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Abstract—With the growing number of cores and fast network
like Infiniband, one of the keys to performance improvement in
MPI applications is the ability to overlap CPU-bound compu-
tation with network communications. While this can be done
manually, this is often a complex and error prone procedure. We
propose an approach that allows MPI blocking communication
to act as nonblocking communication until data are needed,
increasing the potential for communication and computation
overlapping.

Our approach, COMMMAMA, uses a separate communication
thread to which communications are offloaded and a memory
protection mechanism to track memory accesses in communi-
cation buffers. This guarantees both progress for these commu-
nications and the largest window during which communication
and computation can be processed in parallel.

This approach also significantly reduces the hassle for pro-
grammers to design MPI applications as it reduces the need to
forecast when nonblocking communication should be waited.

Index Terms—MPI; communication; design tools

I. INTRODUCTION

Nowadays, MPI remains one of the standard runtimes for
distributed computing. While the exact proportion varies be-
tween applications, in a lot of these, completion time is shared
between computation (CPU intensive) and communications
between nodes (network intensive). These two components
can mostly operate independently, but designing application
using the MPI runtime to take advantage of the potential
parallelism is hard.

Though nonblocking communications exist in the MPI run-
time, these primitives need a corresponding waiting primitive
before the communication buffer can be used in order for
the application to be semantically correct. The position of
these waiting primitives in the application code is the limit
before which overlapping computation and communication
can happen and is currently at the programmer initiative.

This presents different challenges. Firstly, it is difficult to
determine when exactly the waiting primitive should be called
in order to make the most of the nonblocking communication.
Secondly, as these primitives are statically placed in the
application code, it is sometime impossible to take into
account performance variations that could have lead to a
possible extension of the overlapping period.

Experiments presented in this paper were carried out using the Grid’5000
testbed, supported by a scientific interest group hosted by Inria and including
CNRS, RENATER and several Universities as well as other organizations

To answer these challenges, we propose a new approach
to nonblocking communication in which the nonblocking
period is dynamically determined by the runtime. This both
alleviates the complexity for the developer of the application
and allows an optimal overlapping of the communication with
the computation.

In our model, rather than using MPI nonblocking primi-
tives, the developer uses seemingly classic blocking commu-
nications which are replaced by our versions. When calling
a modified blocking primitive, the communication buffer
memory is protected to avoid unwanted accesses and the com-
munication is offloaded to a progress thread. The application
is then free to do any computation needed while the progress
thread takes care of the actual communication until an access
occurs to the communication buffer. When this happens the
runtime blocks until the buffer is available for use, being then
semantically equivalent to a waiting primitive being called.

In this paper, we detail our proposal to new efficient non-
blocking communication and show it results in better over-
lapping of communication and computation while lessening
the complexity of application development. More specifically,
our method:

• overlaps communication and computation providing up
to 73% speedup,

• transparently replaces primitives with efficient ones.
The remainder of the paper is organized as follows. In

Section 2 we describe how nonblocking communication are
handled currently. In Section 3 we explain the technical
details of our approach, COMMMAMA. In Section 4 we
evaluate our work with microbenchmarks. In Section 5 we
examine related work. In Section 6 we conclude and discuss
future work.

II. CURRENT MPI PRIMITIVES BEHAVIOR

In this section, we describe how current MPI options
available to developers are either subpar in term of efficiency
or complex to use and present available approaches and
challenges pertaining to communication and computation
overlapping.

A. Necessary background on MPI semantics

The MPI specification [1] defines an important number
of primitives for different use cases. Even for point-to-point



communication there is multiple variant of the “send” func-
tion: the standard MPI_Send, MPI_Bsend, MPI_Ssend
and MPI_Rsend and their nonblocking counterparts. The
distinction between these different functions depends on two
concepts, the message buffering or lack thereof and the
synchronous or asynchronous component of the primitive.

Message buffering is the act of copying the data contained
in the communication buffer to an alternate buffer in which
the data will stay until the communication is complete, allow-
ing the communication buffer to be reused by the application
while communication proceeds.

A synchronous communication primitive is one that waits
for the data to complete before returning, which means the
data is effectively received by the matching receive primitive.

