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Abstract

Consider a graph where each of the n nodes is in one of two possible states. Herein,
we analyze the synchronous k-majority dynamics, where nodes sample k neighbors uni-
formly at random with replacement and adopt the majority state among the nodes in the
sample (potential ties are broken uniformly at random). This class of dynamics generalizes
other well-known dynamics, e.g., voter and 3-majority, which have been studied in the
literature as distributed algorithms for consensus.

We consider a biased communication model : whenever nodes sample a neighbor they
see state σ with some probability p, regardless of the state of the sampled node, and its
true state with probability 1 − p. Differently from previous works where specific graph
topologies—typically characterized by good expansion properties—are considered, our anal-
ysis only requires the graphs to be sufficiently dense, i.e., to have minimum degree ω(log n),
without any further topological assumption.

In this setting we prove two phase transition phenomena, both occurring with high
probability, depending on the bias p and on the initial unbalance toward state σ. More
in detail, we prove that for every k ≥ 3 there exists a p?k such that if p > p?k the process
reaches in O(1) rounds a σ-almost-consensus, i.e., a configuration where a fraction 1− γ of
the volume is in state σ, for any arbitrarily-small positive constant γ. On the other hand,
if p < p?k, we look at random initial configurations in which every node is in state σ with
probability 1−q independently of the others. We prove that there exists a constant q?p,k such
that if q < q?p,k then a σ-almost-consensus is still reached in O(1) rounds, while, if q > q?p,k,

the process spends nω(1) rounds in a metastable phase where the fraction of volume in state
σ is around a constant value depending only on p and k.

Finally we also investigate, in such a biased setting, the differences and similarities be-
tween k-majority and other closely-related dynamics, namely voter and deterministic
majority.
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1 Introduction

Designing distributed algorithms that let the nodes of a graph reach a consensus, i.e., a con-
figuration of states where all the nodes agree on the same state, is a fundamental problem in
distributed computing and multi-agent systems. Consensus algorithms are used in protocols for
other tasks, such as leader election and atomic broadcast, and in real-world applications such
as clock synchronization tasks and blockchains.

Recently there has been a growing interest in the analysis of simple local dynamics as
distributed algorithms for the consensus problem [BCN+17, CGG+18, CER14, DGM+11, GL18,
HP01, MNT14], inspired by simple mechanisms studied in statistical mechanics for interacting
particle systems [Lig12]. In this scenario, nodes are anonymous (i.e., they do not have distinct
IDs) and they have a state that evolves over time according to some common local interaction
with their neighbors.

The first dynamics investigated with this goal has been voter [HP01], where nodes copy
the state of a random neighbor. The authors prove that the dynamics reaches a consensus on
state σ with probability proportional to the volume of nodes initially in state σ in O(n3 log n)
rounds, regardless of the graph structure. Recently the upper bound has been improved to
O(n3) [KMS19], which is shown to be tight. However, the dynamics is slow in reaching consen-
sus, e.g., it needs Ω(n) rounds in the complete graph despite the extremely good connectivity
properties of the topology. Therefore, simple generalizations of voter have been considered in
order to achieve a faster distributed algorithm for consensus. One of the directions has been
that of considering more than a single neighbor in the sample. For example, in the 3-majority
dynamics, where each node samples 3 neighbors with replacement and updates its state to the
most frequent state among those in the sample, the time needed to reach a consensus on the
complete graph lowers from Ω(n) to O(log n) [CEOR13, GL18]. A more detailed discussion on
related works about dynamics for consensus is deferred to Section 2.

1.1 Our Contribution

Herein we focus on the scenario in which every node has a binary state (either R or B) and the
communication among the nodes proceeds in synchronous rounds; in this setting we analyze
the k-majority dynamics, where nodes update their state to that of the majority of a random
sample of size k of their neighborhood.

Obviously, starting from a monochromatic configuration, w.l.o.g., the one in which every
node is in state R, every vertex remains in the same initial state forever. Suppose now there
are chances that some vertices change state because of some communication noise. A natural
arising question is how strong has to be the noise to subvert the initial consensus?

In this paper we aim at providing a rigorous answer to such a non-rigorous question. We do
so by considering—differently from most of the previous works—a communication model which
is biased. W.l.o.g., the bias is toward state B, i.e., whenever nodes sample a neighbor they see
state B with some probability p, regardless of the state of the sampled node, and its true state
with probability 1− p.

This biased communication model has been introduced in [CNNS18], where the authors
analyze the 2-choices dynamics on core-periphery networks. We formally present the commu-
nication model in Section 3 and we discuss potential applications of this framework in Section 7.
Other existing models of bias are discussed in Section 2.

We stress that most of the previous works rely on strong topological assumptions, e.g.,
considering complete graphs or expanders, to prove upper bounds on the consensus time of the
dynamics. We move a step forward in this direction by removing all assumptions that depend
on the topology of the graph; indeed we only require the graph to be sufficiently dense, i.e., with
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minimum degree ω(log n). Such a milder assumption, though, comes at the cost of a weaker
notion of consensus, i.e., what we call almost-consensus (Definition 3.2). Informally, a process
reaches an almost-consensus on a state σ whenever a fraction 1− γ of the volume of the graph
is in state σ, for any arbitrarily-small positive constant γ. Indeed, pushing our techniques to
their limit, we could prove a consensus on state σ in O(log n) rounds. We would still require no
topological assumptions, but just a stronger condition on the minimum degree (from ω(log n) to
Ω(n)), thus dramatically restricting the class of graphs taken into account to extremely dense
ones.

Note that, in the biased communication model we consider, the Markov Chain that models
the process has a single absorbing state where all nodes are in state σ. For this reason, in
Section 5.1 we first consider an initial configuration where none of the nodes is in state σ,
and study the time needed by the process to reach a σ-almost-consensus. Trivially, if p = 0 the
process remains stuck in its initial configuration, while if p = 1 the process reaches the absorbing
state in one single round. More in general, it is intuitive that the process will converge slowly
to the absorbing state if p is small and quickly if p is large. With such an intuition in mind, we
prove a first phase transition phenomenon.

Informal description of Theorem 5.1. Consider the k-majority dynamics in the
communication model with bias p and where initially no nodes are in state σ.
For every k ≥ 3 there exists a constant p?k ∈ [1

9 ,
1
2 ] such that:

• If p < p?k, then a σ-almost-consensus is reached in nω(1) rounds, w.h.p.

• If p > p?k, then a σ-almost-consensus is reached in O(1) rounds, w.h.p.

In the proof, similarly to what has been done in [CNNS18] for the 2-choices dynamics, we look
at the expected evolution of the fraction of neighbors in state σ for every node of the graph.
However, comparing the analysis with that of [CNNS18], here we have a more comprehensive
scenario (k-majority for any k vs. 2-choices) with substantially more precise results.

Another important innovation with respect to [CNNS18] is the presence of another phase
transition in the initial state that we discuss in Section 5.2. Clearly in the fast convergence
regime, i.e., when p > p?k, the initial configuration in which none of the nodes is in state σ is
the hardest one for the process to reach a σ-almost-consensus. However, the scenario changes
in the slow convergence regime, where a different initial configuration with some of the nodes
already in state σ could be enough to change the behavior of the dynamics. In this more general
scenario, we prove a second phase transition phenomenon.

Informal description of Theorem 5.7. Consider the k-majority dynamics in the
communication model with bias p < p?k and where initially every node is in state σ with
probability 1− q, independently of the others.
For every k ≥ 3 there exists a constant q?p,k such that:

• If q < q?p,k, then a σ-almost-consensus is reached in O(1) rounds, w.h.p.

• If q > q?p,k, then a σ-almost-consensus is reached in nω(1) rounds, w.h.p.

Note that the notation q?p,k is different from the one appearing in Section 5.2 in order to make
clearer this introductory exposition.

In Section 4 we prove essentially the same result on directed infinite trees. In that case the
phase transition occurs on the probability of the root to be in the state not promoted by the
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bias as the number of rounds goes to infinity. The result in this “toy model” is presented before
the others and used as a guideline along the paper: the intuitions behind the proof are the
same as those of the previously presented results, but the calculations are much less technically
involved.

Finally, in Section 6, we characterize the behavior of voter and of deterministic major-
ity, where nodes simply update to the majority state in their neighborhood, under the same
biased framework. For the former we observe no phase transition but only a quick convergence
to a σ-almost-consensus in O(1) rounds, with high probability (Proposition 6.1). The latter,
instead, exhibits again a sharp transition, as that described before for k-majority, on the
critical value p? = 1

2 (Proposition 6.2). We also discuss, in Proposition 6.3, differences and
similarities between this dynamics and k-majority for large values of k.

From a high level perspective, our results show that adding a bias to k-majority af-
fects the dynamics in a non-trivial way. In particular, the arise of a metastable phase makes
the framework suitable to design distributed algorithms to recover planted partitions in net-
works [CNS19, BCPR19, SS19]. In this direction, we discuss potential applications of the
mathematical framework presented in this paper in Section 7.

Most of the proofs of the Sections 4 to 6 are postponed to Sections 8 to 10, respectively.

2 Related Work

Dynamics for consensus Simple mathematical model of interaction between nodes in a
network have been studied since the first half of the 20th century in statistical mechanics,
e.g., to model interacting particle systems or ferromagnetism phenomena [Lig12]. The simplest
dynamics of interaction between the nodes involve local majority-based changes of states, e.g.,
as in the voter model [HL+75, DW83] or in the majority dynamics [KR03]. A substantial line of
research has been devoted to study the use of such simple dynamics as lightweight distributed
algorithms to solve complex tasks, mirroring the behavior of complex systems from which they
take inspiration. Here we are interested in discussing some of the contributions among the large
body of work on dynamics for consensus. The reader is deferred to [BCN20] for a more detailed
survey on the topic. All dynamics taken into consideration share a common communication
model, where nodes can pull information from some fixed number of neighbors before updating
their state.

As discussed in Section 1, voter is the first—and arguably the simplest—dynamics consid-
ered for consensus [HP01]. The 2-choices dynamics is a variation of voter in which nodes
sample two random neighbors and update their states to the majority among two, breaking ties
toward their own states. The dynamics has been studied with opinions on d-regular and ex-
pander graphs [CER14], proving that, given a sufficient initial unbalance between the two opin-
ions, a consensus on the initial majority is reached within a polylogarithmic number of rounds,
with high probability. Such results have been later improved in [CER+15], relaxing the assump-
tions on graph’s expansion, and generalized to the case of multiple opinions [CRRS17, EFK+17].
More recently, the 2-choices dynamics has been analyzed on networks with a core-periphery
structure [CNNS18], where, depending on the initialization, it exhibits a phase transition phe-
nomenon.

