeFe and g
(n)
NiNi interactions independent of the

concentration, but dependent on the temperature and adjusted to the free enthalpies of the

pure metals (eq. 12). Only the g(n)FeNi interactions are dependent on local concentration. This

choice does not affect the results of the present study, but it allows a better description of

the properties of point and diffusion defects [9], which we will address in future work. It

also makes the Monte Carlo simulations slightly less time consuming.
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FIG. 6. The evolution of the coefficient LPIM2 (T ) with the temperature.

III. MONTE CARLO SIMULATIONS

We will now use Monte Carlo simulations to measure the Gibbs free energies of the PIM

(including the configuration entropy) at different compositions and temperatures and build

the FCC phase diagram.

A. Semi-grand canonical isotherms

The equilibrium properties of the PIM are determined by Monte Carlo simulations carried

out in the semi-grand canonical ensemble. In general, we use a system of N = 4 × 163

atoms, with periodic boundary conditions. Exchanges are tried between a randomly chosen

atom of the system and an atom taken in a reservoir, with a given difference of chemical

potential ∆µ = µNi − µFe. By changing ∆µ, one modifies the equilibrium concentration

(Fig. 8 and 9). A total of 500 increments for a interval of 1 eV in ∆µ are used to go from

pure iron to pure nickel, and then 500 increments to go the other way. For each value

of ∆µ, 5 × 106 attempts of atomic exchange (or Monte Carlo steps, MCS) are performed
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before measuring the equilibrium composition and order parameters. For building the phase

diagram of Fig. 16, a larger system of N = 4 × 243 atoms and much smaller increments of

∆µ are used, in order to get a better precision (up to 100 increments for a interval of 0.04

in ∆µ).

To identify the different ordered phases, the FCC lattice is divided into 4 simple cubic

sublattices, shifted by a distance a/2 in the x, y, z directions [50]. We measure the Ni

concentration on each sublattice, and the long range order parameter defined as:

η =
1

4

4∑
i=1

∣∣∣xi
x
− 1
∣∣∣ (20)

where xi is the Ni concentration on the sublattice i. With this definition, η = 1 in the

perfect FeNi-L10 structure and η = 0.5 in the perfect FeNi3-L12 structure.

The short range order is characterized by the Warren-Cowley parameters for the first and

second nearest neighbors:

σi = 1− f
(i)
Ni

x
(21)

where f (i)
Ni is the average fraction of Ni atoms among the ith nn of the Fe atoms. For a perfect

L12 ordered phase, σ1 = −0.33 and σ2 = +1.
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FIG. 7. Evolution the long-range parameter η and of the short-range order parameters σ1 and σ2

in FeNi3 as a function of T (Monte Carlo simulations and experiments by Kozlov et al. [51]).

The evolution of the long-range η (eq. 20), and of the short range order parameters σ1

and σ2 (eq. 21), in an alloy of composition FeNi3 as a function of the temperature, is shown

in Fig. 7. The L12 ordered phase is found to be stable up to 765 K (instead of 790 K for

CALPHAD [18]). The evolution of η is in good agreement with the experiments of Kozlov

et al. [51] (which gives a slightly higher ordering temperature: 807 K). The discontinuity at
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the order/disorder temperature indicates a first-order transition. A significant short range

order remains well above the disordering temperature, especially between the first nearest

neighbors.

Two examples of isotherms x = f(∆µ), at T = 1000 K and T = 600 K are shown in

Fig. 8 and 9. At 1000 K, x(∆µ) evolves continuously, with η ' 0: the disordered solid

solution is stable in the whole composition range. At 600 K, η ' 0.76 to 0.53 between

∆µ = −0.188 and −0.068 eV, which corresponds to an over stoichiometric L10 phase; and

η ' 0.49 between ∆µ = −0.05 and +0.3 eV, which corresponds to an almost stoichiometric

L12 phase. Discontinuities and hysteresis on the x(∆µ) curve indicate first order transitions

and the limits of two-phase domains.
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FIG. 8. Monte Carlo simulations: evolution of the Ni concentration x and long-range order param-

eter η of the PIM for Fe-Ni alloys at 1000 K, as a function of the difference in chemical potentials

∆µ = µNi − µFe.