The characteristics of the multiple send primitives are
summed up in Table I.

TABLE I
SEND MODES

Asynchronous Buffered
MPI Send Yes For small message

MPI Bsend Yes Yes
MPI Ssend No Irrelevant
MPI Rsend Yes For small message

While message buffering allows for a certain degree of
communication and computation overlap it also produces
an overhead due to copying the communication data to
an internal buffer, which becomes costlier when message
size increases. Hence the compromise used in multiple MPI
implementations to buffer MPI_Send data only for small
message sizes. In any case, MPI semantics specify that when
MPI_Send returns, either because the message has been
buffered or not, the communication buffer is free to be mod-
ified by the application. The buffering mode of MPI_Send
is commonly known as eager while the other mode which
needs to wait a matching receive to proceed is known as
rendez-vous.

Because eager mode already encompasses some overlap-
ping capabilities, our approach only targets rendez-vous mode
of MPI_Send as MPI_Rsend must wait for a matching
receive before proceeding and the other primitives are always
buffered.

B. Blocking and nonblocking are only part of the answer

Currently, overlapping communication and computation is
mostly done using nonblocking communications. The code
presented in Listing 1 demonstrates a basic usage of non-
blocking communication that would allow overlapping to be
done.

However, communication can only run in parallel with
computation if there is some kind of progress engine in the
runtime implementation. While some approaches to commu-
nication and computation overlapping such as [2] propose
methods to ensure progress, to the best of our knowledge,
there is no production ready progress engine included in well-
known MPI implementations for general use cases.

1 void write_function(int* buffer, ...) {
2 int* result = do_long_computation();
3 memcpy(buffer, result, ...);
4 }
5 void example(int* buffer) {
6 MPI_Request handle;
7 MPI_Isend(buffer, ..., &handle);
8 read_only_function(buffer, ...);
9 MPI_Wait(&handle, ...);

10 write_function(buffer, ...);
11 }

Listing 1. Overlapping using nonblocking communication

Moreover, in Listing 1 MPI_Wait is called before the
write_function because this function does write in
the buffer but only after a long independent or read only
computation which could also have been overlapped with
communication. In general, determining the optimal place to
put the waiting primitive can be quite complicated since it
can be buried in the call sequence or different depending on
conditionals. Considering a progress engine is available, using
nonblocking primitives is still complicated and suboptimal.

While Listing 2 is semantically equivalent and much sim-
pler, it presents by itself no opportunity for overlapping.
1 void write_function(buffer, ...) {
2 int* result = do_long_computation();
3 memcpy(buffer, result, ...);
4 }
5 void example(int* buffer) {
6 MPI_Send(buffer, ...);
7 read_only_function(buffer, ...);
8 write_function(buffer, ...);
9 }

Listing 2. Blocking communication equivalent

Currently, blocking and nonblocking both have their draw-
backs. By transforming blocking MPI operations into their
nonblocking version automatically and managing the overlap
period dynamically, our proposal provides at least the effi-
ciency of the nonblocking version while being as simple as
the blocking one.

III. OUR OVERLAPPING INFRASTRUCTURE: COMMMAMA

In this section, we explain how standard calls performed
by the application are transformed and treated as we detail
the different parts composing COMMMAMA, our system. As
presented in Figure 1, we consider a software stack composed
of three major elements, the application, COMMMAMA and
the MPI runtime.

COMMMAMA is composed of three different layers. The
interception layer which intercepts and transforms standard
blocking primitives into multiple calls to other layers. The
protection layer which manages memory protection for com-
munication buffers and forces the application to wait when
an otherwise semantically incorrect memory access occurs.
The progress layer which is responsible for communications
and offloads communications to a standalone thread. These
different components are explained in detail in the next
paragraphs.

COMMMAMA operates in the following fashion. When the
application invokes a communication primitive, COMMMAMA
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Fig. 1. Overlapping system architecture

intercepts the call, replaces it with its nonblocking equivalent
and protects the communication buffer to catch forbidden
memory access patterns. For MPI Send the buffer becomes
read only while for MPI Recv, the buffer becomes write
only. COMMMAMA then returns to the normal control flow
of the application and makes communications progress in the
background. When the application accesses a communication
buffer with an unwanted access type, either a write for
MPI Send or a read for MPI Recv, COMMMAMA waits
until the communication has ended to return control to the
application.