In the 3-majority dynamics, nodes update their color to that of the majority among the
state of 3 randomly sampled neighbors. On the complete graph and with h possible opin-
ions, the process converges to a plurality consensus in O(min{h, 3

√
n/ log n} · log n) with high

probability, if the initial unbalance between the plurality color and the second one is large
enough [BCN+17]. In [BCE+17] unconditional lower and upper bounds for 2-choices and 3-
majority on the complete graph are provided, whenever the number of initial colors is large.
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The scenario in which an adversary can modify some of the h opinions, again for 2-choices
and/or 3-majority, is considered in [BCN+16, DGM+11, GL18], with the best result prov-
ing convergence to a valid consensus in O(h log n) rounds, with high probability, even if the
adversary can control o(

√
n) nodes. The 3-majority dynamics has been recently analyzed

also on non complete topologies [KR19]. The authors consider a random initialization in which
every node is red with probability 1/2 + δ and blue otherwise and graphs with minimum degree
d = Ω(n1/ log logn). Their result implies, e.g., a consensus on state red in O(log log n) rounds,
w.h.p., if δ = Ω(1/ log log n).

To the best of our knowledge, k-majority has not been extensively studied for generic
k. Among the few works that consider it, in [ABF15, AD15] such a dynamics is analyzed for
k ≥ 5 on preferential attachment graphs, on the configuration model, and on Erdős–Rényi
graphs. In both works the authors show that, given an initial unbalance toward one of the two
possible colors, the process converges to the initial majority within O(log log n) steps, with high
probability. In [SS20] a new model is proposed, which contains majority rules as special cases.
In particular, for k-majority with odd k and in a binary state setting, the convergence time
on expander graphs is proved to be O(log n/ log h) rounds for k = o(n/ log n).

In the deterministic majority, every node updates its state according to the majority
state of its neighborhood as a whole, loosing the random interaction, which is a fundamental
feature of the dynamics previously discussed. This deterministic protocol has been extensively
studied in the literature; we mention, for example, its analysis on expander graphs [MNT14,
Zeh20], random regular graphs [GZ18], and Erdős-Rnyi random graphs [BCO+16, Zeh20].

Biased communication models in opinion dynamics A different perspective coming
from other disciplines, such as economics and sociology, is that of considering interaction mod-
els between nodes of a network as models of opinion diffusion. The main models, e.g., De-
Groot [DeG74] and Friedkin–Johnsen [FJ90], are based on averaging dynamics, i.e., nodes
move toward the average opinion seen in their neighborhoods. Nevertheless, also the dy-
namics previously discussed can be framed in the modeling of opinion dynamics (see, e.g.,
[ABB19, AFG18, MBCD19, MT17, SLST17]).

Some opinion dynamics have been considered with biased communication models, specially
in asynchronous case. The binary deterministic majority dynamics has been considered in
a setting where nodes have a fixed private opinion and, when active, announce a public opinion
as the majority opinion in their neighborhood, but ties are broken toward their private belief.
Such a process has been proved to converge to the initial private majority whenever the graphs
are sufficiently sparse and expansive [FILW14] or preferential attachment trees [BIMW20]. The
binary deterministic majority dynamics, as well as the binary voter dynamics, have also
been analyzed in asynchronous models presenting different forms of bias [MMR16, ABC+20].
In [MMR16], if the network prefers, say, opinion a instead of b, every node holding opinion b
updates more frequently than the others; this particular feature is modeled by allowing nodes in
state b to revise their opinion at all points of a Poisson process with rate qb > qa. In [ABC+20]
the bias is defined toward one of the two possible opinions: nodes have a fixed probability α of
updating their state to such an opinion, independently of the dynamics.

A biased version of voter has also been studied in a synchronous model in [BGKM16]: the
nodes, after selecting a random neighbor, have a probability of copying its state that depends
on the state itself.
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3 Notation and Computational Model

Let G = (V,E) be a simple graph with V = {1, . . . , n}. For each node u ∈ V , let Nu := {v ∈
V : (u, v) ∈ E} be the neighborhood of u. In the following, we focus only on sufficiently dense
graphs, i.e., graphs where every node u ∈ V has degree δu := |Nu| = ω(log n).1 We use the
Bachmann–Landau notation (i.e., ω,Ω,Θ,O, o) to describe the limiting behavior of functions
depending on n. We denote the volume of a set of nodes T ⊆ V as vol(T ) :=

∑
v∈T δv.

We consider a process on G that evolves in discrete, synchronous rounds,2 where, in every

round t ∈ N0, every node u ∈ V has a binary state x
(t)
u ∈ {R,B} that can change over

time according to a function of the states of its neighbors; we denote the configuration of the
system at round t, i.e., the vector of states of the nodes of G, as x(t) ∈ {R,B}n; we define

R(t) := {u ∈ V : x
(t)
u = R} and B(t) := {u ∈ V : x

(t)
u = B}.

We let the nodes of the network run the (k, p, σ)-majority dynamics (formally introduced
in Definition 3.1), a slight modification of the well-known k-majority dynamics where the
communication between nodes is biased (through a parameter p) toward one of the two possible
states, σ. Recall that in the k-majority dynamics, in each round, every node samples k
neighbors uniformly at random and with replacement; then it updates its state to the state held
in the previous round by the majority of the neighbors in the sample; ties are broken uniformly at
random. Differently, in the (k, p, σ)-majority dynamics, whenever node u samples a neighbor
v, the state of v seen by u could be altered, i.e., v is seen in state σ, with probability p, regardless
of its actual state.

We denote by P = P(n) the law of the dynamics on G. We usually drop the dependence on
n when it is clear from the context. We use the notation 1{A} for the indicator variable of the
event A, i.e., 1{A} = 1 if A holds and 1{A} = 0 otherwise.

Formally, (k, p, σ)-majority can be described as follows. Let p ∈ [0, 1] be the parameter
that models the bias toward some state σ ∈ {R,B}; let k ∈ N be the size of the sampling. For

each round t, let S
(t)
u be the multiset3 of neighbors sampled by node u in round t. For each

sampled node v ∈ S(t)
u , we call x̄

(t)
v (u) the state in which node u sees v after the effect of the

bias, i.e., x̄
(t)
v (u) = σ with probability p, independently of the state of v, and x̄

(t)
v (u) = x

(t)
v

otherwise; formally

P
(
x̄(t)
v (u) = σ

∣∣∣ x(t) = x̄
)

= 1{x(t)v =σ} + p · 1{x(t)v 6=σ}.

We define R̄
(t)
u := {v ∈ S(t)

u : x̄
(t)
v (u) = R} and B̄

(t)
u := {v ∈ S(t)

u : x̄
(t)
v (u) = B} as the sets that

node u sees respectively in state R and in state B after the effect of the bias p.

Definition 3.1 ((k, p, σ)-majority dynamics). Let p ∈ [0, 1], k ∈ N, and σ ∈ {R,B}. Starting
from an initial configuration x(0), at each round t every node u ∈ V decides its state for the
next round as

x(t+1)
u =


R if |R̄(t)

u | > |B̄(t)
u |,

R or B with probability 1/2 if |R̄(t)
u | = |B̄(t)

u |,
B if |R̄(t)

u | < |B̄(t)
u |.

Note that the (k, p, σ)-majority dynamics is a Markov Chain, since the configuration x(t)

in a round t > 0 depends only on the configuration x(t−1) at the previous round. Moreover,

1We refer to such graphs as “dense” in order to highlight the lower bound on the degree of the nodes that is
necessary for our proof technique.

2Equivalently, nodes have access to a shared clock.
3Recall that the sampling is with replacement.
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when p > 0, it has a single absorbing state, in which x
(t)
u = σ for every u ∈ V , i.e., eventually

all nodes reach a consensus on state σ. Notice also that our dynamics is monotone and hence
the time needed to reach the σ-consensus decreases if we increase the number of vertices in
state σ in the current configuration. For this reason, in Section 5.1 we consider the scenario
in which all nodes are initially in the state opposite to σ. Without loss of generality, in what

follows we let x
(0)
u = R for every node u ∈ V and let the nodes in G run the (k, p,B)-majority

dynamics. Later, in Section 5.2, we analyze the general scenario in which nodes are initially in
state R, independently, with probability q. We examine these scenarios in order to understand
the effect of the bias and of the initial unbalance toward state R on the process. In particular,
we study the time needed by the process to reach a B-almost-consensus, i.e., a configuration in
which most of the nodes are in state B. More precisely, we give the following definition.

Definition 3.2 (σ-almost-consensus). Let σ ∈ {R,B} and let Σ(t) := {u ∈ V : x
(t)
u = σ}, for

each round t. For any constant γ ∈ (0, 1), consider the stopping time

τγ := inf

{
t ≥ 0

∣∣∣∣∣ vol(Σ(t))

vol(V )
> 1− γ

}
.

We say that a process on G reaches a σ-almost-consensus within O(f(n)) rounds if for any
constant γ > 0 there exists some constant c = c(γ) such that

P (τγ ≤ cf(n)) = 1− o(1).

In the following sections, we say that an event En holds with high probability (w.h.p., in short)
if P (En) = 1 − o(1). In this sense, our results only hold for large n. We also use the notation
Bin (n, p) to indicate a random variable sampled by the Binomial distribution of parameters n
(number of trials) and p (probability of success).

4 A Toy Model: Infinite Trees

We start the analysis with a “toy model”, i.e., a directed infinite tree T = (V,E) with edges
oriented toward the children. We call v0 ∈ V the root of T . For each node u ∈ V we define
the binary state x

(t)
u ∈ {R,B} that can change over time as described in Definition 3.1, but

with the only difference that S
(t)
u will be a set of k children sampled by node u at round t,

without replacement ; this difference in the dynamics will allow us to analyze the behavior of the

processes using the same techniques. Hence, fixed the bias p ∈ [0, 1], for each v ∈ S(t)
u we can

define the binary random variable x̄
(t)
v (u) and at each round t we can construct the sets R(t)

and B(t), as discussed in Section 3.
Suppose that k is odd. We study the evolution of the probability of the event “v0 ∈ R(t)”,

i.e., the root of T is in state R at round t. The result in the forthcoming Theorem 4.3 is based
on the analysis of the function Fp,k, described by the following definition, that represents the
evolution of the event under analysis.

Definition 4.1 (Function Fp,k). Let h ∈ N and let k := 2h + 1. Let p ∈ [0, 1]. We define the
function Fp,k : [0, 1]→ [0, 1] as

Fp,k(x) := P

(
Bin (k, (1− p)x) ≥ k + 1

2

)
.

In particular, we will use the following facts about Fp,k, which are proved in Section 8 and
depicted in Fig. 1.
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Lemma 4.2. For every finite odd k ≥ 3, there exists p?k ∈
[

1
9 ,

1
2

)
such that:

• if p < p?k, there exist ϕ−p,k, ϕ
+
p,k ∈

(
1

2(1−p) , 1
]

with ϕ−p,k < ϕ+
p,k such that Fp,k(x) = x has

solutions 0, ϕ−p,k, and ϕ+
p,k;

• if p = p?k, there exists ϕp,k ∈
(

1
2(1−p) , 1

]
such that Fp,k(x) = x has solutions 0 and ϕp,k;

• if p > p?k, then Fp,k(x) = x has 0 as unique solution.

