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Abstract

The election control problem through social influence asks to find a set of nodes in a
social network of voters to be the starters of a political campaign aiming at supporting
a given target candidate. Voters reached by the campaign change their opinions on the
candidates. The goal is to shape the diffusion of the campaign in such a way that the chances
of victory of the target candidate are maximized. Previous work shows that the problem
can be approximated within a constant factor in several models of information diffusion
and voting systems, assuming that the controller, i.e., the external agent that starts the
campaign, has full knowledge of the preferences of voters. However this information is not
always available since some voters might not reveal it. Herein we relax this assumption by
considering that each voter is associated with a probability distribution over the candidates.
We propose two models in which, when an electoral campaign reaches a voter, this latter
modifies its probability distribution according to the amount of influence it received from
its neighbors in the network. We then study the election control problem through social
influence on the new models: In the first model, under the Gap-ETH, election control cannot
be approximated within a factor better than 1/no(1), where n is the number of voters; in the
second model, which is a slight relaxation of the first one, the problem admits a constant
factor approximation algorithm.
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1 Introduction

Social media play a fundamental role in everyone’s life providing information, entertainment,
and learning. Many social media users prefer to access social network platforms such as
Facebook or Twitter before news websites as they provide faster means for information dif-
fusion [MS18]. As a consequence, online social networks are also exploited as a tool to alter
users’ opinions. The extent to which the opinions of an individual are conditioned by social
interactions is called social influence. It has been observed that social influence starting from a
small set of individuals may generate a cascade effect that allows to reach a large part of the net-
work. Recently, this capability has been used to affect the outcome of political elections. There
exists evidence of political intervention which shows the effect of social media manipulation on
the elections outcome, e.g., by spreading fake news [PCR18]. A real-life example is in the 2016
US election where a study showed that on average 92% of people remembered pro-Trump fake
news and 23% of them remembered pro-Clinton fake news [AG17]. Several other cases have
been studied [BFJ+12, Fer17, Kre16, SBLS18].

There exists a wide literature about manipulation of voting systems; we point the reader to
a recent survey [FR16]. Despite that, only few studies focus on the problem of controlling the
outcome of political elections through the spread of information in social networks. The election
control problem [WV18] consists in selecting a set of nodes of a network to be the starters of
a diffusion with the aim of maximizing the chances for a target candidate to win an election.
In particular, in the constructive election control problem, the goal is to maximize the Margin
of Victory (MoV) of the target candidate on its most critical opponent, i.e., the difference of
votes (or score, depending on the voting system) between the two candidates after the effect
of social influence. A variation of the problem, known as destructive election control, aims at
making a target candidate lose. Both problems have been originally analyzed under the Inde-
pendent Cascade Model (ICM) [KKT15], and considering plurality voting ; approximation and
hardness-of-approximation results are provided [WV18]. Corò et al. [CCDP19a, CCDP19b]
analyzed the problem in arbitrary scoring rules voting systems under the Linear Threshold
Model (LTM) [KKT15], providing constant factor approximation algorithms. It has been later
shown that it is NP -hard to find any constant factor approximation in the multi-winner sce-
nario [AD20].

Faliszewski et al. [FGKT18] examine bribery in an opinion diffusion process with voter
clusters: each node is a cluster of voters, represented as a weight, with a specific list of can-
didates; there is an edge between two nodes if they differ by the ordering of a single pair of
adjacent candidates. The authors show that making a specific candidate win in their model is
NP -hard and fixed-parameter tractable with respect to the number of candidates. Bredereck et
al. [BE17] studied the problem of manipulating diffusion on social networks, though not specifi-
cally in the context of elections. They show that identifying successful manipulation via bribing,
adding/deleting edges, or controlling the order of asynchronous updates are all computationally
hard problems. A similar approach is taken by Apt et al. [AM14], where the authors introduce
a threshold model for social networks in order to characterize the role of social influence in the
global adoption of a commercial product.

Contribution. In all previous works it is assumed that the controller knows the preference
list of each voter. However, this assumption is not always satisfied in realistic scenarios as voters
may not reveal their preferences to the controller. Herein, in Section 2, we introduce two new
models, Probabilistic Linear Threshold Ranking (PLTR) and Relaxed-PLTR (R-PLTR), that
encompass scenarios where the preference lists of the voters are not fully revealed. Specifically,
we use an uncertain model in which the controller only knows, for each voter, a probability
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distribution over the candidates. In fact, in applied scenarios, the probability distribution
could be inferred by analyzing previous social activity of the voters, e.g., re-tweets or likes of
politically oriented posts. We envision that some given focused news about a target candidate
spread through the network as a message. We model such a diffusion via the LTM [KKT15].
The message will have an impact on the opinions of voters who received it from their neighbors,
leading to a potential change of their vote if the neighbors exercise a strong influence on them.
With this intuition in mind, in our models, the probability distribution of the voters reached by
the message is updated as a function of the degree of influence that the senders of the message
have on them. The rationale is that the controller, without knowing the exact preference list
which is kept hidden, can just update its estimation on it by considering the mutual degree of
influence among voters. We acknowledge that our models do not cover all scenarios that can
arise in election control, e.g., messages about multiple candidates. However they represent a
first step towards modeling uncertainty.

We study on our models both the constructive and destructive election control problems. We
show in Section 3 that the election control problem in PLTR is at least as hard to approximate
as the Densest-k-Subgraph problem [Man17]. This result implies several conditional hardness
of approximation bounds for our problem, for example it cannot be approximated within any
constant factor, unless the Unique Game Conjecture holds and it cannot be approximated
to within any polynomial factor if the Exponential Time Hypothesis holds. However, these
hardness of approximation bounds do not hold for the election control problem in R-PLTR, for
which we can show that the problem remains NP -hard.