A. The interception layer

We chose to avoid modifying directly any MPI runtime
to be compatible with any implementation and to avoid
maintaining a forked version. Therefore, COMMMAMA uses
a shared library which replaces needed MPI functions by
custom versions.

Our interception library first stores all the existing MPI
library functions into dedicated function pointers and then
declares functions with their original names. This library is
then loaded before the real MPI library using LD PRELOAD,
effectively renaming MPI library symbols and replacing them
with ours. To ease the use of this shared library, we provide
an executable managing this configuration and using the inter-
ception library becomes as simple as mpi_interceptor
mpirun [args].

On top of being easy to use, this method has another upside
which is the possibility to use it on already compiled or
written software, without any need to modify the code to
obtain its full efficiency.

B. The offloading subsystem

The offloading subsystem provides asynchronous progress
for MPI communications. It consists of a standalone thread
which is spawned when the MPI runtime is initialized and a
queue in which are registered requests to be treated by the
offloading thread.

The offloading thread polls the queue for any new request
to perform, if none are currently waiting, the thread performs
calls to the MPI runtime to make pending communication
progress. When a request completes according to the MPI

runtime, the offloading thread invokes a callback function and
passes the request data (called end_of_comm_handler in
the rest of this paper).

This architecture is beneficial for two reasons. All real
MPI runtime function called being nonblocking, the progress
can easily be done using a nonblocking test function for all
ongoing communications at once, MPI_Testsome. More
importantly, this allows faster or smaller communications to
be finished as soon as possible, independently of their starting
order.

This offloading subsystem only takes care of communica-
tion progress on its own but the callback executed at the end
of communication allows for different behavior to be added.

C. The protection mechanism
The protection mechanism uses the interface provided by

the offloading subsystem to enable a memory protection
mechanism on the communication buffer and disable it when
the communication buffer can be accessed freely. This corre-
sponds in classic nonblocking communication to the end of
the MPI_Wait function.

The protection framework provides two primitives respec-
tively to enable and disable protection on a specific buffer.
Both of these functions internally call the POSIX mprotect
function which allows a program to restrict access to its
own address space. This restriction is a combination of the
following access modes: read, write, execute. When memory
protected with mprotect is accessed using a forbidden
mode, the operating system raises a segmentation fault signal
to the application which in turn can be intercepted in order
to treat the problem.

Our custom handler for this segmentation fault signal
checks whether the memory address on which a bad ac-
cess occurred is a zone managed by the protection mecha-
nism and if so calls a modifiable callback function (called
access_handler in the rest of this paper).

D. Making blocking communication nonblocking
Using the two components described above, we built our

overall system by making:
• end_of_comm_handler disable memory protection

on the buffer when the corresponding communication
has ended,



• access_handler wait until communication has
ended,

• our custom MPI_Send enable protection and offload the
communication to our system.

This configuration guarantees two important behaviors, ev-
ery buffer on which memory protection is enabled during the
call to MPI_Send will see its protection disabled eventually
and any unwanted access to the memory will cause the appli-
cation thread to wait as though a real call to MPI_Wait was
issued. Therefore, the period during which communication is
overlapped with computation is dynamically decided by the
first forbidden access to the buffer, which in turns corresponds
to the optimal limit we can afford according to the MPI
specification.

Moreover, while this is not the goal of COMMMAMA, the
offloading subsystem uses nonblocking calls internally and
can thus be used alone to provide asynchronous progress to
nonblocking primitives in addition to providing progress to
blocking calls using the protection mechanism.

IV. EVALUATION

In the section we evaluate the performance of our approach
using a number of benchmarks.

A. Evaluation test bed characteristics

All the experiments are done using the Grid’5000 [3]
grimoire cluster. Nodes of this cluster consist of dual socket 8
core Intel® Xeon® E5-2630 v3 with 128 GB memory. These
nodes are connected using 56 Gb/s Mellanox Technologies
ConnectX-3 InfiniBand network adapters. We use GCC 8.3.0
and OpenMPI 3.1.3 [4].