Moreover the sequence {p?k}k is increasing.

Note that it is not possible to give a closed formula of p?k for generic k because it is the
root of a polynomial of degree k; numerical approximations can be computed for any given
k. However, as proved in Lemma 4.2, p?k monotonically increases with k, starting from 1

9 (for
k = 3) and up to 1

2 (its limit value as k →∞, as proved in Lemma 8.3).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fp<p?k,k

Fp?k,k

Fp>p?k,k
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0.0

0.1
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0.7

0.8
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1.0

1
2(1−p) ϕ−p,k ϕ+

p,kµp,k

Fp,k

Figure 1: Qualitative plots of the function Fp,k(x). On the left, for k = 3, three different values
of p are shown, namely p = 1

20 < p?k, p = 1
9 = p?k, and p = 1

4 > p?k. On the right, for k = 7
and p = 0.16 < p?k, the points of interest of the function are shown, namely the inflection point

1
2(1−p) , the fixed points ϕ−p,k and ϕ+

p,k, and the unique point µp,k > ϕ−p,k for which F
′
p,k(µp,k) = 1.

We now prove the following theorem, which will be a guideline for the whole paper.

Theorem 4.3. Consider the (k, p,B)-majority dynamics on T , where at round t = 0 each
vertex of the tree is in state R with probability q or in state B with probability 1−q, independently
of the others. Then,

lim
t→∞

P
(
v0 ∈ R(t)

)
=


ϕ+
p,k if p < p?k and q > ϕ−p,k,

0 if p < p?k and q < ϕ−p,k,

0 if p > p?k.

(1)

Proof. Define qt := P
(
v0 ∈ R(t)

)
and observe that, since we are working on an infinite tree, we

have P
(
v0 ∈ R(t)

)
= P

(
v ∈ R(t)

)
for all v ∈ V and for all t ∈ N0. Note also that, for any siblings

v, w ∈ V , the events “v ∈ R(t)” and “w ∈ R(t)” are independent at any round t ∈ N0. Hence

the random variables in the family {1{v∈R(t)} : v ∈ V } are i.i.d. and P
(
1{v∈R(t)} = 1

)
= qt.
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Let us now compute qt+1 = P
(
v0 ∈ R(t+1)

)
. We have:

qt+1 = P

 ∑
w∈S(t)

v0

1{
w∈R(t)

}1{
x̄
(t)
w (v0)=x

(t)
w

} ≥ k + 1

2

 . (2)

Note that the random variables {1{x̄(t)w (v0)=x
(t)
w }
|w ∈ S(t)

v0 } are i.i.d. Bernoulli random variables

of parameter 1 − p. Moreover the family of random variables
{
1{x̄(t)w (v0)=x

(t)
w }
|w ∈ S

(t)
v0

}
is

independent of the family
{
1{w∈R(t)} |w ∈ S

(t)
v0

}
. Then

{
1{w∈R(t)}1{x̄(t)w (v0)=x

(t)
w }
|w ∈ S(t)

v0

}
is a

family of i.i.d. Bernoulli random variables of parameter (1− p)qt and hence∑
w∈S(t)

v0

1{
w∈R(t)

}1{
x̄
(t)
w (v0)=x

(t)
w

} = Bin
(
|S(t)
v0 |, (1− p)qt

)
= Bin (k, (1− p)qt) .

Thus, for every t ≥ 0, we can write

qt+1 = P

(
Bin (k, (1− p)qt) ≥

k + 1

2

)
. (3)

By Definition 4.1, the sequence described in Eq. (3) can be rewritten as

qt+1 =

{
Fp,k(q) if t = 0,

Fp,k(qt) if t ≥ 1.

Hence, the limit behavior in Eq. (1) for the sequence (qt)t follows from Lemma 4.2.

5 Phase Transitions

In this section we exploit the results in Section 4 to prove that (k, p, σ)-majority behaves on
dense graphs similarly to what we observed in the previous section on infinite trees.

We start by setting the ground for Theorem 5.1, introducing the required notation. For
every node u ∈ V and for every round t we define the fraction of neighbors of u in state R as

φ
(t)
u := |R(t)

u |
δu

. Similarly we let φ(t)
max

:= maxu∈V φ
(t)
u denote the maximum fraction of neighbors

in state R at round t over the nodes.
Given any configuration x(t) = x̄, we have that, for every u ∈ V , the expected fraction of

neighbors of u in state R at round t+ 1 is

E
[
φ(t+1)
u

∣∣∣ x(t) = x̄
]

=
1

δu

∑
v∈Nu

P

(
|R̄(t)

v | ≥
k + 1

2

∣∣∣∣ x(t) = x̄

)
=

1

δu

∑
v∈Nu

Fp,k(φ
(t)
v ). (4)

Note that in the last equality we applied Definition 4.1, and used the fact that, given x(t), the

random variable |R̄(t)
v | = Bin

(
k, (1− p)φ(t)

v

)
, for every v ∈ V .

5.1 On the Bias in the Communication p

The main result of this work shows the existence of a critical value p?k (see Lemma 4.2) for
the bias p when the nodes of a dense graph execute (k, p,B)-majority starting from an initial
configuration where all nodes are in state R. Roughly speaking, on the one hand Theorem 5.1
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states that, if the bias is smaller than p?k, a superpolynomial number of rounds is needed to
reach a B-almost-consensus: we will show that the system will remain trapped in a metastable
phase, in which the volume of nodes in state R is some constant fraction of the total, for every
polynomial number of rounds. On the other hand, if the bias is larger than p?k, a constant
number of rounds suffices to reach a B-almost-consensus.

Theorem 5.1. Consider a sequence of graphs (Gn)n∈N such that minv∈V δv = ω(log n). For
every fixed n, consider the (k, p,B)-majority dynamics, with p ∈ [0, 1] and k ≥ 3, starting

from the initial configuration x(0) where x
(0)
u = R for every u ∈ V . If |p − p?k| > c for some

constant c > 0, then:

1. Slow convergence: if p < p?k, then for every constant γ > 0 there exists a T = T (γ) s.t.

P

(
∀t ∈ [T, nK ],

vol(R(t))

vol(V )
∈ [ϕ+

p,k − γ, ϕ
+
p,k + γ]

)
= 1− o(1), ∀K > 0,

where ϕ+
p,k is the largest fixed point of Fp,k (see Lemma 4.2).

2. Fast convergence: if p > p?k, then for every constant γ > 0 there exists a T = T (γ) s.t.

P

(
∃t < T s.t.

vol(B(t))

vol(V )
> 1− γ

)
= 1− o(1).

In the rest of the section we assume k is odd and we prove the theorem for this case only.
We later show in Proposition 5.11 that this assumption is not necessary. In fact, the behavior
of (k, p,B)-majority is equivalent to that of (k + 1, p,B)-majority for every odd k.

We split the proof into two parts. Theorem 5.1 then follows from Corollaries 5.3 and 5.6.

Slow convergence The proof for the slow convergence regime directly exploits the connec-
tion with the infinite tree model described in Section 4. In Proposition 5.2 we show that for
every round t ∈ poly(n) all the nodes in G have a fraction of neighbors in state R which is
asymptotically equal to qt, i.e., the probability that the root v0 of the infinite tree T is in state
R at round t.

Proposition 5.2. Consider p = p?k− c, for some c > 0, so that the quantity ϕ−p,k in Lemma 4.2
is well defined. Consider the (k, p,B)-majority starting from the initial configuration in which
each vertex is R. Then, for all γ > 0,

P
(
∀t ≤ nK , ∀v ∈ V, φ(t)

v ∈ [qt − γ, qt + γ]
)

= 1− o(1), ∀K > 0.

where the sequence (qt)t≥0 is defined recursively as in Section 4, by choosing q = 1.

The result in Proposition 5.2 is discussed and proved for a more general class of initial
conditions (Proposition 9.1) in Section 9. The core of the proof lies in the contraction property
of Fp,k. The latter is stated rigorously in Lemma 8.2, where we show that F

′
p,k < 1 in that

interval [ϕ+
p,k, 1]. The proof of Proposition 5.2 amounts to show that this fact is sufficient to

ensure a bilateral concentration. Moreover, given the density assumption, the concentration
can be pushed to hold uniformly in the vertices at any polynomial round.

By Proposition 5.2 the fraction of R neighbors of a node concentrates around qt, i.e., the
probability that the root of the infinite tree is in stateR at round t. Then, we use Proposition 5.2
to show that a metastable phase—in which the fraction of volume in state R is approximately
ϕ+
p,k—is attained in constant time. Moreover, an additional superpolynomial number of rounds

is necessary to reach a B-almost-consensus.
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Corollary 5.3. Assume p = p?k− c for some constant c > 0 and that the initial configuration is
such that all nodes are in state R. Then for all constant γ > 0 there exists a sufficiently large
T = T (γ) such that

P

(
∀t ∈ [T, nK ],

vol(R(t))

vol(V )
∈ [ϕ+

p,k − γ, ϕ
+
p,k + γ]

)
= 1− o(1), ∀K > 0.

Proof. Since the sequence (qt)t≥0 does not depend on n, Proposition 5.2 implies that

P
(
∀t ∈ [T, nK ], ∀v ∈ V, φ(t)

v ∈ [ϕ+
p,k − γ, ϕ

+
p,k + γ]

)
= 1− o(1).

At this point it is sufficient to rewrite the volume of nodes in state R as follows

vol(R(t)) =
∑
u∈R(t)

δu =
∑
u∈V

(δu − |B(t)
u |) =

∑
u∈V

δuφ
(t)
u . (5)

Then, by Proposition 5.2, for all K > 0, (ϕ+
p,k − γ)vol(V ) ≤ vol(R(t)) ≤ (ϕ+

p,k + γ)vol(V ), for all

v and all t ∈ [T, nK ].

Fast convergence In the fast convergence regime, for every node of the graph, we can upper
bound the expected fraction of neighbors in state R. This fact is formalized in the following
lemma, which is proved in Section 9.

Lemma 5.4. Let p = p?k + c, for some c > 0. There exists some ε = ε(p, k) > 0 such that for
every u ∈ V it holds that

E
[
φ(t+1)
u

∣∣∣ x(t) = x̄
]
≤ (1− ε)φ(t)

max
. (6)

Lemma 5.4 essentially tells us that the fraction of neighbors of u in state R, maximized over
u ∈ V , is a supermartingale. We will use this fact to prove the following proposition.

Proposition 5.5. Fix p = p?k + c, for some c > 0. For all γ > 0 there exists some T = T (γ)
such that

P
(
∃t ≤ T s.t. φ(t)

max
≤ γ

)
= 1− o(1). (7)

Proof. For any u ∈ V , by multiplying both sides of Eq. (6) by δu we get that, for all γ > 0,

E
[
|R(t+1)

u |
∣∣∣ x(t) = x̄

]
≤ (1− ε)φ(t)

max
δu ≤ (1− ε) max{φ(t)

max
, γ}δu.