In Section 4 we provide an algorithm that guarantees a constant factor approximation to
the constructive and destructive election control problems in R-PLTR. In the relaxed model,
R-PLTR, also “partially-influenced” nodes change their probability distribution. Although this
simple modification is enough to make the problem substantially easier, preliminary experimen-
tal results show that the hardness of approximation for PLTR is purely theoretical and is due
to hard instances in the reduction.

In Section 5 we present the simulation of our models and algorithm on two real-world
datasets.

2 Influence Models and Problem Statement

Background. Influence Maximization is the problem of finding a subset of the most influential
users in a social network with the aim of maximizing the spread of information given a particular
diffusion model. In this work, we focus on the diffusion model known as Linear Threshold Model
(LTM) [KKT15]. Given a graph G = (V,E), each edge (u, v) ∈ E has a weight buv ∈ [0, 1], each
node v ∈ V has a threshold tv ∈ [0, 1] sampled uniformly at random and independently from
the others, and the sum of the weights of the incoming edges of v is

∑
(u,v)∈E buv ≤ 1. Each

node can be either active or inactive. Let A0 be a set of initially active nodes and At be the set
of nodes active at time t. A node v becomes active if the sum of the incoming active weights
at time t− 1 is greater than or equal to its threshold tv, i.e., v ∈ At if and only if v ∈ At−1 or∑

u∈At−1:(u,v)∈E buv ≥ tv.
The process terminates at the first time t̃ in which the set of active nodes would not change

in the next round, i.e., At̃ = At̃+1. We define the eventual set of active nodes as A := At̃ and the
expected size of A as σ(A0). Given a budget B, the influence maximization problem consists
in finding a set of nodes A0 of size B, called seeds, in such a way that σ(A0) is maximum.

Kempe et al. [KKT15] showed that the distribution of active nodes A, for any set A0, is
equal to the distribution of the sets of nodes that are reachable from A0 in the set of random
graphs called live-edge graphs. A live-edge graph is a subgraph in which each node has at most
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one incoming edge. Even if the number of live-edge graphs is exponential, by using standard
Chernoff-Hoeffding bounds, it is possible to compute a (1 ± ε)-approximation of σ(A0), for a
given A0, with high probability by sampling a polynomial number of live-edge graphs. Moreover,
σ(A0) is monotone and submodular w.r.t. to the initial set A0; hence, an optimal solution can
be approximated to a factor of 1 − 1/e using a simple greedy algorithm [NWF78]. There has
been intensive research on the problem in the last decade. We point the reader to a recent
survey on the topic [LFWT18].

Notation. LetG = (V,E) be a directed graph representing a social network of voters and their
interactions. We denote the set of m candidates running for the election as C = {c1, c2, . . . , cm}
and the target candidate as c? ∈ C. Each node v ∈ V has a probability distribution over the
candidates πv, where πv(ci) is the probability that v votes for candidate ci; then for each v ∈ V
we have that πv(ci) ≥ 0 for each candidate ci and

∑m
i=1 πv(ci) = 1. Moreover, we denote by

N−v and N+
v , respectively, the sets of incoming and outgoing neighbors for each node v ∈ V .

For each candidate ci, we assume that πv(ci) is at least a polynomial fraction of the number of
voters, i.e., πv(ci) = Ω(1/|V |γ) for some constant γ > 0.1 Let Xv(ci) be an indicator random
variable, where Xv(ci) = 1 if v votes for ci, with probability πv(ci), and Xv(ci) = 0 otherwise.
We define the expected score of a candidate ci as the expected number of votes that ci obtains
from the voters F (ci, ∅) := E

[∑
v∈V Xv(ci)

]
=
∑

v∈V πv(ci).

PLTR Model. As in LTM, each node v has a threshold tv ∈ [0, 1]; each edge (u, v) ∈ E has
a weight buv, that models the influence of node u on v, with the constraint that, for each node
v,
∑

u:(u,v)∈E buv ≤ 1. We assume the weight of each existing edge (u, v) not to be too small,

i.e., buv = Ω(1/|V |γ) for some constant γ > 0.4

Given an initial set of seed nodes S, the diffusion process proceeds as in LTM: Inactive nodes
become active if the sum of the weights of incoming edges from active neighbors is greater than
or equal to their threshold. Mainly, we are modeling the spread of some ads/news about the
target candidate: Active nodes receive the message and spread it to their neighbors. Moreover,
in PLTR, active nodes are influenced by the message, increasing their probability of voting for
the target candidate. In particular, an active node v increases the probability of voting for c?
by an amount equal to the sum of the weights of its edges incoming from other active nodes,
i.e., it adds

∑
u∈A∩N−v buv to the initial probability πv(c?). Then it normalizes to maintain πv

as a probability distribution. Formally, for each node v ∈ A, where A is the set of active nodes
at the end of LTM, the preference list of v is denoted as π̃v and it is equal to:

π̃v(c?) =
πv(c?) +

∑
u∈A∩N−v buv

1 +
∑

u∈A∩N−v buv
and π̃v(ci) =

πv(ci)

1 +
∑

u∈A∩N−v buv
, (1)

for each ci 6= c?. All inactive nodes v ∈ V \ A will have π̃v(ci) = πv(ci) for all candidates,
including c?. As for the expected score before the process, we can compute the expected final
score of a candidate ci as

F (ci, S) := E

[∑
v∈V

Xv(ci, S)

]
=
∑
v∈V

π̃v(ci),

where Xv(ci, S) is the indicator random variable after the process, i.e., Xv(ci, S) = 1 if v votes
for ci, with probability π̃v(ci), and Xv(ci, S) = 0 otherwise.