B. Gibbs free energy of mixing

Using the definition of chemical potentials: µi = (∂G/∂ni)T,P,nj
and integrating the

∆µ(x) curve, we obtain the Gibbs free energy of mixing Gmix. The results obtained at

different temperatures can be directly compared with the Gmix of the CALPHAD study

[18]. In each case, one can also compare separately, the enthalpy Hmix and entropy Smix of

mixing, as well as the magnetic, excess and configuration contributions.

Fig. 10 for example, gives the Gibbs free energy of mixing of the Fe-Ni solid solution

at T = 1500 K. The PIM is in very good agreement with the CALPHAD study. At this

high temperature (well above Tc), the magnetic contribution is negligible. However it is
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FIG. 9. Monte Carlo simulations: evolution of the Ni concentration x and long-range order param-

eter η of the PIM for Fe-Ni alloys at 600 K, as a function of the difference in chemical potentials

∆µ = µNi − µFe.

worth to notice that the excess contribution is slightly lower in the PIM, with a minimum

of −0.038 eV at x = 0.69 instead of −0.033 eV in CALPHAD. The difference is due to the

fact that in the PIM, some short range order remains in the γ solid solution, even at this

high temperature (Fig. 7).
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FIG. 10. Gibbs free energy of mixing of the Fe-Ni solid solutions at 1500 K: PIM (dotted lines) vs

CALPHAD (full lines), with the separate magnetic, excess and configurational entropic contribu-

tions.

The effect is clearer if one separates the enthalpic and entropic contributions of Gmix =

Hmix − TSmix. The enthalpy of mixing (Fig. 11) is dominated by the excess term. Due to

the remaining short range order (σ1 = −0.066 and σ2 = 0.048), the PIM gives a minimum

of Hmix = −0.054 eV at x = 0.67 instead of −0.047 eV in CALPHAD. This discrepancy

on Hmix only disappear at very high temperature. At 3000 K (i.e. above the liquidus),
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the maximum difference between the PIM and CALPHAD is still ∆Hmix = 0.0022 eV (for

σ1 = 0.06 and σ2 = 0.013). It becomes negligible only above 5000 K.

The entropy of mixing of the the PIM (Fig. 12) is dominated by the entropy of config-

uration, which is very close to the ideal Sid of CALPHAD. In the PIM as in CALPHAD,

the excess and magnetic contributions to the entropy of mixing are less important, and

negative (except below x ' 0.1). At x = 0.67, the discrepancy due to the short range

order is only Sconf − Sid = 0.15 × 10−5 eV/(atom·K), which corresponds to a difference of

T (Sconf − Sid) = −0.00225 eV/atom. The difference on Smix partly compensate the one on

Hmix, which explain the good agreement on Gmix between the PIM and CALPHAD, even

below 1500 K, when the short range order increases. The Gmix of the PIM and CALPHAD

are therefore in very good agreement in the whole range of composition and temperature

where the γ solid solution is stable (Fig. 13).
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FIG. 11. Enthaply of mixing of the Fe-Ni solid solutions at 1500 K: PIM (dotted lines) vs CALPHAD

(full lines), with separate magnetic and excess contributions.

The difference between the Gibbs free energy of mixing of the PIM and CALPHAD

[Fig. 14(a)] slightly increases at lower temperatures, when the ordered phase L12 stabilizes,

i.e. when the long-range order parameter η is close to 0.5, between x ' 0.6 and x ' 0.82

[Fig. 14(b)]. This is not surprising since the PIM parameters at low temperatures are not

fitted on CALPHAD, but on DFT calculations which give a different energetic landscape,

especially for the disordered phase (section IIC). In spite of this difference, the Gmix(x)

curve of the PIM is still in good agreement with CALPHAD at T = 700 K.