We aim at bounding the quantity φ
(t+1)
u , namely

P
(
φ(t+1)
u > (1− ε2) max{φ(t)

max
, γ}

∣∣∣ x(t) = x̄
)

= P
(
|R(t+1)

u | > (1− ε2) max{φ(t)
max

, γ}δu
∣∣∣ x(t) = x̄

)
= P

(
|R(t+1)

u | > (1 + ε)(1− ε) max{φ(t)
max

, γ}δu
∣∣∣ x(t) = x̄

)
.

Note that, given the configuration at round t, |R(t+1)
u | is a Binomial random variable and, thus,

by applying a multiplicative form of the Chernoff Bound [DP09, Exercise 1.1], we get

P
(
φ(t+1)
u > (1− ε2) max{φ(t)

max
, γ}

∣∣∣ x(t) = x̄
)
≤ exp

{
−ε

2(1− ε)
3

max{φ(t)
max

, γ}δu
}
.
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Since δu = ω(log n) by hypothesis and max{γ, φ(t)
max
} > γ regardless of φ(t)

max
, by taking a union

bound over u ∈ V and integrating over the conditioning we get

P
(
φ(t+1)

max
> (1− ε2) max{γ, φ(t)

max
}
)
≤ n · e−ω(logn). (8)

Let us define the event F :=
{
∀t < T, φ(t+1)

max
≤ (1− ε2) max{γ, φ(t)

max
}
}
. By taking a union

bound of Eq. (8) with respect to t < T we have P (F) ≥ 1 − T · n · e−ω(logn). Called E :={
∃t ≤ T s.t. φ(t)

max
≤ γ

}
⊃ F , we get the thesis.

Reasoning as in Corollary 5.3 it is immediate to deduce from Proposition 5.5 a statement
about convergence to B-almost-consensus.

Corollary 5.6. Assume p = p?k + c for some constant c > 0. Then, for all γ > 0 there exists a
sufficiently large T = T (γ) for which

P

(
∃t < T s.t.

vol(B(t))

vol(V )
> 1− γ

)
= 1− o(1). (9)

5.2 On the Initial Unbalance q

In this section we focus on the scenario in which, for any fixed odd k, we consider a value of
the bias p = p?k − c for some constant c > 0. We have seen in Section 5.1 that the time needed
to reach a B-almost-consensus is superpolynomial in the size of the graph when all nodes are
initially in state R. The natural question is: how large should the fraction of B vertices be
in the initial configuration in order to reach the B-almost-consensus in a much shorter time
scale? In particular, we consider an initial condition in which each vertex is R with probability
q ∈ [0, 1], independently of the others. Recall that ϕ−p,k, ϕ

+
p,k are the fixed points of Fp,k when

p < p?k (see Lemma 4.2). We show that, if q < ϕ−p,k, then a B-almost-consensus is reached in

finite time; otherwise, if q < ϕ−p,k, the process enters a metastable phase in which the fraction

of volume in state R concentrates around ϕ+
p,k.

Theorem 5.7. Consider a sequence of graphs (Gn)n∈N such that minv∈V δv = ω(log n). For
every fixed n consider the (k, p,B)-majority dynamics with p ∈ (0, 1) and odd k ≥ 3. Assume
that the system starts from an initial configuration x(0) where each vertex is R with probability
q ∈ [0, 1], independently of the others. If p = p?k − c for some constant c > 0, and |q−ϕ−p,k| > η
for some η > 0, then:

1. Slow convergence: if q > ϕ−p,k, then for all constant γ > 0 there exists a constant T = T (γ)
s.t.

P

(
∀t ∈ [T, nK ],

vol(R(t))

vol(V )
∈ [ϕ+

p,k − γ, ϕ
+
p,k + γ]

)
= 1− o(1), ∀K > 0.

2. Fast convergence: if q < ϕ−p,k, then for all constant γ > 0 there exists a T = T (γ) s.t.

P

(
∃t < T s.t.

vol(B(t))

vol(V )
> 1− γ

)
= 1− o(1).
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Slow convergence As far as it concerns the slow convergence regime, the proof is divided
in two steps. We start with Proposition 9.1, an extension of Proposition 5.2 that considers
every starting configuration with q > µp,k (where µp,k is the unique point in [ϕ−p,k, 1] for which

F
′
p,k(µp,k) = 1, see Fig. 1). For such initial configurations we can rely on the contraction

property of Fp,k.
The second part of the proof closes the gap where q ∈ (ϕ−p,k, µp,k]. More precisely, we prove

the following proposition.

Proposition 5.8. Let p = p?k − c, for some c > 0 and consider the (k, p,B)-majority start-
ing from the initial configuration in which each vertex is R independently of the others, with
probability q ∈ [ϕ−p,k + η, µp,k) for some η > 0. Then, there exists some τp,k = τp,k(q) such that
qτp,k > µp,k. Moreover, for all γ > 0

P
(
∀t ≤ τp,k, ∀v ∈ V, φ(t)

v ∈ [qt − γ, qt + γ]
)

= 1− e−ω(logn).

Informally, Proposition 5.8 (whose proof is in Section 9.2) claims that within a finite number
of rounds every node has at least a fraction µp,k of neighbors in state R. Moreover, the fraction
of neighbors in state R of every vertex coincides at the first order. Then, at that finite time,
we can apply Proposition 9.1 and conclude the proof as in Corollary 5.3.

Fast convergence For the fast convergence regime, the proof is similar to the proof in the
second half of Section 5.1. Analogously to what has been done in Lemma 5.4, we first upper
bound the expected fraction of neighbors in state R, for each node of the graph.

Lemma 5.9. Consider any x(t) such that φ(t)
max
≤ ϕ−p,k − η, for some η > 0. Then, there exists

some constant ε′ = ε′(p, k, η) > 0 such that

E
[
φ(t+1)
u

∣∣∣ x(t) = x̄
]
≤ (1− ε′)φ(t)

max
.

The proof of Lemma 5.9 can be found in Section 9.2. Then we make use of the next proposition,
whose proof follows the same flow as that one of Proposition 5.5, and the conclusion follows by
the same argument used in Corollary 5.6.

Proposition 5.10. Let p = p?k − c, for some c > 0. Consider (k, p,B)-majority starting from
the initial configuration in which each vertex is in state R, independently of the others, with
probability q = ϕ−p,k − γ for some γ > 0. Then, for all γ > 0 there exists some T = T (γ) such
that

P
(
∃t ≤ T s.t. φ(t)

max
≤ γ

)
= 1− o(1).

5.3 On Even Values of the Sample Size k

In the previous section we assumed samples of odd size k, thus avoiding potential ties. In this
section, we close the gap showing the equivalence between the Markov chains (2h + 1, p, σ)-
majority and (2h + 2, p, σ)-majority. The result in Proposition 5.11 is essentially a special
case of [FN19, Appendix B]. However, it has been obtained independently and a simplified proof
is reported for completeness in Section 9.3.

Proposition 5.11. Let G = (V,E) be a graph with binary state configuration x(t) in round t.
Consider the (k, p, σ)-majority dynamics, for some fixed k ∈ N, p ∈ [0, 1], and σ ∈ {R,B}.
Pick a node u ∈ V and define the event Ek : “Node u does not update its state to σ at round

t + 1”, or equivalently Ek := {x(t+1)
u 6= σ}, where k is that of (k, p, σ)-majority. It holds that

P
(
E2h+1

∣∣ x(t) = x̄
)

= P
(
E2h+2

∣∣ x(t) = x̄
)
, for every h ∈ N0.
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Remark 1. Consider a graph with any initial configuration x(0). Fix any p ∈ [0, 1] and σ ∈
{R,B}. Proposition 5.11 implies that, for every h ∈ N0, the (2h + 1, p, σ)-majority and the
(2h+ 2, p, σ)-majority follow the same law and, thus, their evolution is the same.

6 Limit Cases: Voter and Deterministic Majority Dynamics

In this section we analyze the two limit cases of (k, p, σ)-majority, considering the case k = 1
as well as the case in which k is large. In particular, 1-majority is equivalent to voter, i.e.,
nodes copy the state of a randomly sampled neighbor. In Section 6.1 we analyze its behavior
on the biased communication model described in Section 3. On the other hand, for large values
of k, one might expect a similar behavior to that of deterministic majority, in which nodes
update their state to that supported by the majority of nodes in their entire neighborhood. In
Section 6.2 we investigate the relation between the two dynamics in our biased communication
model.

6.1 Voter Dynamics

Differently from the general case of Theorem 5.1 where k ≥ 3, no phase transition is observed
for (1, p,B)-majority, due to the linearity of the dynamics. Moreover, the effect of the bias
p has a strong impact on its behavior. While the standard binary voter dynamics needs Ω(n)
rounds to reach a consensus on one of the two states, e.g., on the complete graph, we show
in Proposition 6.1 that in the biased communication model a B-almost-consensus is reached
in O(1) rounds, w.h.p., regardless of the initial configuration. In other words, in a constant
number of rounds any potential majority is subverted to a majority on the state promoted by
the bias. In the complete graph, for example, this would imply a convergence to a consensus in
O(log n) rounds,4 i.e., exponentially faster than in the classic scenario with no bias.

Proposition 6.1. Consider a sequence of graphs (Gn)n∈N such that minu∈V δu = ω(log n). For
any fixed n, consider the (1, p,B)-majority dynamics with any initial configuration x(0) and
p > 0 constant. The process reaches a B-almost-consensus within O(1) rounds, w.h.p.

The proof is essentially the same as that one of the fast convergence regime in Theorem 5.1. It
can be found in Section 10.1

6.2 Deterministic Majority Dynamics

As mentioned earlier, one might expect that as k grows (k, p, σ)-majority would behave simi-
larly to deterministic majority in the biased communication model, which we denote with
(p, σ)-deterministic majority. We make this link rigorous in Propositions 6.2 and 6.3. In
particular, we show that, if the graph satisfies the density assumption minu δu = ω(log n), the
(p, σ)-deterministic majority has a sharp phase transition at p = 1

2 , that is the limit as
k →∞ of the critical value p?k (as proved in Lemma 8.3).

For the sake of readability, we restrict the analysis of this section to the case in which the
initial configuration in which every vertex is in state R.

Proposition 6.2. Consider a sequence of graphs (Gn)n∈N such that minu∈V δu = ω(log n). For
any fixed n, consider the (p,B)-deterministic majority dynamics. Then:

• if p = 1
2 + c for some c > 0, then

P
(

vol(B(1)) = vol(V )
)

= 1− o(1);

4The specific graph topology allows to use our arguments until a complete consensus.

14



• if p = 1
2 − c for some c > 0, then for all K > 0

P
(
∀t ≤ nK , vol(R(t)) = vol(V )

)
= 1− o(1).