1The assumption is used in the approximation results, since Influence Maximization problem with exponential
(or exponentially small) weights on nodes is an open problem. However, the assumption is realistic: Current
techniques to estimate such parameters generate values linear in the number of messages shared by a node.
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Let us denote by G the set of all possible live-edge graphs sampled from G. We can also
compute F (ci, S) by means of live-edge graphs used in the LTM model as

F (ci, S) =
∑
G′∈G

FG′(ci, S) ·P(G′), (2)

where FG′(ci, S) is the score of ci in G′ ∈ G and P(G′) is the probability of sampling live-edge
G′. More precisely, for the target candidate we have

FG′(c?, S)=
∑

v∈RG′(S)

πv(c?)+
∑

u∈RG′ (S)∩N−v buv

1 +
∑

u∈RG′ (S)∩N−v buv
+

∑
v∈V \RG′(S)

πv(c?),

where RG′(S) is the set of nodes reachable from S in G′. A similar formulation can be derived
for ci 6= c?.

R-PLTR Model. In the next section we prove that the election control problem in PLTR is
hard to approximate to within a polynomial fraction of the optimum (Theorem 1). However, we
show that a small relaxation of the model allows us to approximate it to within a constant factor.
In the relaxed model, that we call Relaxed Probabilistic Linear Threshold Ranking (R-PLTR),
the probability distribution of a node is updated if it has at least an active incoming neighbor
(also if the node is not active itself). More formally, every node v ∈ V (and not just every node
v ∈ A as in PLTR) changes its preference by updating its probability distribution via Eq. (1);
thus also nodes that have at least an active incoming neighbor can change. The rationale is that
a voter might slightly change its opinion about the target candidate if it receives some influence
from its active incoming neighbors even if the received influence is not enough to activate it
(thus making it propagate the information to its outgoing neighbors). Therefore, we include
this small amount of influence in the objective function. In the next section, we show that
election control in R-PLTR is still NP -hard, and then we give an algorithm that guarantees a
constant approximation ratio in this setting.

Problem Statement. In the constructive election control problem we maximize the ex-
pected Margin of Victory (MoV) of the target candidate w.r.t. its most voted opponent, akin
to [CCDP19a, WV18]. We define the MoV(S) obtained starting from S as the expected in-
crease, w.r.t. the value before the process, of the difference between the score of c? and that of
the most voted opponent.2 Formally, if c and ĉ are respectively the candidates different from
c? with the highest score before and after the diffusion process

MoV(S) := F (c, ∅)− F (c?, ∅)− (F (ĉ, S)− F (c?, S)) . (3)

Given a budget B, the constructive election control problem asks to find a set of seed nodes
S, of size at most B, that maximizes MoV(S). It is worth noting that MoV can also be expressed
as a function of the score gained by candidate c? and the score lost by its most voted opponent
ĉ at the end of the process. We define the score gained and lost by a candidate ci as

g+(ci, S) := F (ci, S)− F (ci, ∅), g-(ci, S) := F (ci, ∅)− F (ci, S).

Therefore, we can rewrite MoV(S) as

MoV(S) = g+(c?, S) + g-(ĉ, S)− F (ĉ, ∅) + F (c, ∅). (4)

2The increment in margin of victory, instead of just the margin, cannot be negative and gives well defined
approximation ratios.
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The destructive election control problem, instead, aims at making the target candidate lose
by minimizing its MoV. In this dual scenario, the probability distributions of the voters are
updated slightly differently in our models, i.e., influenced voters have a lower probability of
voting for the target candidate c? mimicking the spread of “negative” news about c?.

Influencing Voters About Other Candidates. In our model the controller can send to
the seed nodes a message in support of only one single candidate, e.g., latest news about the
candidate. We prove that the best strategy is that of sending messages in support of the target
candidate c?, i.e., if the controller wants c? to win, then, according to our models, the direct
strategy of targeting voters with news about c? is more effective than the alternative strategy
of distracting the same voters with news about other candidates.

Indeed, it is not always sufficient to maximize the score of the target candidate to ensure
his victory or to maximize the margin of victory, and it is easy to find counter-examples of
this strategy. Moreover, in the models of Wilder et al. [WV18] and Corò et al. [CCDP19a] it
could be convenient to increase the score of a third candidate in order to make the most voted
opponent w.r.t. c? lose score and favor c?.

However, as previously claimed, in our models this does not hold. In fact, we can distinguish
between the three possible strategies:

• MoV1: Influencing voters about c?.

• MoV2: Influencing voters about ĉ, i.e., the most voted opponent w.r.t. c? at the end of
the process.

• MoV3: Influencing voters about any other candidate c.

Let us now analyze the MoV of c? in these three different cases. As described in Equation (4),
a general formulation for MoV is the following

MoV(S) := g+(c?, S) + g-(ĉ, S) + ∆

= F (c?, S)− F (c?, ∅) + F (ĉ, ∅)− F (ĉ, S) + ∆,

where S is the initial set of seed nodes and ∆ is the sum of constant terms that are not modified
by the process. With some algebra, it is possible to compute the MoV of c? in such scenarios,
getting the following formulations:

•MoV1(S) =
∑
v∈A

(1 + πv(ĉ)− πv(c?))
∑

u∈A∩N−v buv

1 +
∑

u∈A∩N−v buv
+ ∆;

•MoV2(S) =
∑
v∈A

(πv(ĉ)− πv(c?)− 1)
∑

u∈A∩N−v buv

1 +
∑

u∈A∩N−v buv
+ ∆;

•MoV3(S) =
∑
v∈A

(πv(ĉ)− πv(c?))
∑

u∈A∩N−v buv

1 +
∑

u∈A∩N−v buv
+ ∆.