At 650 K, the agreement between the Gibbs free energy of mixing of the PIM and CAL-

PHAD is still quite good for the compositions where the γ solid solution and the L12 phase
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are stable [Fig. 15(a)]. However the evolution of the long-range parameter η as a function of

the nickel concentration x now displays two bumps [Fig. 15(b)]. The second one (between

x ' 0.63 and x ' 0.85) still corresponds to the L12 phase. The phase is almost perfectly

ordered for the stoichiometric composition FeNi3 (η ' 0.5 for x = 0.75)). However, the PIM

predicts that the FeNi-L10 phase is stable between x ' 0.52 and 0.63, while it only appears

at lower temperature (below 316 K) according to the CALPHAD model [18]. Note that it

is not perfectly ordered (η ' 0.6 instead of 1 for the perfect order), because it is slightly
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non-stoichiometric (x > 0.5) and because 650 K is close to its order disorder-temperature

(680 K).
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C. FCC phase diagram

The FCC phase diagram of the Fe-Ni system predicted by the PIM is shown in Fig. 16

and compared with experimental data [52–55]. It can be also compared to the FCC diagram
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of Cacciamani et al. (Fig. 8 in [18]).

The ordering temperatures of the FeNi3-L12 phase are slightly different: the PIM gives

765 K, a little lower than 790 K for the CALPHAD study of Cacciamani et al. [18] (which is

adjusted to the experimental value). As in CALPHAD, the limits of the two-phase domain

FeNi3+γ for x > 0.75, are slightly shifted towards lower values (∆x ' −0.04 at 571 K) by

comparison with the experiments by Heumann et al. [53]. And as in CALPHAD, the width

of the two-phase domain γ+FeNi3 at x < 0.75 is smaller than the one of the two-phase

domain at x > 0.75 (earlier CALPHAD studies predicted a larger two-phase field, as in

Fig. 1). Here it should be noted that, except in the vicinity of the ordering temperature at

x = 0.75, the experimental data for these two-phase fields are going back to 1963 [53] and

are only available for one temperature.

The discrepancy is more important for the FeNi-L10 phase: the PIM predicts an ordering

temperature of 680 K instead of 316 K for CALPHAD. The CVM study of Mohri et al. [26]

predicts an intermediate ordering temperature (483 K). A direct estimation by DFT calcu-

lations (taking into account the vibrational entropy, but not the configurational entropy of

the FeNi-L10 phase) gives 640 K. There is no precise experimental measurement available

for the evolution of the degree of order as a function of the temperature (as for the FeNi3

phase, in Fig. 7), but the experimental observations under electron irradiation by Reuter et

al. [23] suggest an ordering temperature of approx. 593 K.

As in CALPHAD, the FCC phase diagram of the PIM also displays a two-phase field

with an equilibrium between a ferromagnetic (γf ) and a paramagnetic (γp) solid solution,

at x = 0.4 and below T = 660 K. This phase separation has been first predicted by Chuang

et al. [56], but it has not been confirmed experimentally. The PIM is able to reproduce this

two-phase field because it includes the magnetic contribution of the CALPHAD model. It

is however more limited in temperatures than in ref. [18], because of the higher stability of

the FeNi-L10 phase in the PIM, which limits its extension below 680 K.

The phase diagram of the PIM without the magnetic contribution is shown in Fig. 17.

As in the study by Cacciamani et al., the non-magnetic phase diagram reduces the critical

temperature of L12 by approx. 118 K and shows no γf − γp two-phase field.

Finally, let us recall that the parameters of the PIM and the results of section III have

been obtained with parameters fitted to DFT calculations at 0 K, the CALPHAD data of

ref. [18] at high temperatures, and a transition between the high and low temperature regimes
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FIG. 16. (a) The Fe-Ni FCC phase diagram: comparison between the PIM and experiments (1950

Jos = [52], 1963 Heu = [53], 1980 Van = [54, 55]., (b) zoom in the region of the L12 ordering

temperature.

controlled by the exponential interpolation of Eq. 17. With the chosen Tj temperatures, the

Redlich-Kister coefficients of the PIM are almost identical to those of CALPHAD above

approximately 1000 K. To assess the effect of this choice on the phase diagram, we have

performed some simulations with a different set of paramaters: Tj = 50 K for j = 0, 1, 2

and Tj = 10 K for j = 3, 4, 5 (using the same notation as in II C 3). With these parameters,

the Redlich-Kister coefficients of the PIM becomes almost identical to those of CALPHAD

at a lower temperature (approx. 315 K). The resulting phase diagram is shown in Fig. 18.