The proof of Proposition 6.2 is postponed to Section 10.2.
Note that the behavior of the (p,B)-deterministic majority is much stronger than the

usual almost sense we used throughout the paper. In fact, if p > 1
2 by a constant quantity, the

B-consensus is reached in a single round with high probability. On the other hand, if p < 1
2 ,

the initial R-consensus lasts for any polynomial number of rounds.
In Proposition 6.3 we show that the same behavior holds—in a weaker sense—for (k, p,B)-

majority, for all sufficiently large values of k. For the sake of clarity, in the next proposition
we will use the notation Pk to denote the law of (k, p,B)-majority for a given value of k.

Proposition 6.3. Consider a sequence of graphs (Gn)n∈N such that minu∈V δu = ω(log n). For
any fixed n, consider the (k, p,B)-majority dynamics. Let |p − 1

2 | = c for some c > 0. Then
for all γ > 0 there exists H = H(c, γ) such that:

• if p > 1
2 then

Pk

(
vol(B(1))

vol(V )
≥ 1− γ

)
= 1− o(1), ∀k > H; (10)

• if p < 1
2 then

Pk

(
∀t ∈ [0, nK ],

vol(R(t))

vol(V )
≥ 1− γ

)
= 1− o(1), ∀k > H, ∀K > 0. (11)

The proof is in Section 10.2. We point out that the same behavior of Proposition 6.2 can be
achieved for (k, p,B)-majority without any topological assumption, by just letting k grow with
n as k = ω(log n).

7 Discussion and Outlook

The biased communication model described in Section 3 and analyzed throughout the paper
for the k-majority dynamics allows us to reason about the strength of consensus against
adversarial nodes with a simple framework already presented in [CNNS18]. In particular, this is
possible for a class of graphs known as volume-regular graphs, recently introduced in [BCPR19],
that are strictly related to ordinary lumpable Markov Chains [KS60].

In the following we first introduce such a class of graphs, of which notable examples are
graphs sampled from the regular Stochastic Block Model [HLL83], and then discuss potential
applications of the biased communication model in more general scenarios.

Definition 7.1 (Volume-regular graphs [BCPR19]). Let G = (V,E) be a graph, and let V =
{V1, . . . , V`} be an `-partition of the vertex set V . Let us call δ(u) the degree of node u and δi(u)
the number of neighbors that node u has toward Vi. The graph G is volume-regular w.r.t. V if

for every pair i, j ∈ {1, . . . , `} and for every pair of nodes u, v ∈ Vi, it holds that
δj(u)
δ(u) =

δj(v)
δ(v) ,

i.e., every pair of nodes in each set Vi of the partition V has the same fraction of neighbors
toward any other set Vj of the partition V.
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Suppose one of the sets, Vi, in the partition V of a volume-regular graph G has reached a local
consensus on state R while running the k-majority dynamics. Now consider the k-majority
dynamics in the biased communication model described above, where with probability p each
sample is seen in state B, and run on the subgraph induced by Vi. If one considers p = δ(u)−δi(u)

δ(u) ,
for any node u ∈ Vi, then the process is completely equivalent to a scenario in which the nodes
in Vi are trying to maintain their local consensus while all the others are in the opposite state.

In this setting, our results in Theorems 5.1 and 5.7 shed light on the relation between the
topology of the network, i.e., the cut between Vi and the rest of the network, and the number
of nodes in the sample, k, in order for the nodes in Vi to “resist” against all the others that are
pushing them toward changing state. In this sense, our results could be exploited to prove similar
phenomena in other topologies, e.g., akin to what has been done in [CNNS18, CNS19, SS19]
for 2-choices and 3-majority.

As already noted earlier, a stronger assumption on the minimum degree, i.e., considering
graphs with minimum degree Ω(n), would be sufficient to prove a full consensus on the state
σ promoted by the bias, in O(log n) rounds, in all the scenarios in which we prove a σ-almost-
consensus. Graphs satisfying such assumption are not necessarily graphs with strong expansion
properties, e.g., consider two equal-sized cliques connected by a single edge. It remains unclear
whether it is possible to prove similar results for sparser topologies and which are the minimum
topological assumptions that are necessary to prove a full consensus. More precisely, it would be
interesting to see whether how our results can be sharpened by assuming a particular topology
as, e.g., an Erdős–Rényi random graph G(n, p) with p = ω(logn)

n .
From the statistical physics perspective, it would also be of interest the analysis of the

critical case p = p?k on some particular topologies. In particular, it would be notable if precise
asymptotics on the convergence time could be obtained in the critical regime without any
topological assumption on the underlying graph.

Finally, possible research directions that could lead to non-obvious conclusions are that of
applying our biased framework to other dynamics or to consider more than two states.

8 Proofs of Section 4

Recall from Definition 4.1 that Fp,k(x) := P
(
Bin (k, (1− p)x) ≥ k+1

2

)
for every odd k. In

this section we study the fixed points of function Fp,k(x), i.e., we want to solve the equation
Fp,k(x) = x for every p ∈ (0, 1). We first consider the simplest case k = 3.

Lemma 8.1. Consider the equation Fp,3(x) = x. It holds that:

• if p < 1
9 then there exist ϕ−, ϕ+ ∈ [ 1

2(1−p) , 1] such that Fp,3(x) = x has solution 0, ϕ−,

and ϕ+, with ϕ− < ϕ+;

• if p = 1
9 then there exists ϕ ∈ [ 1

2(1−p) , 1] such that Fp,3(x) = x has solution 0 and ϕ;

• if p > 1
9 then Fp,3(x) = x has 0 as unique solution.

Proof. With k = 3 we have that

Fp,3(x) = (1− p)3x3 − 3(1− p)2x2[1− (1− p)x]

= −2(1− p)3x3 + 3(1− p)2x2.

With some algebraic manipulations on the equation Fp,3(x) = x, we get that

Fp,3(x) = x ⇐⇒ x[2(1− p)3x2 − 3(1− p)2x+ 1] = 0. (12)
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Note that Eq. (12) has solutions different from 0 if and only if 2(1− p)3x2 − 3(1− p)2x+ 1 = 0
has at least one solution, i.e., if the discriminant ∆ = (1− p)3(1− 9p) ≥ 0. If p = 1

9 then ∆ = 0
and thus the unique solution of Eq. (12) different from 0 is

ϕ =
27

32
>

9

16
=

1

2(1− p)
≥ 1

2
.

If p < 1
9 , instead, Eq. (12) has two solutions different from 0 which are

ϕ± =
3(1− p)2 ±

√
(1− p)3(1− 9p)

4(1− p)3
≥ 1

2(1− p)
≥ 1

2
.

We now look at the function Fp,k for generic values of k. Before stating and proving the
version of Lemma 8.1 for generic k, we show a set of properties of the function Fp,k in the
following Note 1 and Claims 1 to 4

Note 1. Recall that Fp,k(x) := P
(
Bin (k, (1− p)x) ≥ k+1

2

)
. Note that:

1. Fp,k(0) = 0 for every p ∈ (0, 1) and every odd k.

2. Fp,k(1) < 1 for every p ∈ (0, 1) and every odd k.

3. Fp,k(x) is a continuous function in the variable x for every p ∈ (0, 1) and every k.

4. Fp,k(x) is increasing in the variable x for every p ∈ (0, 1) and every odd k. In fact, if we
take x < y, we have that

P

(
Bin (k, (1− p)x) ≥ k + 1

2

)
< P

(
Bin (k, (1− p)y) ≥ k + 1

2

)
.

5. Fp,k(x) is continuous and decreasing in p for any x ∈ [0, 1] and for every odd k.

6. If k is odd and p < 1
2 , we have 1

2(1−p) ∈ [0, 1] and Fp,k

(
1

2(1−p)

)
= 1

2 . In fact,

Fp,k

(
1

2(1− p)

)
= P

(
Bin

(
k,

1

2

)
≥ k + 1

2

)
=

k∑
i=(k+1)/2

(
k

i

)(
1

2

)i(1

2

)k−i

=

(
1

2

)k k∑
i=(k+1)/2

(
k

i

)
(a)
=

(
1

2

)k 2k

2
=

1

2

where in (a) we use that
(
k
i

)
=
(
k
k−i
)

and
∑k

i=0

(
k
i

)
= 2k.

7. Fp,k
(

1
2

)
≤ 1

2 for every p ∈ [0, 1] and every odd k. In fact, by Item 4

Fp,k

(
1

2

)
≤ Fp,k

(
1

2(1− p)

)
=

1

2
.

Claim 1. The function Fp,k(x) is non-decreasing in k for every x ∈
[
min

{
1

2(1−p) , 1
}
, 1
]

and

p ∈ [0, 1], while it is non-increasing in k for every x ∈
[
0,min

{
1

2(1−p) , 1
}]

and p ∈ [0, 1].
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Proof. Let X and Y be two random variables with laws Bin (2h+ 1, q) and Bin (2h+ 3, q),
respectively. In the following we prove that

P (Y ≥ h+ 2) ≥ P (X ≥ h+ 1) if q ≥ 1

2
, (13)

P (Y ≥ h+ 2) ≤ P (X ≥ h+ 1) if q ≤ 1

2
. (14)

Note that

P (Y ≥ h+ 2) = P (X ≥ h+ 2) + P (X = h+ 1) (1− (1− q)2) + P (X = h+ 1) q2

= P (X ≥ h+ 2) + 2qP (X = h+ 1) . (15)

Now we compute P (Y ≥ h+ 2)−P (X ≥ h+ 1) by using Eq. (15). We get that

P (Y ≥ h+ 2)−P (X ≥ h+ 1) = P (X ≥ h+ 2) + 2qP (X = h+ 1)−P (X ≥ h+ 1)

= P (X ≥ h+ 2) + 2qP (X = h+ 1)−P (X = h+ 1)−P (X ≥ h+ 2)

= (2q − 1)P (X = h+ 1)

whose sign depends only on (2q− 1). We can conclude that P (Y ≥ h+ 2) ≥ P (X ≥ h+ 1) for
every q ≥ 1

2 and P (Y ≥ h+ 2) ≤ P (X ≥ h+ 1) for every q ≤ 1
2 .

Let k = 2h + 1. From Eqs. (13) and (14) we have that Fp,k(x) is increasing in k for every
x ≥ 1

2(1−p) while it is decreasing in k for every x ≤ 1
2(1−p) .

Claim 2. It holds that

d

dx
Fp,k(x) = k(1− p)P

(
Bin (k − 1, (1− p)x) =

k − 1

2

)
.

Proof. We start by showing that

d

du
P

(
Bin(k, u) ≤ k − 1

2

)
= −kP

(
Bin(k − 1, u) =

k − 1

2

)
.

Observe that

d

du
P

(
Bin(k, u) ≤ k − 1

2

)
=

k−1
2∑
i=0

(
k

i

)
d

du
[ui(1− u)k−i]

=
d

du
[(1− u)k] +

k−1
2∑
i=1

(
k

i

)
d

du
[ui(1− u)k−i]. (16)

We consider separately the term d
du [ui(1− u)k−i] for i ≥ 1. We have

d

du
[ui(1− u)k−i] = iui−1(1− u)k−i − (k − i)ui(1− u)k−1−i . (17)

Note that

k−1
2∑
i=1

(
k

i

)
iui−1(1− u)k−i =

k−1
2∑
i=1

k!