We just need to observe that MoV1(S) ≥ MoV2(S) and that MoV1(S) ≥ MoV3(S) to conclude
that it is always convenient to influence the voters about the target candidate whenever you
want to maximize the MoV of c?. Therefore, in the remainder of the paper, we only focus on
changing the score of the target candidate c?. Note that the observations above hold both for
PLTR and R-PLTR.
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3 Hardness Results

In this section we provide two hardness results related to election control in PLTR and R-PLTR.
In Theorem 1 we show that maximizing the MoV in PLTR is at least as hard to approximate as
the Densest-k-subgraph problem. This implies several conditional hardness of approximation
bounds for the election control problem. Indeed, it has been shown that the Densest-k-subgraph
problem is hard to approximate: to within any constant bound under the Unique Games with
Small Set Expansion conjecture [RS10]; to within n−1/(log logn)c , for some constant c, under the
exponential time hypothesis (ETH) [Man17]; to n−f(n) for any function f ∈ o(1), under the
Gap-ETH assumption [Man17]. Then, in Theorem 2, we show that maximizing the MoV in
R-PLTR is still NP -hard.

Theorem 1. An α-approximation algorithm to the election control problem in PLTR gives an
αβ-approximation to the Densest k-Subgraph problem, for a positive constant β < 1.

Proof. Given an undirected graph G = (V,E) and an integer k, Densest k-Subgraph (DkS) is
the problem of finding the subgraph induced by a subset of V of size k with the highest number
of edges given that k is fixed.

The reduction works as follows: Consider the PLTR problem on G, where each undirected
edge {u, v} is replaced with two directed edges (u, v) and (v, u). Let us consider m candidates
and assume that all nodes initially have null probability of voting for all the candidates but one,
different from c?, that we denote as ĉ. Formally we have that, πv(ĉ) = 1 and πv(ci) = πv(c?) = 0
for each ci 6= ĉ and for each v ∈ V . Assign to each edge (u, v) ∈ E a weight buv = 1

nγ , for any
fixed constant γ ≥ 4 and n = |V |.

We show the reduction considering the problem of maximizing the score, because in the
instance considered in the reduction the MoV is exactly equal to twice the score. In fact, the
score of ĉ after PLTR starting from any initial set S is

F (ĉ, S) =
∑
v∈V

π̃v(ĉ) =
∑

v∈V \A

πv(ĉ) +
∑
v∈A

π̃v(ĉ)

= |V | − |A|+
∑
v∈A

1

1 +
∑

u∈A∩N−v
1
nγ

= |V | −
∑
v∈A

(
1− 1

1 +
∑

u∈A∩N−v
1
nγ

)

= |V | −
∑
v∈A

( ∑
u∈A∩N−v

1
nγ

1 +
∑

u∈A∩N−v
1
nγ

)
= |V | − F (c?, S),

because (
∑

u∈A∩N−v
1
nγ )/(1 +

∑
u∈A∩N−v

1
nγ ) = π̃v(c?) and πv(c?) = 0 for each v ∈ V . Thus,

according to the definition of MoV in Equation (6), we have that

MoV(S) = |V | − (|V | − F (c?, S)− F (c?, S)) = 2F (c?, S).

To compute the expected final score of the target candidate we average its score in all live
live-edge graph in G, according to Formula (3). In our reduction, the empty live-edge graph
G′∅ = (V, ∅) is sampled with high probability, i.e., with probability at least 1− 1

nγ−2 :

P
(
G′∅
)

=
∏
v∈V

1−
∑
u∈N−v

buv

 =
∏
v∈V

(
1− |N

−
v |
nγ

)
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≥
∏
v∈V

(
1− 1

nγ−1

)
=

(
1− 1

nγ−1

)n
(a)
=

n∑
i=0

(
n

i

)
(1)n−i

(
−1

nγ−1

)i
=

n∑
i=0

(
n

i

)
(−1)i

ni(γ−1)

(b)

≥
(
n

0

)
−
(
n

1

)
1

nγ−1
+

bn/2c∑
i=2

((
n

i

)
1

n2i(γ−1)
−
(

n

i+ 1

)
1

n(2i+1)(γ−1)

)
(c)

≥ 1− 1

nγ−2

where in (a) we used the binomial expansion, (b) is due to last negative term in the lhs that
does not appear in the rhs when n is even, and (c) is due to(

n

i

)
1

n2i(γ−1)
≥
(

n

i+ 1

)
1

n(2i+1)(γ−1)
,

for any γ ≥ 2. Since P
(
G′∅
)
≤ 1, then P

(
G′∅
)

= Θ(1). Moreover,
∑

G′ 6=G′∅
P (G′) = O

(
1

nγ−2

)
The score obtained by c? in a live-edge graph G′ starting from any initial set of seed nodes

S is

FG′(c?, S) =
∑

v∈RG′ (S)

πv(c?) +
∑

u∈RG′ (S)∩N−v
1
nγ

1 +
∑

u∈RG′ (S)∩N−v
1
nγ

= Θ

 1

nγ

∑
v∈RG′ (S)

|RG′(S) ∩N−v |

 ,

since 1 ≤ 1+
∑

u∈RG′ (S)∩N−v
1
nγ ≤ 2 for each v ∈ RG′(S). Also, note that

∑
v∈RG′ (S) |RG′(S)∩

N−v | is equal to the number of edges of the subgraph induced by the set RG′(S) of nodes reachable
from S in G′, which is not greater than n2, and thus FG′(c?, S) = O

(
1

nγ−2

)
.

Note that in the empty live edge graph G′∅ the set RG′∅
(S) at the end of LTM is equal to S,

since the graph has no edges. Thus

FG′∅
(c?, S) =

1

nγ
·
∑
v∈S

|S ∩N−v |
1 +

∑
u∈S∩N−v

1
nγ

and since the denominator is, again, bounded by two constants we have that

FG′∅
(c?, S) = Θ

(∑
v∈S |S ∩N

−
v |

nγ

)
= Θ

(
SOLDkS(S)

nγ

)
,

where SOLDkS(S) :=
∑

v∈S |S ∩N
−
v | is the number of edges of the subgraph induced by S, i.e.,

the value of the objective function of DkS for solution S.
Thus, the expected final score of the target candidate is

F (c?, S) =
∑
G′∈G

FG′(c?, S) ·P(G′) = FG′∅
(c?, S) ·P(G′∅) +

∑
G′ 6=G′∅

FG′(c?, S) ·P(G′).