It is not very different from the previous one (Fig. 16(a)), except from a moderate increase

of the ordering temperatures of the L10 and L12 phases. The reason is that with the new

parameters, the ordering tendency is a little more pronounced below 1000 K (Fig. 4). As a

consequence, the γp − γf two-phase domain almost completely disappears.
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IV. DISCUSSIONS AND CONCLUSIONS

We have presented in this study a method for developing a pair interaction model for

Fe-Ni alloys, fitted at 0 K on the enthalpies of formation of ordered and disordered structures

(computed by first-principle methods) and at high temperatures on the Gibbs free energy of

the γ solid solution (as given by a CALPHAD study and its underlying experimental data).

Thanks to the temperature and concentration dependence of the pair interactions, the

PIM is able to reproduce precisely these two types of energetic properties, and to distin-

guish between excess, magnetic and configurational entropic contributions. The identifica-

tion between CALPHAD and the PIM is not perfect, because the configurational entropy

and short-range order in the solid solution is described more approximately in CALPHAD

methods than in the Monte Carlo simulations used to determine the equilibrium properties
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of the PIM. The CALPHAD method is more flexible than an atomistic model: the properties

of each phase can be adjusted very precisely and independently on the experiments. The

PIM imposes some constraints but, combined with Monte Carlo simulations, it ensures a

consistent description of the short- and long-range order and of the entropy of configuration.

Despite these differences, the Gibbs free enthalpies of mixing of the γ solid solution, as

given by CALPHAD, are very well reproduced by the PIM, throughout the composition and

temperature range of stability of the phase. The Gibbs free enthalpy of the FeNi3-L12 phase

is also well reproduce, although the parameters of the PIM and CALPHAD for that phase

are not fitted on the same DFT calculations. At high temperatures, the FCC phase diagram

involves only these two phases, and both methods give similar results (especially for the

order-disorder transition in the vicinity of FeNi3, and for the γp − γf phase separation).

On the other hand, both models predict that the FeNi-L10 phase is stable at low temper-

ature, but with different ordering temperatures. Taking the electron irradiation experiments

[23] as a reference, it seems that CALPHAD underestimates the ordering temperature, while

the PIM overestimates it. It should be noted here that alloys under irradiation may be not

fully at equilibrium, so that no real experimental thermodynamic data are available for this

phase; and that both the CALPHAD model and the PIM are only fitted to DFT calculations

of enthalpies of formation at 0 K. The PIM and CALPHAD should therefore be both im-

proved to properly describe this phase. One possibility is to use DFT methods to compute

finite temperature contributions. These methods are computationally expansive, but can

separate each energetic contribution and provide results at intermediate temperature (say,

between 0 and 400◦C), where experimental results are rarer and perhaps less accurate. An

example is given in the study of K. Li and C.-C. Fu [17], which shows that the vibrational

entropy decreases the ordering temperatures of the L10 and L12 phases by respectively 280

and 200 K.

In spite of this limitation, the PIM model gives a satisfactory description of the γ solid

solution and of the L12 phase. Of course, such a model is necessarily dependent on the

CALPHAD data it uses. For the magnetic contribution for example, we rely on the recent

study by Cacciamani et al., which is itself based on a large experimental database (with

measurements of specific heats, Curie temperatures, magnetic moments, etc. of γ solid

solutions with various compositions, described in ref. [18, 57]). For the same reason, our

model takes into account, but cannot distinguish between energetic contributions that are
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not identified separately in CALPHAD (for example, harmonic and non-harmonic vibra-

tional contributions – which are both gathered in the excess Gibbs free energy, together

with the non-ideal part of the configurational entropy). However it could easily be updated

to take into account future improvement on that points. It could also be easily extended

to Fe-Ni-Cr ternary alloys or to other binary or ternary systems. Finally the PIM is simple

enough to be used as a basis for Atomistic Kinetic Monte Carlo methods to simulate the

kinetics of homogeneous ordering or of heterogeneous precipitation of the L12 phase; or to

model the interdiffusion properties in the γ solid solution at high temperature. It is indeed

not more numerically expensive than the PIM for BCC Fe-Cr alloys described in Ref. [47],

which has been used for the simulations of precipitation kinetics [8, 9] or irradiation effects

[11, 12]. As in these studies, the modeling of kinetics will require the extension of the PIM

to describe the formation and migration properties of point defects.
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