All the results presented thereafter are produced using this
test bed by running the mentioned benchmark 2000 times and
taking a mean value.

B. Base overhead analysis

In this section we compare our approach, COMMMAMA
to a baseline version using only openmpi to study the effect
of our system on base performances. This is done using a
ping-pong microbenchmark with no computation to exhibit
the overhead introduced by our method.
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Fig. 2. Round-trip latency with no compute

Figure 2 represents the round-trip latency of messages
of varying sizes, both axes are represented using log scale.

Depicted on this figure, the overhead incurred by COM-
MMAMA is linear until important message sizes where it
becomes negligible. This is mostly due to the cost of the
protection subsystem and more specifically the linear cost of
the mprotect system call.

This overhead is indeed due to the modification of the page
table structure during the mprotect call used to enforce
memory protection on the process address space. With the
growth of message size, the range of memory protected by
the system call grows which in turns increases in a linear
fashion the number of page structure to modify. However,
this overhead is not as important as to impact the capacity to
overlap communication and computation as demonstrated in
the next subsection.

C. Overlap capabilities evaluation

To evaluate the communication and computation overlap
provided by our design, we use a modified version of the ping-
pong microbenchmark with added computation time between
communication phases.

This benchmark executes as follows. Process rank 0 calls
MPI_Send, computes for a given time, writes one byte to
the buffer then calls MPI_Recv, computes for a given time
and reads one byte from the buffer. Process rank 1 does the
same but starting by MPI_Recv, followed by the compute
period and the read operation then MPI_Send, the compute
period and the write operation.

In this second benchmark the memory operation plays
an important role as it ensures the previous communication
(either send or receive) is terminated before continuing. This
simulates the first access to buffer data in the computation
period following a communication.

The expected execution timelines are presented in Figure 3.
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thread
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data transfer offloading call

Fig. 3. Expected execution timeline for microbenchmark

The results presented thereafter use this benchmark with a
varying amount of computation time, respectively 2 × 200,
2 × 2000 and 2 × 20000 microseconds. The openmpi curve
represents the default OpenMPI behavior, the COMMMAMA



curve represents the behavior of our approach on top of
the same OpenMPI runtime and the optimal completion
time curve represents the theoretical optimum which is
max(tcompute, tcomm), where tcompute is the total time of
computation (i.e. the sum of both occurrences in the mi-
crobenchmark) and tcomm is the time of completion of
the communication for the default OpenMPI implementation
taken from Section IV-B.

Round-trip latencies in Figure 4 all demonstrate two dif-
ferent behaviors. Between 4KB and a certain value called
sthreshold below, COMMMAMA remains very close of the op-
timal completion time, while openmpi is equal to tcompute +
tcomm. Finally, between sthreshold and 64MB, both openmpi
and COMMMAMA increase gradually, with COMMMAMA
staying close to the optimal value.

The default OpenMPI implementation cannot overlap any
communication with computation thus resulting in an in-
creased completion time. This is particularly visible when
the communication time and computation time are close. On
the contrary, COMMMAMA performs well, showing a high
overlapping capability. This second behavior persists until
message size attains sthreshold, the message size until which
tcomm < tcompute.

As for the second phase, when message size exceeds
sthreshold, both openmpi and COMMMAMA round-trip latency
start increasing, with COMMMAMA still being close to the op-
timal completion time value which is now tcomm as exceeding
sthreshold, tcomm has become the longest task required for
completion.

Favoring communication and computation overlap, our
approach can really shine when their is enough computation
to overlap communication. As shown by speedups plots in
Figure 4 speedup can be as high as 73% and is good in
any case when tcompute is slightly bigger than tComm. For
small communications, with a small compute time of 400
microseconds, speedup attains 42%, with 4 milliseconds of
compute time, speedup attains its best value for medium-sized
communications, 73% for 1MB messages. After this point the
speedup decreases due to the compute time becoming unsuffi-
cient to correctly overlap communication for bigger messages.
With 40 milliseconds of compute time, big communications
are at their best with up to 50% speedup.

V. RELATED WORK

The field of asynchronous progress for MPI primitives has
been extensively studied.