Since FG′(c?, S) and
∑

G′ 6=G′∅
P (G′) are in O

(
1

nγ−2

)
, then
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∑
G′ 6=G′∅

FG′(c?, S) ·P(G′) = O
(

1

nγ−2

) ∑
G′ 6=G′∅

P(G′)

= O
(

1

n2(γ−2)

)
= O

(
SOLDkS(S)

nγ

)
,

for any γ ≥ 4. Thus

F (c?, S) = Θ

(
SOLDkS(S)

nγ

)
·Θ(1) +O

(
SOLDkS(S)

nγ

)
which means that F (c?, S) = Θ

(
SOLDkS(S)

nγ

)
. We apply the Bachmann-Landau definition of Θ

notation: There exist three positive constants n0, β1, and β2 such that, for all n > n0,

β1
SOLDkS(S)

nγ
≤ F (c?, S) ≤ β2

SOLDkS(S)

nγ
.

Note that, in this case, the constants n0, β1, and β2 do not depend on the specific instance.
Since the previous bounds hold for any set S we also have that β1

OPTDkS
nγ ≤ OPT ≤

β2
OPTDkS

nγ , where OPT is the value of an optimal solution for PLTR and OPTDkS is the value
of an optimal solution for DkS.

Suppose there exists an α-approximation algorithm for PLTR, i.e., an algorithm that finds
a set S s.t. the value of its solution is MoV(S) = 2F (c?, S) ≥ α ·OPT. Then,

α

2
· β1

OPTDkS

nγ
≤ α

2
·OPT ≤ F (c?, S) ≤ β2

SOLDkS(S)

nγ
.

Thus SOLDkS(S) ≥ α
2
β1
β2

OPTDkS , i.e., it is an αβ1
2β2

-approximation to DkS.

As a corollary of Theorem 1 we get the conditional hardness of approximation bounds stated
at the beginning of this section.

Theorem 2. Election control in R-PLTR is NP-hard.

Proof. We prove the hardness by reduction from Influence Maximization under LTM, which is
known to be NP -hard [KKT15].

Consider an instance ILTM = (G,B) of Influence Maximization under LTM. ILTM is defined
by a weighted graph G = (V,E,w) with weight function w : E → [0, 1] and by a budget B. Let
IR-PLTR := (G′, B) be the instance that corresponds to ILTM on R-PLTR, defined by the same
budget B and by a graph G′ = (V ′, E′, w′) that can be built as follows:

1. Duplicate each vertex in the graph, i.e., we define the new set of nodes as V ′ := V ∪
{v|V |+1, . . . , v2|V |}.

2. Add an edge between each vertex v ∈ V to its copy in V ′, i.e., we define the new set of
edges as E′ := E ∪ {(v1, v|V |+1), . . . , (v|V |, v2|V |)}.

3. Keep the same weight for each edge in E and we set the weights of all new edges to 1, i.e.,
w′(e) = w(e) for each e ∈ E and w′(e) = 1 for each e ∈ E′ \ E. Note that the constraint
on incoming weights required by LTM is not violated by w′.

4. Consider m candidates c?, c1, . . . , cm−1. For each v ∈ V we set πv(c?) = 1 and πv(ci) = 0
for any other candidate i ∈ {1, . . . ,m − 1}. For each v ∈ V ′ \ V we set πv(c?) = 0,
πv(c1) = 1 and πv(ci) = 0 for any other candidate i ∈ {2, . . . ,m− 1}.
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Let S be the initial set of seed nodes of size B that maximizes ILTM and let A be the set
of active nodes at the end of the process. The value of the MoV obtained by S in IR-PLTR is
MoV(S) = |V | − |V \ A|. Indeed, each node v ∈ V in G′ has π̃v(c?) = πv(c?) = 1, because
the probability of voting for the target candidate remains the same after the normalization.
Moreover, each node vi ∈ V ∩A influences its duplicate v|V |+i with probability 1 and therefore

π̃v|V |+i(c?) = (πv|V |+i(c?)+1)/2 = 1
2 . Therefore, F (c?, ∅) = F (c1, ∅) = |V |, F (c?, S) = |V |+ 1

2 |A|,
and F (c1, S) = |V \A|+ 1

2 |A|.
Let S be the initial set of seed nodes of size B that achieves the maximum in IR-PLTR.

Without loss of generality, we can assume that S ⊆ V , since we can replace any seed node
v|V |+i in V ′ \ V with its corresponding node vi in V without decreasing the objective function.
If A is the set of active nodes at the end of the process, then by using similar arguments as
before, we can prove that MoV(S) = |V | − |V \ A|. Let us assume that S does not maximize
ILTM, then, S would also not maximize IR-PLTR, which is a contradiction since S is an optimal
solution for IR-PLTR.

We can prove the NP -hardness for the case of maximizing the score by using the same
arguments. In fact, notice that maximizing the score of c?, i.e., F (c?, S) = |V |+ 1

2 |A|, is exactly
equivalent to maximize the cardinality of the active nodes in LTM.

4 Approximation Results

In this section, we first show that we can approximate the optimal MoV to within a constant
factor by optimizing the increment in the score of c?. In detail we show that, given two solutions
S∗ and S∗∗ such that g+(c?, S

∗) and MoV(S∗∗) are maximum, then MoV(S∗) ≥ 1
3MoV(S∗∗).

Indeed, we show a more general statement that is: If a solution S approximates g+(c?, S
∗)

within a factor α, then MoV(S) ≥ α
3 MoV(S∗∗).

Then we show that a simple greedy hill-climbing approach (Algorithm 1) gives a constant
factor approximation to the problem of maximizing g+(c?, S), where the constant is 1

2(1 − 1
e ).

By combining the two results, we get a 1
6(1− 1

e )-approximation algorithm for the election control
problem in R-PLTR.