(i− 1)!(k − i)!
ui−1(1− u)k−i

(j=i−1)
=

k−3
2∑
j=0

k!

j!(k − 1− j)!
uj(1− u)k−1−j (18)
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and

k−1
2∑
i=1

(
k

i

)
(k − i)ui(1− u)k−1−i =

k−1
2∑
i=1

k!

i!(k − 1− i)!
ui(1− u)k−1−i . (19)

So by Eqs. (16) to (19) we get

d

du
P

(
Bin(k, u) ≤ k − 1

2

)
=

d

du
[(1− u)k] +

k−1
2∑
i=1

(
k

i

)
d

du
[ui(1− u)k−i]

= −k(1− u)k−1 +

k−3
2∑
j=0

k!

j!(k − 1− j)!
uj(1− u)k−1−j −

k−1
2∑
i=1

k!

i!(k − 1− i)!
ui(1− u)k−1−i

= −k(1− u)k−1 + k(1− u)k−1 − k!(
k−1

2

)
!
(
k−1

2

)
!
u
k−1
2 (1− u)

k−1
2

= −k
(
k − 1
k−1

2

)
u
k−1
2 (1− u)

k−1
2 = −kP

(
Bin(k − 1, u) =

k − 1

2

)
. (20)

We want to use Eq. (20) for computing the derivative of Fp,k(x). Note that

d

dx
Fp,k(x) =

d

dx

(
1−P

(
Bin (k, (1− p)x) <

k + 1

2

))
= − d

dx

(
P

(
Bin (k, (1− p)x) ≤ k − 1

2

))
. (21)

If we call u(x) = (1 − p)x we have that d
dxFp,k(x) = d

du (Fp,k(u)) d
dx (u(x)) . Thus, by Eq. (21)

we can conclude that

d

dx
Fp,k(x) =

d

du
(Fp,k(u))

d

dx
(u(x)) = − d

du

(
P

(
Bin (k, u) ≤ k − 1

2

))
(1− p)

= k(1− p)P
(

Bin (k − 1, (1− p)x) =
k − 1

2

)
.

Claim 3. It holds that

d2

dx2
Fp,k(x) = k(k − 1)(1− p)3

(
k − 2
k−1

2

)
(x− (1− p)x2)

k−3
2 (1− 2(1− p)x).

Proof. We start by showing that

d

du

(
P

(
Bin (k − 1, u) =

k − 1

2

))
= (k − 1)

(
k − 2
k−1

2

)
(u− u2)

k−3
2 (1− 2u). (22)

Note that

d

du

(
P

(
Bin(k − 1, u) =

k − 1

2

))
=

(
k − 1
k−1

2

)
d

du

[
u
k−1
2 (1− u)

k−1
2

]
=

(
k − 1
k−1

2

)
d

du
(u− u2)

k−1
2

=

(
k − 1
k−1

2

)
k − 1

2
(u− u2)

k−3
2 (1− 2u)
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= (k − 1)

(
k − 2
k−1

2

)
(u− u2)

k−3
2 (1− 2u).

If we call u(x) = (1 − p)x we can compute the second derivative of Fp,k(x) by using Eq. (22).
Indeed,

d2

dx2
Fp,k(x) = k(1− p) d

dx

(
P

(
Bin (k − 1, (1− p)x) =

k − 1

2

))
= k(1− p) d

du

(
P

(
Bin (k − 1, u) =

k − 1

2

))
d

dx
(u(x))

= k(k − 1)(1− p)2

(
k − 2
k−1

2

)
((1− p)x− (1− p)2x2)

k−3
2 (1− 2(1− p)x)

= k(k − 1)(1− p)3

(
k − 2
k−1

2

)
(x− (1− p)x2)

k−3
2 (1− 2(1− p)x).

Claim 4. For p ∈ (0, 1) and for any odd k, the map x 7→ Fp,k(x) is a convex function for

x ∈
[
0,min

{
1

2(1−p) , 1
})

.

Proof. By direct computation:

[x(1− (1− p)x)]
k−3
2 (1− 2(1− p)x) > 0 ⇐⇒ 1− 2(1− p)x > 0 ⇐⇒ x <

1

2(1− p)
.

We are now ready to state and prove the generalized version of Lemma 8.1.

Lemma 4.2. For every finite odd k ≥ 3, there exists p?k ∈
[

1
9 ,

1
2

)
such that:

• if p < p?k, there exist ϕ−p,k, ϕ
+
p,k ∈

(
1

2(1−p) , 1
]

with ϕ−p,k < ϕ+
p,k such that Fp,k(x) = x has

solutions 0, ϕ−p,k, and ϕ+
p,k;

• if p = p?k, there exists ϕp,k ∈
(

1
2(1−p) , 1

]
such that Fp,k(x) = x has solutions 0 and ϕp,k;

• if p > p?k, then Fp,k(x) = x has 0 as unique solution.

Moreover the sequence {p?k}k is increasing.

Proof. Recall that, by Claim 4, the map x 7→ Fp,k(x) is convex in (0, 1) for all p ∈ (1/2, 1) and
k odd. Moreover, being Fp,k(0) = 0 (Item 1 in Note 1) and Fp,k(1) < 1 (Item 2 in Note 1),
regardless of the value of k there are no solutions to the equation in the variable x

Fp,k(x) = x,

as soon as p > 1/2. By Item 6 in Note 1 we know that, for all k odd and p ∈ (0, 1/2),

Fp,k

(
1

2(1− p)

)
=

1

2
<

1

2(1− p)
.

Therefore, for all k odd and p ∈ (0, 1) there are no solutions in
(
0, 1

2(1−p)
]

to the equation

Fp,k(x) = x,

since it holds Fp,k(x) < x.

Hence, we now look for possible solutions in the interval
(

1
2(1−p) , 1

)
. The case k = 3 has

been studied in Lemma 8.1. Note that
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Figure 2: Plot of the function x 7→ Fp,k(x). The blue, orange, and green curves represent the
cases k = 3, 5 and 7, respectively. From the top left corner in clockwise order we have the cases
p = 0, 1

9 ,
3
5 and 1

5 , respectively. The dashed line has equation x = 1/(2(1 − p)) and intersects
the curves in their inflection point. The red line is the diagonal of the positive orthant.

(i) By Claim 1, the map k 7→ Fp,k(x) is increasing for all p ∈ (0, 1/2) and x ∈
(

1
2(1−p) , 1

)
.

(ii) By Item 3 in Note 1 and by Claim 4, the map x 7→ Fp,k(x) is continuous and concave in(
1

2(1−p) , 1
)

for all k odd and p ∈ (0, 1/2).

(iii) By Item 5 in Note 1, the map p 7→ Fp,k(x) is continuous and decreasing for all k odd and
x ∈ (0, 1).

Hence, by Item i, for all k > 3 there are two solutions in (1/2, 1) to the equation F1
9 ,k

(x) = x.

Moreover, by Item ii and Item iii, for all k > 3 there exists a value p?k ∈
(

1
9 ,

1
2

)
for which the

solution to the equation Fp?k,k(x) = x is unique in the interval (1
2 , 1), while for p > p?k the

equation Fp,k(x) = x, has no solutions in (1/2, 1).
Note that Fp,k(1) < 1 (see Item 2 in Note 1) and at the beginning of the proof we have

shown that Fp,k(x) = x has no solutions in
(

0, 1
2(1−p)

]
for all k odd and p ∈ (0, 1). Then we

have that the possible solutions different from 0 of Fp,k(x) = x are contained in the interval(
1

2(1−p) , 1
)
⊂ (1/2, 1).

Finally, by Item i, we have that the sequence (p?k)k∈2N+1 is increasing.
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Lemma 8.2. Assume p = p?k − c for some constant c > 0. There exists a constant µp,k ∈
(ϕ−p,k, ϕ

+
p,k) such that, for all x ∈ (µp,k, 1], it holds that

F ′p,k(x) ∈ [0, 1).

Proof. By contradiction suppose that F
′
p,k(ϕ

+
p,k) ≥ 1. Since F

′′
p,k(x) < 0 for all x ∈ ( 1

2(1−p) , 1),
we have

F ′p,k(x) > F ′p,k(ϕ
+
p,k) ≥ 1, ∀x ∈

(
1

2(1−p) , ϕ
+
p,k

)
. (23)

Define ψ(x) := Fp,k(x)− x. By Eq. (23),

ψ′(x) = F ′p,k(x)− 1 > 0, ∀x ∈
(

1
2(1−p) , ϕ

+
p,k

)
.

Hence,
0 = ψ(ϕ+

p,k) > ψ(x), ∀x ∈
(

1
2(1−p) , ϕ

+
p,k

)
.

In particular ψ(x) < 0 implies

Fp,k(x) < x, ∀x ∈
(

1
2(1−p) , ϕ

+
p,k

)
. (24)

On the other hand, the value ϕ−p,k lies in the interval
(

1
2(1−p) , ϕ

+
p,k

)
, and Fp,k(ϕ

−
p,k) = ϕ−p,k, which

is in contradiction with Eq. (24). The claim follows by continuity of Fp,k.

In the following lemma we consider the limit of the critical bias p?k as k →∞.

Lemma 8.3. Consider the sequence {p?k}k∈2N+1. Then we have

lim
k→∞

p?k =
1

2
.

Proof. Recall that

Fp,k(x) := P

(
Bin(k, (1− p)x) ≥ k + 1

2

)
.

We want to compute the following limit limk→∞ Fp,k(x) for any x ∈ (0, 1) \ { 1
2(1−p)}, since

limk→∞ Fp,k(
1

2(1−p)) = 1
2 . Let us define mp,x and sp,x, respectively the normalized expectation

and variance of the random variable Bin(k, (1− p)x), that is

mp,x := (1− p)x , sp,x := (1− p)x(1− (1− p)x) .

Note that

P

(
Bin(k, (1− p)x) ≥ k + 1

2

)
= P

(
Bin(k, (1− p)x)− kmp,x√

ksp,x
≥ k + 1− 2kmp,x

2
√
ksp,x

)
(25)

and by the Central Limit Theorem for k → +∞ the r.h.s. of Eq. (25) behaves like

1− Φ

(
k + 1− 2kmp,x

2
√
ksp,x

)
, (26)

where Φ(x) := P(Z ≤ x) and Z is a random variable with standard normal distribution. Since

lim
k→+∞

k + 1− 2kmp,x

2
√
ksp,x

= lim
k→+∞

√
k(1− 2(1− p)x)

2
√
sp,x

→

+∞, if x ∈
(

0, 1
2(1−p)

)
,

−∞, if x ∈
(

1
2(1−p) , 1

)
,

(27)
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by Eqs. (25) to (27) we get that for any x ∈ (0, 1) \ { 1
2(1−p)}

lim
k→+∞

Fp,k(x) =

0, if x ∈
(

0, 1
2(1−p)

)
,

1, if x ∈
(

1
2(1−p) , 1

)
.