Some approaches use compile time techniques to evaluate
the best position for nonblocking primitives and specifically
MPI_Wait calls.

This is the case of [5] which uses source to source trans-
lation to remodel code using compiler pragmas to divide the
code into three types of regions: send, receive and compute.
While this allows some communication to be overlapped with
computation by running communication and compute region
in parallel on different cores, the compute region still need to
start with a waiting primitive (in most cases MPI_Waitall)

which in turns seems too coarse grained to attain a satisfying
overlap ratio in complex cases.

L. Fishgold et al. [6] propose a finer grained, automated
technique which detects patterns presenting an opportunity for
tranformation by parsing the source code and then modify it.
This approach focuses on finding compute loops filling parts
of communication buffers at each iteration and modifying
them to send these parts when ready. While this technique
covers a large portion of MPI applications, especially High
Performance Computing related ones, our approach offers
a broader field of application. Moreover, they focus on
MPI_Alltoall collective while our work does not target
a specific communication primitive.

A similar approach from Jichi Guo et al. [7] uses static code
analysis to replace blocking communications by nonblocking
communications in loop based computations thus overlapping
communication step i with computation step i + 1. While
this approach is close to our proposal, it still uses compile
time analysis, compute loops and does the communication
progression using MPI_Test primitives inserted in the loop
body. On the contrary, our progress thread allows for a better
degree of parallelism to be attained and works on broader
patterns than compute loops. This approach is closely related
to [8].

Another attempt to increase the overlap of communication
and computation is presented by Anthony Danalis et al. [9].
They describe an algorithm used to optimize the overlap
window at compile time by replacing blocking primitives with
nonblocking ones and placing the waiting primitive as far as
possible to increase performances. However, unlike previous
work they use the assumption that the compiler is aware of
MPI semantics. While this allows for an even better increase
in the overlap window, this makes the work of compiler
developers and MPI developers more complicated, which is
not the case in our approach as it operates transparently. This
is similar to [10] which uses clang to perform modifications.

The method presented in [11] uses code instrumentation
and offline analysis to determine code fragments where
overlapping capabilities are not fully exploited. After the
instrumented run has terminated, their tool uses the trace files
to perform optimizations.

Other approaches use runtime techniques. This is the case
of [12] and [13] that use threads to increase asynchronous
progress by running communications in separate tasks.

Karthikeyan Vaidyanathan et al. [2], probably the closest
approach to ours, delegates MPI nonblocking calls to a
standalone thread. Our approach builds upon and extends
this approach by using the memory protection mechanism to
transform blocking MPI calls into nonblocking equivalents.
While we agree on the potential gain provided by such a
method, such a gain can only be obtained if waiting primitives
are placed correctly. Our approach solves this problem by
dynamically finding the optimal (i.e. latest) moment to wait.

Similarly, Min Si et al. [14] present an asynchronous
progress system using processes in place of threads and is
targeted at many-core architectures.
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Fig. 4. Round-trip latencies and speedups for tcompute = 400, 4000, 40000us

Sylvain Didelot et al. [15] propose a different approach,
with no added parallel execution unit, which uses idle cy-
cles created by imbalance in computation time to improve
progression.

VI. CONCLUSION AND FUTURE WORK

In this paper, we describe a new method to increase
communication and computation overlapping in MPI applica-
tions. Our approach combines an interception mechanism, a
standalone progress thread and a protection mechanism. This
allows blocking primitives to be transparently replaced by our
mechanism which transfers the communication responsibility
to our standalone thread while protecting the application
buffer memory to intercept future read or write. As progress
is ensured by the thread, the memory protection is used
to monitor memory accesses and let the application benefit
from automated communication and computation overlap
for an optimal amount of time. Depending on the ratio of
computation and communication in the application, we show
that our approach can provide up to 73% speedup.

While the amount of overlap time gained from our method
is optimal if considering the buffer in its entirety, future
work may include splitting a given blocking communication
into a number of nonblocking communications, thus allowing
computation to continue for other buffers when only some are
accessed. On another note, extending our approach to MPI
blocking collectives is already part of future work as it should
also enhance communication and computation overlapping
periods in numerous cases.
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