The next theorem generalizes [WV18, Theorem 5.2] as it holds for any scoring rule and for
any model in which we have the ability to change only the position of c? in the lists of a subset
of voters and the increment in score of c? is at least equal to the decrement in scoring of the
other candidates.

Theorem 3. An α-approximation algorithm for maximizing the increment in score of a target
candidate gives an α

3 -approximation to the election control problem.

Proof. Let us consider two solutions S and S∗ for the problem of maximizing the MoV for
candidate c?, with S∗ as the optimal solution to this problem. These solutions arbitrarily select
a subset of voters and modify their preference list changing the score of c?. Let us fix c and
ĉ, respectively, as the candidates different from c? with the highest score before and after the
solution S is applied. Assume there exists an α-approximation to the problem of maximizing
the increment in score of the target candidate; if we do not consider the gain given by the score
lost by the most voted opponent, we have that

MoV(S) = g+(c?, S) + g-(ĉ, S)− F (ĉ) + F (c) ≥ αg+(c?, S
∗)− F (ĉ) + F (c)

≥ α

3
[g+(c?, S

∗) + g-(c̄, S∗) + g-(ĉ, S∗)]− F (ĉ) + F (c),

where the last inequality holds because g+(c?, S) ≥ g-(ci, S) for any solution S and candidate
ci since S modifies only the score of c?, increasing it, while the score of all the other candidates
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is decreased, and the increment in score to c∗ is equal to the sum of the decrement in score of
all the other candidates. Since F (ĉ) ≤ F (c), we have that

MoV(S) ≥ α

3
[g+(c?, S

∗) + g-(c̄, S∗) + F (c) + g-(ĉ, S∗)− F (ĉ) + F (c̄)− F (c̄)]

=
α

3
[MoV(S∗) + g-(ĉ, S∗)− F (ĉ) + F (c̄)],

where c̄ is the candidate with the highest score after the solution S∗ is applied. By definition
of c̄ we have that F (c̄, S∗) ≥ F (ĉ, S∗), which implies that

g-(c̄, S∗)− g-(ĉ, S∗) = F (c̄)− F (c̄, S∗)− F (ĉ) + F (ĉ, S∗) ≤ F (c̄)− F (ĉ).

Thus, g-(ĉ, S∗)− F (ĉ) + F (c̄) ≥ 0 and we conclude that MoV(S) ≥ α
3 MoV(S∗).

Constructive Election Control in R-PLTR. Next theorem shows how to get a constant
factor approximation to the problem of maximizing the MoV in R-PLTR by reducing the
problem to an instance of the weighted version of the influence maximization problem with
LTM [KKT15].

This extension of the LTM, associates to each node a non-negative weight (w : V → R+)
that captures the importance of activating that node. The goal is to find the initial seed set
in order to maximize the sum of the weights of the active nodes at the end of the process, i.e.,
finding arg maxS σw(S) = E

[∑
v∈Aw(v)

]
, where w is a weight function over the node set.

Algorithm 1 GreedyScore

Require: Social graph G = (V,E); Budget B
1: S = ∅; Ĝ = (G,w) . Weighted graph Ĝ
2: while |S| ≤ B do
3: v = arg maxu∈V \S σw(S ∪ {u})− σw(S)
4: S = S ∪ {v}
5: return S

A simple hill-climbing greedy algorithm achieves a (1 − 1/e)-approximation if the weights
are polynomial (or polynomially small) in the number of nodes of the graph and the number
of live-edge graph samples is polynomially large in the weights [KKT15].3 Intuitively, if a node
has an exponentially small probability of being sampled in the live-edge graph associated with
a high weight, then a polynomial number of samples would not be enough to consider it in the
solution with non-negligible probability. We exploit this result to approximate the MoV via
Algorithm 1, reducing the problem of maximizing the score to that of maximizing σw(S) in the
weighted LTM. We define a new graph Ĝ with the same sets of nodes and edges of G. Then, we
assign a weight to each node v ∈ V equal to w(v) :=

∑
u∈N+

v
bvu(1− πu(c?)). Note that we are

able to correctly approximate the value of σw(S) using such weights since by hypothesis on the
model buv ≥ 1

|V |γ1 , for each (u, v) ∈ E and for some constant γ1 > 0, and since πv(ci) ≥ 1
|V |γ2 , for

each v ∈ V for some constant γ2 > 0. By applying a multiplicative form of the Chernoff bound
we can get a 1± ε approximation of σw(S), with high probability [KKT15, Proposition 4.1].

Thus, we can use Algorithm 1 to maximize the influence on Ĝ. The algorithm starts with
an empty set S and adds to it, in each of B rounds, the node v with maximal marginal gain
w.r.t. the solution computed so far.

3It is still an open question how well the value of σw(S) can be approximated for an influence model with
arbitrary node weights.
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Theorem 4. Algorithm 1 guarantees a 1
6(1− 1

e )-approximation factor to constructive election
control in R-PLTR.

Proof. We first prove that Algorithm 1 gives an 1
2(1− 1

e )-approximation to the problem of max-
imizing the increment in score of the target candidate c? in R-PLTR. Let S and S? respectively
be the set of initial seed nodes found by the greedy algorithm and the optimal one. We have
that

g+(c?, S) = F (c?, S)− F (c?)

=
∑
v∈V

πv(c?) +
∑

u∈A∩N−v buv

1 +
∑

u∈A∩N−v buv
−
∑
v∈V

πv(c?)