(28)

In particular for any η ∈ (0, 1) and x ∈ (0, 1) \ { 1
1+η} we have

lim
k→+∞

F 1−η
2
,k(x) =

0, if x ∈
(

0, 1
1+η

)
,

1, if x ∈
(

1
1+η , 1

)
.

(29)

Fix now η ∈ (0, 1). By Eq. (29), for any γ ∈ (0, 1) there exists a constant K̄(γ) > 0 such that

F 1−η
2
,k

(
1

1 + η
2

)
> 1− γ , ∀k > K̄(γ) . (30)

Fix γ =
η
2

1+ η
2

. Hence by Eq. (30) there exists a constant K̄(η) > 0 such that

F 1−η
2
,k

(
1

1 + η
2

)
>

1

1 + η
2

, ∀k > K̄(η) , (31)

and this implies

p?k >
1− η

2
, ∀k > K̄(η) .

So we have obtained that for any η ∈ (0, 1) there exists a constant K̄(η) > 0 such that p?k >
1−η

2
for all k > K̄(η). Moreover we know that {p?k}k∈N is an increasing sequence bounded from
above by 1

2 (see Lemma 4.2). By these two facts we get the thesis.

9 Proofs of Section 5

Here we state and prove a generalized version of Proposition 5.2.

Proposition 9.1. Consider p = p?k−c, for some c > 0. Hence the quantity ϕ−k,p in Lemma 4.2 is
well defined. Consider (k, p,B)-majority starting from the initial configuration in which each
vertex is R independently of the others, with probability q ∈ [µp,k + η, 1], for some sufficiently
small η > 0, where µp,k is defined as in Lemma 8.2. Then, for all γ > 0,

P
(
∀t ≤ nK , ∀v ∈ V, φ(t)

v ∈ [qt − γ, qt + γ]
)

= 1− o(1), ∀K > 0.

where the sequence {qt}t≥0 is defined recursively by

q0 = q, qt = Fk,p(qt−1).

Proof. For all t ≥ 0 and v ∈ V consider the events

E(t)
v =

{
φ(t)
v ∈ [qt − γ, qt + γ]

}
, E(t) =

⋂
v∈V
E(t)
v .

We start at t = 0 by computing the probability that the event E(0) occurs, i.e.,

P
(
E(0)

)
= P

(
∀v ∈ V, φ(0)

u ∈ [q − γ, q + γ]
)
.
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Fixed any v ∈ V , we look for a lower bound for the probability E(0)
v which holds uniformly in

v ∈ V .

P
(
E(0)
v

)
= P

(∑
w∈Nv 1w∈R(0)

δv
∈ [q − γ, q + γ]

)
= P

(∣∣∣∣∣ ∑
w∈Nv

1w∈R(0) − qδv

∣∣∣∣∣ ≤ γδv
)

= P (|Bin (δv, q)− qδv| ≤ γδv)
= 1− e−ω(logn),

where in the third equality we used the fact that

P
(
w ∈ R(0)

)
= q, ∀w ∈ V

and that the events
{
w ∈ R(0)

}
and

{
u ∈ R(0)

}
are independent for u 6= w. Moreover, in the

last asymptotic equality we used the classical multiplicative version of Chernoff’s bound. By the
density assumption minv∈V δv = ω(log(n)), the lower bound above holds uniformly in v ∈ V ,
therefore, by the union bound

P
(
E(0)

)
= 1− n · e−ω(logn). (32)

Now we take t = 1, and we fix any configuration x(0) ∈ E(0). Fixed any v ∈ V we look for a

lower bound for the conditional probability P
(
E(1)
v | x(0)

)
, which holds uniformly in v ∈ V and

in x(0) ∈ E(0). We start by rewriting

P
(
E(1)
v | x(0)

)
= P

(∣∣∣∣∣ ∑
w∈Nv

1w∈R(1) − q1δv

∣∣∣∣∣ ≤ γδv
∣∣∣∣ x(0)

)
.

Note that under any x(0) ∈ E(0) the following stochastic domination holds

Bin (δv, Fp,k(q − γ)) �
∑
w∈Nv

1w∈R(1)

∣∣x(0) � Bin (δv, Fp,k(q + γ)) .

Hence, called
X ∼ Bin (δv, Fp,k(q − γ)) , Y ∼ Bin (δv, Fp,k(q + γ)) ,

it is sufficient to show that, for Z = X,Y , it holds that

P (|Z − q1δv| ≤ γδv) = 1− e−ω(logn). (33)

We show Eq. (33) for the case Z = X, being the proof for the case Z = Y identical. By the
triangle inequality and the fact that q1 = Fp,k(q) we have

P (|X − q1δv| ≤ γδv) ≥ P (|X − Fp,k(q − γ)δv|+ |Fp,k(q − γ)− Fp,k(q)| δv ≤ γδv) . (34)

By Lemma 8.2, for all η > 0 and x, y ∈ [µp,k + η, 1] there exists some L = L(η) < 1 such that

|Fp,k(x)− Fp,k(y)| ≤ L|x− y|,

and in particular
|Fp,k(q)− Fp,k(q − γ)| ≤ Lγ. (35)
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Hence, by Eqs. (34) and (35), we infer

P (|X − q1δv| ≤ γδv) ≥ P (|X − Fp,k(q − γ)| ≤ (1− L)γδv) = 1− e−ω(log(n)).

Repeating the same argument with Y instead of X, we deduce that Eq. (33) holds. Hence, by
the uniformity of the argument in v ∈ V and in x(0) ∈ E(0), and by a union bound over v ∈ V
we obtain

P
(
E(1) | E(0)

)
= 1− n · e−ω(log(n))

Using the same techniques, this identity can be generalized for any t ≥ 0, that is, for all K > 0

P
(
∀v ∈ V, ∀t ∈ [0, nK ], φ(t)

v ∈ [qt − γ, qt + γ]
)

= P
(
E(0)

) nK∏
s=1

P
(
E(s) | E(s−1)

)
(36)

≥ 1− nK+1 · e−ω(log(n)). (37)

Notice that, if q0 > ϕ+
p,k, qt converges to ϕ+

p,k from above. On the other hand, if q0 ∈ (µp,k, ϕ
+
p,k)

then for all γ > 0 there exists some T = T (γ) > 0 such that

qt > ϕ+
p,k − γ, ∀t ≥ T

and therefore qt converges to ϕ+
p,k from below.

9.1 Proof of Lemma 5.4

Proof. Recall the formulation, given in Eq. (4), of the expected fraction of neighbors of a node
u that are in state R at round t+ 1. Being p = p?k + c, it holds Fp,k(x) < x for all x ∈ [0, 1], see
Lemma 4.2. Moreover, the following claim holds true.

Claim 5. There exists a point zp,k ∈ [0, 1] such that the linear function r : [0, 1] → R, defined
as

r(x) =
F (zp,k)

zp,k
· x

is such that r(x) ≥ Fp,k(x). Moreover, the equality is attained only in two points, 0 and

zp,k ∈
[
min

{
1

2(1−p) , 1
}
, 1
]
.

Proof of Claim 5. Suppose that p ≥ 1
2 . Then Fp,k is a convex function in [0, 1]. Hence

Fp,k(x) ≤ (Fp,k(1)− Fp,k(0))x+ Fp,k(0) = Fp,k(1) · x .

So, defining zp,k := 1, we get the thesis in the case p ≥ 1
2 .

Suppose now that p < 1
2 . Imposing the equality

Fp,k(x) = r(x) ⇐⇒ P

(
Bin(k, (1− p)x) ≥ k + 1

2

)
=

1− p
1− p?k

x,

it is immediate that a solution is given by x = 0. On the other hand, called y = 1−p
1−p?k

· x, the

equation reads

Fp,k

(
1− p?k
1− p

· y
)

= y.

The latter can be rewritten as

P

(
Bin (k, (1− p?k)y) ≥ k + 1

2

)
= y ⇐⇒ Fp?k,k(y) = y,
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which we know from Lemma 4.2 to have only a non-trivial solutions. Called ȳ 6= 0 such a
solution, we have that

zp,k :=
1− p?k
1− p

· ȳ.

Note that ȳ > 1
2(1−p) and hence, since

1−p∗k
1−p > 1, we have that zp,k >

1
2(1−p) .

By Claim 5 we have that

Fp,k(φ
(t)
v ) <

Fp,k(zp,k)

zp,k
φ(t)
v ≤ (1− ε)φ(t)

v (38)

where

ε = ε(p, k) :=
1

2

(
1−

Fp,k(zp,k)

zp,k

)
.

Therefore, we can conclude the proof by just combining Eqs. (4) and (38), getting

E
[
φ(t+1)
u

∣∣∣ x(t) = x̄
]

=
1

δu

∑
v∈Nu

Fp,k(φ
(t)
v ) ≤ 1

δu

∑
v∈Nu

(1− ε)φ(t)
v ≤ (1− ε)φ(t)

max
.

9.2 Proofs of Lemma 5.9 and Proposition 5.8

Proof of Lemma 5.9. Let x ∈ [0, ϕ−p,k − η] and consider the line

r(x) :=
Fp,k(ϕ

−
p,k − η)

ϕ−p,k − η
x.

We have that Fp,k(x) < r(x) for every x ∈ (0, ϕ−p,k − η]. Hence, by defining

ε′ = ε′(p, k, η) :=
1

2

(
1−

Fp,k(ϕ
−
p,k − η)

ϕ−p,k − η

)
,

we get Fp,k(x) < (1 − ε′)x for every x ∈ (0, ϕ−p,k − η]. We complete the proof of the claim by
computing the conditional expectation, namely

E
[
φ(t+1)
u

∣∣∣ x(t) = x̄
]

=
1

δu

∑
v∈Nu

Fp,k(φ
(t)
v ) <

1

δu

∑
v∈Nu

(1− ε′)φ(t)
v ≤ (1− ε′)φ(t)

max
.

Proof of Proposition 5.8. We start the proof by mimicking the proof of Proposition 9.1. Con-
sider the sequence

ρt := (2L)tρ0 (39)

where
L := max

x∈[ϕ−p,k,1]
F ′p,k(x) ≥ 1 (40)

and ρ = ρ0(η) will be defined later.
For all t ≥ 0 and v ∈ V consider the events

E(t)
v =

{
φ(t)
v ∈ [qt − ρt, qt + ρt]

}
, E(t) =

⋂
v∈V
E(t)
v .
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We start at t = 0 by computing the probability that the event E(0) occurs, i.e.,

P
(
E(0)

)
= P

(
∀v ∈ V, φ(0)

u ∈ [q − ρ0, q + ρ0]
)

= 1− eω(logn).