=
∑
v∈V

(1− πv(c?))
∑

u∈A∩N−v buv

1 +
∑

u∈A∩N−v buv

and, since the denominator is at most 2, that

g+(c?, S) ≥ 1

2

∑
v∈V

(1− πv(c?))
∑

u∈A∩N−v

buv =
1

2

∑
u∈A

∑
v∈N+

u

buv(1− πv(c?)),

where A is the set of active nodes at the end of the process.
Note that

∑
u∈A

∑
v∈N+

u
buv(1 − πv(c?)) is exactly the objective function that the greedy

algorithm maximizes. Hence, using the result by Kempe et al. [KKT15] we know that∑
u∈A

∑
v∈N+

u

buv(1− πv(c?)) ≥
(

1− 1

e

) ∑
u∈A?

∑
v∈N+

u

buv(1− πv(c?)),

where A? is the set of active nodes at the end of the process starting from S?.
Therefore g+(c?, S) ≥ 1

2(1− 1/e) g+(c?, S
?) since

g+(c?, S
?) =

∑
v∈V

(1− πv(c?))
∑

u∈A?∩N−v buv

1 +
∑

u∈A?∩N−v buv
≤
∑
u∈A?

∑
v∈N+

u

buv(1− πv(c?)),

where the inequality holds since all the denominators in g+(c?, S
?) are at least 1. Thus, Algo-

rithm 1 achieves a 1
2

(
1− 1

e

)
-approximation to the maximum increment in score. Using Theo-

rem 3 we get a 1
6

(
1− 1

e

)
-approximation for the MoV.

Destructive Election Control in R-PLTR. The destructive election control problem is
similar to the constructive problem, but in this scenario, in our models, the probability that a
voter v votes for c? decreases depending on the amount of influence received by v and the loss
of probability of c? is evenly split over all the other candidates. In this way, we avoid negative
values and values that do not sum to 1. In detail, if A is the set of active nodes at the end of
LTM, then, for each v ∈ V , the preference list πv changes as follows:

π̃v(c?) =
πv(c?)

1 +
∑

u∈A∩N−v buv
and π̃v(ci) =

πv(ci) + 1
m−1

∑
u∈A∩N−v buv

1 +
∑

u∈A∩N−v buv

for each ci 6= c?. We define MoVD, i.e., what we want to maximize, as

MoVD(S) := F (ĉ, S)− F (c?, S)− (F (c, ∅)− F (c?, ∅)) = g-(c?, S) + g+(ĉ, S) + ∆,
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where S is the initial set of seed nodes and ∆ = F (ĉ, ∅)− F (c, ∅) is the sum of constant terms
that are not modified by the process. Note that maximizing MoVD is NP -hard (it can be proved
with a similar argument to that of Theorem 2).

Similarly to the constructive case, we define a new graph Ĝ with the same sets of nodes and
edges of G. Then, we assign a weight to each node v ∈ V equal to w(v) :=

∑
u∈N+

v
bvuπu(c?)

and we run Algorithm 1 to find a seed set that approximates the maximum expected weight of
active nodes.

Theorem 5. Algorithm 1 guarantees a 1
4(1− 1

e )-approximation factor to the destructive election
control in R-PLTR.

Proof. We first prove that Algorithm 1 achieves an 1
2(1− 1

e ) approximation factor to the problem
of maximizing the decrease in score of the target candidate c? in R-PLTR. Let S and S?

respectively be the set of initial seed nodes found by the greedy algorithm and the optimal
one. Let g−D(c?, S) be the decrease in score of candidate c? with solution S, i.e., g−D(c?, S) =
F (c?, ∅) − F (c?, S). Let A be the set of active nodes at the end of the process; then we have
that

g−D(c?, S) =
∑
v∈V

πv(c?)
∑

u∈A∩N−v buv

1 +
∑

u∈A∩N−v buv

and, since the denominator is at most 2, that

g−D(c?, S) ≥ 1

2

∑
v∈V

πv(c?) ∑
u∈A∩N−v

buv


=

1

2

∑
u∈A

∑
v∈N+

u

πv(c?) · buv.

Note that
∑

u∈A
∑

v∈N+
u
πv(c?) ·buv is exactly the objective function of the greedy Algorithm

that maximizes the weighted-LTM for Ĝ. Hence, using the result by Kempe et al. [KKT15], we
know that ∑

u∈A

∑
v∈N+

u

buv πv(c?) ≥
(

1− 1

e

) ∑
u∈A?

∑
v∈N+

u

buvπv(c?),

where A? is the optimal set of active nodes, i.e., the set of active nodes at the end process
starting from S? (S? the optimal solution for the weighted-LTM).

Therefore

g−D(c?, S) ≥ 1

2

(
1− 1

e

)
g−D(c?, S

?)

because

g−D(c?, S
?) =

∑
v∈V

πv(c?)
∑

u∈A?∩N−v buv

1 +
∑

u∈A?∩N−v buv

≤
∑
v∈V

πv(c?)
∑

u∈A?∩N−v

buv =
∑
u∈A?

∑
v∈N+

u

buv πv(c?),

where the inequality is due to the fact that the denominator in all the terms of g−D(c?, S
?) is at

least 1. Thus we achieve a 1
2

(
1− 1

e

)
-approximation to the maximum increment in score.

Let us fix c and ĉ, respectively, as the candidates different from c? with the highest score
before and after the solution S is applied; let c̄ be the most voted opponent after the optimal
solution S∗ is applied. Then we have that

MoV(S) = g−D(c?, S) + g+
D(ĉ, S) + F (ĉ, ∅)− F (c, ∅)
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≥ 1

2

(
1− 1

e

)
g−D(c?, S∗) + g+

D(ĉ, S) + F (ĉ, ∅)− F (c, ∅)

≥ 1

4

(
1− 1

e

)[
g−D(c?, S

∗) + g+
D(c̄, S∗) + g+

D(ĉ, S) + F (ĉ, ∅)− F (c, ∅)
]

=
1

4

(
1− 1

e

)[
MoV(S∗) + g+

D(ĉ, S) + F (ĉ, ∅)− F (c̄, ∅)
]

≥ 1

4

(
1− 1

e

)
MoV(S∗),

where the last inequality holds since, by definition of c̄ and ĉ, we have that g+
D(ĉ, S) +F (ĉ, ∅) ≥

g+
D(c̄, S) + F (c̄, ∅).

5 Simulations

We simulate our model on two real-world social networks4 on which political campaigning
messages could spread:

• polbooks: an undirected network with 105 nodes and 882 edges where nodes are polit-
ical books and edges represent co-purchasing behavior; nodes are labeled as “liberal,”
“conservative,” or “neutral.”

• polblogs: a directed network with 1,224 nodes and 19,025 edges where nodes are web blogs
about US politics and edges hyperlinks connecting them; nodes are labeled as “liberal”
or “conservative.”

The number of candidates in our simulations is based on the ground truth of the datasets; as
mentioned earlier, polbooks has three clusters and polblogs has two clusters based on different
US political parties. We set the probability of each node v to vote for, say, a “liberal” candidate
proportionally to the number of neighbors labeled as “liberal,” i.e., we set πv(c) = |Nv∩B|

|Nv | where
c is the “liberal” candidate, B is the set of nodes labeled as “liberal,” and Nv is the set of
neighbors of v. For each node v we sampled the “non-incoming influence weight” b̄v uniformly
at random in [0, 1] and assigned the remaining influence weight uniformly among its incoming

neighbors, i.e., we assigned to each edge (u, v) a weight buv = 1−b̄v
|N i
v |

.

In our simulations, we run GreedyScore (Algorithm 1) for the election control problem in
R-PLTR. Then, we measure the score and the MoV of each candidate using as starting seed
nodes the ones found by the algorithm both in PLTR and in R-PLTR. We run the simulation
considering each different candidate as the target one to cover multiple scenarios, considering
as budget values the ones in {0, 1, 5, 10}. Then, as baseline to compare, we also considered as
seed nodes the most influential ones, i.e., the nodes selected by GreedyIM, the classical greedy
algorithm for Influence Maximization [KKT15].

For the implementation, we used .Net framework 4.6.2 and C# programming language. We
have implemented five different classes for managing the graph, the LTM process, the PLTR
process, and a GUI. We execute the simulations on a system with the following specifications:
CPU Intel Core i7-6700HQ 2.6 GHz, with 4 × 32 KB 8-way L1 (data and inst) cache, and
4 × 256 KB 4-way L2 cache, and 6 MB 12-way L3 cache, RAM 16G DDR4. Each simulation
has a running time of approximately 40 seconds for poolbooks and 140 minutes for polblogs.

The results relative to the scores are shown in Figures 1 and 2. As expected, the effect of
our algorithm in R-PLTR is amplified compared to PLTR, since it affects a greater number of

4The datasets are taken from http://networkrepository.com/
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voters. Taking as example the “liberal” candidate in polbooks, we need a budget B = 5 to make
it overtake the “conservative” candidate in PLTR, while a budget B = 1 is enough in R-PLTR
(Figure 1); in polblogs, instead, we are not able to make the “liberal” candidate win in PLTR
with budget B = 10, but it is enough a budget B = 5 to make it overtake the “conservative”
candidate in R-PLTR (Figure 2).

The results relative to MoV are presented in Figure 3. We can note that, as a general trend,
candidates with lower probability of winning, are the most affected by the influence generated
by the seed nodes selected by our algorithm both in PLTR and R-PLTR. The “neutral” and
“liberal” candidates, respectively last and second last voted, have the higher MoV in polbooks
(see Figure 3, on the left), while the “liberal” candidate, which was losing the elections, has the
higher MoV in polblogs (see Figure 3, on the right).

Finally, in Figure 4 we present the difference between the MoV calculated by GreedyScore
and GreedyIM. The simulations show that our algorithm outperforms GreedyIM, as expected.
The only scenario in which our algorithm performs worse is that in which we influence, with
low budget, the already winning candidate (see Figure 4, on the left, red lines). The reason why
GreedyScore works better than GreedyIM is that it looks for seeds that will influence “critical”
voters, i.e., voters on which the influence will have more impact on the global score of the
candidates, while GreedyIM just looks for influential voters, independently from their initial
opinion.

6 Conclusions and Future Work

Influencing elections by means of social networks is a significant issue in modern society, and
understanding this phenomenon is of crucial importance in order to prevent the integrity of
democracy. Our results constitute the first step towards realistic modeling of the use of social
influence to control elections as our models take into account that voters might hide their prefer-
ences to a controller. In one of our models the election control problem cannot be approximated
within any reasonable bound, under some computational complexity hypothesis. For the other
model we provide an approximation algorithm that guarantees a constant factor approximation
ratio. The results in this paper open several research directions. We plan to study the election
control problem in a variant of PLTR where multiple campaigns affect voters’ opinions on differ-
ent candidates. It is also worth to investigate models with uncertainty in other voting systems.
Finally, it would be interesting to consider uncertainty models also for the diffusion process,
e.g., in robust influence maximization only a probability distribution on the edge’s weights is
known.
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Figure 1: Candidates’ scores in polbooks in PLTR (left column) and R-PLTR (right column), considering
as target candidate the “liberal” (top), the “conservative” (center), and the “neutral” (bottom).
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Figure 2: Candidates’ scores in polblogs in PLTR (left column) and R-PLTR (right column), considering
as target candidate the “liberal” (top) and the “conservative” (bottom).
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Figure 3: The MoV calculated using the presented algorithm for polbooks (left) and polblogs (right), both
in PLTR (dashed line) and R-PLTR (solid line), considering as target candidate the “liberal” (blue line),
the “conservative” (red line), and the “neutral” (grey line).
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Figure 4: Difference between MoV obtained using our greedy algorithm and MoV obtained using the
standard greedy algorithm for Influence Maximization problem in polbooks (left) and polblogs (right).
Values greater than 0 are when our algorithm performs better than the simple Greedy for Influence
Maximization.
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