As in the proof of Proposition 9.1, we start by taking t = 1 and we fix any configuration x(0) ∈
E(0). Fixed any v ∈ V we look for a lower bound for the conditional probability P

(
E(1)
v | x(0)

)
,

which holds uniformly in v ∈ V and in x(0) ∈ E(0). We start by rewriting

P
(
E(1)
v | x(0)

)
= P

(∣∣∣∣∣ ∑
w∈Nv

1w∈R(1) − q1δv

∣∣∣∣∣ ≤ ρ1δv

∣∣∣∣ x(0)

)
.

Note that under any x(0) ∈ E(0) the following stochastic domination holds

Bin (δv, Fp,k(q − ρ0)) �
∑
w∈Nv

1w∈R(1)

∣∣x(0) � Bin (δv, Fp,k(q + ρ0)) .

Hence, called
X ∼ Bin (δv, Fp,k(q − ρ0)) , Y ∼ Bin (δv, Fp,k(q + ρ0)) ,

it is sufficient to show that, for Z = X,Y , it holds that

P (|Z − q1δv| ≤ ρ1δv) = 1− e−ω(logn). (41)

We show Eq. (41) for the case Z = X, being the proof for the case Z = Y identical. By the
triangle inequality and the fact that q1 = Fp,k(q) we have

P (|X − q1δv| ≤ ρ1δv) ≥ P (|X − Fp,k(q − ρ0)δv|+ |Fp,k(q − ρ0)− Fp,k(q)| δv ≤ ρ1δv)

≥ P
(
|X − Fp,k(q − ρ0)δv| ≤

(
ρ1 − Lρ0

)
δv
)

= P (|X − Fp,k(q − ρ0)δv| ≤ Lρ0δv)

≥ 1− e−ω(logn)

and therefore by the uniformity of the argument in v ∈ V and in x(0) ∈ E(0), and by a union
bound over v ∈ V

P
(
E(1) | E(0)

)
= 1− n · e−ω(logn).

Moreover, by repeating the same argument, we get that for any t > 0

P (|Bin (δv, Fp,k(qt − ρt))− qt+1δv| ≤ ρt+1δv) = 1− e−ω(logn) (42)

and hence for all t > 0 and x(t) ∈ E(t)

P
(
E(t+1) | x(t)

)
= 1− e−ω(logn).

Notice that, if q0 ∈ (ϕ−p,k, µp,k), qt converges to ϕ+
p,k from below and hence there exists some

finite
τ = τp,k := inf {t ≥ 0 : qt > µp,k, ∀t > τ} < +∞.

Define the sequence
gt := Fp,k(qt−1 − ρt−1).

We prove that gt is increasing and its increments are lower bounded by a constant uniformly in
t ≤ τ . Let us start by noting that

gt+1 − gt = Fp,k(qt − ρt)− Fp,k(qt−1 − ρt−1)
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= Fp,k(qt − ρt)− Fp,k(qt) + Fp,k(qt)− Fp,k(qt−1) + Fp,k(qt−1)− Fp,k(qt−1 − ρt−1)

> Fp,k(qt − ρt)− Fp,k(qt) + Fp,k(qt)− Fp,k(qt−1).

Hence it is sufficient to show that

Fp,k(qt)− Fp,k(qt − ρt) < Fp,k(qt)− Fp,k(qt−1). (43)

Define
C = inf

t∈[0,τ ]

(
Fp,k(qt)− Fp,k(qt−1)

)
> 0.

Then, we are left to show that the left hand side of Eq. (43) is strictly smaller than C. Note
that

Fp,k(qt)− Fp,k(qt − ρt) ≤ Lρt = L · (2L)tρ0 ≤ (2L)τ+1ρ0.

In order for the latter to hold uniformly in t ≤ τ it is sufficient to choose

ρ0 := γ · C

(2L)τ+1
,

for any γ ∈ (0, 1). In conclusion, by Eq. (42), for any γ ∈ (0, 1) we can deduce that

P
(
∀v ∈ V, ∀t ≤ τ, φ(t)

v ∈ [qt − γ, qt + γ]
)
≥ P

(
E(0)

) τ∏
s=1

P
(
E(s) | E(s−1)

)
(44)

≥ 1−O(n−K), ∀K > 0. (45)

9.3 Proof of Proposition 5.11

Proof. Without loss of generality, let σ = B and, for simplicity, we omit the conditioning on
x(t). Hence, we rewrite the event Ek as “Node u updates its state to R at round t + 1”. Let
us focus on samples of odd size, i.e., k = 2h + 1, where there cannot be ties. Let us define

z := (1 − p) |R
(t)
u |
δu

, i.e., the probability that u sees a given node in the sample in state R, and
the random variable XR = Bin (2h+ 1, z) modeling the number of nodes seen in state R out of
a sample of size 2h + 1. Since each sample is independent, one can look at the event E2h+2 as
performing an additional sample (with z as success probability) after the first 2h+1 of the event
E2h+1. For this purpose, we also define the random variable YR = Bin (2h+ 2, z). Therefore:

1. P (E2h+1) = P (XR ≥ h+ 1) = P (XR = h+ 1) + P (XR > h+ 1) ,

2. P (E2h+2) = P (YR > h+ 1) + 1
2P (YR = h+ 1)

= P (XR > h+ 1) + P (XR = h+ 1) z + 1
2 [P (XR = h+ 1) (1− z) + P (XR = h) z] .

Moreover, note that P (XR = h) · z =
(

2h+1
h

)
(1− z)h+1 zh+1 = P (XR = h+ 1) · (1− z) . There-

fore we conclude the proof by applying the latter equivalence into the previous formulation of
P (E2h+2), getting that P (E2h+1) = P (E2h+2).

28



10 Proofs of Section 6

10.1 Proof of Proposition 6.1

Proof. Let us compute, for each node u ∈ V , an upper bound to the expected fraction of
neighbors in state R in round t+ 1 conditioned on the current configuration of states, namely

E
[
φ(t+1)
u

∣∣∣ x(t) = x̄
]

=
1

δv

∑
v∈Nu

P
(
|R̄(t)

v | = 1
∣∣∣ x(t) = x̄

)
=

1

δv

∑
v∈Nu

(1− p)φ(t)
v ≤ (1− p)φ(t)

max
.

Note that, in the previous equation, the conditioning exactly determines the fraction of neigh-
bors in state R of every node in round t; thus we can compute the probability of every
node to be in state R in the next round. Indeed, taking into account the effect of the bias,

P
(
|R̄(t)

v | = 1
∣∣∣ x(t) = x̄

)
= (1− p)φ(t)

v , where φ
(t)
v is deterministic due to the conditioning.

As done in the proof of Proposition 5.5 for the fast convergence regime, with an application
of a multiplicative form of the Chernoff Bound [DP09, Exercise 1.1] we get that

P
(
φ(t+1)
u > (1− p2)φ(t)

max

∣∣∣ x(t) = x̄
)

= n−ω(1)

and thus a union bound over all the agents allows us to claim that

P
(
φ(t+1)

max
≤ (1− p2)φ(t)

max

∣∣∣ x(t) = x̄
)

= 1− n−ω(1).

Therefore, since any initial configuration x(0) is such that φ(0)
max
≤ 1, in round t we have that

φ
(t)
u ≤ (1− p2)t which implies the thesis.

10.2 Proofs of Proposition 6.2 and Proposition 6.3

Proof of Proposition 6.2. Assume p = 1
2 + c. Called Y the number of vertices which are in state

B at round 1, we notice that

Y ∼
∑
v∈V

Xv

where {Xv}v∈V are independent random variables with Xv ∼ Bin (1, rv) and

rv := P

(
Bin(δv, p) >

δv
2

= δv(p− c)
)
≥ 1− e−Θ(δv),

hence, uniformly in v ∈ V ,
rv = 1− e−ω(log(n)).

Therefore, by a union bound

P (Y = n) ≥ 1− ne−ω(log(n)) = 1− o(1) . (46)

Similarly, assume that p = 1
2 − c. Called Z the number of vertices which are in state R at

round 1, we notice that

Z ∼
∑
v∈V

Wv

where Wv ∼ Bin (1, `v)

`v = P

(
Bin(δv, p) ≤

δv
2

= δv(p+ c)

)
≥ 1− e−Θ(δv),
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hence, uniformly in v ∈ V ,
`v = 1− e−ω(log(n)).

Therefore, by a union bound

z := P
(
|R(1)| = n

)
≥ 1− ne−ω(log(n)).

Call τ the first t ≥ 0 such that B(t) 6= ∅, in other words,

P
(
∀t ≤ nK , R(t) = V

)
= P

(
τ > nK

)
.

Notice that τ has a geometric distribution of parameter P
(
|R(1)| 6= n

)
. Hence

P (τ > t) = P
(
|R(1)| = n

)t
= zt.

For every choice of K > 0 independent of n, we can bound

zt ≥ (1− n−2K)t ∼ e−t/n2K
,

from which the claim follows.

Proof of Proposition 6.3. We first prove Eq. (10). Fix c > 0 and p = 1
2 + c. Assume that at

round 0 all the vertices are in the state R. Then

Pk

(
φ(1)
v > γ

)
= P

(∑
w∈V

Xw > γδv

)
,

where {Xw}w∈V are i.i.d. random variables with Xw ∼ Bin (1, rk) where

rk := P

(
Bin (k, 1− p) ≥ k + 1

2

)
= P

(
Bin (k, 1− p) ≥ k

(
1

2
− c
)(

1

1− 2c
+

1

k(1− 2c)

))
≤ e−M(c)k ,

for some constant M(c) > 0. Hence

P

(∑
w∈V

Xw > γδv

)
= P (Bin(δv, rk) > γδv) = P (Bin(δv, rk) > rkδv(1 + λ)) ,

where λ = γ
rk
− 1. Since rk < e−M(c)k, there exists K̃ = K̃(c, γ) such that for k > K̃ we have

γ > rk, hence λ > 0. Hence applying the Chernoff bound we get

P (Bin(δv, rk) > rkδv(1 + λ)) ≤ e−Θ(δv) ,

uniformly in k > K̃. We can hence apply the union bounds over v ∈ V and t ∈ poly(n).
Let us now prove Eq. (11). Fix c > 0, p = 1

2−c and γ > 0. By Lemma 8.3 and Proposition 5.2
with p = 1

2 − c, there exists K̄(c) > 0 such that for any fixed K > 0 and for all k > K̄(c) it
holds

Pk

(
∀t < nK ,

vol(R(t))

vol(V )
≥ ϕ+

k, 1
2
−c −

γ

2

)
= 1− o(1). (47)
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Note that, since ϕ+
k, 1

2
−c → 1 when k → +∞, we have that for any γ > 0 there exists K̂(c, γ)

such that for all k > K̂(c, γ) it holds

1− ϕ+
k, 1

2
−c <

γ

2
. (48)

So by Eqs. (47) and (48) we get that, fixed p = 1
2 − c and any γ ∈ (0, 1), for all k :=

max{K̄(c), K̂(c, γ)} we have that Eq. (11) holds.
The thesis follows by choosing H(c, γ) := max{K̄(c), K̂(c, γ), K̃(c, γ)}.
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